linux/sound/usb/usx2y/usbusx2yaudio.c
Takashi Iwai ca4833c5a2 ALSA: usx2y: Replace runtime->status->state reference to runtime->state
The recent change in ALSA core allows drivers to get the current PCM
state directly from runtime object.  Replace the calls accordingly.

Reviewed-by: Jaroslav Kysela <perex@perex.cz>
Link: https://lore.kernel.org/r/20220926135558.26580-9-tiwai@suse.de
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2022-09-27 08:48:34 +02:00

1034 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* US-X2Y AUDIO
* Copyright (c) 2002-2004 by Karsten Wiese
*
* based on
*
* (Tentative) USB Audio Driver for ALSA
*
* Main and PCM part
*
* Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
*
* Many codes borrowed from audio.c by
* Alan Cox (alan@lxorguk.ukuu.org.uk)
* Thomas Sailer (sailer@ife.ee.ethz.ch)
*/
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <linux/moduleparam.h>
#include <sound/core.h>
#include <sound/info.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include "usx2y.h"
#include "usbusx2y.h"
/* Default value used for nr of packs per urb.
* 1 to 4 have been tested ok on uhci.
* To use 3 on ohci, you'd need a patch:
* look for "0000425-linux-2.6.9-rc4-mm1_ohci-hcd.patch.gz" on
* "https://bugtrack.alsa-project.org/alsa-bug/bug_view_page.php?bug_id=0000425"
*
* 1, 2 and 4 work out of the box on ohci, if I recall correctly.
* Bigger is safer operation, smaller gives lower latencies.
*/
#define USX2Y_NRPACKS 4
/* If your system works ok with this module's parameter
* nrpacks set to 1, you might as well comment
* this define out, and thereby produce smaller, faster code.
* You'd also set USX2Y_NRPACKS to 1 then.
*/
#define USX2Y_NRPACKS_VARIABLE 1
#ifdef USX2Y_NRPACKS_VARIABLE
static int nrpacks = USX2Y_NRPACKS; /* number of packets per urb */
#define nr_of_packs() nrpacks
module_param(nrpacks, int, 0444);
MODULE_PARM_DESC(nrpacks, "Number of packets per URB.");
#else
#define nr_of_packs() USX2Y_NRPACKS
#endif
static int usx2y_urb_capt_retire(struct snd_usx2y_substream *subs)
{
struct urb *urb = subs->completed_urb;
struct snd_pcm_runtime *runtime = subs->pcm_substream->runtime;
unsigned char *cp;
int i, len, lens = 0, hwptr_done = subs->hwptr_done;
int cnt, blen;
struct usx2ydev *usx2y = subs->usx2y;
for (i = 0; i < nr_of_packs(); i++) {
cp = (unsigned char *)urb->transfer_buffer + urb->iso_frame_desc[i].offset;
if (urb->iso_frame_desc[i].status) { /* active? hmm, skip this */
snd_printk(KERN_ERR
"active frame status %i. Most probably some hardware problem.\n",
urb->iso_frame_desc[i].status);
return urb->iso_frame_desc[i].status;
}
len = urb->iso_frame_desc[i].actual_length / usx2y->stride;
if (!len) {
snd_printd("0 == len ERROR!\n");
continue;
}
/* copy a data chunk */
if ((hwptr_done + len) > runtime->buffer_size) {
cnt = runtime->buffer_size - hwptr_done;
blen = cnt * usx2y->stride;
memcpy(runtime->dma_area + hwptr_done * usx2y->stride, cp, blen);
memcpy(runtime->dma_area, cp + blen, len * usx2y->stride - blen);
} else {
memcpy(runtime->dma_area + hwptr_done * usx2y->stride, cp,
len * usx2y->stride);
}
lens += len;
hwptr_done += len;
if (hwptr_done >= runtime->buffer_size)
hwptr_done -= runtime->buffer_size;
}
subs->hwptr_done = hwptr_done;
subs->transfer_done += lens;
/* update the pointer, call callback if necessary */
if (subs->transfer_done >= runtime->period_size) {
subs->transfer_done -= runtime->period_size;
snd_pcm_period_elapsed(subs->pcm_substream);
}
return 0;
}
/*
* prepare urb for playback data pipe
*
* we copy the data directly from the pcm buffer.
* the current position to be copied is held in hwptr field.
