mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-15 18:34:47 +08:00
8afa10cbe2
Check the qmin & qmax values doesn't overflow for the given Wlog value.
Check that qmin <= qmax.
Fixes: a783474591
("[PKT_SCHED]: Generic RED layer")
Signed-off-by: Nogah Frankel <nogahf@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
419 lines
10 KiB
C
419 lines
10 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef __NET_SCHED_RED_H
|
|
#define __NET_SCHED_RED_H
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/bug.h>
|
|
#include <net/pkt_sched.h>
|
|
#include <net/inet_ecn.h>
|
|
#include <net/dsfield.h>
|
|
#include <linux/reciprocal_div.h>
|
|
|
|
/* Random Early Detection (RED) algorithm.
|
|
=======================================
|
|
|
|
Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
|
|
for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
|
|
|
|
This file codes a "divisionless" version of RED algorithm
|
|
as written down in Fig.17 of the paper.
|
|
|
|
Short description.
|
|
------------------
|
|
|
|
When a new packet arrives we calculate the average queue length:
|
|
|
|
avg = (1-W)*avg + W*current_queue_len,
|
|
|
|
W is the filter time constant (chosen as 2^(-Wlog)), it controls
|
|
the inertia of the algorithm. To allow larger bursts, W should be
|
|
decreased.
|
|
|
|
if (avg > th_max) -> packet marked (dropped).
|
|
if (avg < th_min) -> packet passes.
|
|
if (th_min < avg < th_max) we calculate probability:
|
|
|
|
Pb = max_P * (avg - th_min)/(th_max-th_min)
|
|
|
|
and mark (drop) packet with this probability.
|
|
Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
|
|
max_P should be small (not 1), usually 0.01..0.02 is good value.
|
|
|
|
max_P is chosen as a number, so that max_P/(th_max-th_min)
|
|
is a negative power of two in order arithmetics to contain
|
|
only shifts.
|
|
|
|
|
|
Parameters, settable by user:
|
|
-----------------------------
|
|
|
|
qth_min - bytes (should be < qth_max/2)
|
|
qth_max - bytes (should be at least 2*qth_min and less limit)
|
|
Wlog - bits (<32) log(1/W).
|
|
Plog - bits (<32)
|
|
|
|
Plog is related to max_P by formula:
|
|
|
|
max_P = (qth_max-qth_min)/2^Plog;
|
|
|
|
F.e. if qth_max=128K and qth_min=32K, then Plog=22
|
|
corresponds to max_P=0.02
|
|
|
|
Scell_log
|
|
Stab
|
|
|
|
Lookup table for log((1-W)^(t/t_ave).
|
|
|
|
|
|
NOTES:
|
|
|
|
Upper bound on W.
|
|
-----------------
|
|
|
|
If you want to allow bursts of L packets of size S,
|
|
you should choose W:
|
|
|
|
L + 1 - th_min/S < (1-(1-W)^L)/W
|
|
|
|
th_min/S = 32 th_min/S = 4
|
|
|
|
log(W) L
|
|
-1 33
|
|
-2 35
|
|
-3 39
|
|
-4 46
|
|
-5 57
|
|
-6 75
|
|
-7 101
|
|
-8 135
|
|
-9 190
|
|
etc.
|
|
*/
|
|
|
|
/*
|
|
* Adaptative RED : An Algorithm for Increasing the Robustness of RED's AQM
|
|
* (Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker) August 2001
|
|
*
|
|
* Every 500 ms:
|
|
* if (avg > target and max_p <= 0.5)
|
|
* increase max_p : max_p += alpha;
|
|
* else if (avg < target and max_p >= 0.01)
|
|
* decrease max_p : max_p *= beta;
|
|
*
|
|
* target :[qth_min + 0.4*(qth_min - qth_max),
|
|
* qth_min + 0.6*(qth_min - qth_max)].
