linux/kernel/dma/mapping.c
Jia He a409d96009 dma-mapping: fix dma_addressing_limited() if dma_range_map can't cover all system RAM
There is an unusual case that the range map covers right up to the top
of system RAM, but leaves a hole somewhere lower down. Then it prevents
the nvme device dma mapping in the checking path of phys_to_dma() and
causes the hangs at boot.

E.g. On an Armv8 Ampere server, the dsdt ACPI table is:
 Method (_DMA, 0, Serialized)  // _DMA: Direct Memory Access
            {
                Name (RBUF, ResourceTemplate ()
                {
                    QWordMemory (ResourceConsumer, PosDecode, MinFixed,
MaxFixed, Cacheable, ReadWrite,
                        0x0000000000000000, // Granularity
                        0x0000000000000000, // Range Minimum
                        0x00000000FFFFFFFF, // Range Maximum
                        0x0000000000000000, // Translation Offset
                        0x0000000100000000, // Length
                        ,, , AddressRangeMemory, TypeStatic)
                    QWordMemory (ResourceConsumer, PosDecode, MinFixed,
MaxFixed, Cacheable, ReadWrite,
                        0x0000000000000000, // Granularity
                        0x0000006010200000, // Range Minimum
                        0x000000602FFFFFFF, // Range Maximum
                        0x0000000000000000, // Translation Offset
                        0x000000001FE00000, // Length
                        ,, , AddressRangeMemory, TypeStatic)
                    QWordMemory (ResourceConsumer, PosDecode, MinFixed,
MaxFixed, Cacheable, ReadWrite,
                        0x0000000000000000, // Granularity
                        0x00000060F0000000, // Range Minimum
                        0x00000060FFFFFFFF, // Range Maximum
                        0x0000000000000000, // Translation Offset
                        0x0000000010000000, // Length
                        ,, , AddressRangeMemory, TypeStatic)
                    QWordMemory (ResourceConsumer, PosDecode, MinFixed,
MaxFixed, Cacheable, ReadWrite,
                        0x0000000000000000, // Granularity
                        0x0000007000000000, // Range Minimum
                        0x000003FFFFFFFFFF, // Range Maximum
                        0x0000000000000000, // Translation Offset
                        0x0000039000000000, // Length
                        ,, , AddressRangeMemory, TypeStatic)
                })

But the System RAM ranges are:
cat /proc/iomem |grep -i ram
90000000-91ffffff : System RAM
92900000-fffbffff : System RAM
880000000-fffffffff : System RAM
8800000000-bff5990fff : System RAM
bff59d0000-bff5a4ffff : System RAM
bff8000000-bfffffffff : System RAM
So some RAM ranges are out of dma_range_map.

Fix it by checking whether each of the system RAM resources can be
properly encompassed within the dma_range_map.

Signed-off-by: Jia He <justin.he@arm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
2023-11-06 08:38:16 +01:00

864 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* arch-independent dma-mapping routines
*
* Copyright (c) 2006 SUSE Linux Products GmbH
* Copyright (c) 2006 Tejun Heo <teheo@suse.de>
*/
#include <linux/memblock.h> /* for max_pfn */
#include <linux/acpi.h>
#include <linux/dma-map-ops.h>
#include <linux/export.h>
#include <linux/gfp.h>
#include <linux/kmsan.h>
#include <linux/of_device.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include "debug.h"
#include "direct.h"
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
bool dma_default_coherent = IS_ENABLED(CONFIG_ARCH_DMA_DEFAULT_COHERENT);
#endif
/*
* Managed DMA API
*/
struct dma_devres {
size_t size;
void *vaddr;
dma_addr_t dma_handle;
unsigned long attrs;
};
static void dmam_release(struct device *dev, void *res)
{
struct dma_devres *this = res;
dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
this->attrs);
}
static int dmam_match(struct device *dev, void *res, void *match_data)
{
struct dma_devres *this = res, *match = match_data;
if (this->vaddr == match->vaddr) {
WARN_ON(this->size != match->size ||
this->dma_handle != match->dma_handle);
return 1;
}
return 0;
}
/**
* dmam_free_coherent - Managed dma_free_coherent()
* @dev: Device to free coherent memory for
* @size: Size of allocation
* @vaddr: Virtual address of the memory to free
* @dma_handle: DMA handle of the memory to free
*
* Managed dma_free_coherent().
