linux/drivers/hv/hv.c
Vitaly Kuznetsov 523b940870 hv: make CPU offlining prevention fine-grained
Since commit e513229b4c ("Drivers: hv: vmbus: prevent cpu offlining on
newer hypervisors") cpu offlining was disabled. It is still true that we
can't offline CPUs which have VMBus channels bound to them but we may have
'free' CPUs (e.v. we booted with maxcpus= parameter and onlined CPUs after
VMBus was initialized), these CPUs may be disabled without issues.

In future, we may even allow closing CPUs which have only sub-channels
assinged to them by closing these sub-channels. All devices will continue
to work.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-01-10 21:46:41 +01:00

658 lines
16 KiB
C

/*
* Copyright (c) 2009, Microsoft Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59 Temple
* Place - Suite 330, Boston, MA 02111-1307 USA.
*
* Authors:
* Haiyang Zhang <haiyangz@microsoft.com>
* Hank Janssen <hjanssen@microsoft.com>
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/hyperv.h>
#include <linux/version.h>
#include <linux/interrupt.h>
#include <linux/clockchips.h>
#include <asm/hyperv.h>
#include <asm/mshyperv.h>
#include "hyperv_vmbus.h"
/* The one and only */
struct hv_context hv_context = {
.synic_initialized = false,
.hypercall_page = NULL,
};
#define HV_TIMER_FREQUENCY (10 * 1000 * 1000) /* 100ns period */
#define HV_MAX_MAX_DELTA_TICKS 0xffffffff
#define HV_MIN_DELTA_TICKS 1
/*
* query_hypervisor_info - Get version info of the windows hypervisor
*/
unsigned int host_info_eax;
unsigned int host_info_ebx;
unsigned int host_info_ecx;
unsigned int host_info_edx;
static int query_hypervisor_info(void)
{
unsigned int eax;
unsigned int ebx;
unsigned int ecx;
unsigned int edx;
unsigned int max_leaf;
unsigned int op;
/*
* Its assumed that this is called after confirming that Viridian
* is present. Query id and revision.
*/
eax = 0;
ebx = 0;
ecx = 0;
edx = 0;
op = HVCPUID_VENDOR_MAXFUNCTION;
cpuid(op, &eax, &ebx, &ecx, &edx);
max_leaf = eax;
if (max_leaf >= HVCPUID_VERSION) {
eax = 0;
ebx = 0;
ecx = 0;
edx = 0;
op = HVCPUID_VERSION;
cpuid(op, &eax, &ebx, &ecx, &edx);
host_info_eax = eax;
host_info_ebx = ebx;
host_info_ecx = ecx;
host_info_edx = edx;
}
return max_leaf;
}
/*
* hv_do_hypercall- Invoke the specified hypercall
*/
u64 hv_do_hypercall(u64 control, void *input, void *output)
{
u64 input_address = (input) ? virt_to_phys(input) : 0;
u64 output_address = (output) ? virt_to_phys(output) : 0;
void *hypercall_page = hv_context.hypercall_page;
#ifdef CONFIG_X86_64
u64 hv_status = 0;
if (!hypercall_page)
return (u64)ULLONG_MAX;
__asm__ __volatile__("mov %0, %%r8" : : "r" (output_address) : "r8");
__asm__ __volatile__("call *%3" : "=a" (hv_status) :
"c" (control), "d" (input_address),
"m" (hypercall_page));
return hv_status;
#else
u32 control_hi = control >> 32;
u32 control_lo = control & 0xFFFFFFFF;
u32 hv_status_hi = 1;
u32 hv_status_lo = 1;
u32 input_address_hi = input_address >> 32;
u32 input_address_lo = input_address & 0xFFFFFFFF;
u32 output_address_hi = output_address >> 32;
u32 output_address_lo = output_address & 0xFFFFFFFF;
if (!hypercall_page)
return (u64)ULLONG_MAX;
__asm__ __volatile__ ("call *%8" : "=d"(hv_status_hi),
"=a"(hv_status_lo) : "d" (control_hi),
"a" (control_lo), "b" (input_address_hi),
"c" (input_address_lo), "D"(output_address_hi),
"S"(output_address_lo), "m" (hypercall_page));
return hv_status_lo | ((u64)hv_status_hi << 32);
#endif /* !x86_64 */
}
EXPORT_SYMBOL_GPL(hv_do_hypercall);
#ifdef CONFIG_X86_64
static u64 read_hv_clock_tsc(struct clocksource *arg)
{
u64 current_tick;
struct ms_hyperv_tsc_page *tsc_pg = hv_context.tsc_page;
if (tsc_pg->tsc_sequence != 0) {
/*
* Use the tsc page to compute the value.
