linux/fs/bcachefs/super.c
Kent Overstreet 59a7405161 bcachefs: Create allocator threads when allocating filesystem
We're seeing failures to mount because of a failure to start the
allocator threads, which currently happens fairly late in the mount
process, after walking all metadata, and kthread_create() fails if
something has tried to kill the mount process, which is probably not
what we want.

This patch avoids this issue by creating, but not starting, the
allocator threads when we preallocate all of our other in memory data
structures.

Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2023-10-22 17:08:53 -04:00

2069 lines
47 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* bcachefs setup/teardown code, and some metadata io - read a superblock and
* figure out what to do with it.
*
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
* Copyright 2012 Google, Inc.
*/
#include "bcachefs.h"
#include "alloc_background.h"
#include "alloc_foreground.h"
#include "bkey_sort.h"
#include "btree_cache.h"
#include "btree_gc.h"
#include "btree_key_cache.h"
#include "btree_update_interior.h"
#include "btree_io.h"
#include "chardev.h"
#include "checksum.h"
#include "clock.h"
#include "compress.h"
#include "debug.h"
#include "disk_groups.h"
#include "ec.h"
#include "error.h"
#include "fs.h"
#include "fs-io.h"
#include "fsck.h"
#include "inode.h"
#include "io.h"
#include "journal.h"
#include "journal_reclaim.h"
#include "journal_seq_blacklist.h"
#include "move.h"
#include "migrate.h"
#include "movinggc.h"
#include "quota.h"
#include "rebalance.h"
#include "recovery.h"
#include "replicas.h"
#include "super.h"
#include "super-io.h"
#include "sysfs.h"
#include "trace.h"
#include <linux/backing-dev.h>
#include <linux/blkdev.h>
#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/idr.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/random.h>
#include <linux/sysfs.h>
#include <crypto/hash.h>
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
#define KTYPE(type) \
static const struct attribute_group type ## _group = { \
.attrs = type ## _files \
}; \
\
static const struct attribute_group *type ## _groups[] = { \
&type ## _group, \
NULL \
}; \
\
static const struct kobj_type type ## _ktype = { \
.release = type ## _release, \
.sysfs_ops = &type ## _sysfs_ops, \
.default_groups = type ## _groups \
}
static void bch2_fs_release(struct kobject *);
static void bch2_dev_release(struct kobject *);
static void bch2_fs_internal_release(struct kobject *k)
{
}
static void bch2_fs_opts_dir_release(struct kobject *k)
{
}
static void bch2_fs_time_stats_release(struct kobject *k)
{
}
KTYPE(bch2_fs);
KTYPE(bch2_fs_internal);
KTYPE(bch2_fs_opts_dir);
KTYPE(bch2_fs_time_stats);
KTYPE(bch2_dev);
static struct kset *bcachefs_kset;
static LIST_HEAD(bch_fs_list);
static DEFINE_MUTEX(bch_fs_list_lock);
static DECLARE_WAIT_QUEUE_HEAD(bch_read_only_wait);
static void bch2_dev_free(struct bch_dev *);
static int bch2_dev_alloc(struct bch_fs *, unsigned);
static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *);
static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *);
struct bch_fs *bch2_dev_to_fs(dev_t dev)
{
struct bch_fs *c;
struct bch_dev *ca;
unsigned i;
mutex_lock(&bch_fs_list_lock);
rcu_read_lock();
list_for_each_entry(c, &bch_fs_list, list)
for_each_member_device_rcu(ca, c, i, NULL)
if (ca->disk_sb.bdev->bd_dev == dev) {
closure_get(&c->cl);
goto found;
}
c = NULL;
found:
rcu_read_unlock();
mutex_unlock(&bch_fs_list_lock);
return c;
}
static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid)
{
struct bch_fs *c;
lockdep_assert_held(&bch_fs_list_lock);
list_for_each_entry(c, &bch_fs_list, list)
if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid)))
return c;
return NULL;
}
struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid)
{
struct bch_fs *c;
mutex_lock(&bch_fs_list_lock);
c = __bch2_uuid_to_fs(uuid);
if (c)
closure_get(&c->cl);
mutex_unlock(&bch_fs_list_lock);
return c;
}
static void bch2_dev_usage_journal_reserve(struct bch_fs *c)
{
struct bch_dev *ca;
unsigned i, nr = 0, u64s =
((sizeof(struct jset_entry_dev_usage) +
sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR)) /
sizeof(u64);
rcu_read_lock();
for_each_member_device_rcu(ca, c, i, NULL)
nr++;
rcu_read_unlock();
bch2_journal_entry_res_resize(&c->journal,
&c->dev_usage_journal_res, u64s * nr);
}
/* Filesystem RO/RW: */
/*
* For startup/shutdown of RW stuff, the dependencies are:
*
* - foreground writes depend on copygc and rebalance (to free up space)
*
* - copygc and rebalance depend on mark and sweep gc (they actually probably
* don't because they either reserve ahead of time or don't block if
* allocations fail, but allocations can require mark and sweep gc to run
* because of generation number wraparound)
*
* - all of the above depends on the allocator threads
*
* - allocator depends on the journal (when it rewrites prios and gens)
*/
static void __bch2_fs_read_only(struct bch_fs *c)
{
struct bch_dev *ca;
unsigned i, clean_passes = 0;
bch2_rebalance_stop(c);
bch2_copygc_stop(c);
bch2_gc_thread_stop(c);
/*
* Flush journal before stopping allocators, because flushing journal
* blacklist entries involves allocating new btree nodes:
*/
bch2_journal_flush_all_pins(&c->journal);
/*
* If the allocator threads didn't all start up, the btree updates to
* write out alloc info aren't going to work:
*/
if (!test_bit(BCH_FS_ALLOCATOR_RUNNING, &c->flags))
goto nowrote_alloc;
bch_verbose(c, "flushing journal and stopping allocators");
bch2_journal_flush_all_pins(&c->journal);
set_bit(BCH_FS_ALLOCATOR_STOPPING, &c->flags);
do {
clean_passes++;
if (bch2_journal_flush_all_pins(&c->journal))
clean_passes = 0;
/*
* In flight interior btree updates will generate more journal
* updates and btree updates (alloc btree):
*/
if (bch2_btree_interior_updates_nr_pending(c)) {
closure_wait_event(&c->btree_interior_update_wait,
!bch2_btree_interior_updates_nr_pending(c));
clean_passes = 0;
}
flush_work(&c->btree_interior_update_work);
if (bch2_journal_flush_all_pins(&c->journal))
clean_passes = 0;
} while (clean_passes < 2);
bch_verbose(c, "flushing journal and stopping allocators complete");
set_bit(BCH_FS_ALLOC_CLEAN, &c->flags);
nowrote_alloc:
closure_wait_event(&c->btree_interior_update_wait,
!bch2_btree_interior_updates_nr_pending(c));
flush_work(&c->btree_interior_update_work);
for_each_member_device(ca, c, i)
bch2_dev_allocator_stop(ca);
clear_bit(BCH_FS_ALLOCATOR_RUNNING, &c->flags);
clear_bit(BCH_FS_ALLOCATOR_STOPPING, &c->flags);
bch2_fs_journal_stop(&c->journal);
/*
* the journal kicks off btree writes via reclaim - wait for in flight
* writes after stopping journal:
*/
bch2_btree_flush_all_writes(c);
/*
* After stopping journal:
*/
for_each_member_device(ca, c, i)
bch2_dev_allocator_remove(c, ca);
}
static void bch2_writes_disabled(struct percpu_ref *writes)
{
struct bch_fs *c = container_of(writes, struct bch_fs, writes);
set_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags);
wake_up(&bch_read_only_wait);
}
void bch2_fs_read_only(struct bch_fs *c)
{
if (!test_bit(BCH_FS_RW, &c->flags)) {
BUG_ON(c->journal.reclaim_thread);
return;
}
BUG_ON(test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags));
/*
* Block new foreground-end write operations from starting - any new
* writes will return -EROFS:
*
* (This is really blocking new _allocations_, writes to previously
* allocated space can still happen until stopping the allocator in
* bch2_dev_allocator_stop()).