* since a urb can handle only a single linear buffer, if the total
* transferred area overflows the buffer boundary, we cannot send
* it directly from the buffer. thus the data is once copied to
* a temporary buffer and urb points to that.
*/
static int usx2y_urb_play_prepare(struct snd_usx2y_substream *subs,
struct urb *cap_urb,
struct urb *urb)
{
struct usx2ydev *usx2y = subs->usx2y;
struct snd_pcm_runtime *runtime = subs->pcm_substream->runtime;
int count, counts, pack, len;
count = 0;
for (pack = 0; pack < nr_of_packs(); pack++) {
/* calculate the size of a packet */
counts = cap_urb->iso_frame_desc[pack].actual_length / usx2y->stride;
count += counts;
if (counts < 43 || counts > 50) {
snd_printk(KERN_ERR "should not be here with counts=%i\n", counts);
return -EPIPE;
}
/* set up descriptor */
urb->iso_frame_desc[pack].offset = pack ?
urb->iso_frame_desc[pack - 1].offset +
urb->iso_frame_desc[pack - 1].length :
0;
urb->iso_frame_desc[pack].length = cap_urb->iso_frame_desc[pack].actual_length;
}
if (atomic_read(&subs->state) >= STATE_PRERUNNING) {
if (subs->hwptr + count > runtime->buffer_size) {
/* err, the transferred area goes over buffer boundary.
* copy the data to the temp buffer.
*/
len = runtime->buffer_size - subs->hwptr;
urb->transfer_buffer = subs->tmpbuf;
memcpy(subs->tmpbuf, runtime->dma_area +
subs->hwptr * usx2y->stride, len * usx2y->stride);
memcpy(subs->tmpbuf + len * usx2y->stride,
runtime->dma_area, (count - len) * usx2y->stride);
subs->hwptr += count;
subs->hwptr -= runtime->buffer_size;
} else {
/* set the buffer pointer */
urb->transfer_buffer = runtime->dma_area + subs->hwptr * usx2y->stride;
subs->hwptr += count;
if (subs->hwptr >= runtime->buffer_size)
subs->hwptr -= runtime->buffer_size;
}
} else {
urb->transfer_buffer = subs->tmpbuf;
}
urb->transfer_buffer_length = count * usx2y->stride;
return 0;
}
/*
* process after playback data complete
*
* update the current position and call callback if a period is processed.
*/
static void usx2y_urb_play_retire(struct snd_usx2y_substream *subs, struct urb *urb)
{
struct snd_pcm_runtime *runtime = subs->pcm_substream->runtime;
int len = urb->actual_length / subs->usx2y->stride;
subs->transfer_done += len;
subs->hwptr_done += len;
if (subs->hwptr_done >= runtime->buffer_size)
subs->hwptr_done -= runtime->buffer_size;
if (subs->transfer_done >= runtime->period_size) {
subs->transfer_done -= runtime->period_size;
snd_pcm_period_elapsed(subs->pcm_substream);
}
}
static int usx2y_urb_submit(struct snd_usx2y_substream *subs, struct urb *urb, int frame)
{
int err;
if (!urb)
return -ENODEV;
urb->start_frame = frame + NRURBS * nr_of_packs(); // let hcd do rollover sanity checks
urb->hcpriv = NULL;
urb->dev = subs->usx2y->dev; /* we need to set this at each time */
err = usb_submit_urb(urb, GFP_ATOMIC);
if (err < 0) {
snd_printk(KERN_ERR "usb_submit_urb() returned %i\n", err);
return err;
}
return 0;
}
static int usx2y_usbframe_complete(struct snd_usx2y_substream *capsubs,
struct snd_usx2y_substream *playbacksubs,
int frame)
{
int err, state;
struct urb *urb = playbacksubs->completed_urb;
state = atomic_read(&playbacksubs->state);
if (urb) {
if (state == STATE_RUNNING)
usx2y_urb_play_retire(playbacksubs, urb);
else if (state >= STATE_PRERUNNING)
atomic_inc(&playbacksubs->state);
} else {
switch (state) {
case STATE_STARTING1:
urb = playbacksubs->urb[0];
atomic_inc(&playbacksubs->state);
break;
case STATE_STARTING2:
urb = playbacksubs->urb[1];
atomic_inc(&playbacksubs->state);
break;
}
}
if (urb) {
