mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-25 23:34:47 +08:00
ed7247f309
spinlock can be initialized automatically with DEFINE_SPINLOCK() rather than explicitly calling spin_lock_init(). Reported-by: Hulk Robot <hulkci@huawei.com> Signed-off-by: Guobin Huang <huangguobin4@huawei.com> Link: https://lore.kernel.org/r/1617711116-49370-1-git-send-email-huangguobin4@huawei.com Signed-off-by: Johannes Berg <johannes.berg@intel.com>
344 lines
8.6 KiB
C
344 lines
8.6 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Input layer to RF Kill interface connector
|
|
*
|
|
* Copyright (c) 2007 Dmitry Torokhov
|
|
* Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
|
|
*
|
|
* If you ever run into a situation in which you have a SW_ type rfkill
|
|
* input device, then you can revive code that was removed in the patch
|
|
* "rfkill-input: remove unused code".
|
|
*/
|
|
|
|
#include <linux/input.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/init.h>
|
|
#include <linux/rfkill.h>
|
|
#include <linux/sched.h>
|
|
|
|
#include "rfkill.h"
|
|
|
|
enum rfkill_input_master_mode {
|
|
RFKILL_INPUT_MASTER_UNLOCK = 0,
|
|
RFKILL_INPUT_MASTER_RESTORE = 1,
|
|
RFKILL_INPUT_MASTER_UNBLOCKALL = 2,
|
|
NUM_RFKILL_INPUT_MASTER_MODES
|
|
};
|
|
|
|
/* Delay (in ms) between consecutive switch ops */
|
|
#define RFKILL_OPS_DELAY 200
|
|
|
|
static enum rfkill_input_master_mode rfkill_master_switch_mode =
|
|
RFKILL_INPUT_MASTER_UNBLOCKALL;
|
|
module_param_named(master_switch_mode, rfkill_master_switch_mode, uint, 0);
|
|
MODULE_PARM_DESC(master_switch_mode,
|
|
"SW_RFKILL_ALL ON should: 0=do nothing (only unlock); 1=restore; 2=unblock all");
|
|
|
|
static DEFINE_SPINLOCK(rfkill_op_lock);
|
|
static bool rfkill_op_pending;
|
|
static unsigned long rfkill_sw_pending[BITS_TO_LONGS(NUM_RFKILL_TYPES)];
|
|
static unsigned long rfkill_sw_state[BITS_TO_LONGS(NUM_RFKILL_TYPES)];
|
|
|
|
enum rfkill_sched_op {
|
|
RFKILL_GLOBAL_OP_EPO = 0,
|
|
RFKILL_GLOBAL_OP_RESTORE,
|
|
RFKILL_GLOBAL_OP_UNLOCK,
|
|
RFKILL_GLOBAL_OP_UNBLOCK,
|
|
};
|
|
|
|
static enum rfkill_sched_op rfkill_master_switch_op;
|
|
static enum rfkill_sched_op rfkill_op;
|
|
|
|
static void __rfkill_handle_global_op(enum rfkill_sched_op op)
|
|
{
|
|
unsigned int i;
|
|
|
|
switch (op) {
|
|
case RFKILL_GLOBAL_OP_EPO:
|
|
rfkill_epo();
|
|
break;
|
|
case RFKILL_GLOBAL_OP_RESTORE:
|
|
rfkill_restore_states();
|
|
break;
|
|
case RFKILL_GLOBAL_OP_UNLOCK:
|
|
rfkill_remove_epo_lock();
|
|
break;
|
|
case RFKILL_GLOBAL_OP_UNBLOCK:
|
|
rfkill_remove_epo_lock();
|
|
for (i = 0; i < NUM_RFKILL_TYPES; i++)
|
|
rfkill_switch_all(i, false);
|
|
break;
|
|
default:
|
|
/* memory corruption or bug, fail safely */
|
|
rfkill_epo();
|
|
WARN(1, "Unknown requested operation %d! "
|
|
"rfkill Emergency Power Off activated\n",
|
|
op);
|
|
}
|
|
}
|
|
|
|
static void __rfkill_handle_normal_op(const enum rfkill_type type,
|
|
const bool complement)
|
|
{
|
|
bool blocked;
|
|
|
|
blocked = rfkill_get_global_sw_state(type);
|
|
if (complement)
|
|
blocked = !blocked;
|
|
|
|
rfkill_switch_all(type, blocked);
|
|
}
|
|
|
|
static void rfkill_op_handler(struct work_struct *work)
|
|
{
|
|
unsigned int i;
|
|
bool c;
|
|
|
|
spin_lock_irq(&rfkill_op_lock);
|
|
do {
|
|
if (rfkill_op_pending) {
|
|
enum rfkill_sched_op op = rfkill_op;
|
|
rfkill_op_pending = false;
|
|
memset(rfkill_sw_pending, 0,
|
|
sizeof(rfkill_sw_pending));
|
|
spin_unlock_irq(&rfkill_op_lock);
|
|
|
|
__rfkill_handle_global_op(op);
|
|
|
|
spin_lock_irq(&rfkill_op_lock);
|
|
|
|
/*
|
|
* handle global ops first -- during unlocked period
|
|
* we might have gotten a new global op.