|
|
* alpha : min(0.01, max_p / 4)
|
|
* beta : 0.9
|
|
* max_P is a Q0.32 fixed point number (with 32 bits mantissa)
|
|
* max_P between 0.01 and 0.5 (1% - 50%) [ Its no longer a negative power of two ]
|
|
*/
|
|
#define RED_ONE_PERCENT ((u32)DIV_ROUND_CLOSEST(1ULL<<32, 100))
|
|
|
|
#define MAX_P_MIN (1 * RED_ONE_PERCENT)
|
|
#define MAX_P_MAX (50 * RED_ONE_PERCENT)
|
|
#define MAX_P_ALPHA(val) min(MAX_P_MIN, val / 4)
|
|
|
|
#define RED_STAB_SIZE 256
|
|
#define RED_STAB_MASK (RED_STAB_SIZE - 1)
|
|
|
|
struct red_stats {
|
|
u32 prob_drop; /* Early probability drops */
|
|
u32 prob_mark; /* Early probability marks */
|
|
u32 forced_drop; /* Forced drops, qavg > max_thresh */
|
|
u32 forced_mark; /* Forced marks, qavg > max_thresh */
|
|
u32 pdrop; /* Drops due to queue limits */
|
|
u32 other; /* Drops due to drop() calls */
|
|
};
|
|
|
|
struct red_parms {
|
|
/* Parameters */
|
|
u32 qth_min; /* Min avg length threshold: Wlog scaled */
|
|
u32 qth_max; /* Max avg length threshold: Wlog scaled */
|
|
u32 Scell_max;
|
|
u32 max_P; /* probability, [0 .. 1.0] 32 scaled */
|
|
/* reciprocal_value(max_P / qth_delta) */
|
|
struct reciprocal_value max_P_reciprocal;
|
|
u32 qth_delta; /* max_th - min_th */
|
|
u32 target_min; /* min_th + 0.4*(max_th - min_th) */
|
|
u32 target_max; /* min_th + 0.6*(max_th - min_th) */
|
|
u8 Scell_log;
|
|
u8 Wlog; /* log(W) */
|
|
u8 Plog; /* random number bits */
|
|
u8 Stab[RED_STAB_SIZE];
|
|
};
|
|
|
|
struct red_vars {
|
|
/* Variables */
|
|
int qcount; /* Number of packets since last random
|
|
number generation */
|
|
u32 qR; /* Cached random number */
|
|
|
|
unsigned long qavg; /* Average queue length: Wlog scaled */
|
|
ktime_t qidlestart; /* Start of current idle period */
|
|
};
|
|
|
|
static inline u32 red_maxp(u8 Plog)
|
|
{
|
|
return Plog < 32 ? (~0U >> Plog) : ~0U;
|
|
}
|
|
|
|
static inline void red_set_vars(struct red_vars *v)
|
|
{
|
|
/* Reset average queue length, the value is strictly bound
|
|
* to the parameters below, reseting hurts a bit but leaving
|
|
* it might result in an unreasonable qavg for a while. --TGR
|
|
*/
|
|
v->qavg = 0;
|
|
|
|
v->qcount = -1;
|
|
}
|
|
|
|
static inline bool red_check_params(u32 qth_min, u32 qth_max, u8 Wlog)
|
|
{
|
|
if (fls(qth_min) + Wlog > 32)
|
|
return false;
|
|
if (fls(qth_max) + Wlog > 32)
|
|
return false;
|
|
if (qth_max < qth_min)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static inline void red_set_parms(struct red_parms *p,
|
|
u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
|
|
u8 Scell_log, u8 *stab, u32 max_P)
|
|
{
|
|
int delta = qth_max - qth_min;
|
|
u32 max_p_delta;
|
|
|
|
p->qth_min = qth_min << Wlog;
|
|
p->qth_max = qth_max << Wlog;
|
|
p->Wlog = Wlog;
|
|
p->Plog = Plog;
|
|
if (delta <= 0)
|
|
delta = 1;
|
|
p->qth_delta = delta;
|
|
if (!max_P) {
|
|
max_P = red_maxp(Plog);
|
|
max_P *= delta; /* max_P = (qth_max - qth_min)/2^Plog */
|
|
}
|
|
p->max_P = max_P;
|
|
max_p_delta = max_P / delta;
|
|
max_p_delta = max(max_p_delta, 1U);
|
|
p->max_P_reciprocal = reciprocal_value(max_p_delta);
|
|
|
|
/* RED Adaptative target :
|
|
* [min_th + 0.4*(min_th - max_th),
|
|
* min_th + 0.6*(min_th - max_th)].