err = usx2y_urb_play_prepare(playbacksubs, capsubs->completed_urb, urb);
if (err)
return err;
err = usx2y_urb_submit(playbacksubs, urb, frame);
if (err)
return err;
}
playbacksubs->completed_urb = NULL;
state = atomic_read(&capsubs->state);
if (state >= STATE_PREPARED) {
if (state == STATE_RUNNING) {
err = usx2y_urb_capt_retire(capsubs);
if (err)
return err;
} else if (state >= STATE_PRERUNNING) {
atomic_inc(&capsubs->state);
}
err = usx2y_urb_submit(capsubs, capsubs->completed_urb, frame);
if (err)
return err;
}
capsubs->completed_urb = NULL;
return 0;
}
static void usx2y_clients_stop(struct usx2ydev *usx2y)
{
struct snd_usx2y_substream *subs;
struct urb *urb;
int s, u;
for (s = 0; s < 4; s++) {
subs = usx2y->subs[s];
if (subs) {
snd_printdd("%i %p state=%i\n", s, subs, atomic_read(&subs->state));
atomic_set(&subs->state, STATE_STOPPED);
}
}
for (s = 0; s < 4; s++) {
subs = usx2y->subs[s];
if (subs) {
if (atomic_read(&subs->state) >= STATE_PRERUNNING)
snd_pcm_stop_xrun(subs->pcm_substream);
for (u = 0; u < NRURBS; u++) {
urb = subs->urb[u];
if (urb)
snd_printdd("%i status=%i start_frame=%i\n",
u, urb->status, urb->start_frame);
}
}
}
usx2y->prepare_subs = NULL;
wake_up(&usx2y->prepare_wait_queue);
}
static void usx2y_error_urb_status(struct usx2ydev *usx2y,
struct snd_usx2y_substream *subs, struct urb *urb)
{
snd_printk(KERN_ERR "ep=%i stalled with status=%i\n", subs->endpoint, urb->status);
urb->status = 0;
usx2y_clients_stop(usx2y);
}
static void i_usx2y_urb_complete(struct urb *urb)
{
struct snd_usx2y_substream *subs = urb->context;
struct usx2ydev *usx2y = subs->usx2y;
struct snd_usx2y_substream *capsubs, *playbacksubs;
if (unlikely(atomic_read(&subs->state) < STATE_PREPARED)) {
snd_printdd("hcd_frame=%i ep=%i%s status=%i start_frame=%i\n",
usb_get_current_frame_number(usx2y->dev),
subs->endpoint, usb_pipein(urb->pipe) ? "in" : "out",
urb->status, urb->start_frame);
return;
}
if (unlikely(urb->status)) {
usx2y_error_urb_status(usx2y, subs, urb);
return;
}
subs->completed_urb = urb;
capsubs = usx2y->subs[SNDRV_PCM_STREAM_CAPTURE];
playbacksubs = usx2y->subs[SNDRV_PCM_STREAM_PLAYBACK];
if (capsubs->completed_urb &&
atomic_read(&capsubs->state) >= STATE_PREPARED &&
(playbacksubs->completed_urb ||
atomic_read(&playbacksubs->state) < STATE_PREPARED)) {
if (!usx2y_usbframe_complete(capsubs, playbacksubs, urb->start_frame)) {
usx2y->wait_iso_frame += nr_of_packs();
} else {
snd_printdd("\n");
usx2y_clients_stop(usx2y);
}
}
}
static void usx2y_urbs_set_complete(struct usx2ydev *usx2y,
void (*complete)(struct urb *))
{
struct snd_usx2y_substream *subs;
struct urb *urb;
int s, u;
for (s = 0; s < 4; s++) {
subs = usx2y->subs[s];
if (subs) {
for (u = 0; u < NRURBS; u++) {
urb = subs->urb[u];
if (urb)
urb->complete = complete;
}
}
}
}
static void usx2y_subs_startup_finish(struct usx2ydev *usx2y)
{
usx2y_urbs_set_complete(usx2y, i_usx2y_urb_complete);
usx2y->prepare_subs = NULL;
}
static void i_usx2y_subs_startup(struct urb *urb)
{
struct snd_usx2y_substream *subs = urb->context;
struct usx2ydev *usx2y = subs->usx2y;
struct snd_usx2y_substream *prepare_subs = usx2y->prepare_subs;
if (prepare_subs) {
if (urb->start_frame == prepare_subs->urb[0]->start_frame) {
usx2y_subs_startup_finish(usx2y);
atomic_inc(&prepare_subs->state);
wake_up(&usx2y->prepare_wait_queue);
}
}
i_usx2y_urb_complete(urb);
}
static void usx2y_subs_prepare(struct snd_usx2y_substream *subs)
{
snd_printdd("usx2y_substream_prepare(%p) ep=%i urb0=%p urb1=%p\n",
subs, subs->endpoint, subs->urb[0], subs->urb[1]);
/* reset the pointer */
subs->hwptr = 0;
subs->hwptr_done = 0;