*/
while (1) {
u64 tmp;
u32 sequence = tsc_pg->tsc_sequence;
u64 cur_tsc;
u64 scale = tsc_pg->tsc_scale;
s64 offset = tsc_pg->tsc_offset;
rdtscll(cur_tsc);
/* current_tick = ((cur_tsc *scale) >> 64) + offset */
asm("mulq %3"
: "=d" (current_tick), "=a" (tmp)
: "a" (cur_tsc), "r" (scale));
current_tick += offset;
if (tsc_pg->tsc_sequence == sequence)
return current_tick;
if (tsc_pg->tsc_sequence != 0)
continue;
/*
* Fallback using MSR method.
*/
break;
}
}
rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
return current_tick;
}
static struct clocksource hyperv_cs_tsc = {
.name = "hyperv_clocksource_tsc_page",
.rating = 425,
.read = read_hv_clock_tsc,
.mask = CLOCKSOURCE_MASK(64),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
#endif
/*
* hv_init - Main initialization routine.
*
* This routine must be called before any other routines in here are called
*/
int hv_init(void)
{
int max_leaf;
union hv_x64_msr_hypercall_contents hypercall_msr;
void *virtaddr = NULL;
memset(hv_context.synic_event_page, 0, sizeof(void *) * NR_CPUS);
memset(hv_context.synic_message_page, 0,
sizeof(void *) * NR_CPUS);
memset(hv_context.post_msg_page, 0,
sizeof(void *) * NR_CPUS);
memset(hv_context.vp_index, 0,
sizeof(int) * NR_CPUS);
memset(hv_context.event_dpc, 0,
sizeof(void *) * NR_CPUS);
memset(hv_context.msg_dpc, 0,
sizeof(void *) * NR_CPUS);
memset(hv_context.clk_evt, 0,
sizeof(void *) * NR_CPUS);
max_leaf = query_hypervisor_info();
/*
* Write our OS ID.
*/
hv_context.guestid = generate_guest_id(0, LINUX_VERSION_CODE, 0);
wrmsrl(HV_X64_MSR_GUEST_OS_ID, hv_context.guestid);
/* See if the hypercall page is already set */
rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
virtaddr = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL_EXEC);
if (!virtaddr)
goto cleanup;
hypercall_msr.enable = 1;
hypercall_msr.guest_physical_address = vmalloc_to_pfn(virtaddr);
wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
/* Confirm that hypercall page did get setup. */
hypercall_msr.as_uint64 = 0;
rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
if (!hypercall_msr.enable)
goto cleanup;
hv_context.hypercall_page = virtaddr;
#ifdef CONFIG_X86_64
if (ms_hyperv.features & HV_X64_MSR_REFERENCE_TSC_AVAILABLE) {
union hv_x64_msr_hypercall_contents tsc_msr;
void *va_tsc;
va_tsc = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL);
if (!va_tsc)
goto cleanup;
hv_context.tsc_page = va_tsc;
rdmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
tsc_msr.enable = 1;
tsc_msr.guest_physical_address = vmalloc_to_pfn(va_tsc);
wrmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
}
#endif
return 0;
cleanup:
if (virtaddr) {
if (hypercall_msr.enable) {
hypercall_msr.as_uint64 = 0;
wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
}
vfree(virtaddr);
}
return -ENOTSUPP;
}
/*
* hv_cleanup - Cleanup routine.
*
* This routine is called normally during driver unloading or exiting.
*/
void hv_cleanup(bool crash)
{
union hv_x64_msr_hypercall_contents hypercall_msr;
/* Reset our OS id */
wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
if (hv_context.hypercall_page) {
hypercall_msr.as_uint64 = 0;
wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
if (!crash)
vfree(hv_context.hypercall_page);
hv_context.hypercall_page = NULL;
}
#ifdef CONFIG_X86_64
/*
* Cleanup the TSC page based CS.
*/
if (ms_hyperv.features & HV_X64_MSR_REFERENCE_TSC_AVAILABLE) {
/*
* Crash can happen in an interrupt context and unregistering
* a clocksource is impossible and redundant in this case.
*/
if (!oops_in_progress) {
clocksource_change_rating(&hyperv_cs_tsc, 10);
clocksource_unregister(&hyperv_cs_tsc);
}
hypercall_msr.as_uint64 = 0;
wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
if (!crash) {
vfree(hv_context.tsc_page);
hv_context.tsc_page = NULL;
}
}
#endif
}
/*
* hv_post_message - Post a message using the hypervisor message IPC.
*
* This involves a hypercall.
