linux/drivers/misc/habanalabs/debugfs.c
Tomer Tayar d75bcf3e5d habanalabs: Allow accessing DRAM virtual addresses via debugfs
The addr/data32 debugfs nodes currently permit the access to only physical
addresses of a device. This patch extends it and allows accessing also
device's DRAM virtual addresses.

Signed-off-by: Tomer Tayar <ttayar@habana.ai>
Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
2019-03-12 13:53:17 +02:00

1165 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2019 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#include "habanalabs.h"
#include "include/hw_ip/mmu/mmu_general.h"
#include <linux/pci.h>
#include <linux/debugfs.h>
#include <linux/uaccess.h>
#define MMU_ADDR_BUF_SIZE 40
#define MMU_ASID_BUF_SIZE 10
#define MMU_KBUF_SIZE (MMU_ADDR_BUF_SIZE + MMU_ASID_BUF_SIZE)
static struct dentry *hl_debug_root;
static int hl_debugfs_i2c_read(struct hl_device *hdev, u8 i2c_bus, u8 i2c_addr,
u8 i2c_reg, u32 *val)
{
struct armcp_packet pkt;
int rc;
if (hl_device_disabled_or_in_reset(hdev))
return -EBUSY;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = __cpu_to_le32(ARMCP_PACKET_I2C_RD <<
ARMCP_PKT_CTL_OPCODE_SHIFT);
pkt.i2c_bus = i2c_bus;
pkt.i2c_addr = i2c_addr;
pkt.i2c_reg = i2c_reg;
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
HL_DEVICE_TIMEOUT_USEC, (long *) val);
if (rc)
dev_err(hdev->dev, "Failed to read from I2C, error %d\n", rc);
return rc;
}
static int hl_debugfs_i2c_write(struct hl_device *hdev, u8 i2c_bus, u8 i2c_addr,
u8 i2c_reg, u32 val)
{
struct armcp_packet pkt;
int rc;
if (hl_device_disabled_or_in_reset(hdev))
return -EBUSY;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = __cpu_to_le32(ARMCP_PACKET_I2C_WR <<
ARMCP_PKT_CTL_OPCODE_SHIFT);
pkt.i2c_bus = i2c_bus;
pkt.i2c_addr = i2c_addr;
pkt.i2c_reg = i2c_reg;
pkt.value = __cpu_to_le64(val);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
HL_DEVICE_TIMEOUT_USEC, NULL);
if (rc)
dev_err(hdev->dev, "Failed to write to I2C, error %d\n", rc);
return rc;
}
static void hl_debugfs_led_set(struct hl_device *hdev, u8 led, u8 state)
{
struct armcp_packet pkt;
int rc;
if (hl_device_disabled_or_in_reset(hdev))
return;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = __cpu_to_le32(ARMCP_PACKET_LED_SET <<
ARMCP_PKT_CTL_OPCODE_SHIFT);
pkt.led_index = __cpu_to_le32(led);
pkt.value = __cpu_to_le64(state);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
HL_DEVICE_TIMEOUT_USEC, NULL);
if (rc)
dev_err(hdev->dev, "Failed to set LED %d, error %d\n", led, rc);
}
static int command_buffers_show(struct seq_file *s, void *data)
{
struct hl_debugfs_entry *entry = s->private;
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
struct hl_cb *cb;
bool first = true;
spin_lock(&dev_entry->cb_spinlock);
list_for_each_entry(cb, &dev_entry->cb_list, debugfs_list) {
if (first) {
first = false;
seq_puts(s, "\n");
seq_puts(s, " CB ID CTX ID CB size CB RefCnt mmap? CS counter\n");
seq_puts(s, "---------------------------------------------------------------\n");
}
seq_printf(s,
" %03d %d 0x%08x %d %d %d\n",
cb->id, cb->ctx_id, cb->size,
kref_read(&cb->refcount),
cb->mmap, cb->cs_cnt);
}
spin_unlock(&dev_entry->cb_spinlock);
if (!first)
seq_puts(s, "\n");
return 0;
}
static int command_submission_show(struct seq_file *s, void *data)
{
struct hl_debugfs_entry *entry = s->private;