subs->transfer_done = 0;
}
static void usx2y_urb_release(struct urb **urb, int free_tb)
{
if (*urb) {
usb_kill_urb(*urb);
if (free_tb)
kfree((*urb)->transfer_buffer);
usb_free_urb(*urb);
*urb = NULL;
}
}
/*
* release a substreams urbs
*/
static void usx2y_urbs_release(struct snd_usx2y_substream *subs)
{
int i;
snd_printdd("%s %i\n", __func__, subs->endpoint);
for (i = 0; i < NRURBS; i++)
usx2y_urb_release(subs->urb + i,
subs != subs->usx2y->subs[SNDRV_PCM_STREAM_PLAYBACK]);
kfree(subs->tmpbuf);
subs->tmpbuf = NULL;
}
/*
* initialize a substream's urbs
*/
static int usx2y_urbs_allocate(struct snd_usx2y_substream *subs)
{
int i;
unsigned int pipe;
int is_playback = subs == subs->usx2y->subs[SNDRV_PCM_STREAM_PLAYBACK];
struct usb_device *dev = subs->usx2y->dev;
struct urb **purb;
pipe = is_playback ? usb_sndisocpipe(dev, subs->endpoint) :
usb_rcvisocpipe(dev, subs->endpoint);
subs->maxpacksize = usb_maxpacket(dev, pipe);
if (!subs->maxpacksize)
return -EINVAL;
if (is_playback && !subs->tmpbuf) { /* allocate a temporary buffer for playback */
subs->tmpbuf = kcalloc(nr_of_packs(), subs->maxpacksize, GFP_KERNEL);
if (!subs->tmpbuf)
return -ENOMEM;
}
/* allocate and initialize data urbs */
for (i = 0; i < NRURBS; i++) {
purb = subs->urb + i;
if (*purb) {
usb_kill_urb(*purb);
continue;
}
*purb = usb_alloc_urb(nr_of_packs(), GFP_KERNEL);
if (!*purb) {
usx2y_urbs_release(subs);
return -ENOMEM;
}
if (!is_playback && !(*purb)->transfer_buffer) {
/* allocate a capture buffer per urb */
(*purb)->transfer_buffer =
kmalloc_array(subs->maxpacksize,
nr_of_packs(), GFP_KERNEL);
if (!(*purb)->transfer_buffer) {
usx2y_urbs_release(subs);
return -ENOMEM;
}
}
(*purb)->dev = dev;
(*purb)->pipe = pipe;
(*purb)->number_of_packets = nr_of_packs();
(*purb)->context = subs;
(*purb)->interval = 1;
(*purb)->complete = i_usx2y_subs_startup;
}
return 0;
}
static void usx2y_subs_startup(struct snd_usx2y_substream *subs)
{
struct usx2ydev *usx2y = subs->usx2y;
usx2y->prepare_subs = subs;
subs->urb[0]->start_frame = -1;
wmb();
usx2y_urbs_set_complete(usx2y, i_usx2y_subs_startup);
}
static int usx2y_urbs_start(struct snd_usx2y_substream *subs)
{
int i, err;
struct usx2ydev *usx2y = subs->usx2y;
struct urb *urb;
unsigned long pack;
err = usx2y_urbs_allocate(subs);
if (err < 0)
return err;
subs->completed_urb = NULL;
for (i = 0; i < 4; i++) {
struct snd_usx2y_substream *subs = usx2y->subs[i];
if (subs && atomic_read(&subs->state) >= STATE_PREPARED)
goto start;
}
start:
usx2y_subs_startup(subs);
for (i = 0; i < NRURBS; i++) {
urb = subs->urb[i];
if (usb_pipein(urb->pipe)) {
if (!i)
atomic_set(&subs->state, STATE_STARTING3);
urb->dev = usx2y->dev;
for (pack = 0; pack < nr_of_packs(); pack++) {
urb->iso_frame_desc[pack].offset = subs->maxpacksize * pack;
urb->iso_frame_desc[pack].length = subs->maxpacksize;
}
urb->transfer_buffer_length = subs->maxpacksize * nr_of_packs();
err = usb_submit_urb(urb, GFP_ATOMIC);
if (err < 0) {
snd_printk(KERN_ERR "cannot submit datapipe for urb %d, err = %d\n", i, err);
err = -EPIPE;
goto cleanup;
} else {
if (!i)
usx2y->wait_iso_frame = urb->start_frame;
}
urb->transfer_flags = 0;
} else {
atomic_set(&subs->state, STATE_STARTING1);
break;
}
}
err = 0;
wait_event(usx2y->prepare_wait_queue, !usx2y->prepare_subs);
if (atomic_read(&subs->state) != STATE_PREPARED)
err = -EPIPE;
cleanup:
if (err) {
usx2y_subs_startup_finish(usx2y);
usx2y_clients_stop(usx2y); // something is completely wrong > stop everything
}
return err;
}
/*
* return the current pcm pointer. just return the hwptr_done value.