*/
percpu_ref_kill(&c->writes);
cancel_work_sync(&c->ec_stripe_delete_work);
cancel_delayed_work(&c->pd_controllers_update);
/*
* If we're not doing an emergency shutdown, we want to wait on
* outstanding writes to complete so they don't see spurious errors due
* to shutting down the allocator:
*
* If we are doing an emergency shutdown outstanding writes may
* hang until we shutdown the allocator so we don't want to wait
* on outstanding writes before shutting everything down - but
* we do need to wait on them before returning and signalling
* that going RO is complete:
*/
wait_event(bch_read_only_wait,
test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags) ||
test_bit(BCH_FS_EMERGENCY_RO, &c->flags));
__bch2_fs_read_only(c);
wait_event(bch_read_only_wait,
test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags));
clear_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags);
if (!bch2_journal_error(&c->journal) &&
!test_bit(BCH_FS_ERROR, &c->flags) &&
!test_bit(BCH_FS_EMERGENCY_RO, &c->flags) &&
test_bit(BCH_FS_STARTED, &c->flags) &&
test_bit(BCH_FS_ALLOC_CLEAN, &c->flags) &&
!c->opts.norecovery) {
bch_verbose(c, "marking filesystem clean");
bch2_fs_mark_clean(c);
}
clear_bit(BCH_FS_RW, &c->flags);
}
static void bch2_fs_read_only_work(struct work_struct *work)
{
struct bch_fs *c =
container_of(work, struct bch_fs, read_only_work);
down_write(&c->state_lock);
bch2_fs_read_only(c);
up_write(&c->state_lock);
}
static void bch2_fs_read_only_async(struct bch_fs *c)
{
queue_work(system_long_wq, &c->read_only_work);
}
bool bch2_fs_emergency_read_only(struct bch_fs *c)
{
bool ret = !test_and_set_bit(BCH_FS_EMERGENCY_RO, &c->flags);
bch2_journal_halt(&c->journal);
bch2_fs_read_only_async(c);
wake_up(&bch_read_only_wait);
return ret;
}
static int bch2_fs_read_write_late(struct bch_fs *c)
{
int ret;
ret = bch2_gc_thread_start(c);
if (ret) {
bch_err(c, "error starting gc thread");
return ret;
}
ret = bch2_copygc_start(c);
if (ret) {
bch_err(c, "error starting copygc thread");
return ret;
}
ret = bch2_rebalance_start(c);
if (ret) {
bch_err(c, "error starting rebalance thread");
return ret;
}
schedule_delayed_work(&c->pd_controllers_update, 5 * HZ);
schedule_work(&c->ec_stripe_delete_work);
return 0;
}
static int __bch2_fs_read_write(struct bch_fs *c, bool early)
{
struct bch_dev *ca;
unsigned i;
int ret;
if (test_bit(BCH_FS_RW, &c->flags))
return 0;
/*
* nochanges is used for fsck -n mode - we have to allow going rw
* during recovery for that to work:
*/
if (c->opts.norecovery ||
(c->opts.nochanges &&
(!early || c->opts.read_only)))
return -EROFS;
ret = bch2_fs_mark_dirty(c);
if (ret)
goto err;
/*
* We need to write out a journal entry before we start doing btree
* updates, to ensure that on unclean shutdown new journal blacklist
* entries are created:
*/
bch2_journal_meta(&c->journal);
clear_bit(BCH_FS_ALLOC_CLEAN, &c->flags);
for_each_rw_member(ca, c, i)
bch2_dev_allocator_add(c, ca);
bch2_recalc_capacity(c);
for_each_rw_member(ca, c, i) {
ret = bch2_dev_allocator_start(ca);
if (ret) {
bch_err(c, "error starting allocator threads");
percpu_ref_put(&ca->io_ref);
goto err;
}
}
set_bit(BCH_FS_ALLOCATOR_RUNNING, &c->flags);
for_each_rw_member(ca, c, i)
bch2_wake_allocator(ca);
ret = bch2_journal_reclaim_start(&c->journal);
if (ret) {
bch_err(c, "error starting journal reclaim: %i", ret);
return ret;
}
if (!early) {
ret = bch2_fs_read_write_late(c);
if (ret)
goto err;
}
percpu_ref_reinit(&c->writes);
set_bit(BCH_FS_RW, &c->flags);
return 0;
err:
__bch2_fs_read_only(c);
return ret;
}
int bch2_fs_read_write(struct bch_fs *c)
{
return __bch2_fs_read_write(c, false);
}
int bch2_fs_read_write_early(struct bch_fs *c)
{
lockdep_assert_held(&c->state_lock);
return __bch2_fs_read_write(c, true);
}
/* Filesystem startup/shutdown: */
static void __bch2_fs_free(struct bch_fs *c)
{
unsigned i;
int cpu;
for (i = 0; i < BCH_TIME_STAT_NR; i++)
bch2_time_stats_exit(&c->times[i]);
bch2_fs_quota_exit(c);
bch2_fs_fsio_exit(c);
bch2_fs_ec_exit(c);
bch2_fs_encryption_exit(c);
bch2_fs_io_exit(c);
bch2_fs_btree_interior_update_exit(c);
bch2_fs_btree_iter_exit(c);
bch2_fs_btree_key_cache_exit(&c->btree_key_cache);
bch2_fs_btree_cache_exit(c);
bch2_fs_journal_exit(&c->journal);
bch2_io_clock_exit(&c->io_clock[WRITE]);
bch2_io_clock_exit(&c->io_clock[READ]);
bch2_fs_compress_exit(c);
bch2_journal_keys_free(&c->journal_keys);
bch2_journal_entries_free(&c->journal_entries);
percpu_free_rwsem(&c->mark_lock);
free_percpu(c->online_reserved);
kfree(c->usage_scratch);
for (i = 0; i < ARRAY_SIZE(c->usage); i++)
free_percpu(c->usage[i]);
kfree(c->usage_base);
if (c->btree_iters_bufs)
for_each_possible_cpu(cpu)
kfree(per_cpu_ptr(c->btree_iters_bufs, cpu)->iter);
free_percpu(c->btree_iters_bufs);
free_percpu(c->pcpu);
mempool_exit(&c->large_bkey_pool);
mempool_exit(&c->btree_bounce_pool);
bioset_exit(&c->btree_bio);
mempool_exit(&c->fill_iter);
percpu_ref_exit(&c->writes);
kfree(c->replicas.entries);
kfree(c->replicas_gc.entries);
kfree(rcu_dereference_protected(c->disk_groups, 1));
kfree(c->journal_seq_blacklist_table);
kfree(c->unused_inode_hints);
free_heap(&c->copygc_heap);
if (c->copygc_wq)
destroy_workqueue(c->copygc_wq);
if (c->wq)
destroy_workqueue(c->wq);
free_pages((unsigned long) c->disk_sb.sb,
c->disk_sb.page_order);
kvpfree(c, sizeof(*c));
module_put(THIS_MODULE);
}
static void bch2_fs_release(struct kobject *kobj)
{
struct bch_fs *c = container_of(kobj, struct bch_fs, kobj);
__bch2_fs_free(c);
}
void __bch2_fs_stop(struct bch_fs *c)
