linux/net/rxrpc/insecure.c
David Howells 57af281e53 rxrpc: Tidy up abort generation infrastructure
Tidy up the abort generation infrastructure in the following ways:

 (1) Create an enum and string mapping table to list the reasons an abort
     might be generated in tracing.

 (2) Replace the 3-char string with the values from (1) in the places that
     use that to log the abort source.  This gets rid of a memcpy() in the
     tracepoint.

 (3) Subsume the rxrpc_rx_eproto tracepoint with the rxrpc_abort tracepoint
     and use values from (1) to indicate the trace reason.

 (4) Always make a call to an abort function at the point of the abort
     rather than stashing the values into variables and using goto to get
     to a place where it reported.  The C optimiser will collapse the calls
     together as appropriate.  The abort functions return a value that can
     be returned directly if appropriate.

Note that this extends into afs also at the points where that generates an
abort.  To aid with this, the afs sources need to #define
RXRPC_TRACE_ONLY_DEFINE_ENUMS before including the rxrpc tracing header
because they don't have access to the rxrpc internal structures that some
of the tracepoints make use of.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
2023-01-06 09:43:32 +00:00

89 lines
2.0 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/* Null security operations.
*
* Copyright (C) 2016 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
#include <net/af_rxrpc.h>
#include "ar-internal.h"
static int none_init_connection_security(struct rxrpc_connection *conn,
struct rxrpc_key_token *token)
{
return 0;
}
/*
* Work out how much data we can put in an unsecured packet.
*/
static int none_how_much_data(struct rxrpc_call *call, size_t remain,
size_t *_buf_size, size_t *_data_size, size_t *_offset)
{
*_buf_size = *_data_size = min_t(size_t, remain, RXRPC_JUMBO_DATALEN);
*_offset = 0;
return 0;
}
static int none_secure_packet(struct rxrpc_call *call, struct rxrpc_txbuf *txb)
{
return 0;
}
static int none_verify_packet(struct rxrpc_call *call, struct sk_buff *skb)
{
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
sp->flags |= RXRPC_RX_VERIFIED;
return 0;
}
static void none_free_call_crypto(struct rxrpc_call *call)
{
}
static int none_respond_to_challenge(struct rxrpc_connection *conn,
struct sk_buff *skb)
{
return rxrpc_abort_conn(conn, skb, RX_PROTOCOL_ERROR, -EPROTO,
rxrpc_eproto_rxnull_challenge);
}
static int none_verify_response(struct rxrpc_connection *conn,
struct sk_buff *skb)
{
return rxrpc_abort_conn(conn, skb, RX_PROTOCOL_ERROR, -EPROTO,
rxrpc_eproto_rxnull_response);
}
static void none_clear(struct rxrpc_connection *conn)
{
}
static int none_init(void)
{
return 0;
}
static void none_exit(void)
{
}
/*
* RxRPC Kerberos-based security
*/
const struct rxrpc_security rxrpc_no_security = {
.name = "none",
.security_index = RXRPC_SECURITY_NONE,
.init = none_init,
.exit = none_exit,
.init_connection_security = none_init_connection_security,
.free_call_crypto = none_free_call_crypto,
.how_much_data = none_how_much_data,
.secure_packet = none_secure_packet,
.verify_packet = none_verify_packet,
.respond_to_challenge = none_respond_to_challenge,
.verify_response = none_verify_response,
.clear = none_clear,
};