*/
int hv_post_message(union hv_connection_id connection_id,
enum hv_message_type message_type,
void *payload, size_t payload_size)
{
struct hv_input_post_message *aligned_msg;
u64 status;
if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT)
return -EMSGSIZE;
aligned_msg = (struct hv_input_post_message *)
hv_context.post_msg_page[get_cpu()];
aligned_msg->connectionid = connection_id;
aligned_msg->reserved = 0;
aligned_msg->message_type = message_type;
aligned_msg->payload_size = payload_size;
memcpy((void *)aligned_msg->payload, payload, payload_size);
status = hv_do_hypercall(HVCALL_POST_MESSAGE, aligned_msg, NULL);
put_cpu();
return status & 0xFFFF;
}
static int hv_ce_set_next_event(unsigned long delta,
struct clock_event_device *evt)
{
u64 current_tick;
WARN_ON(!clockevent_state_oneshot(evt));
rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
current_tick += delta;
wrmsrl(HV_X64_MSR_STIMER0_COUNT, current_tick);
return 0;
}
static int hv_ce_shutdown(struct clock_event_device *evt)
{
wrmsrl(HV_X64_MSR_STIMER0_COUNT, 0);
wrmsrl(HV_X64_MSR_STIMER0_CONFIG, 0);
return 0;
}
static int hv_ce_set_oneshot(struct clock_event_device *evt)
{
union hv_timer_config timer_cfg;
timer_cfg.enable = 1;
timer_cfg.auto_enable = 1;
timer_cfg.sintx = VMBUS_MESSAGE_SINT;
wrmsrl(HV_X64_MSR_STIMER0_CONFIG, timer_cfg.as_uint64);
return 0;
}
static void hv_init_clockevent_device(struct clock_event_device *dev, int cpu)
{
dev->name = "Hyper-V clockevent";
dev->features = CLOCK_EVT_FEAT_ONESHOT;
dev->cpumask = cpumask_of(cpu);
dev->rating = 1000;
/*
* Avoid settint dev->owner = THIS_MODULE deliberately as doing so will
* result in clockevents_config_and_register() taking additional
* references to the hv_vmbus module making it impossible to unload.
*/
dev->set_state_shutdown = hv_ce_shutdown;
dev->set_state_oneshot = hv_ce_set_oneshot;
dev->set_next_event = hv_ce_set_next_event;
}
int hv_synic_alloc(void)
{
size_t size = sizeof(struct tasklet_struct);
size_t ced_size = sizeof(struct clock_event_device);
int cpu;
hv_context.hv_numa_map = kzalloc(sizeof(struct cpumask) * nr_node_ids,
GFP_ATOMIC);
if (hv_context.hv_numa_map == NULL) {
pr_err("Unable to allocate NUMA map\n");
goto err;
}
for_each_present_cpu(cpu) {
hv_context.event_dpc[cpu] = kmalloc(size, GFP_ATOMIC);
if (hv_context.event_dpc[cpu] == NULL) {
pr_err("Unable to allocate event dpc\n");
goto err;
}
tasklet_init(hv_context.event_dpc[cpu], vmbus_on_event, cpu);
hv_context.msg_dpc[cpu] = kmalloc(size, GFP_ATOMIC);
if (hv_context.msg_dpc[cpu] == NULL) {
pr_err("Unable to allocate event dpc\n");
goto err;
}
tasklet_init(hv_context.msg_dpc[cpu], vmbus_on_msg_dpc, cpu);
hv_context.clk_evt[cpu] = kzalloc(ced_size, GFP_ATOMIC);
if (hv_context.clk_evt[cpu] == NULL) {
pr_err("Unable to allocate clock event device\n");
goto err;
}
hv_init_clockevent_device(hv_context.clk_evt[cpu], cpu);
hv_context.synic_message_page[cpu] =
(void *)get_zeroed_page(GFP_ATOMIC);
if (hv_context.synic_message_page[cpu] == NULL) {
pr_err("Unable to allocate SYNIC message page\n");
goto err;
}
hv_context.synic_event_page[cpu] =
(void *)get_zeroed_page(GFP_ATOMIC);
if (hv_context.synic_event_page[cpu] == NULL) {
pr_err("Unable to allocate SYNIC event page\n");
goto err;
}
hv_context.post_msg_page[cpu] =
(void *)get_zeroed_page(GFP_ATOMIC);
if (hv_context.post_msg_page[cpu] == NULL) {
pr_err("Unable to allocate post msg page\n");
goto err;
}
INIT_LIST_HEAD(&hv_context.percpu_list[cpu]);
}
return 0;
err:
return -ENOMEM;
}
static void hv_synic_free_cpu(int cpu)
{
kfree(hv_context.event_dpc[cpu]);
kfree(hv_context.msg_dpc[cpu]);
kfree(hv_context.clk_evt[cpu]);
if (hv_context.synic_event_page[cpu])
free_page((unsigned long)hv_context.synic_event_page[cpu]);
if (hv_context.synic_message_page[cpu])
free_page((unsigned long)hv_context.synic_message_page[cpu]);
if (hv_context.post_msg_page[cpu])
free_page((unsigned long)hv_context.post_msg_page[cpu]);
}
void hv_synic_free(void)
{
int cpu;
kfree(hv_context.hv_numa_map);
for_each_present_cpu(cpu)
hv_synic_free_cpu(cpu);
}
/*
* hv_synic_init - Initialize the Synthethic Interrupt Controller.