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
struct hl_cs *cs;
bool first = true;
spin_lock(&dev_entry->cs_spinlock);
list_for_each_entry(cs, &dev_entry->cs_list, debugfs_list) {
if (first) {
first = false;
seq_puts(s, "\n");
seq_puts(s, " CS ID CTX ASID CS RefCnt Submitted Completed\n");
seq_puts(s, "------------------------------------------------------\n");
}
seq_printf(s,
" %llu %d %d %d %d\n",
cs->sequence, cs->ctx->asid,
kref_read(&cs->refcount),
cs->submitted, cs->completed);
}
spin_unlock(&dev_entry->cs_spinlock);
if (!first)
seq_puts(s, "\n");
return 0;
}
static int command_submission_jobs_show(struct seq_file *s, void *data)
{
struct hl_debugfs_entry *entry = s->private;
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
struct hl_cs_job *job;
bool first = true;
spin_lock(&dev_entry->cs_job_spinlock);
list_for_each_entry(job, &dev_entry->cs_job_list, debugfs_list) {
if (first) {
first = false;
seq_puts(s, "\n");
seq_puts(s, " JOB ID CS ID CTX ASID H/W Queue\n");
seq_puts(s, "---------------------------------------\n");
}
if (job->cs)
seq_printf(s,
" %02d %llu %d %d\n",
job->id, job->cs->sequence, job->cs->ctx->asid,
job->hw_queue_id);
else
seq_printf(s,
" %02d 0 %d %d\n",
job->id, HL_KERNEL_ASID_ID, job->hw_queue_id);
}
spin_unlock(&dev_entry->cs_job_spinlock);
if (!first)
seq_puts(s, "\n");
return 0;
}
static int userptr_show(struct seq_file *s, void *data)
{
struct hl_debugfs_entry *entry = s->private;
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
struct hl_userptr *userptr;
char dma_dir[4][30] = {"DMA_BIDIRECTIONAL", "DMA_TO_DEVICE",
"DMA_FROM_DEVICE", "DMA_NONE"};
bool first = true;
spin_lock(&dev_entry->userptr_spinlock);
list_for_each_entry(userptr, &dev_entry->userptr_list, debugfs_list) {
if (first) {
first = false;
seq_puts(s, "\n");
seq_puts(s, " user virtual address size dma dir\n");
seq_puts(s, "----------------------------------------------------------\n");
}
seq_printf(s,
" 0x%-14llx %-10u %-30s\n",
userptr->addr, userptr->size, dma_dir[userptr->dir]);
}
spin_unlock(&dev_entry->userptr_spinlock);
if (!first)
seq_puts(s, "\n");
return 0;
}
static int vm_show(struct seq_file *s, void *data)
{
struct hl_debugfs_entry *entry = s->private;
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
struct hl_ctx *ctx;
struct hl_vm *vm;
struct hl_vm_hash_node *hnode;
struct hl_userptr *userptr;
struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
enum vm_type_t *vm_type;
bool once = true;
u64 j;
int i;
if (!dev_entry->hdev->mmu_enable)
return 0;
spin_lock(&dev_entry->ctx_mem_hash_spinlock);
list_for_each_entry(ctx, &dev_entry->ctx_mem_hash_list, debugfs_list) {
once = false;
seq_puts(s, "\n\n----------------------------------------------------");
seq_puts(s, "\n----------------------------------------------------\n\n");
seq_printf(s, "ctx asid: %u\n", ctx->asid);
seq_puts(s, "\nmappings:\n\n");
seq_puts(s, " virtual address size handle\n");
seq_puts(s, "----------------------------------------------------\n");
mutex_lock(&ctx->mem_hash_lock);
hash_for_each(ctx->mem_hash, i, hnode, node) {
vm_type = hnode->ptr;
if (*vm_type == VM_TYPE_USERPTR) {
userptr = hnode->ptr;
seq_printf(s,
" 0x%-14llx %-10u\n",
hnode->vaddr, userptr->size);
} else {
phys_pg_pack = hnode->ptr;
seq_printf(s,
" 0x%-14llx %-10llu %-4u\n",
hnode->vaddr, phys_pg_pack->total_size,
phys_pg_pack->handle);