|
|
*/
|
|
if (rfkill_op_pending)
|
|
continue;
|
|
}
|
|
|
|
if (rfkill_is_epo_lock_active())
|
|
continue;
|
|
|
|
for (i = 0; i < NUM_RFKILL_TYPES; i++) {
|
|
if (__test_and_clear_bit(i, rfkill_sw_pending)) {
|
|
c = __test_and_clear_bit(i, rfkill_sw_state);
|
|
spin_unlock_irq(&rfkill_op_lock);
|
|
|
|
__rfkill_handle_normal_op(i, c);
|
|
|
|
spin_lock_irq(&rfkill_op_lock);
|
|
}
|
|
}
|
|
} while (rfkill_op_pending);
|
|
spin_unlock_irq(&rfkill_op_lock);
|
|
}
|
|
|
|
static DECLARE_DELAYED_WORK(rfkill_op_work, rfkill_op_handler);
|
|
static unsigned long rfkill_last_scheduled;
|
|
|
|
static unsigned long rfkill_ratelimit(const unsigned long last)
|
|
{
|
|
const unsigned long delay = msecs_to_jiffies(RFKILL_OPS_DELAY);
|
|
return time_after(jiffies, last + delay) ? 0 : delay;
|
|
}
|
|
|
|
static void rfkill_schedule_ratelimited(void)
|
|
{
|
|
if (schedule_delayed_work(&rfkill_op_work,
|
|
rfkill_ratelimit(rfkill_last_scheduled)))
|
|
rfkill_last_scheduled = jiffies;
|
|
}
|
|
|
|
static void rfkill_schedule_global_op(enum rfkill_sched_op op)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&rfkill_op_lock, flags);
|
|
rfkill_op = op;
|
|
rfkill_op_pending = true;
|
|
if (op == RFKILL_GLOBAL_OP_EPO && !rfkill_is_epo_lock_active()) {
|
|
/* bypass the limiter for EPO */
|
|
mod_delayed_work(system_wq, &rfkill_op_work, 0);
|
|
rfkill_last_scheduled = jiffies;
|
|
} else
|
|
rfkill_schedule_ratelimited();
|
|
spin_unlock_irqrestore(&rfkill_op_lock, flags);
|
|
}
|
|
|
|
static void rfkill_schedule_toggle(enum rfkill_type type)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (rfkill_is_epo_lock_active())
|
|
return;
|
|
|
|
spin_lock_irqsave(&rfkill_op_lock, flags);
|
|
if (!rfkill_op_pending) {
|
|
__set_bit(type, rfkill_sw_pending);
|
|
__change_bit(type, rfkill_sw_state);
|
|
rfkill_schedule_ratelimited();
|
|
}
|
|
spin_unlock_irqrestore(&rfkill_op_lock, flags);
|
|
}
|
|
|
|
static void rfkill_schedule_evsw_rfkillall(int state)
|
|
{
|
|
if (state)
|
|
rfkill_schedule_global_op(rfkill_master_switch_op);
|
|
else
|
|
rfkill_schedule_global_op(RFKILL_GLOBAL_OP_EPO);
|
|
}
|
|
|
|
static void rfkill_event(struct input_handle *handle, unsigned int type,
|
|
unsigned int code, int data)
|
|
{
|
|
if (type == EV_KEY && data == 1) {
|
|
switch (code) {
|
|
case KEY_WLAN:
|
|
rfkill_schedule_toggle(RFKILL_TYPE_WLAN);
|
|
break;
|
|
case KEY_BLUETOOTH:
|
|
rfkill_schedule_toggle(RFKILL_TYPE_BLUETOOTH);
|
|
break;
|
|
case KEY_UWB:
|
|
rfkill_schedule_toggle(RFKILL_TYPE_UWB);
|
|
break;
|
|
case KEY_WIMAX:
|
|
rfkill_schedule_toggle(RFKILL_TYPE_WIMAX);
|
|
break;
|
|
case KEY_RFKILL:
|
|
rfkill_schedule_toggle(RFKILL_TYPE_ALL);
|
|
break;
|
|
}
|
|
} else if (type == EV_SW && code == SW_RFKILL_ALL)
|
|
rfkill_schedule_evsw_rfkillall(data);
|
|
}
|
|
|
|
static int rfkill_connect(struct input_handler *handler, struct input_dev *dev,
|
|
const struct input_device_id *id)
|
|
{
|
|
struct input_handle *handle;
|
|
int error;
|
|
|
|
handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
|
|
if (!handle)
|
|
return -ENOMEM;
|
|
|
|
handle->dev = dev;
|
|
handle->handler = handler;
|
|
handle->name = "rfkill";
|
|
|
|
/* causes rfkill_start() to be called */
|
|
error = input_register_handle(handle);
|
|
if (error)
|
|
goto err_free_handle;
|
|
|
|
error = input_open_device(handle);
|
|
if (error)
|
|
goto err_unregister_handle;
|
|
|
|
return 0;
|
|
|
|
err_unregister_handle:
|
|
input_unregister_handle(handle);
|
|
err_free_handle:
|
|
kfree(handle);
|
|
return error;
|
|
}
|
|
|
|
static void rfkill_start(struct input_handle *handle)
|
|
{
|
|
/*
|
|
* Take event_lock to guard against configuration changes, we
|
|
* should be able to deal with concurrency with rfkill_event()
|
|
* just fine (which event_lock will also avoid).