{
struct bch_dev *ca;
unsigned i;
bch_verbose(c, "shutting down");
set_bit(BCH_FS_STOPPING, &c->flags);
cancel_work_sync(&c->journal_seq_blacklist_gc_work);
down_write(&c->state_lock);
bch2_fs_read_only(c);
up_write(&c->state_lock);
for_each_member_device(ca, c, i)
if (ca->kobj.state_in_sysfs &&
ca->disk_sb.bdev)
sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs");
if (c->kobj.state_in_sysfs)
kobject_del(&c->kobj);
bch2_fs_debug_exit(c);
bch2_fs_chardev_exit(c);
kobject_put(&c->time_stats);
kobject_put(&c->opts_dir);
kobject_put(&c->internal);
/* btree prefetch might have kicked off reads in the background: */
bch2_btree_flush_all_reads(c);
for_each_member_device(ca, c, i)
cancel_work_sync(&ca->io_error_work);
cancel_work_sync(&c->btree_write_error_work);
cancel_delayed_work_sync(&c->pd_controllers_update);
cancel_work_sync(&c->read_only_work);
}
void bch2_fs_free(struct bch_fs *c)
{
unsigned i;
mutex_lock(&bch_fs_list_lock);
list_del(&c->list);
mutex_unlock(&bch_fs_list_lock);
closure_sync(&c->cl);
closure_debug_destroy(&c->cl);
for (i = 0; i < c->sb.nr_devices; i++) {
struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true);
if (ca) {
bch2_free_super(&ca->disk_sb);
bch2_dev_free(ca);
}
}
bch_verbose(c, "shutdown complete");
kobject_put(&c->kobj);
}
void bch2_fs_stop(struct bch_fs *c)
{
__bch2_fs_stop(c);
bch2_fs_free(c);
}
static const char *bch2_fs_online(struct bch_fs *c)
{
struct bch_dev *ca;
const char *err = NULL;
unsigned i;
int ret;
lockdep_assert_held(&bch_fs_list_lock);
if (!list_empty(&c->list))
return NULL;
if (__bch2_uuid_to_fs(c->sb.uuid))
return "filesystem UUID already open";
ret = bch2_fs_chardev_init(c);
if (ret)
return "error creating character device";
bch2_fs_debug_init(c);
if (kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ||
kobject_add(&c->internal, &c->kobj, "internal") ||
kobject_add(&c->opts_dir, &c->kobj, "options") ||
kobject_add(&c->time_stats, &c->kobj, "time_stats") ||
bch2_opts_create_sysfs_files(&c->opts_dir))
return "error creating sysfs objects";
down_write(&c->state_lock);
err = "error creating sysfs objects";
__for_each_member_device(ca, c, i, NULL)
if (bch2_dev_sysfs_online(c, ca))
goto err;
list_add(&c->list, &bch_fs_list);
err = NULL;
err:
up_write(&c->state_lock);
return err;
}
static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts)
{
struct bch_sb_field_members *mi;
struct bch_fs *c;
unsigned i, iter_size;
const char *err;
pr_verbose_init(opts, "");
c = kvpmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO);
if (!c)
goto out;
__module_get(THIS_MODULE);
closure_init(&c->cl, NULL);
c->kobj.kset = bcachefs_kset;
kobject_init(&c->kobj, &bch2_fs_ktype);
kobject_init(&c->internal, &bch2_fs_internal_ktype);
kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype);
kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype);
c->minor = -1;
c->disk_sb.fs_sb = true;
init_rwsem(&c->state_lock);
mutex_init(&c->sb_lock);
mutex_init(&c->replicas_gc_lock);
mutex_init(&c->btree_root_lock);
INIT_WORK(&c->read_only_work, bch2_fs_read_only_work);
init_rwsem(&c->gc_lock);
for (i = 0; i < BCH_TIME_STAT_NR; i++)
bch2_time_stats_init(&c->times[i]);
bch2_fs_copygc_init(c);
bch2_fs_btree_key_cache_init_early(&c->btree_key_cache);
bch2_fs_allocator_background_init(c);
bch2_fs_allocator_foreground_init(c);
bch2_fs_rebalance_init(c);
bch2_fs_quota_init(c);
INIT_LIST_HEAD(&c->list);
mutex_init(&c->usage_scratch_lock);
mutex_init(&c->bio_bounce_pages_lock);
bio_list_init(&c->btree_write_error_list);
spin_lock_init(&c->btree_write_error_lock);
INIT_WORK(&c->btree_write_error_work, bch2_btree_write_error_work);
INIT_WORK(&c->journal_seq_blacklist_gc_work,
bch2_blacklist_entries_gc);
INIT_LIST_HEAD(&c->journal_entries);
INIT_LIST_HEAD(&c->journal_iters);
INIT_LIST_HEAD(&c->fsck_errors);
mutex_init(&c->fsck_error_lock);
INIT_LIST_HEAD(&c->ec_stripe_head_list);
mutex_init(&c->ec_stripe_head_lock);
INIT_LIST_HEAD(&c->ec_stripe_new_list);
mutex_init(&c->ec_stripe_new_lock);
spin_lock_init(&c->ec_stripes_heap_lock);
seqcount_init(&c->gc_pos_lock);
seqcount_init(&c->usage_lock);
c->copy_gc_enabled = 1;
c->rebalance.enabled = 1;
c->promote_whole_extents = true;
c->journal.write_time = &c->times[BCH_TIME_journal_write];
c->journal.delay_time = &c->times[BCH_TIME_journal_delay];
c->journal.blocked_time = &c->times[BCH_TIME_blocked_journal];
c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq];
bch2_fs_btree_cache_init_early(&c->btree_cache);
mutex_init(&c->sectors_available_lock);
if (percpu_init_rwsem(&c->mark_lock))
goto err;
mutex_lock(&c->sb_lock);
if (bch2_sb_to_fs(c, sb)) {
mutex_unlock(&c->sb_lock);
goto err;
}
mutex_unlock(&c->sb_lock);
scnprintf(c->name, sizeof(c->name), "%pU", &c->sb.user_uuid);
c->opts = bch2_opts_default;
bch2_opts_apply(&c->opts, bch2_opts_from_sb(sb));
bch2_opts_apply(&c->opts, opts);
c->block_bits = ilog2(c->opts.block_size);
c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c);
if (bch2_fs_init_fault("fs_alloc"))
goto err;
iter_size = sizeof(struct sort_iter) +
(btree_blocks(c) + 1) * 2 *
sizeof(struct sort_iter_set);
c->inode_shard_bits = ilog2(roundup_pow_of_two(num_possible_cpus()));
if (!(c->wq = alloc_workqueue("bcachefs",
WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) ||
!(c->copygc_wq = alloc_workqueue("bcachefs_copygc",
WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) ||
percpu_ref_init(&c->writes, bch2_writes_disabled,
PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
bioset_init(&c->btree_bio, 1,