}
}
mutex_unlock(&ctx->mem_hash_lock);
vm = &ctx->hdev->vm;
spin_lock(&vm->idr_lock);
if (!idr_is_empty(&vm->phys_pg_pack_handles))
seq_puts(s, "\n\nallocations:\n");
idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_pack, i) {
if (phys_pg_pack->asid != ctx->asid)
continue;
seq_printf(s, "\nhandle: %u\n", phys_pg_pack->handle);
seq_printf(s, "page size: %u\n\n",
phys_pg_pack->page_size);
seq_puts(s, " physical address\n");
seq_puts(s, "---------------------\n");
for (j = 0 ; j < phys_pg_pack->npages ; j++) {
seq_printf(s, " 0x%-14llx\n",
phys_pg_pack->pages[j]);
}
}
spin_unlock(&vm->idr_lock);
}
spin_unlock(&dev_entry->ctx_mem_hash_spinlock);
if (!once)
seq_puts(s, "\n");
return 0;
}
/* these inline functions are copied from mmu.c */
static inline u64 get_hop0_addr(struct hl_ctx *ctx)
{
return ctx->hdev->asic_prop.mmu_pgt_addr +
(ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size);
}
static inline u64 get_hop0_pte_addr(struct hl_ctx *ctx, u64 hop_addr,
u64 virt_addr)
{
return hop_addr + ctx->hdev->asic_prop.mmu_pte_size *
((virt_addr & HOP0_MASK) >> HOP0_SHIFT);
}
static inline u64 get_hop1_pte_addr(struct hl_ctx *ctx, u64 hop_addr,
u64 virt_addr)
{
return hop_addr + ctx->hdev->asic_prop.mmu_pte_size *
((virt_addr & HOP1_MASK) >> HOP1_SHIFT);
}
static inline u64 get_hop2_pte_addr(struct hl_ctx *ctx, u64 hop_addr,
u64 virt_addr)
{
return hop_addr + ctx->hdev->asic_prop.mmu_pte_size *
((virt_addr & HOP2_MASK) >> HOP2_SHIFT);
}
static inline u64 get_hop3_pte_addr(struct hl_ctx *ctx, u64 hop_addr,
u64 virt_addr)
{
return hop_addr + ctx->hdev->asic_prop.mmu_pte_size *
((virt_addr & HOP3_MASK) >> HOP3_SHIFT);
}
static inline u64 get_hop4_pte_addr(struct hl_ctx *ctx, u64 hop_addr,
u64 virt_addr)
{
return hop_addr + ctx->hdev->asic_prop.mmu_pte_size *
((virt_addr & HOP4_MASK) >> HOP4_SHIFT);
}
static inline u64 get_next_hop_addr(u64 curr_pte)
{
if (curr_pte & PAGE_PRESENT_MASK)
return curr_pte & PHYS_ADDR_MASK;
else
return ULLONG_MAX;
}
static int mmu_show(struct seq_file *s, void *data)
{
struct hl_debugfs_entry *entry = s->private;
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
struct hl_device *hdev = dev_entry->hdev;
struct hl_ctx *ctx = hdev->user_ctx;
u64 hop0_addr = 0, hop0_pte_addr = 0, hop0_pte = 0,
hop1_addr = 0, hop1_pte_addr = 0, hop1_pte = 0,
hop2_addr = 0, hop2_pte_addr = 0, hop2_pte = 0,
hop3_addr = 0, hop3_pte_addr = 0, hop3_pte = 0,
hop4_addr = 0, hop4_pte_addr = 0, hop4_pte = 0,
virt_addr = dev_entry->mmu_addr;
if (!hdev->mmu_enable)
return 0;
if (!ctx) {
dev_err(hdev->dev, "no ctx available\n");
return 0;
}
mutex_lock(&ctx->mmu_lock);
/* the following lookup is copied from unmap() in mmu.c */
hop0_addr = get_hop0_addr(ctx);
hop0_pte_addr = get_hop0_pte_addr(ctx, hop0_addr, virt_addr);
hop0_pte = hdev->asic_funcs->read_pte(hdev, hop0_pte_addr);
hop1_addr = get_next_hop_addr(hop0_pte);
if (hop1_addr == ULLONG_MAX)
goto not_mapped;
hop1_pte_addr = get_hop1_pte_addr(ctx, hop1_addr, virt_addr);
hop1_pte = hdev->asic_funcs->read_pte(hdev, hop1_pte_addr);
hop2_addr = get_next_hop_addr(hop1_pte);
if (hop2_addr == ULLONG_MAX)
goto not_mapped;
hop2_pte_addr = get_hop2_pte_addr(ctx, hop2_addr, virt_addr);
hop2_pte = hdev->asic_funcs->read_pte(hdev, hop2_pte_addr);
hop3_addr = get_next_hop_addr(hop2_pte);
if (hop3_addr == ULLONG_MAX)
goto not_mapped;