|
|
*/
|
|
spin_lock_irq(&handle->dev->event_lock);
|
|
|
|
if (test_bit(EV_SW, handle->dev->evbit) &&
|
|
test_bit(SW_RFKILL_ALL, handle->dev->swbit))
|
|
rfkill_schedule_evsw_rfkillall(test_bit(SW_RFKILL_ALL,
|
|
handle->dev->sw));
|
|
|
|
spin_unlock_irq(&handle->dev->event_lock);
|
|
}
|
|
|
|
static void rfkill_disconnect(struct input_handle *handle)
|
|
{
|
|
input_close_device(handle);
|
|
input_unregister_handle(handle);
|
|
kfree(handle);
|
|
}
|
|
|
|
static const struct input_device_id rfkill_ids[] = {
|
|
{
|
|
.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT,
|
|
.evbit = { BIT_MASK(EV_KEY) },
|
|
.keybit = { [BIT_WORD(KEY_WLAN)] = BIT_MASK(KEY_WLAN) },
|
|
},
|
|
{
|
|
.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT,
|
|
.evbit = { BIT_MASK(EV_KEY) },
|
|
.keybit = { [BIT_WORD(KEY_BLUETOOTH)] = BIT_MASK(KEY_BLUETOOTH) },
|
|
},
|
|
{
|
|
.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT,
|
|
.evbit = { BIT_MASK(EV_KEY) },
|
|
.keybit = { [BIT_WORD(KEY_UWB)] = BIT_MASK(KEY_UWB) },
|
|
},
|
|
{
|
|
.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT,
|
|
.evbit = { BIT_MASK(EV_KEY) },
|
|
.keybit = { [BIT_WORD(KEY_WIMAX)] = BIT_MASK(KEY_WIMAX) },
|
|
},
|
|
{
|
|
.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT,
|
|
.evbit = { BIT_MASK(EV_KEY) },
|
|
.keybit = { [BIT_WORD(KEY_RFKILL)] = BIT_MASK(KEY_RFKILL) },
|
|
},
|
|
{
|
|
.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_SWBIT,
|
|
.evbit = { BIT(EV_SW) },
|
|
.swbit = { [BIT_WORD(SW_RFKILL_ALL)] = BIT_MASK(SW_RFKILL_ALL) },
|
|
},
|
|
{ }
|
|
};
|
|
|
|
static struct input_handler rfkill_handler = {
|
|
.name = "rfkill",
|
|
.event = rfkill_event,
|
|
.connect = rfkill_connect,
|
|
.start = rfkill_start,
|
|
.disconnect = rfkill_disconnect,
|
|
.id_table = rfkill_ids,
|
|
};
|
|
|
|
int __init rfkill_handler_init(void)
|
|
{
|
|
switch (rfkill_master_switch_mode) {
|
|
case RFKILL_INPUT_MASTER_UNBLOCKALL:
|
|
rfkill_master_switch_op = RFKILL_GLOBAL_OP_UNBLOCK;
|
|
break;
|
|
case RFKILL_INPUT_MASTER_RESTORE:
|
|
rfkill_master_switch_op = RFKILL_GLOBAL_OP_RESTORE;
|
|
break;
|
|
case RFKILL_INPUT_MASTER_UNLOCK:
|
|
rfkill_master_switch_op = RFKILL_GLOBAL_OP_UNLOCK;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Avoid delay at first schedule */
|
|
rfkill_last_scheduled =
|
|
jiffies - msecs_to_jiffies(RFKILL_OPS_DELAY) - 1;
|
|
return input_register_handler(&rfkill_handler);
|
|
}
|
|
|
|
void __exit rfkill_handler_exit(void)
|
|
{
|
|
input_unregister_handler(&rfkill_handler);
|
|
cancel_delayed_work_sync(&rfkill_op_work);
|
|
}
|