max(offsetof(struct btree_read_bio, bio),
offsetof(struct btree_write_bio, wbio.bio)),
BIOSET_NEED_BVECS) ||
!(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) ||
!(c->online_reserved = alloc_percpu(u64)) ||
!(c->btree_iters_bufs = alloc_percpu(struct btree_iter_buf)) ||
mempool_init_kvpmalloc_pool(&c->btree_bounce_pool, 1,
btree_bytes(c)) ||
mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) ||
!(c->unused_inode_hints = kcalloc(1U << c->inode_shard_bits,
sizeof(u64), GFP_KERNEL)) ||
bch2_io_clock_init(&c->io_clock[READ]) ||
bch2_io_clock_init(&c->io_clock[WRITE]) ||
bch2_fs_journal_init(&c->journal) ||
bch2_fs_replicas_init(c) ||
bch2_fs_btree_cache_init(c) ||
bch2_fs_btree_key_cache_init(&c->btree_key_cache) ||
bch2_fs_btree_iter_init(c) ||
bch2_fs_btree_interior_update_init(c) ||
bch2_fs_io_init(c) ||
bch2_fs_encryption_init(c) ||
bch2_fs_compress_init(c) ||
bch2_fs_ec_init(c) ||
bch2_fs_fsio_init(c))
goto err;
mi = bch2_sb_get_members(c->disk_sb.sb);
for (i = 0; i < c->sb.nr_devices; i++)
if (bch2_dev_exists(c->disk_sb.sb, mi, i) &&
bch2_dev_alloc(c, i))
goto err;
bch2_journal_entry_res_resize(&c->journal,
&c->btree_root_journal_res,
BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX));
bch2_dev_usage_journal_reserve(c);
bch2_journal_entry_res_resize(&c->journal,
&c->clock_journal_res,
(sizeof(struct jset_entry_clock) / sizeof(u64)) * 2);
mutex_lock(&bch_fs_list_lock);
err = bch2_fs_online(c);
mutex_unlock(&bch_fs_list_lock);
if (err) {
bch_err(c, "bch2_fs_online() error: %s", err);
goto err;
}
out:
pr_verbose_init(opts, "ret %i", c ? 0 : -ENOMEM);
return c;
err:
bch2_fs_free(c);
c = NULL;
goto out;
}
noinline_for_stack
static void print_mount_opts(struct bch_fs *c)
{
enum bch_opt_id i;
char buf[512];
struct printbuf p = PBUF(buf);
bool first = true;
strcpy(buf, "(null)");
if (c->opts.read_only) {
pr_buf(&p, "ro");
first = false;
}
for (i = 0; i < bch2_opts_nr; i++) {
const struct bch_option *opt = &bch2_opt_table[i];
u64 v = bch2_opt_get_by_id(&c->opts, i);
if (!(opt->mode & OPT_MOUNT))
continue;
if (v == bch2_opt_get_by_id(&bch2_opts_default, i))
continue;
if (!first)
pr_buf(&p, ",");
first = false;
bch2_opt_to_text(&p, c, opt, v, OPT_SHOW_MOUNT_STYLE);
}
bch_info(c, "mounted with opts: %s", buf);
}
int bch2_fs_start(struct bch_fs *c)
{
const char *err = "cannot allocate memory";
struct bch_sb_field_members *mi;
struct bch_dev *ca;
time64_t now = ktime_get_real_seconds();
unsigned i;
int ret = -EINVAL;
down_write(&c->state_lock);
BUG_ON(test_bit(BCH_FS_STARTED, &c->flags));
mutex_lock(&c->sb_lock);
for_each_online_member(ca, c, i)
bch2_sb_from_fs(c, ca);
mi = bch2_sb_get_members(c->disk_sb.sb);
for_each_online_member(ca, c, i)
mi->members[ca->dev_idx].last_mount = cpu_to_le64(now);
mutex_unlock(&c->sb_lock);
for_each_rw_member(ca, c, i)
bch2_dev_allocator_add(c, ca);
bch2_recalc_capacity(c);
ret = BCH_SB_INITIALIZED(c->disk_sb.sb)
? bch2_fs_recovery(c)
: bch2_fs_initialize(c);
if (ret)
goto err;
ret = bch2_opts_check_may_set(c);
if (ret)
goto err;
err = "dynamic fault";
ret = -EINVAL;
if (bch2_fs_init_fault("fs_start"))
goto err;
set_bit(BCH_FS_STARTED, &c->flags);
/*
* Allocator threads don't start filling copygc reserve until after we
* set BCH_FS_STARTED - wake them now:
*/
for_each_online_member(ca, c, i)
bch2_wake_allocator(ca);
if (c->opts.read_only || c->opts.nochanges) {
bch2_fs_read_only(c);
} else {
err = "error going read write";
ret = !test_bit(BCH_FS_RW, &c->flags)
? bch2_fs_read_write(c)
: bch2_fs_read_write_late(c);
if (ret)
goto err;
}
print_mount_opts(c);
ret = 0;
out:
up_write(&c->state_lock);
return ret;
err:
switch (ret) {
case BCH_FSCK_ERRORS_NOT_FIXED:
bch_err(c, "filesystem contains errors: please report this to the developers");
pr_cont("mount with -o fix_errors to repair\n");
err = "fsck error";
break;
case BCH_FSCK_REPAIR_UNIMPLEMENTED:
bch_err(c, "filesystem contains errors: please report this to the developers");
pr_cont("repair unimplemented: inform the developers so that it can be added\n");
err = "fsck error";
break;
case BCH_FSCK_REPAIR_IMPOSSIBLE:
bch_err(c, "filesystem contains errors, but repair impossible");
err = "fsck error";
break;
case BCH_FSCK_UNKNOWN_VERSION:
err = "unknown metadata version";;
break;
case -ENOMEM:
err = "cannot allocate memory";
break;
case -EIO:
err = "IO error";
break;
}
if (ret >= 0)
ret = -EIO;
goto out;
}
static const char *bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c)
{
struct bch_sb_field_members *sb_mi;
sb_mi = bch2_sb_get_members(sb);
if (!sb_mi)
return "Invalid superblock: member info area missing";
if (le16_to_cpu(sb->block_size) != c->opts.block_size)
return "mismatched block size";
if (le16_to_cpu(sb_mi->members[sb->dev_idx].bucket_size) <
BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb))
return "new cache bucket size is too small";
return NULL;
}
static const char *bch2_dev_in_fs(struct bch_sb *fs, struct bch_sb *sb)
{
struct bch_sb *newest =
le64_to_cpu(fs->seq) > le64_to_cpu(sb->seq) ? fs : sb;
struct bch_sb_field_members *mi = bch2_sb_get_members(newest);
if (!uuid_equal(&fs->uuid, &sb->uuid))
return "device not a member of filesystem";
if (!bch2_dev_exists(newest, mi, sb->dev_idx))
return "device has been removed";
if (fs->block_size != sb->block_size)
return "mismatched block size";
return NULL;
}
/* Device startup/shutdown: */
static void bch2_dev_release(struct kobject *kobj)
{
struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj);
kfree(ca);
}
static void bch2_dev_free(struct bch_dev *ca)
{