*/
void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
dma_addr_t dma_handle)
{
struct dma_devres match_data = { size, vaddr, dma_handle };
dma_free_coherent(dev, size, vaddr, dma_handle);
WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
}
EXPORT_SYMBOL(dmam_free_coherent);
/**
* dmam_alloc_attrs - Managed dma_alloc_attrs()
* @dev: Device to allocate non_coherent memory for
* @size: Size of allocation
* @dma_handle: Out argument for allocated DMA handle
* @gfp: Allocation flags
* @attrs: Flags in the DMA_ATTR_* namespace.
*
* Managed dma_alloc_attrs(). Memory allocated using this function will be
* automatically released on driver detach.
*
* RETURNS:
* Pointer to allocated memory on success, NULL on failure.
*/
void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
gfp_t gfp, unsigned long attrs)
{
struct dma_devres *dr;
void *vaddr;
dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
if (!dr)
return NULL;
vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
if (!vaddr) {
devres_free(dr);
return NULL;
}
dr->vaddr = vaddr;
dr->dma_handle = *dma_handle;
dr->size = size;
dr->attrs = attrs;
devres_add(dev, dr);
return vaddr;
}
EXPORT_SYMBOL(dmam_alloc_attrs);
static bool dma_go_direct(struct device *dev, dma_addr_t mask,
const struct dma_map_ops *ops)
{
if (likely(!ops))
return true;
#ifdef CONFIG_DMA_OPS_BYPASS
if (dev->dma_ops_bypass)
return min_not_zero(mask, dev->bus_dma_limit) >=
dma_direct_get_required_mask(dev);
#endif
return false;
}
/*
* Check if the devices uses a direct mapping for streaming DMA operations.
* This allows IOMMU drivers to set a bypass mode if the DMA mask is large
* enough.
*/
static inline bool dma_alloc_direct(struct device *dev,
const struct dma_map_ops *ops)
{
return dma_go_direct(dev, dev->coherent_dma_mask, ops);
}
static inline bool dma_map_direct(struct device *dev,
const struct dma_map_ops *ops)
{
return dma_go_direct(dev, *dev->dma_mask, ops);
}
dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
size_t offset, size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
dma_addr_t addr;
BUG_ON(!valid_dma_direction(dir));
if (WARN_ON_ONCE(!dev->dma_mask))
return DMA_MAPPING_ERROR;
if (dma_map_direct(dev, ops) ||
arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
else
addr = ops->map_page(dev, page, offset, size, dir, attrs);
kmsan_handle_dma(page, offset, size, dir);
debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
return addr;
}
EXPORT_SYMBOL(dma_map_page_attrs);
void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
enum dma_data_direction dir, unsigned long attrs)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
BUG_ON(!valid_dma_direction(dir));
if (dma_map_direct(dev, ops) ||
arch_dma_unmap_page_direct(dev, addr + size))
dma_direct_unmap_page(dev, addr, size, dir, attrs);
else if (ops->unmap_page)
ops->unmap_page(dev, addr, size, dir, attrs);
debug_dma_unmap_page(dev, addr, size, dir);
}
EXPORT_SYMBOL(dma_unmap_page_attrs);
static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir, unsigned long attrs)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
int ents;
BUG_ON(!valid_dma_direction(dir));
if (WARN_ON_ONCE(!dev->dma_mask))
return 0;
if (dma_map_direct(dev, ops) ||
arch_dma_map_sg_direct(dev, sg, nents))
ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
else
ents = ops->map_sg(dev, sg, nents, dir, attrs);
if (ents > 0) {
kmsan_handle_dma_sg(sg, nents, dir);
debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
} else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
ents != -EIO && ents != -EREMOTEIO)) {
return -EIO;
}
return ents;
}
/**
* dma_map_sg_attrs - Map the given buffer for DMA
* @dev: The device for which to perform the DMA operation
* @sg: The sg_table object describing the buffer
* @nents: Number of entries to map
* @dir: DMA direction
* @attrs: Optional DMA attributes for the map operation
*
* Maps a buffer described by a scatterlist passed in the sg argument with
* nents segments for the @dir DMA operation by the @dev device.