hop3_pte_addr = get_hop3_pte_addr(ctx, hop3_addr, virt_addr);
hop3_pte = hdev->asic_funcs->read_pte(hdev, hop3_pte_addr);
if (!(hop3_pte & LAST_MASK)) {
hop4_addr = get_next_hop_addr(hop3_pte);
if (hop4_addr == ULLONG_MAX)
goto not_mapped;
hop4_pte_addr = get_hop4_pte_addr(ctx, hop4_addr, virt_addr);
hop4_pte = hdev->asic_funcs->read_pte(hdev, hop4_pte_addr);
if (!(hop4_pte & PAGE_PRESENT_MASK))
goto not_mapped;
} else {
if (!(hop3_pte & PAGE_PRESENT_MASK))
goto not_mapped;
}
seq_printf(s, "asid: %u, virt_addr: 0x%llx\n",
dev_entry->mmu_asid, dev_entry->mmu_addr);
seq_printf(s, "hop0_addr: 0x%llx\n", hop0_addr);
seq_printf(s, "hop0_pte_addr: 0x%llx\n", hop0_pte_addr);
seq_printf(s, "hop0_pte: 0x%llx\n", hop0_pte);
seq_printf(s, "hop1_addr: 0x%llx\n", hop1_addr);
seq_printf(s, "hop1_pte_addr: 0x%llx\n", hop1_pte_addr);
seq_printf(s, "hop1_pte: 0x%llx\n", hop1_pte);
seq_printf(s, "hop2_addr: 0x%llx\n", hop2_addr);
seq_printf(s, "hop2_pte_addr: 0x%llx\n", hop2_pte_addr);
seq_printf(s, "hop2_pte: 0x%llx\n", hop2_pte);
seq_printf(s, "hop3_addr: 0x%llx\n", hop3_addr);
seq_printf(s, "hop3_pte_addr: 0x%llx\n", hop3_pte_addr);
seq_printf(s, "hop3_pte: 0x%llx\n", hop3_pte);
if (!(hop3_pte & LAST_MASK)) {
seq_printf(s, "hop4_addr: 0x%llx\n", hop4_addr);
seq_printf(s, "hop4_pte_addr: 0x%llx\n", hop4_pte_addr);
seq_printf(s, "hop4_pte: 0x%llx\n", hop4_pte);
}
goto out;
not_mapped:
dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n",
virt_addr);
out:
mutex_unlock(&ctx->mmu_lock);
return 0;
}
static ssize_t mmu_write(struct file *file, const char __user *buf,
size_t count, loff_t *f_pos)
{
struct seq_file *s = file->private_data;
struct hl_debugfs_entry *entry = s->private;
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
struct hl_device *hdev = dev_entry->hdev;
char kbuf[MMU_KBUF_SIZE], asid_kbuf[MMU_ASID_BUF_SIZE],
addr_kbuf[MMU_ADDR_BUF_SIZE];
char *c;
ssize_t rc;
if (!hdev->mmu_enable)
return count;
memset(kbuf, 0, sizeof(kbuf));
memset(asid_kbuf, 0, sizeof(asid_kbuf));
memset(addr_kbuf, 0, sizeof(addr_kbuf));
if (copy_from_user(kbuf, buf, count))
goto err;
kbuf[MMU_KBUF_SIZE - 1] = 0;
c = strchr(kbuf, ' ');
if (!c)
goto err;
memcpy(asid_kbuf, kbuf, c - kbuf);
rc = kstrtouint(asid_kbuf, 10, &dev_entry->mmu_asid);
if (rc)
goto err;
c = strstr(kbuf, " 0x");
if (!c)
goto err;
c += 3;
memcpy(addr_kbuf, c, (kbuf + count) - c);
rc = kstrtoull(addr_kbuf, 16, &dev_entry->mmu_addr);
if (rc)
goto err;
return count;
err:
dev_err(hdev->dev, "usage: echo <asid> <0xaddr> > mmu\n");
return -EINVAL;
}
static int device_va_to_pa(struct hl_device *hdev, u64 virt_addr,
u64 *phys_addr)
{
struct hl_ctx *ctx = hdev->user_ctx;
u64 hop_addr, hop_pte_addr, hop_pte;
int rc = 0;
if (!ctx) {
dev_err(hdev->dev, "no ctx available\n");
return -EINVAL;
}
mutex_lock(&ctx->mmu_lock);
/* hop 0 */
hop_addr = get_hop0_addr(ctx);
hop_pte_addr = get_hop0_pte_addr(ctx, hop_addr, virt_addr);
hop_pte = hdev->asic_funcs->read_pte(hdev, hop_pte_addr);
/* hop 1 */
hop_addr = get_next_hop_addr(hop_pte);
if (hop_addr == ULLONG_MAX)
goto not_mapped;
hop_pte_addr = get_hop1_pte_addr(ctx, hop_addr, virt_addr);
hop_pte = hdev->asic_funcs->read_pte(hdev, hop_pte_addr);
/* hop 2 */
hop_addr = get_next_hop_addr(hop_pte);
if (hop_addr == ULLONG_MAX)
goto not_mapped;
hop_pte_addr = get_hop2_pte_addr(ctx, hop_addr, virt_addr);
hop_pte = hdev->asic_funcs->read_pte(hdev, hop_pte_addr);