|
|
*/
|
|
delta /= 5;
|
|
p->target_min = qth_min + 2*delta;
|
|
p->target_max = qth_min + 3*delta;
|
|
|
|
p->Scell_log = Scell_log;
|
|
p->Scell_max = (255 << Scell_log);
|
|
|
|
if (stab)
|
|
memcpy(p->Stab, stab, sizeof(p->Stab));
|
|
}
|
|
|
|
static inline int red_is_idling(const struct red_vars *v)
|
|
{
|
|
return v->qidlestart != 0;
|
|
}
|
|
|
|
static inline void red_start_of_idle_period(struct red_vars *v)
|
|
{
|
|
v->qidlestart = ktime_get();
|
|
}
|
|
|
|
static inline void red_end_of_idle_period(struct red_vars *v)
|
|
{
|
|
v->qidlestart = 0;
|
|
}
|
|
|
|
static inline void red_restart(struct red_vars *v)
|
|
{
|
|
red_end_of_idle_period(v);
|
|
v->qavg = 0;
|
|
v->qcount = -1;
|
|
}
|
|
|
|
static inline unsigned long red_calc_qavg_from_idle_time(const struct red_parms *p,
|
|
const struct red_vars *v)
|
|
{
|
|
s64 delta = ktime_us_delta(ktime_get(), v->qidlestart);
|
|
long us_idle = min_t(s64, delta, p->Scell_max);
|
|
int shift;
|
|
|
|
/*
|
|
* The problem: ideally, average length queue recalcultion should
|
|
* be done over constant clock intervals. This is too expensive, so
|
|
* that the calculation is driven by outgoing packets.
|
|
* When the queue is idle we have to model this clock by hand.
|
|
*
|
|
* SF+VJ proposed to "generate":
|
|
*
|
|
* m = idletime / (average_pkt_size / bandwidth)
|
|
*
|
|
* dummy packets as a burst after idle time, i.e.
|
|
*
|
|
* v->qavg *= (1-W)^m
|
|
*
|
|
* This is an apparently overcomplicated solution (f.e. we have to
|
|
* precompute a table to make this calculation in reasonable time)
|
|
* I believe that a simpler model may be used here,
|
|
* but it is field for experiments.
|
|
*/
|
|
|
|
shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
|
|
|
|
if (shift)
|
|
return v->qavg >> shift;
|
|
else {
|
|
/* Approximate initial part of exponent with linear function:
|
|
*
|
|
* (1-W)^m ~= 1-mW + ...
|
|
*
|
|
* Seems, it is the best solution to
|
|
* problem of too coarse exponent tabulation.
|
|
*/
|
|
us_idle = (v->qavg * (u64)us_idle) >> p->Scell_log;
|
|
|
|
if (us_idle < (v->qavg >> 1))
|
|
return v->qavg - us_idle;
|
|
else
|
|
return v->qavg >> 1;
|
|
}
|
|
}
|
|
|
|
static inline unsigned long red_calc_qavg_no_idle_time(const struct red_parms *p,
|
|
const struct red_vars *v,
|
|
unsigned int backlog)
|
|
{
|
|
/*
|
|
* NOTE: v->qavg is fixed point number with point at Wlog.
|
|
* The formula below is equvalent to floating point
|
|
* version:
|
|
*
|
|
* qavg = qavg*(1-W) + backlog*W;
|
|
*
|
|
* --ANK (980924)
|
|
*/
|
|
return v->qavg + (backlog - (v->qavg >> p->Wlog));
|
|
}
|
|
|
|
static inline unsigned long red_calc_qavg(const struct red_parms *p,
|
|
const struct red_vars *v,
|
|
unsigned int backlog)
|
|
{
|
|
if (!red_is_idling(v))
|
|
return red_calc_qavg_no_idle_time(p, v, backlog);
|
|
else
|
|
return red_calc_qavg_from_idle_time(p, v);
|
|
}
|
|
|
|
|
|
static inline u32 red_random(const struct red_parms *p)
|
|
{
|
|
return reciprocal_divide(prandom_u32(), p->max_P_reciprocal);
|
|
}
|
|
|
|
static inline int red_mark_probability(const struct red_parms *p,
|
|
const struct red_vars *v,
|
|
unsigned long qavg)
|
|
{
|
|
/* The formula used below causes questions.