bch2_dev_allocator_stop(ca);
cancel_work_sync(&ca->io_error_work);
if (ca->kobj.state_in_sysfs &&
ca->disk_sb.bdev)
sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs");
if (ca->kobj.state_in_sysfs)
kobject_del(&ca->kobj);
bch2_free_super(&ca->disk_sb);
bch2_dev_journal_exit(ca);
free_percpu(ca->io_done);
bioset_exit(&ca->replica_set);
bch2_dev_buckets_free(ca);
free_page((unsigned long) ca->sb_read_scratch);
bch2_time_stats_exit(&ca->io_latency[WRITE]);
bch2_time_stats_exit(&ca->io_latency[READ]);
percpu_ref_exit(&ca->io_ref);
percpu_ref_exit(&ca->ref);
kobject_put(&ca->kobj);
}
static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca)
{
lockdep_assert_held(&c->state_lock);
if (percpu_ref_is_zero(&ca->io_ref))
return;
__bch2_dev_read_only(c, ca);
reinit_completion(&ca->io_ref_completion);
percpu_ref_kill(&ca->io_ref);
wait_for_completion(&ca->io_ref_completion);
if (ca->kobj.state_in_sysfs) {
sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs");
sysfs_remove_link(&ca->kobj, "block");
}
bch2_free_super(&ca->disk_sb);
bch2_dev_journal_exit(ca);
}
static void bch2_dev_ref_complete(struct percpu_ref *ref)
{
struct bch_dev *ca = container_of(ref, struct bch_dev, ref);
complete(&ca->ref_completion);
}
static void bch2_dev_io_ref_complete(struct percpu_ref *ref)
{
struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref);
complete(&ca->io_ref_completion);
}
static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca)
{
int ret;
if (!c->kobj.state_in_sysfs)
return 0;
if (!ca->kobj.state_in_sysfs) {
ret = kobject_add(&ca->kobj, &c->kobj,
"dev-%u", ca->dev_idx);
if (ret)
return ret;
}
if (ca->disk_sb.bdev) {
struct kobject *block = bdev_kobj(ca->disk_sb.bdev);
ret = sysfs_create_link(block, &ca->kobj, "bcachefs");
if (ret)
return ret;
ret = sysfs_create_link(&ca->kobj, block, "block");
if (ret)
return ret;
}
return 0;
}
static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c,
struct bch_member *member)
{
struct bch_dev *ca;
ca = kzalloc(sizeof(*ca), GFP_KERNEL);
if (!ca)
return NULL;
kobject_init(&ca->kobj, &bch2_dev_ktype);
init_completion(&ca->ref_completion);
init_completion(&ca->io_ref_completion);
init_rwsem(&ca->bucket_lock);
INIT_WORK(&ca->io_error_work, bch2_io_error_work);
bch2_time_stats_init(&ca->io_latency[READ]);
bch2_time_stats_init(&ca->io_latency[WRITE]);
ca->mi = bch2_mi_to_cpu(member);
ca->uuid = member->uuid;
if (opt_defined(c->opts, discard))
ca->mi.discard = opt_get(c->opts, discard);
if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete,
0, GFP_KERNEL) ||
percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete,
PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
!(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) ||
bch2_dev_buckets_alloc(c, ca) ||
bioset_init(&ca->replica_set, 4,
offsetof(struct bch_write_bio, bio), 0) ||
!(ca->io_done = alloc_percpu(*ca->io_done)))
goto err;
return ca;
err:
bch2_dev_free(ca);
return NULL;
}
static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca,
unsigned dev_idx)
{
ca->dev_idx = dev_idx;
__set_bit(ca->dev_idx, ca->self.d);
scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx);
ca->fs = c;
rcu_assign_pointer(c->devs[ca->dev_idx], ca);
if (bch2_dev_sysfs_online(c, ca))
pr_warn("error creating sysfs objects");
}
static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx)
{
struct bch_member *member =
bch2_sb_get_members(c->disk_sb.sb)->members + dev_idx;
struct bch_dev *ca = NULL;
int ret = 0;
pr_verbose_init(c->opts, "");
if (bch2_fs_init_fault("dev_alloc"))
goto err;
ca = __bch2_dev_alloc(c, member);
if (!ca)
goto err;
if (ca->mi.state == BCH_MEMBER_STATE_RW &&
bch2_dev_allocator_start(ca)) {
bch2_dev_free(ca);
goto err;
}
bch2_dev_attach(c, ca, dev_idx);
out:
pr_verbose_init(c->opts, "ret %i", ret);
return ret;
err:
if (ca)
bch2_dev_free(ca);
ret = -ENOMEM;
goto out;
}
static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb)
{
unsigned ret;
if (bch2_dev_is_online(ca)) {
bch_err(ca, "already have device online in slot %u",
sb->sb->dev_idx);
return -EINVAL;
}
if (get_capacity(sb->bdev->bd_disk) <
ca->mi.bucket_size * ca->mi.nbuckets) {
bch_err(ca, "cannot online: device too small");
return -EINVAL;
}
BUG_ON(!percpu_ref_is_zero(&ca->io_ref));
if (get_capacity(sb->bdev->bd_disk) <
ca->mi.bucket_size * ca->mi.nbuckets) {
bch_err(ca, "device too small");
return -EINVAL;
}
ret = bch2_dev_journal_init(ca, sb->sb);
if (ret)
return ret;
/* Commit: */
ca->disk_sb = *sb;
memset(sb, 0, sizeof(*sb));
percpu_ref_reinit(&ca->io_ref);
return 0;
}
static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb)
{
struct bch_dev *ca;
int ret;
lockdep_assert_held(&c->state_lock);
if (le64_to_cpu(sb->sb->seq) >
le64_to_cpu(c->disk_sb.sb->seq))
bch2_sb_to_fs(c, sb->sb);
BUG_ON(sb->sb->dev_idx >= c->sb.nr_devices ||
!c->devs[sb->sb->dev_idx]);
ca = bch_dev_locked(c, sb->sb->dev_idx);
ret = __bch2_dev_attach_bdev(ca, sb);
if (ret)
return ret;
bch2_dev_sysfs_online(c, ca);
if (c->sb.nr_devices == 1)
snprintf(c->name, sizeof(c->name), "%pg", ca->disk_sb.bdev);
snprintf(ca->name, sizeof(ca->name), "%pg", ca->disk_sb.bdev);
rebalance_wakeup(c);
return 0;
}
/* Device management: */
/*
* Note: this function is also used by the error paths - when a particular
* device sees an error, we call it to determine whether we can just set the
* device RO, or - if this function returns false - we'll set the whole
* filesystem RO:
*
* XXX: maybe we should be more explicit about whether we're changing state
* because we got an error or what have you?