/* hop 3 */
hop_addr = get_next_hop_addr(hop_pte);
if (hop_addr == ULLONG_MAX)
goto not_mapped;
hop_pte_addr = get_hop3_pte_addr(ctx, hop_addr, virt_addr);
hop_pte = hdev->asic_funcs->read_pte(hdev, hop_pte_addr);
if (!(hop_pte & LAST_MASK)) {
/* hop 4 */
hop_addr = get_next_hop_addr(hop_pte);
if (hop_addr == ULLONG_MAX)
goto not_mapped;
hop_pte_addr = get_hop4_pte_addr(ctx, hop_addr, virt_addr);
hop_pte = hdev->asic_funcs->read_pte(hdev, hop_pte_addr);
}
if (!(hop_pte & PAGE_PRESENT_MASK))
goto not_mapped;
*phys_addr = (hop_pte & PTE_PHYS_ADDR_MASK) | (virt_addr & OFFSET_MASK);
goto out;
not_mapped:
dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n",
virt_addr);
rc = -EINVAL;
out:
mutex_unlock(&ctx->mmu_lock);
return rc;
}
static ssize_t hl_data_read32(struct file *f, char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
struct asic_fixed_properties *prop = &hdev->asic_prop;
char tmp_buf[32];
u64 addr = entry->addr;
u32 val;
ssize_t rc;
if (*ppos)
return 0;
if (addr >= prop->va_space_dram_start_address &&
addr < prop->va_space_dram_end_address &&
hdev->mmu_enable &&
hdev->dram_supports_virtual_memory) {
rc = device_va_to_pa(hdev, entry->addr, &addr);
if (rc)
return rc;
}
rc = hdev->asic_funcs->debugfs_read32(hdev, addr, &val);
if (rc) {
dev_err(hdev->dev, "Failed to read from 0x%010llx\n", addr);
return rc;
}
sprintf(tmp_buf, "0x%08x\n", val);
rc = simple_read_from_buffer(buf, strlen(tmp_buf) + 1, ppos, tmp_buf,
strlen(tmp_buf) + 1);
return rc;
}
static ssize_t hl_data_write32(struct file *f, const char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
struct asic_fixed_properties *prop = &hdev->asic_prop;
u64 addr = entry->addr;
u32 value;
ssize_t rc;
rc = kstrtouint_from_user(buf, count, 16, &value);
if (rc)
return rc;
if (addr >= prop->va_space_dram_start_address &&
addr < prop->va_space_dram_end_address &&
hdev->mmu_enable &&
hdev->dram_supports_virtual_memory) {
rc = device_va_to_pa(hdev, entry->addr, &addr);
if (rc)
return rc;
}
rc = hdev->asic_funcs->debugfs_write32(hdev, addr, value);
if (rc) {
dev_err(hdev->dev, "Failed to write 0x%08x to 0x%010llx\n",
value, addr);
return rc;
}
return count;
}
static ssize_t hl_get_power_state(struct file *f, char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
char tmp_buf[200];
ssize_t rc;
int i;
if (*ppos)
return 0;
if (hdev->pdev->current_state == PCI_D0)
i = 1;
else if (hdev->pdev->current_state == PCI_D3hot)
i = 2;
else
i = 3;
sprintf(tmp_buf,
"current power state: %d\n1 - D0\n2 - D3hot\n3 - Unknown\n", i);
rc = simple_read_from_buffer(buf, strlen(tmp_buf) + 1, ppos, tmp_buf,
strlen(tmp_buf) + 1);
return rc;
}
static ssize_t hl_set_power_state(struct file *f, const char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
u32 value;
ssize_t rc;
rc = kstrtouint_from_user(buf, count, 10, &value);
if (rc)
return rc;
if (value == 1) {
pci_set_power_state(hdev->pdev, PCI_D0);
pci_restore_state(hdev->pdev);
rc = pci_enable_device(hdev->pdev);
} else if (value == 2) {
pci_save_state(hdev->pdev);
pci_disable_device(hdev->pdev);
pci_set_power_state(hdev->pdev, PCI_D3hot);
} else {
dev_dbg(hdev->dev, "invalid power state value %u\n", value);
return -EINVAL;
}
return count;
}
static ssize_t hl_i2c_data_read(struct file *f, char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
char tmp_buf[32];