|
|
|
|
OK. qR is random number in the interval
|
|
(0..1/max_P)*(qth_max-qth_min)
|
|
i.e. 0..(2^Plog). If we used floating point
|
|
arithmetics, it would be: (2^Plog)*rnd_num,
|
|
where rnd_num is less 1.
|
|
|
|
Taking into account, that qavg have fixed
|
|
point at Wlog, two lines
|
|
below have the following floating point equivalent:
|
|
|
|
max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
|
|
|
|
Any questions? --ANK (980924)
|
|
*/
|
|
return !(((qavg - p->qth_min) >> p->Wlog) * v->qcount < v->qR);
|
|
}
|
|
|
|
enum {
|
|
RED_BELOW_MIN_THRESH,
|
|
RED_BETWEEN_TRESH,
|
|
RED_ABOVE_MAX_TRESH,
|
|
};
|
|
|
|
static inline int red_cmp_thresh(const struct red_parms *p, unsigned long qavg)
|
|
{
|
|
if (qavg < p->qth_min)
|
|
return RED_BELOW_MIN_THRESH;
|
|
else if (qavg >= p->qth_max)
|
|
return RED_ABOVE_MAX_TRESH;
|
|
else
|
|
return RED_BETWEEN_TRESH;
|
|
}
|
|
|
|
enum {
|
|
RED_DONT_MARK,
|
|
RED_PROB_MARK,
|
|
RED_HARD_MARK,
|
|
};
|
|
|
|
static inline int red_action(const struct red_parms *p,
|
|
struct red_vars *v,
|
|
unsigned long qavg)
|
|
{
|
|
switch (red_cmp_thresh(p, qavg)) {
|
|
case RED_BELOW_MIN_THRESH:
|
|
v->qcount = -1;
|
|
return RED_DONT_MARK;
|
|
|
|
case RED_BETWEEN_TRESH:
|
|
if (++v->qcount) {
|
|
if (red_mark_probability(p, v, qavg)) {
|
|
v->qcount = 0;
|
|
v->qR = red_random(p);
|
|
return RED_PROB_MARK;
|
|
}
|
|
} else
|
|
v->qR = red_random(p);
|
|
|
|
return RED_DONT_MARK;
|
|
|
|
case RED_ABOVE_MAX_TRESH:
|
|
v->qcount = -1;
|
|
return RED_HARD_MARK;
|
|
}
|
|
|
|
BUG();
|
|
return RED_DONT_MARK;
|
|
}
|
|
|
|
static inline void red_adaptative_algo(struct red_parms *p, struct red_vars *v)
|
|
{
|
|
unsigned long qavg;
|
|
u32 max_p_delta;
|
|
|
|
qavg = v->qavg;
|
|
if (red_is_idling(v))
|
|
qavg = red_calc_qavg_from_idle_time(p, v);
|
|
|
|
/* v->qavg is fixed point number with point at Wlog */
|
|
qavg >>= p->Wlog;
|
|
|
|
if (qavg > p->target_max && p->max_P <= MAX_P_MAX)
|
|
p->max_P += MAX_P_ALPHA(p->max_P); /* maxp = maxp + alpha */
|
|
else if (qavg < p->target_min && p->max_P >= MAX_P_MIN)
|
|
p->max_P = (p->max_P/10)*9; /* maxp = maxp * Beta */
|
|
|
|
max_p_delta = DIV_ROUND_CLOSEST(p->max_P, p->qth_delta);
|
|
max_p_delta = max(max_p_delta, 1U);
|
|
p->max_P_reciprocal = reciprocal_value(max_p_delta);
|
|
}
|
|
#endif
|