*/
static snd_pcm_uframes_t snd_usx2y_pcm_pointer(struct snd_pcm_substream *substream)
{
struct snd_usx2y_substream *subs = substream->runtime->private_data;
return subs->hwptr_done;
}
/*
* start/stop substream
*/
static int snd_usx2y_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_usx2y_substream *subs = substream->runtime->private_data;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
snd_printdd("%s(START)\n", __func__);
if (atomic_read(&subs->state) == STATE_PREPARED &&
atomic_read(&subs->usx2y->subs[SNDRV_PCM_STREAM_CAPTURE]->state) >= STATE_PREPARED) {
atomic_set(&subs->state, STATE_PRERUNNING);
} else {
snd_printdd("\n");
return -EPIPE;
}
break;
case SNDRV_PCM_TRIGGER_STOP:
snd_printdd("%s(STOP)\n", __func__);
if (atomic_read(&subs->state) >= STATE_PRERUNNING)
atomic_set(&subs->state, STATE_PREPARED);
break;
default:
return -EINVAL;
}
return 0;
}
/*
* allocate a buffer, setup samplerate
*
* so far we use a physically linear buffer although packetize transfer
* doesn't need a continuous area.
* if sg buffer is supported on the later version of alsa, we'll follow
* that.
*/
struct s_c2 {
char c1, c2;
};
static const struct s_c2 setrate_44100[] = {
{ 0x14, 0x08}, // this line sets 44100, well actually a little less
{ 0x18, 0x40}, // only tascam / frontier design knows the further lines .......
{ 0x18, 0x42},
{ 0x18, 0x45},
{ 0x18, 0x46},
{ 0x18, 0x48},
{ 0x18, 0x4A},
{ 0x18, 0x4C},
{ 0x18, 0x4E},
{ 0x18, 0x50},
{ 0x18, 0x52},
{ 0x18, 0x54},
{ 0x18, 0x56},
{ 0x18, 0x58},
{ 0x18, 0x5A},
{ 0x18, 0x5C},
{ 0x18, 0x5E},
{ 0x18, 0x60},
{ 0x18, 0x62},
{ 0x18, 0x64},
{ 0x18, 0x66},
{ 0x18, 0x68},
{ 0x18, 0x6A},
{ 0x18, 0x6C},
{ 0x18, 0x6E},
{ 0x18, 0x70},
{ 0x18, 0x72},
{ 0x18, 0x74},
{ 0x18, 0x76},
{ 0x18, 0x78},
{ 0x18, 0x7A},
{ 0x18, 0x7C},
{ 0x18, 0x7E}
};
static const struct s_c2 setrate_48000[] = {
{ 0x14, 0x09}, // this line sets 48000, well actually a little less
{ 0x18, 0x40}, // only tascam / frontier design knows the further lines .......