*
* Returns the number of mapped entries (which can be less than nents)
* on success. Zero is returned for any error.
*
* dma_unmap_sg_attrs() should be used to unmap the buffer with the
* original sg and original nents (not the value returned by this funciton).
*/
unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir, unsigned long attrs)
{
int ret;
ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
if (ret < 0)
return 0;
return ret;
}
EXPORT_SYMBOL(dma_map_sg_attrs);
/**
* dma_map_sgtable - Map the given buffer for DMA
* @dev: The device for which to perform the DMA operation
* @sgt: The sg_table object describing the buffer
* @dir: DMA direction
* @attrs: Optional DMA attributes for the map operation
*
* Maps a buffer described by a scatterlist stored in the given sg_table
* object for the @dir DMA operation by the @dev device. After success, the
* ownership for the buffer is transferred to the DMA domain. One has to
* call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
* ownership of the buffer back to the CPU domain before touching the
* buffer by the CPU.
*
* Returns 0 on success or a negative error code on error. The following
* error codes are supported with the given meaning:
*
* -EINVAL An invalid argument, unaligned access or other error
* in usage. Will not succeed if retried.
* -ENOMEM Insufficient resources (like memory or IOVA space) to
* complete the mapping. Should succeed if retried later.
* -EIO Legacy error code with an unknown meaning. eg. this is
* returned if a lower level call returned
* DMA_MAPPING_ERROR.
* -EREMOTEIO The DMA device cannot access P2PDMA memory specified
* in the sg_table. This will not succeed if retried.
*/
int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
enum dma_data_direction dir, unsigned long attrs)
{
int nents;
nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
if (nents < 0)
return nents;
sgt->nents = nents;
return 0;
}
EXPORT_SYMBOL_GPL(dma_map_sgtable);
void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir,
unsigned long attrs)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
BUG_ON(!valid_dma_direction(dir));
debug_dma_unmap_sg(dev, sg, nents, dir);
if (dma_map_direct(dev, ops) ||
arch_dma_unmap_sg_direct(dev, sg, nents))
dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
else if (ops->unmap_sg)
ops->unmap_sg(dev, sg, nents, dir, attrs);
}
EXPORT_SYMBOL(dma_unmap_sg_attrs);
dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
size_t size, enum dma_data_direction dir, unsigned long attrs)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
dma_addr_t addr = DMA_MAPPING_ERROR;
BUG_ON(!valid_dma_direction(dir));
if (WARN_ON_ONCE(!dev->dma_mask))
return DMA_MAPPING_ERROR;
if (dma_map_direct(dev, ops))
addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
else if (ops->map_resource)
addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
return addr;
}
EXPORT_SYMBOL(dma_map_resource);
void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
enum dma_data_direction dir, unsigned long attrs)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
BUG_ON(!valid_dma_direction(dir));
if (!dma_map_direct(dev, ops) && ops->unmap_resource)
ops->unmap_resource(dev, addr, size, dir, attrs);
debug_dma_unmap_resource(dev, addr, size, dir);
}
EXPORT_SYMBOL(dma_unmap_resource);
void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
enum dma_data_direction dir)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
BUG_ON(!valid_dma_direction(dir));
if (dma_map_direct(dev, ops))
dma_direct_sync_single_for_cpu(dev, addr, size, dir);
else if (ops->sync_single_for_cpu)
ops->sync_single_for_cpu(dev, addr, size, dir);
debug_dma_sync_single_for_cpu(dev, addr, size, dir);
}
EXPORT_SYMBOL(dma_sync_single_for_cpu);
void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
size_t size, enum dma_data_direction dir)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
BUG_ON(!valid_dma_direction(dir));
if (dma_map_direct(dev, ops))
dma_direct_sync_single_for_device(dev, addr, size, dir);
else if (ops->sync_single_for_device)
ops->sync_single_for_device(dev, addr, size, dir);
debug_dma_sync_single_for_device(dev, addr, size, dir);
}
EXPORT_SYMBOL(dma_sync_single_for_device);
void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
int nelems, enum dma_data_direction dir)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