u32 val;
ssize_t rc;
if (*ppos)
return 0;
rc = hl_debugfs_i2c_read(hdev, entry->i2c_bus, entry->i2c_addr,
entry->i2c_reg, &val);
if (rc) {
dev_err(hdev->dev,
"Failed to read from I2C bus %d, addr %d, reg %d\n",
entry->i2c_bus, entry->i2c_addr, entry->i2c_reg);
return rc;
}
sprintf(tmp_buf, "0x%02x\n", val);
rc = simple_read_from_buffer(buf, strlen(tmp_buf) + 1, ppos, tmp_buf,
strlen(tmp_buf) + 1);
return rc;
}
static ssize_t hl_i2c_data_write(struct file *f, const char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
u32 value;
ssize_t rc;
rc = kstrtouint_from_user(buf, count, 16, &value);
if (rc)
return rc;
rc = hl_debugfs_i2c_write(hdev, entry->i2c_bus, entry->i2c_addr,
entry->i2c_reg, value);
if (rc) {
dev_err(hdev->dev,
"Failed to write 0x%02x to I2C bus %d, addr %d, reg %d\n",
value, entry->i2c_bus, entry->i2c_addr, entry->i2c_reg);
return rc;
}
return count;
}
static ssize_t hl_led0_write(struct file *f, const char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
u32 value;
ssize_t rc;
rc = kstrtouint_from_user(buf, count, 10, &value);
if (rc)
return rc;
value = value ? 1 : 0;
hl_debugfs_led_set(hdev, 0, value);
return count;
}
static ssize_t hl_led1_write(struct file *f, const char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
u32 value;
ssize_t rc;
rc = kstrtouint_from_user(buf, count, 10, &value);
if (rc)
return rc;
value = value ? 1 : 0;
hl_debugfs_led_set(hdev, 1, value);
return count;
}
static ssize_t hl_led2_write(struct file *f, const char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
u32 value;
ssize_t rc;
rc = kstrtouint_from_user(buf, count, 10, &value);
if (rc)
return rc;
value = value ? 1 : 0;
hl_debugfs_led_set(hdev, 2, value);
return count;
}
static ssize_t hl_device_read(struct file *f, char __user *buf,
size_t count, loff_t *ppos)
{
char tmp_buf[200];
ssize_t rc;
if (*ppos)
return 0;
sprintf(tmp_buf,
"Valid values: disable, enable, suspend, resume, cpu_timeout\n");
rc = simple_read_from_buffer(buf, strlen(tmp_buf) + 1, ppos, tmp_buf,
strlen(tmp_buf) + 1);
return rc;
}
static ssize_t hl_device_write(struct file *f, const char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
char data[30];
/* don't allow partial writes */
if (*ppos != 0)
return 0;
simple_write_to_buffer(data, 29, ppos, buf, count);
if (strncmp("disable", data, strlen("disable")) == 0) {
hdev->disabled = true;
} else if (strncmp("enable", data, strlen("enable")) == 0) {
hdev->disabled = false;
} else if (strncmp("suspend", data, strlen("suspend")) == 0) {
hdev->asic_funcs->suspend(hdev);
} else if (strncmp("resume", data, strlen("resume")) == 0) {
hdev->asic_funcs->resume(hdev);
} else if (strncmp("cpu_timeout", data, strlen("cpu_timeout")) == 0) {
hdev->device_cpu_disabled = true;
} else {
dev_err(hdev->dev,
"Valid values: disable, enable, suspend, resume, cpu_timeout\n");
count = -EINVAL;
}
return count;
}
static const struct file_operations hl_data32b_fops = {
.owner = THIS_MODULE,
.read = hl_data_read32,
.write = hl_data_write32
};
static const struct file_operations hl_i2c_data_fops = {
.owner = THIS_MODULE,
.read = hl_i2c_data_read,
.write = hl_i2c_data_write
};
static const struct file_operations hl_power_fops = {
.owner = THIS_MODULE,
.read = hl_get_power_state,
.write = hl_set_power_state
};
static const struct file_operations hl_led0_fops = {
.owner = THIS_MODULE,