*/
bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca,
enum bch_member_state new_state, int flags)
{
struct bch_devs_mask new_online_devs;
struct bch_dev *ca2;
int i, nr_rw = 0, required;
lockdep_assert_held(&c->state_lock);
switch (new_state) {
case BCH_MEMBER_STATE_RW:
return true;
case BCH_MEMBER_STATE_RO:
if (ca->mi.state != BCH_MEMBER_STATE_RW)
return true;
/* do we have enough devices to write to? */
for_each_member_device(ca2, c, i)
if (ca2 != ca)
nr_rw += ca2->mi.state == BCH_MEMBER_STATE_RW;
required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED)
? c->opts.metadata_replicas
: c->opts.metadata_replicas_required,
!(flags & BCH_FORCE_IF_DATA_DEGRADED)
? c->opts.data_replicas
: c->opts.data_replicas_required);
return nr_rw >= required;
case BCH_MEMBER_STATE_FAILED:
case BCH_MEMBER_STATE_SPARE:
if (ca->mi.state != BCH_MEMBER_STATE_RW &&
ca->mi.state != BCH_MEMBER_STATE_RO)
return true;
/* do we have enough devices to read from? */
new_online_devs = bch2_online_devs(c);
__clear_bit(ca->dev_idx, new_online_devs.d);
return bch2_have_enough_devs(c, new_online_devs, flags, false);
default:
BUG();
}
}
static bool bch2_fs_may_start(struct bch_fs *c)
{
struct bch_sb_field_members *mi;
struct bch_dev *ca;
unsigned i, flags = 0;
if (c->opts.very_degraded)
flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST;
if (c->opts.degraded)
flags |= BCH_FORCE_IF_DEGRADED;
if (!c->opts.degraded &&
!c->opts.very_degraded) {
mutex_lock(&c->sb_lock);
mi = bch2_sb_get_members(c->disk_sb.sb);
for (i = 0; i < c->disk_sb.sb->nr_devices; i++) {
if (!bch2_dev_exists(c->disk_sb.sb, mi, i))
continue;
ca = bch_dev_locked(c, i);
if (!bch2_dev_is_online(ca) &&
(ca->mi.state == BCH_MEMBER_STATE_RW ||
ca->mi.state == BCH_MEMBER_STATE_RO)) {
mutex_unlock(&c->sb_lock);
return false;
}
}
mutex_unlock(&c->sb_lock);
}
return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true);
}
static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca)
{
/*
* Device going read only means the copygc reserve get smaller, so we
* don't want that happening while copygc is in progress:
*/
bch2_copygc_stop(c);
/*
* The allocator thread itself allocates btree nodes, so stop it first:
*/
bch2_dev_allocator_stop(ca);
bch2_dev_allocator_remove(c, ca);
bch2_dev_journal_stop(&c->journal, ca);
bch2_copygc_start(c);
}
static const char *__bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca)
{
lockdep_assert_held(&c->state_lock);
BUG_ON(ca->mi.state != BCH_MEMBER_STATE_RW);
bch2_dev_allocator_add(c, ca);
bch2_recalc_capacity(c);
if (bch2_dev_allocator_start(ca))
return "error starting allocator thread";
return NULL;
}
int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
enum bch_member_state new_state, int flags)
{
struct bch_sb_field_members *mi;
int ret = 0;
if (ca->mi.state == new_state)
return 0;
if (!bch2_dev_state_allowed(c, ca, new_state, flags))
return -EINVAL;
if (new_state != BCH_MEMBER_STATE_RW)
__bch2_dev_read_only(c, ca);
bch_notice(ca, "%s", bch2_dev_state[new_state]);
mutex_lock(&c->sb_lock);
mi = bch2_sb_get_members(c->disk_sb.sb);
SET_BCH_MEMBER_STATE(&mi->members[ca->dev_idx], new_state);
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
if (new_state == BCH_MEMBER_STATE_RW &&
__bch2_dev_read_write(c, ca))
ret = -ENOMEM;
rebalance_wakeup(c);
return ret;
}
int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
enum bch_member_state new_state, int flags)
{
int ret;
down_write(&c->state_lock);
ret = __bch2_dev_set_state(c, ca, new_state, flags);
up_write(&c->state_lock);
return ret;
}
/* Device add/removal: */
int bch2_dev_remove_alloc(struct bch_fs *c, struct bch_dev *ca)
{
struct btree_trans trans;
size_t i;
int ret;
bch2_trans_init(&trans, c, 0, 0);
for (i = 0; i < ca->mi.nbuckets; i++) {
ret = bch2_btree_key_cache_flush(&trans,
BTREE_ID_ALLOC, POS(ca->dev_idx, i));
if (ret)
break;
}
bch2_trans_exit(&trans);
if (ret)
return ret;
return bch2_btree_delete_range(c, BTREE_ID_ALLOC,
POS(ca->dev_idx, 0),
POS(ca->dev_idx + 1, 0),
NULL);
}
int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags)
{
struct bch_sb_field_members *mi;
unsigned dev_idx = ca->dev_idx, data;
int ret = -EINVAL;
down_write(&c->state_lock);
/*
* We consume a reference to ca->ref, regardless of whether we succeed
* or fail:
*/
percpu_ref_put(&ca->ref);
if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_FAILED, flags)) {
bch_err(ca, "Cannot remove without losing data");
goto err;
}
__bch2_dev_read_only(c, ca);
ret = bch2_dev_data_drop(c, ca->dev_idx, flags);
if (ret) {
bch_err(ca, "Remove failed: error %i dropping data", ret);
goto err;
}
ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx);
if (ret) {
bch_err(ca, "Remove failed: error %i flushing journal", ret);
goto err;
}
ret = bch2_dev_remove_alloc(c, ca);
if (ret) {
bch_err(ca, "Remove failed, error deleting alloc info");
goto err;
}
/*
* must flush all existing journal entries, they might have
* (overwritten) keys that point to the device we're removing:
*/
bch2_journal_flush_all_pins(&c->journal);
/*
* hack to ensure bch2_replicas_gc2() clears out entries to this device
*/
bch2_journal_meta(&c->journal);
ret = bch2_journal_error(&c->journal);
if (ret) {
bch_err(ca, "Remove failed, journal error");
goto err;
}
ret = bch2_replicas_gc2(c);
if (ret) {
bch_err(ca, "Remove failed: error %i from replicas gc", ret);
goto err;
}
data = bch2_dev_has_data(c, ca);
