linux/arch/x86/mm/pat_interval.c
Davidlohr Bueso 7f264dab5b x86/mm/pat: Rename pat_rbtree.c to pat_interval.c
Considering the previous changes, this is a more proper name.

Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lkml.kernel.org/r/20191121011601.20611-5-dave@stgolabs.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-21 18:48:18 +01:00

186 lines
4.5 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Handle caching attributes in page tables (PAT)
*
* Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
* Suresh B Siddha <suresh.b.siddha@intel.com>
*
* Interval tree used to store the PAT memory type reservations.
*/
#include <linux/seq_file.h>
#include <linux/debugfs.h>
#include <linux/kernel.h>
#include <linux/interval_tree_generic.h>
#include <linux/sched.h>
#include <linux/gfp.h>
#include <asm/pgtable.h>
#include <asm/pat.h>
#include "pat_internal.h"
/*
* The memtype tree keeps track of memory type for specific
* physical memory areas. Without proper tracking, conflicting memory
* types in different mappings can cause CPU cache corruption.
*
* The tree is an interval tree (augmented rbtree) with tree ordered
* on starting address. Tree can contain multiple entries for
* different regions which overlap. All the aliases have the same
* cache attributes of course.
*
* memtype_lock protects the rbtree.
*/
static inline u64 memtype_interval_start(struct memtype *memtype)
{
return memtype->start;
}
static inline u64 memtype_interval_end(struct memtype *memtype)
{
return memtype->end - 1;
}
INTERVAL_TREE_DEFINE(struct memtype, rb, u64, subtree_max_end,
memtype_interval_start, memtype_interval_end,
static, memtype_interval)
static struct rb_root_cached memtype_rbroot = RB_ROOT_CACHED;
enum {
MEMTYPE_EXACT_MATCH = 0,
MEMTYPE_END_MATCH = 1
};
static struct memtype *memtype_match(u64 start, u64 end, int match_type)
{
struct memtype *match;
match = memtype_interval_iter_first(&memtype_rbroot, start, end);
while (match != NULL && match->start < end) {
if ((match_type == MEMTYPE_EXACT_MATCH) &&
(match->start == start) && (match->end == end))
return match;
if ((match_type == MEMTYPE_END_MATCH) &&
(match->start < start) && (match->end == end))
return match;
match = memtype_interval_iter_next(match, start, end);
}
return NULL; /* Returns NULL if there is no match */
}
static int memtype_check_conflict(u64 start, u64 end,
enum page_cache_mode reqtype,
enum page_cache_mode *newtype)
{
struct memtype *match;
enum page_cache_mode found_type = reqtype;
match = memtype_interval_iter_first(&memtype_rbroot, start, end);
if (match == NULL)
goto success;
if (match->type != found_type && newtype == NULL)
goto failure;
dprintk("Overlap at 0x%Lx-0x%Lx\n", match->start, match->end);
found_type = match->type;
match = memtype_interval_iter_next(match, start, end);
while (match) {
if (match->type != found_type)
goto failure;
match = memtype_interval_iter_next(match, start, end);
}
success:
if (newtype)
*newtype = found_type;
return 0;
failure:
pr_info("x86/PAT: %s:%d conflicting memory types %Lx-%Lx %s<->%s\n",
current->comm, current->pid, start, end,
cattr_name(found_type), cattr_name(match->type));
return -EBUSY;
}
int memtype_check_insert(struct memtype *new,
enum page_cache_mode *ret_type)
{
int err = 0;
err = memtype_check_conflict(new->start, new->end, new->type, ret_type);
if (err)
return err;
if (ret_type)
new->type = *ret_type;
memtype_interval_insert(new, &memtype_rbroot);
return 0;
}
struct memtype *memtype_erase(u64 start, u64 end)
{
struct memtype *data;
/*
* Since the memtype_rbroot tree allows overlapping ranges,
* memtype_erase() checks with EXACT_MATCH first, i.e. free
* a whole node for the munmap case. If no such entry is found,
* it then checks with END_MATCH, i.e. shrink the size of a node
* from the end for the mremap case.
*/
data = memtype_match(start, end, MEMTYPE_EXACT_MATCH);
if (!data) {
data = memtype_match(start, end, MEMTYPE_END_MATCH);
if (!data)
return ERR_PTR(-EINVAL);
}
if (data->start == start) {
/* munmap: erase this node */
memtype_interval_remove(data, &memtype_rbroot);
} else {
/* mremap: update the end value of this node */
memtype_interval_remove(data, &memtype_rbroot);
data->end = start;
memtype_interval_insert(data, &memtype_rbroot);
return NULL;
}
return data;
}
struct memtype *memtype_lookup(u64 addr)
{
return memtype_interval_iter_first(&memtype_rbroot, addr,
addr + PAGE_SIZE);
}
#if defined(CONFIG_DEBUG_FS)
int memtype_copy_nth_element(struct memtype *out, loff_t pos)
{
struct memtype *match;
int i = 1;
match = memtype_interval_iter_first(&memtype_rbroot, 0, ULONG_MAX);
while (match && pos != i) {
match = memtype_interval_iter_next(match, 0, ULONG_MAX);
i++;
}
if (match) { /* pos == i */
*out = *match;
return 0;
} else {
return 1;
}
}
#endif