BUG_ON(!valid_dma_direction(dir));
if (dma_map_direct(dev, ops))
dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
else if (ops->sync_sg_for_cpu)
ops->sync_sg_for_cpu(dev, sg, nelems, dir);
debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
}
EXPORT_SYMBOL(dma_sync_sg_for_cpu);
void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
int nelems, enum dma_data_direction dir)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
BUG_ON(!valid_dma_direction(dir));
if (dma_map_direct(dev, ops))
dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
else if (ops->sync_sg_for_device)
ops->sync_sg_for_device(dev, sg, nelems, dir);
debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
}
EXPORT_SYMBOL(dma_sync_sg_for_device);
/*
* The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
* that the intention is to allow exporting memory allocated via the
* coherent DMA APIs through the dma_buf API, which only accepts a
* scattertable. This presents a couple of problems:
* 1. Not all memory allocated via the coherent DMA APIs is backed by
* a struct page
* 2. Passing coherent DMA memory into the streaming APIs is not allowed
* as we will try to flush the memory through a different alias to that
* actually being used (and the flushes are redundant.)
*/
int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
if (dma_alloc_direct(dev, ops))
return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
size, attrs);
if (!ops->get_sgtable)
return -ENXIO;
return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
}
EXPORT_SYMBOL(dma_get_sgtable_attrs);
#ifdef CONFIG_MMU
/*
* Return the page attributes used for mapping dma_alloc_* memory, either in
* kernel space if remapping is needed, or to userspace through dma_mmap_*.
*/
pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
{
if (dev_is_dma_coherent(dev))
return prot;
#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
if (attrs & DMA_ATTR_WRITE_COMBINE)
return pgprot_writecombine(prot);
#endif
return pgprot_dmacoherent(prot);
}
#endif /* CONFIG_MMU */
/**
* dma_can_mmap - check if a given device supports dma_mmap_*
* @dev: device to check
*
* Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
* map DMA allocations to userspace.
*/
bool dma_can_mmap(struct device *dev)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
if (dma_alloc_direct(dev, ops))
return dma_direct_can_mmap(dev);
return ops->mmap != NULL;
}
EXPORT_SYMBOL_GPL(dma_can_mmap);
/**
* dma_mmap_attrs - map a coherent DMA allocation into user space
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
* @vma: vm_area_struct describing requested user mapping
* @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
* @dma_addr: device-view address returned from dma_alloc_attrs
* @size: size of memory originally requested in dma_alloc_attrs
* @attrs: attributes of mapping properties requested in dma_alloc_attrs
*
* Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
* space. The coherent DMA buffer must not be freed by the driver until the
* user space mapping has been released.
*/
int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
if (dma_alloc_direct(dev, ops))
return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
attrs);
if (!ops->mmap)
return -ENXIO;
return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
}
EXPORT_SYMBOL(dma_mmap_attrs);
u64 dma_get_required_mask(struct device *dev)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
if (dma_alloc_direct(dev, ops))
return dma_direct_get_required_mask(dev);
if (ops->get_required_mask)
return ops->get_required_mask(dev);
/*
* We require every DMA ops implementation to at least support a 32-bit
* DMA mask (and use bounce buffering if that isn't supported in
* hardware). As the direct mapping code has its own routine to
* actually report an optimal mask we default to 32-bit here as that
* is the right thing for most IOMMUs, and at least not actively
* harmful in general.
*/
return DMA_BIT_MASK(32);
}
EXPORT_SYMBOL_GPL(dma_get_required_mask);
void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
gfp_t flag, unsigned long attrs)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
void *cpu_addr;
WARN_ON_ONCE(!dev->coherent_dma_mask);
/*
* DMA allocations can never be turned back into a page pointer, so
* requesting compound pages doesn't make sense (and can't even be
* supported at all by various backends).