if (data) {
char data_has_str[100];
bch2_flags_to_text(&PBUF(data_has_str),
bch2_data_types, data);
bch_err(ca, "Remove failed, still has data (%s)", data_has_str);
ret = -EBUSY;
goto err;
}
__bch2_dev_offline(c, ca);
mutex_lock(&c->sb_lock);
rcu_assign_pointer(c->devs[ca->dev_idx], NULL);
mutex_unlock(&c->sb_lock);
percpu_ref_kill(&ca->ref);
wait_for_completion(&ca->ref_completion);
bch2_dev_free(ca);
/*
* Free this device's slot in the bch_member array - all pointers to
* this device must be gone:
*/
mutex_lock(&c->sb_lock);
mi = bch2_sb_get_members(c->disk_sb.sb);
memset(&mi->members[dev_idx].uuid, 0, sizeof(mi->members[dev_idx].uuid));
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
up_write(&c->state_lock);
bch2_dev_usage_journal_reserve(c);
return 0;
err:
if (ca->mi.state == BCH_MEMBER_STATE_RW &&
!percpu_ref_is_zero(&ca->io_ref))
__bch2_dev_read_write(c, ca);
up_write(&c->state_lock);
return ret;
}
/* Add new device to running filesystem: */
int bch2_dev_add(struct bch_fs *c, const char *path)
{
struct bch_opts opts = bch2_opts_empty();
struct bch_sb_handle sb;
const char *err;
struct bch_dev *ca = NULL;
struct bch_sb_field_members *mi;
struct bch_member dev_mi;
unsigned dev_idx, nr_devices, u64s;
int ret;
ret = bch2_read_super(path, &opts, &sb);
if (ret)
return ret;
err = bch2_sb_validate(&sb);
if (err)
return -EINVAL;
dev_mi = bch2_sb_get_members(sb.sb)->members[sb.sb->dev_idx];
err = bch2_dev_may_add(sb.sb, c);
if (err)
return -EINVAL;
ca = __bch2_dev_alloc(c, &dev_mi);
if (!ca) {
bch2_free_super(&sb);
return -ENOMEM;
}
ret = __bch2_dev_attach_bdev(ca, &sb);
if (ret) {
bch2_dev_free(ca);
return ret;
}
/*
* We want to allocate journal on the new device before adding the new
* device to the filesystem because allocating after we attach requires
* spinning up the allocator thread, and the allocator thread requires
* doing btree writes, which if the existing devices are RO isn't going
* to work
*
* So we have to mark where the superblocks are, but marking allocated
* data normally updates the filesystem usage too, so we have to mark,
* allocate the journal, reset all the marks, then remark after we
* attach...
*/
bch2_mark_dev_superblock(NULL, ca, 0);
err = "journal alloc failed";
ret = bch2_dev_journal_alloc(ca);
if (ret)
goto err;
down_write(&c->state_lock);
mutex_lock(&c->sb_lock);
err = "insufficient space in new superblock";
ret = bch2_sb_from_fs(c, ca);
if (ret)
goto err_unlock;
mi = bch2_sb_get_members(ca->disk_sb.sb);
if (!bch2_sb_resize_members(&ca->disk_sb,
le32_to_cpu(mi->field.u64s) +
sizeof(dev_mi) / sizeof(u64))) {
ret = -ENOSPC;
goto err_unlock;
}
if (dynamic_fault("bcachefs:add:no_slot"))
goto no_slot;
mi = bch2_sb_get_members(c->disk_sb.sb);
for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++)
if (!bch2_dev_exists(c->disk_sb.sb, mi, dev_idx))
goto have_slot;
no_slot:
err = "no slots available in superblock";
ret = -ENOSPC;
goto err_unlock;
have_slot:
nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices);
u64s = (sizeof(struct bch_sb_field_members) +
sizeof(struct bch_member) * nr_devices) / sizeof(u64);
err = "no space in superblock for member info";
ret = -ENOSPC;
mi = bch2_sb_resize_members(&c->disk_sb, u64s);
if (!mi)
goto err_unlock;
/* success: */
mi->members[dev_idx] = dev_mi;
mi->members[dev_idx].last_mount = cpu_to_le64(ktime_get_real_seconds());
c->disk_sb.sb->nr_devices = nr_devices;
ca->disk_sb.sb->dev_idx = dev_idx;
bch2_dev_attach(c, ca, dev_idx);
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
bch2_dev_usage_journal_reserve(c);
err = "error marking superblock";
ret = bch2_trans_mark_dev_sb(c, NULL, ca);
if (ret)
goto err_late;
if (ca->mi.state == BCH_MEMBER_STATE_RW) {
err = __bch2_dev_read_write(c, ca);
if (err)
goto err_late;
}
up_write(&c->state_lock);
return 0;
err_unlock:
mutex_unlock(&c->sb_lock);
up_write(&c->state_lock);
err:
if (ca)
bch2_dev_free(ca);
bch2_free_super(&sb);
bch_err(c, "Unable to add device: %s", err);
return ret;
err_late:
up_write(&c->state_lock);
bch_err(c, "Error going rw after adding device: %s", err);
return -EINVAL;
}
/* Hot add existing device to running filesystem: */
int bch2_dev_online(struct bch_fs *c, const char *path)
{
struct bch_opts opts = bch2_opts_empty();
struct bch_sb_handle sb = { NULL };
struct bch_sb_field_members *mi;
struct bch_dev *ca;
unsigned dev_idx;
const char *err;
int ret;
down_write(&c->state_lock);
ret = bch2_read_super(path, &opts, &sb);
if (ret) {
up_write(&c->state_lock);
return ret;
}
dev_idx = sb.sb->dev_idx;
err = bch2_dev_in_fs(c->disk_sb.sb, sb.sb);
if (err)
goto err;
if (bch2_dev_attach_bdev(c, &sb)) {
err = "bch2_dev_attach_bdev() error";
goto err;
}
ca = bch_dev_locked(c, dev_idx);
if (bch2_trans_mark_dev_sb(c, NULL, ca)) {
err = "bch2_trans_mark_dev_sb() error";
goto err;
}
if (ca->mi.state == BCH_MEMBER_STATE_RW) {
err = __bch2_dev_read_write(c, ca);
if (err)
goto err;
}
mutex_lock(&c->sb_lock);
mi = bch2_sb_get_members(c->disk_sb.sb);
mi->members[ca->dev_idx].last_mount =
cpu_to_le64(ktime_get_real_seconds());
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
up_write(&c->state_lock);
return 0;
err:
up_write(&c->state_lock);
bch2_free_super(&sb);
bch_err(c, "error bringing %s online: %s", path, err);
return -EINVAL;
}
int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags)
{
down_write(&c->state_lock);
if (!bch2_dev_is_online(ca)) {