{ 0x18, 0x42},
{ 0x18, 0x45},
{ 0x18, 0x46},
{ 0x18, 0x48},
{ 0x18, 0x4A},
{ 0x18, 0x4C},
{ 0x18, 0x4E},
{ 0x18, 0x50},
{ 0x18, 0x52},
{ 0x18, 0x54},
{ 0x18, 0x56},
{ 0x18, 0x58},
{ 0x18, 0x5A},
{ 0x18, 0x5C},
{ 0x18, 0x5E},
{ 0x18, 0x60},
{ 0x18, 0x62},
{ 0x18, 0x64},
{ 0x18, 0x66},
{ 0x18, 0x68},
{ 0x18, 0x6A},
{ 0x18, 0x6C},
{ 0x18, 0x6E},
{ 0x18, 0x70},
{ 0x18, 0x73},
{ 0x18, 0x74},
{ 0x18, 0x76},
{ 0x18, 0x78},
{ 0x18, 0x7A},
{ 0x18, 0x7C},
{ 0x18, 0x7E}
};
#define NOOF_SETRATE_URBS ARRAY_SIZE(setrate_48000)
static void i_usx2y_04int(struct urb *urb)
{
struct usx2ydev *usx2y = urb->context;
if (urb->status)
snd_printk(KERN_ERR "snd_usx2y_04int() urb->status=%i\n", urb->status);
if (!--usx2y->us04->len)
wake_up(&usx2y->in04_wait_queue);
}
static int usx2y_rate_set(struct usx2ydev *usx2y, int rate)
{
int err = 0, i;
struct snd_usx2y_urb_seq *us = NULL;
int *usbdata = NULL;
const struct s_c2 *ra = rate == 48000 ? setrate_48000 : setrate_44100;
struct urb *urb;
if (usx2y->rate != rate) {
us = kzalloc(struct_size(us, urb, NOOF_SETRATE_URBS),
GFP_KERNEL);
if (!us) {
err = -ENOMEM;
goto cleanup;
}
usbdata = kmalloc_array(NOOF_SETRATE_URBS, sizeof(int),
GFP_KERNEL);
if (!usbdata) {
err = -ENOMEM;
goto cleanup;
}
for (i = 0; i < NOOF_SETRATE_URBS; ++i) {
us->urb[i] = usb_alloc_urb(0, GFP_KERNEL);
if (!us->urb[i]) {
err = -ENOMEM;
goto cleanup;
}
((char *)(usbdata + i))[0] = ra[i].c1;
((char *)(usbdata + i))[1] = ra[i].c2;
usb_fill_bulk_urb(us->urb[i], usx2y->dev, usb_sndbulkpipe(usx2y->dev, 4),
usbdata + i, 2, i_usx2y_04int, usx2y);
}
err = usb_urb_ep_type_check(us->urb[0]);
if (err < 0)
goto cleanup;
us->submitted = 0;
us->len = NOOF_SETRATE_URBS;
usx2y->us04 = us;
wait_event_timeout(usx2y->in04_wait_queue, !us->len, HZ);
usx2y->us04 = NULL;
if (us->len)
err = -ENODEV;
cleanup:
if (us) {
us->submitted = 2*NOOF_SETRATE_URBS;
for (i = 0; i < NOOF_SETRATE_URBS; ++i) {
urb = us->urb[i];
if (!urb)
continue;
if (urb->status) {
if (!err)
err = -ENODEV;
usb_kill_urb(urb);
}
usb_free_urb(urb);
}
usx2y->us04 = NULL;
kfree(usbdata);
kfree(us);
if (!err)
usx2y->rate = rate;
}
}
return err;
}
static int usx2y_format_set(struct usx2ydev *usx2y, snd_pcm_format_t format)
{
int alternate, err;
struct list_head *p;
if (format == SNDRV_PCM_FORMAT_S24_3LE) {
alternate = 2;
usx2y->stride = 6;
} else {
alternate = 1;
usx2y->stride = 4;
}
list_for_each(p, &usx2y->midi_list) {
snd_usbmidi_input_stop(p);
}
usb_kill_urb(usx2y->in04_urb);
err = usb_set_interface(usx2y->dev, 0, alternate);
if (err) {
snd_printk(KERN_ERR "usb_set_interface error\n");
return err;
}
usx2y->in04_urb->dev = usx2y->dev;
err = usb_submit_urb(usx2y->in04_urb, GFP_KERNEL);
list_for_each(p, &usx2y->midi_list) {
snd_usbmidi_input_start(p);
}
usx2y->format = format;
usx2y->rate = 0;
return err;
}
static int snd_usx2y_pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
int err = 0;
unsigned int rate = params_rate(hw_params);
snd_pcm_format_t format = params_format(hw_params);
struct snd_card *card = substream->pstr->pcm->card;
struct usx2ydev *dev = usx2y(card);
struct snd_usx2y_substream *subs;
struct snd_pcm_substream *test_substream;
int i;
mutex_lock(&usx2y(card)->pcm_mutex);
snd_printdd("snd_usx2y_hw_params(%p, %p)\n", substream, hw_params);
/* all pcm substreams off one usx2y have to operate at the same