*/
if (WARN_ON_ONCE(flag & __GFP_COMP))
return NULL;
if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
return cpu_addr;
/* let the implementation decide on the zone to allocate from: */
flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
if (dma_alloc_direct(dev, ops))
cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
else if (ops->alloc)
cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
else
return NULL;
debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
return cpu_addr;
}
EXPORT_SYMBOL(dma_alloc_attrs);
void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
dma_addr_t dma_handle, unsigned long attrs)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
return;
/*
* On non-coherent platforms which implement DMA-coherent buffers via
* non-cacheable remaps, ops->free() may call vunmap(). Thus getting
* this far in IRQ context is a) at risk of a BUG_ON() or trying to
* sleep on some machines, and b) an indication that the driver is
* probably misusing the coherent API anyway.
*/
WARN_ON(irqs_disabled());
if (!cpu_addr)
return;
debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
if (dma_alloc_direct(dev, ops))
dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
else if (ops->free)
ops->free(dev, size, cpu_addr, dma_handle, attrs);
}
EXPORT_SYMBOL(dma_free_attrs);
static struct page *__dma_alloc_pages(struct device *dev, size_t size,
dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
if (WARN_ON_ONCE(!dev->coherent_dma_mask))
return NULL;
if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
return NULL;
if (WARN_ON_ONCE(gfp & __GFP_COMP))
return NULL;
size = PAGE_ALIGN(size);
if (dma_alloc_direct(dev, ops))
return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
if (!ops->alloc_pages)
return NULL;
return ops->alloc_pages(dev, size, dma_handle, dir, gfp);
}
struct page *dma_alloc_pages(struct device *dev, size_t size,
dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
{
struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
if (page)
debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
return page;
}
EXPORT_SYMBOL_GPL(dma_alloc_pages);
static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
dma_addr_t dma_handle, enum dma_data_direction dir)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
size = PAGE_ALIGN(size);
if (dma_alloc_direct(dev, ops))
dma_direct_free_pages(dev, size, page, dma_handle, dir);
else if (ops->free_pages)
ops->free_pages(dev, size, page, dma_handle, dir);
}
void dma_free_pages(struct device *dev, size_t size, struct page *page,
dma_addr_t dma_handle, enum dma_data_direction dir)
{
debug_dma_unmap_page(dev, dma_handle, size, dir);
__dma_free_pages(dev, size, page, dma_handle, dir);
}
EXPORT_SYMBOL_GPL(dma_free_pages);
int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
size_t size, struct page *page)
{
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
return -ENXIO;
return remap_pfn_range(vma, vma->vm_start,
page_to_pfn(page) + vma->vm_pgoff,
vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
}
EXPORT_SYMBOL_GPL(dma_mmap_pages);
static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
enum dma_data_direction dir, gfp_t gfp)
{
struct sg_table *sgt;
struct page *page;
sgt = kmalloc(sizeof(*sgt), gfp);
if (!sgt)
return NULL;
if (sg_alloc_table(sgt, 1, gfp))
goto out_free_sgt;
page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
if (!page)
goto out_free_table;
sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
sg_dma_len(sgt->sgl) = sgt->sgl->length;
return sgt;
out_free_table:
sg_free_table(sgt);
out_free_sgt:
kfree(sgt);
return NULL;
}
struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
struct sg_table *sgt;
if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
return NULL;
if (WARN_ON_ONCE(gfp & __GFP_COMP))
return NULL;
if (ops && ops->alloc_noncontiguous)
sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs);
else
sgt = alloc_single_sgt(dev, size, dir, gfp);
if (sgt) {
sgt->nents = 1;
debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
}
return sgt;
}
EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
static void free_single_sgt(struct device *dev, size_t size,
struct sg_table *sgt, enum dma_data_direction dir)
{
__dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
dir);
sg_free_table(sgt);
kfree(sgt);
}
void dma_free_noncontiguous(struct device *dev, size_t size,
struct sg_table *sgt, enum dma_data_direction dir)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
if (ops && ops->free_noncontiguous)
ops->free_noncontiguous(dev, size, sgt, dir);
else
free_single_sgt(dev, size, sgt, dir);
}
EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
void *dma_vmap_noncontiguous(struct device *dev, size_t size,
struct sg_table *sgt)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
if (ops && ops->alloc_noncontiguous)
return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
return page_address(sg_page(sgt->sgl));
}
EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
if (ops && ops->alloc_noncontiguous)
vunmap(vaddr);
}
EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
size_t size, struct sg_table *sgt)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
if (ops && ops->alloc_noncontiguous) {
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
if (vma->vm_pgoff >= count ||
vma_pages(vma) > count - vma->vm_pgoff)
return -ENXIO;
return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
}
return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
}
EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
static int dma_supported(struct device *dev, u64 mask)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
/*
* ->dma_supported sets the bypass flag, so we must always call
* into the method here unless the device is truly direct mapped.