.write = hl_led0_write
};
static const struct file_operations hl_led1_fops = {
.owner = THIS_MODULE,
.write = hl_led1_write
};
static const struct file_operations hl_led2_fops = {
.owner = THIS_MODULE,
.write = hl_led2_write
};
static const struct file_operations hl_device_fops = {
.owner = THIS_MODULE,
.read = hl_device_read,
.write = hl_device_write
};
static const struct hl_info_list hl_debugfs_list[] = {
{"command_buffers", command_buffers_show, NULL},
{"command_submission", command_submission_show, NULL},
{"command_submission_jobs", command_submission_jobs_show, NULL},
{"userptr", userptr_show, NULL},
{"vm", vm_show, NULL},
{"mmu", mmu_show, mmu_write},
};
static int hl_debugfs_open(struct inode *inode, struct file *file)
{
struct hl_debugfs_entry *node = inode->i_private;
return single_open(file, node->info_ent->show, node);
}
static ssize_t hl_debugfs_write(struct file *file, const char __user *buf,
size_t count, loff_t *f_pos)
{
struct hl_debugfs_entry *node = file->f_inode->i_private;
if (node->info_ent->write)
return node->info_ent->write(file, buf, count, f_pos);
else
return -EINVAL;
}
static const struct file_operations hl_debugfs_fops = {
.owner = THIS_MODULE,
.open = hl_debugfs_open,
.read = seq_read,
.write = hl_debugfs_write,
.llseek = seq_lseek,
.release = single_release,
};
void hl_debugfs_add_device(struct hl_device *hdev)
{
struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
int count = ARRAY_SIZE(hl_debugfs_list);
struct hl_debugfs_entry *entry;
struct dentry *ent;
int i;
dev_entry->hdev = hdev;
dev_entry->entry_arr = kmalloc_array(count,
sizeof(struct hl_debugfs_entry),
GFP_KERNEL);
if (!dev_entry->entry_arr)
return;
INIT_LIST_HEAD(&dev_entry->file_list);
INIT_LIST_HEAD(&dev_entry->cb_list);
INIT_LIST_HEAD(&dev_entry->cs_list);
INIT_LIST_HEAD(&dev_entry->cs_job_list);
INIT_LIST_HEAD(&dev_entry->userptr_list);
INIT_LIST_HEAD(&dev_entry->ctx_mem_hash_list);
mutex_init(&dev_entry->file_mutex);
spin_lock_init(&dev_entry->cb_spinlock);
spin_lock_init(&dev_entry->cs_spinlock);
spin_lock_init(&dev_entry->cs_job_spinlock);
spin_lock_init(&dev_entry->userptr_spinlock);
spin_lock_init(&dev_entry->ctx_mem_hash_spinlock);
dev_entry->root = debugfs_create_dir(dev_name(hdev->dev),
hl_debug_root);
debugfs_create_x64("addr",
0644,
dev_entry->root,
&dev_entry->addr);
debugfs_create_file("data32",
0644,
dev_entry->root,
dev_entry,
&hl_data32b_fops);
debugfs_create_file("set_power_state",
0200,
dev_entry->root,
dev_entry,
&hl_power_fops);
debugfs_create_u8("i2c_bus",
0644,
dev_entry->root,
&dev_entry->i2c_bus);
debugfs_create_u8("i2c_addr",
0644,
dev_entry->root,
&dev_entry->i2c_addr);
debugfs_create_u8("i2c_reg",
0644,
dev_entry->root,
&dev_entry->i2c_reg);
debugfs_create_file("i2c_data",
0644,
dev_entry->root,
dev_entry,
&hl_i2c_data_fops);
debugfs_create_file("led0",
0200,
dev_entry->root,
dev_entry,
&hl_led0_fops);
debugfs_create_file("led1",
0200,
dev_entry->root,
dev_entry,
&hl_led1_fops);
debugfs_create_file("led2",
0200,
dev_entry->root,
dev_entry,
&hl_led2_fops);
debugfs_create_file("device",
0200,
dev_entry->root,
dev_entry,
&hl_device_fops);
for (i = 0, entry = dev_entry->entry_arr ; i < count ; i++, entry++) {
ent = debugfs_create_file(hl_debugfs_list[i].name,
0444,
dev_entry->root,
entry,
&hl_debugfs_fops);
entry->dent = ent;
entry->info_ent = &hl_debugfs_list[i];