bch_err(ca, "Already offline");
up_write(&c->state_lock);
return 0;
}
if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_FAILED, flags)) {
bch_err(ca, "Cannot offline required disk");
up_write(&c->state_lock);
return -EINVAL;
}
__bch2_dev_offline(c, ca);
up_write(&c->state_lock);
return 0;
}
int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets)
{
struct bch_member *mi;
int ret = 0;
down_write(&c->state_lock);
if (nbuckets < ca->mi.nbuckets) {
bch_err(ca, "Cannot shrink yet");
ret = -EINVAL;
goto err;
}
if (bch2_dev_is_online(ca) &&
get_capacity(ca->disk_sb.bdev->bd_disk) <
ca->mi.bucket_size * nbuckets) {
bch_err(ca, "New size larger than device");
ret = -EINVAL;
goto err;
}
ret = bch2_dev_buckets_resize(c, ca, nbuckets);
if (ret) {
bch_err(ca, "Resize error: %i", ret);
goto err;
}
mutex_lock(&c->sb_lock);
mi = &bch2_sb_get_members(c->disk_sb.sb)->members[ca->dev_idx];
mi->nbuckets = cpu_to_le64(nbuckets);
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
bch2_recalc_capacity(c);
err:
up_write(&c->state_lock);
return ret;
}
/* return with ref on ca->ref: */
struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *path)
{
struct bch_dev *ca;
dev_t dev;
unsigned i;
int ret;
ret = lookup_bdev(path, &dev);
if (ret)
return ERR_PTR(ret);
for_each_member_device(ca, c, i)
if (ca->disk_sb.bdev->bd_dev == dev)
goto found;
ca = ERR_PTR(-ENOENT);
found:
return ca;
}
/* Filesystem open: */
struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices,
struct bch_opts opts)
{
struct bch_sb_handle *sb = NULL;
struct bch_fs *c = NULL;
struct bch_sb_field_members *mi;
unsigned i, best_sb = 0;
const char *err;
int ret = -ENOMEM;
pr_verbose_init(opts, "");
if (!nr_devices) {
c = ERR_PTR(-EINVAL);
goto out2;
}
if (!try_module_get(THIS_MODULE)) {
c = ERR_PTR(-ENODEV);
goto out2;
}
sb = kcalloc(nr_devices, sizeof(*sb), GFP_KERNEL);
if (!sb)
goto err;
for (i = 0; i < nr_devices; i++) {
ret = bch2_read_super(devices[i], &opts, &sb[i]);
if (ret)
goto err;
err = bch2_sb_validate(&sb[i]);
if (err)
goto err_print;
}
for (i = 1; i < nr_devices; i++)
if (le64_to_cpu(sb[i].sb->seq) >
le64_to_cpu(sb[best_sb].sb->seq))
best_sb = i;
mi = bch2_sb_get_members(sb[best_sb].sb);
i = 0;
while (i < nr_devices) {
if (i != best_sb &&
!bch2_dev_exists(sb[best_sb].sb, mi, sb[i].sb->dev_idx)) {
pr_info("%pg has been removed, skipping", sb[i].bdev);
bch2_free_super(&sb[i]);
array_remove_item(sb, nr_devices, i);
continue;
}
err = bch2_dev_in_fs(sb[best_sb].sb, sb[i].sb);
if (err)
goto err_print;
i++;
}
ret = -ENOMEM;
c = bch2_fs_alloc(sb[best_sb].sb, opts);
if (!c)
goto err;
err = "bch2_dev_online() error";
down_write(&c->state_lock);
for (i = 0; i < nr_devices; i++)
if (bch2_dev_attach_bdev(c, &sb[i])) {
up_write(&c->state_lock);
goto err_print;
}
up_write(&c->state_lock);
err = "insufficient devices";
if (!bch2_fs_may_start(c))
goto err_print;
if (!c->opts.nostart) {
ret = bch2_fs_start(c);
if (ret)
goto err;
}
out:
kfree(sb);
module_put(THIS_MODULE);
out2:
pr_verbose_init(opts, "ret %i", PTR_ERR_OR_ZERO(c));
return c;
err_print:
pr_err("bch_fs_open err opening %s: %s",
devices[0], err);
ret = -EINVAL;
err:
if (c)
bch2_fs_stop(c);
for (i = 0; i < nr_devices; i++)
bch2_free_super(&sb[i]);
c = ERR_PTR(ret);
goto out;
}
static const char *__bch2_fs_open_incremental(struct bch_sb_handle *sb,
struct bch_opts opts)
{
const char *err;
struct bch_fs *c;
bool allocated_fs = false;
int ret;
err = bch2_sb_validate(sb);
if (err)
return err;
mutex_lock(&bch_fs_list_lock);
c = __bch2_uuid_to_fs(sb->sb->uuid);
if (c) {
closure_get(&c->cl);
err = bch2_dev_in_fs(c->disk_sb.sb, sb->sb);
if (err)
goto err;
} else {
c = bch2_fs_alloc(sb->sb, opts);
err = "cannot allocate memory";
if (!c)
goto err;
allocated_fs = true;
}
err = "bch2_dev_online() error";
mutex_lock(&c->sb_lock);
if (bch2_dev_attach_bdev(c, sb)) {
mutex_unlock(&c->sb_lock);
goto err;
}
mutex_unlock(&c->sb_lock);
if (!c->opts.nostart && bch2_fs_may_start(c)) {
err = "error starting filesystem";
ret = bch2_fs_start(c);
if (ret)
goto err;
}
closure_put(&c->cl);
mutex_unlock(&bch_fs_list_lock);
return NULL;
err:
mutex_unlock(&bch_fs_list_lock);
if (allocated_fs)
bch2_fs_stop(c);
else if (c)
closure_put(&c->cl);
return err;
}
const char *bch2_fs_open_incremental(const char *path)
{
struct bch_sb_handle sb;
struct bch_opts opts = bch2_opts_empty();
const char *err;
if (bch2_read_super(path, &opts, &sb))
return "error reading superblock";
err = __bch2_fs_open_incremental(&sb, opts);
bch2_free_super(&sb);
return err;
}
/* Global interfaces/init */
static void bcachefs_exit(void)
{
bch2_debug_exit();
bch2_vfs_exit();
bch2_chardev_exit();
bch2_btree_key_cache_exit();
if (bcachefs_kset)
kset_unregister(bcachefs_kset);
}
static int __init bcachefs_init(void)
{
bch2_bkey_pack_test();
if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) ||
bch2_btree_key_cache_init() ||
bch2_chardev_init() ||
bch2_vfs_init() ||
bch2_debug_init())
goto err;
return 0;
err:
bcachefs_exit();
return -ENOMEM;
}
#define BCH_DEBUG_PARAM(name, description) \
bool bch2_##name; \
module_param_named(name, bch2_##name, bool, 0644); \
MODULE_PARM_DESC(name, description);
BCH_DEBUG_PARAMS()
#undef BCH_DEBUG_PARAM
unsigned bch2_metadata_version = bcachefs_metadata_version_current;
module_param_named(version, bch2_metadata_version, uint, 0400);
module_exit(bcachefs_exit);
module_init(bcachefs_init);