*/
if (!ops)
return dma_direct_supported(dev, mask);
if (!ops->dma_supported)
return 1;
return ops->dma_supported(dev, mask);
}
bool dma_pci_p2pdma_supported(struct device *dev)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
/* if ops is not set, dma direct will be used which supports P2PDMA */
if (!ops)
return true;
/*
* Note: dma_ops_bypass is not checked here because P2PDMA should
* not be used with dma mapping ops that do not have support even
* if the specific device is bypassing them.
*/
return ops->flags & DMA_F_PCI_P2PDMA_SUPPORTED;
}
EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
int dma_set_mask(struct device *dev, u64 mask)
{
/*
* Truncate the mask to the actually supported dma_addr_t width to
* avoid generating unsupportable addresses.
*/
mask = (dma_addr_t)mask;
if (!dev->dma_mask || !dma_supported(dev, mask))
return -EIO;
arch_dma_set_mask(dev, mask);
*dev->dma_mask = mask;
return 0;
}
EXPORT_SYMBOL(dma_set_mask);
int dma_set_coherent_mask(struct device *dev, u64 mask)
{
/*
* Truncate the mask to the actually supported dma_addr_t width to
* avoid generating unsupportable addresses.
*/
mask = (dma_addr_t)mask;
if (!dma_supported(dev, mask))
return -EIO;
dev->coherent_dma_mask = mask;
return 0;
}
EXPORT_SYMBOL(dma_set_coherent_mask);
/**
* dma_addressing_limited - return if the device is addressing limited
* @dev: device to check
*
* Return %true if the devices DMA mask is too small to address all memory in
* the system, else %false. Lack of addressing bits is the prime reason for
* bounce buffering, but might not be the only one.
*/
bool dma_addressing_limited(struct device *dev)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
if (min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
dma_get_required_mask(dev))
return true;
if (unlikely(ops))
return false;
return !dma_direct_all_ram_mapped(dev);
}
EXPORT_SYMBOL_GPL(dma_addressing_limited);
size_t dma_max_mapping_size(struct device *dev)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
size_t size = SIZE_MAX;
if (dma_map_direct(dev, ops))
size = dma_direct_max_mapping_size(dev);
else if (ops && ops->max_mapping_size)
size = ops->max_mapping_size(dev);
return size;
}
EXPORT_SYMBOL_GPL(dma_max_mapping_size);
size_t dma_opt_mapping_size(struct device *dev)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
size_t size = SIZE_MAX;
if (ops && ops->opt_mapping_size)
size = ops->opt_mapping_size();
return min(dma_max_mapping_size(dev), size);
}
EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
if (dma_map_direct(dev, ops))
return dma_direct_need_sync(dev, dma_addr);
return ops->sync_single_for_cpu || ops->sync_single_for_device;
}
EXPORT_SYMBOL_GPL(dma_need_sync);
unsigned long dma_get_merge_boundary(struct device *dev)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
if (!ops || !ops->get_merge_boundary)
return 0; /* can't merge */
return ops->get_merge_boundary(dev);
}
EXPORT_SYMBOL_GPL(dma_get_merge_boundary);