entry->dev_entry = dev_entry;
}
}
void hl_debugfs_remove_device(struct hl_device *hdev)
{
struct hl_dbg_device_entry *entry = &hdev->hl_debugfs;
debugfs_remove_recursive(entry->root);
mutex_destroy(&entry->file_mutex);
kfree(entry->entry_arr);
}
void hl_debugfs_add_file(struct hl_fpriv *hpriv)
{
struct hl_dbg_device_entry *dev_entry = &hpriv->hdev->hl_debugfs;
mutex_lock(&dev_entry->file_mutex);
list_add(&hpriv->debugfs_list, &dev_entry->file_list);
mutex_unlock(&dev_entry->file_mutex);
}
void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
{
struct hl_dbg_device_entry *dev_entry = &hpriv->hdev->hl_debugfs;
mutex_lock(&dev_entry->file_mutex);
list_del(&hpriv->debugfs_list);
mutex_unlock(&dev_entry->file_mutex);
}
void hl_debugfs_add_cb(struct hl_cb *cb)
{
struct hl_dbg_device_entry *dev_entry = &cb->hdev->hl_debugfs;
spin_lock(&dev_entry->cb_spinlock);
list_add(&cb->debugfs_list, &dev_entry->cb_list);
spin_unlock(&dev_entry->cb_spinlock);
}
void hl_debugfs_remove_cb(struct hl_cb *cb)
{
struct hl_dbg_device_entry *dev_entry = &cb->hdev->hl_debugfs;
spin_lock(&dev_entry->cb_spinlock);
list_del(&cb->debugfs_list);
spin_unlock(&dev_entry->cb_spinlock);
}
void hl_debugfs_add_cs(struct hl_cs *cs)
{
struct hl_dbg_device_entry *dev_entry = &cs->ctx->hdev->hl_debugfs;
spin_lock(&dev_entry->cs_spinlock);
list_add(&cs->debugfs_list, &dev_entry->cs_list);
spin_unlock(&dev_entry->cs_spinlock);
}
void hl_debugfs_remove_cs(struct hl_cs *cs)
{
struct hl_dbg_device_entry *dev_entry = &cs->ctx->hdev->hl_debugfs;
spin_lock(&dev_entry->cs_spinlock);
list_del(&cs->debugfs_list);
spin_unlock(&dev_entry->cs_spinlock);
}
void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job)
{
struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
spin_lock(&dev_entry->cs_job_spinlock);
list_add(&job->debugfs_list, &dev_entry->cs_job_list);
spin_unlock(&dev_entry->cs_job_spinlock);
}
void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job)
{
struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
spin_lock(&dev_entry->cs_job_spinlock);
list_del(&job->debugfs_list);
spin_unlock(&dev_entry->cs_job_spinlock);
}
void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr)
{
struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
spin_lock(&dev_entry->userptr_spinlock);
list_add(&userptr->debugfs_list, &dev_entry->userptr_list);
spin_unlock(&dev_entry->userptr_spinlock);
}
void hl_debugfs_remove_userptr(struct hl_device *hdev,
struct hl_userptr *userptr)
{
struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
spin_lock(&dev_entry->userptr_spinlock);
list_del(&userptr->debugfs_list);
spin_unlock(&dev_entry->userptr_spinlock);
}
void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx)
{
struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
spin_lock(&dev_entry->ctx_mem_hash_spinlock);
list_add(&ctx->debugfs_list, &dev_entry->ctx_mem_hash_list);
spin_unlock(&dev_entry->ctx_mem_hash_spinlock);
}
void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx)
{
struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
spin_lock(&dev_entry->ctx_mem_hash_spinlock);
list_del(&ctx->debugfs_list);
spin_unlock(&dev_entry->ctx_mem_hash_spinlock);
}
void __init hl_debugfs_init(void)
{
hl_debug_root = debugfs_create_dir("habanalabs", NULL);
}
void hl_debugfs_fini(void)
{
debugfs_remove_recursive(hl_debug_root);
}