*
* If it is already initialized by another entity (ie x2v shim), we need to
* retrieve the initialized message and event pages. Otherwise, we create and
* initialize the message and event pages.
*/
int hv_synic_init(unsigned int cpu)
{
u64 version;
union hv_synic_simp simp;
union hv_synic_siefp siefp;
union hv_synic_sint shared_sint;
union hv_synic_scontrol sctrl;
u64 vp_index;
if (!hv_context.hypercall_page)
return -EFAULT;
/* Check the version */
rdmsrl(HV_X64_MSR_SVERSION, version);
/* Setup the Synic's message page */
rdmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
simp.simp_enabled = 1;
simp.base_simp_gpa = virt_to_phys(hv_context.synic_message_page[cpu])
>> PAGE_SHIFT;
wrmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
/* Setup the Synic's event page */
rdmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
siefp.siefp_enabled = 1;
siefp.base_siefp_gpa = virt_to_phys(hv_context.synic_event_page[cpu])
>> PAGE_SHIFT;
wrmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
/* Setup the shared SINT. */
rdmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
shared_sint.as_uint64 = 0;
shared_sint.vector = HYPERVISOR_CALLBACK_VECTOR;
shared_sint.masked = false;
shared_sint.auto_eoi = true;
wrmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
/* Enable the global synic bit */
rdmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
sctrl.enable = 1;
wrmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
hv_context.synic_initialized = true;
/*
* Setup the mapping between Hyper-V's notion
* of cpuid and Linux' notion of cpuid.
* This array will be indexed using Linux cpuid.
*/
rdmsrl(HV_X64_MSR_VP_INDEX, vp_index);
hv_context.vp_index[cpu] = (u32)vp_index;
/*
* Register the per-cpu clockevent source.
*/
if (ms_hyperv.features & HV_X64_MSR_SYNTIMER_AVAILABLE)
clockevents_config_and_register(hv_context.clk_evt[cpu],
HV_TIMER_FREQUENCY,
HV_MIN_DELTA_TICKS,
HV_MAX_MAX_DELTA_TICKS);
return 0;
}
/*
* hv_synic_clockevents_cleanup - Cleanup clockevent devices
*/
void hv_synic_clockevents_cleanup(void)
{
int cpu;
if (!(ms_hyperv.features & HV_X64_MSR_SYNTIMER_AVAILABLE))
return;
for_each_present_cpu(cpu)
clockevents_unbind_device(hv_context.clk_evt[cpu], cpu);
}
/*
* hv_synic_cleanup - Cleanup routine for hv_synic_init().
*/
int hv_synic_cleanup(unsigned int cpu)
{
union hv_synic_sint shared_sint;
union hv_synic_simp simp;
union hv_synic_siefp siefp;
union hv_synic_scontrol sctrl;
struct vmbus_channel *channel, *sc;
bool channel_found = false;
unsigned long flags;
if (!hv_context.synic_initialized)
return -EFAULT;
/*
* Search for channels which are bound to the CPU we're about to
* cleanup. In case we find one and vmbus is still connected we need to
* fail, this will effectively prevent CPU offlining. There is no way
* we can re-bind channels to different CPUs for now.
*/
mutex_lock(&vmbus_connection.channel_mutex);
list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
if (channel->target_cpu == cpu) {
channel_found = true;
break;
}
spin_lock_irqsave(&channel->lock, flags);
list_for_each_entry(sc, &channel->sc_list, sc_list) {
if (sc->target_cpu == cpu) {
channel_found = true;
break;
}
}
spin_unlock_irqrestore(&channel->lock, flags);
if (channel_found)
break;
}
mutex_unlock(&vmbus_connection.channel_mutex);
if (channel_found && vmbus_connection.conn_state == CONNECTED)
return -EBUSY;
/* Turn off clockevent device */
if (ms_hyperv.features & HV_X64_MSR_SYNTIMER_AVAILABLE) {
clockevents_unbind_device(hv_context.clk_evt[cpu], cpu);
hv_ce_shutdown(hv_context.clk_evt[cpu]);
}
rdmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
shared_sint.masked = 1;
/* Need to correctly cleanup in the case of SMP!!! */
/* Disable the interrupt */
wrmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
rdmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
simp.simp_enabled = 0;
simp.base_simp_gpa = 0;
wrmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
rdmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
siefp.siefp_enabled = 0;
siefp.base_siefp_gpa = 0;
wrmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
/* Disable the global synic bit */
rdmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
sctrl.enable = 0;
wrmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
return 0;
}