* rate & format
*/
for (i = 0; i < dev->pcm_devs * 2; i++) {
subs = dev->subs[i];
if (!subs)
continue;
test_substream = subs->pcm_substream;
if (!test_substream || test_substream == substream ||
!test_substream->runtime)
continue;
if ((test_substream->runtime->format &&
test_substream->runtime->format != format) ||
(test_substream->runtime->rate &&
test_substream->runtime->rate != rate)) {
err = -EINVAL;
goto error;
}
}
error:
mutex_unlock(&usx2y(card)->pcm_mutex);
return err;
}
/*
* free the buffer
*/
static int snd_usx2y_pcm_hw_free(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_usx2y_substream *subs = runtime->private_data;
struct snd_usx2y_substream *cap_subs, *playback_subs;
mutex_lock(&subs->usx2y->pcm_mutex);
snd_printdd("snd_usx2y_hw_free(%p)\n", substream);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
cap_subs = subs->usx2y->subs[SNDRV_PCM_STREAM_CAPTURE];
atomic_set(&subs->state, STATE_STOPPED);
usx2y_urbs_release(subs);
if (!cap_subs->pcm_substream ||
!cap_subs->pcm_substream->runtime ||
cap_subs->pcm_substream->runtime->state < SNDRV_PCM_STATE_PREPARED) {
atomic_set(&cap_subs->state, STATE_STOPPED);
usx2y_urbs_release(cap_subs);
}
} else {
playback_subs = subs->usx2y->subs[SNDRV_PCM_STREAM_PLAYBACK];
if (atomic_read(&playback_subs->state) < STATE_PREPARED) {
atomic_set(&subs->state, STATE_STOPPED);
usx2y_urbs_release(subs);
}
}
mutex_unlock(&subs->usx2y->pcm_mutex);
return 0;
}
/*
* prepare callback
*
* set format and initialize urbs
*/
static int snd_usx2y_pcm_prepare(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_usx2y_substream *subs = runtime->private_data;
struct usx2ydev *usx2y = subs->usx2y;
struct snd_usx2y_substream *capsubs = subs->usx2y->subs[SNDRV_PCM_STREAM_CAPTURE];
int err = 0;
snd_printdd("%s(%p)\n", __func__, substream);
mutex_lock(&usx2y->pcm_mutex);
usx2y_subs_prepare(subs);
// Start hardware streams
// SyncStream first....
if (atomic_read(&capsubs->state) < STATE_PREPARED) {
if (usx2y->format != runtime->format) {
err = usx2y_format_set(usx2y, runtime->format);
if (err < 0)
goto up_prepare_mutex;
}
if (usx2y->rate != runtime->rate) {
err = usx2y_rate_set(usx2y, runtime->rate);
if (err < 0)
goto up_prepare_mutex;
}
snd_printdd("starting capture pipe for %s\n", subs == capsubs ? "self" : "playpipe");
err = usx2y_urbs_start(capsubs);
if (err < 0)
goto up_prepare_mutex;
}
if (subs != capsubs && atomic_read(&subs->state) < STATE_PREPARED)
err = usx2y_urbs_start(subs);
up_prepare_mutex:
mutex_unlock(&usx2y->pcm_mutex);
return err;
}
static const struct snd_pcm_hardware snd_usx2y_2c = {
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_BATCH),
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_3LE,
.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
.rate_min = 44100,
.rate_max = 48000,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = (2*128*1024),
.period_bytes_min = 64,
.period_bytes_max = (128*1024),
.periods_min = 2,
.periods_max = 1024,
.fifo_size = 0
};
static int snd_usx2y_pcm_open(struct snd_pcm_substream *substream)
{
struct snd_usx2y_substream *subs =
((struct snd_usx2y_substream **)
snd_pcm_substream_chip(substream))[substream->stream];
struct snd_pcm_runtime *runtime = substream->runtime;
if (subs->usx2y->chip_status & USX2Y_STAT_CHIP_MMAP_PCM_URBS)
return -EBUSY;
runtime->hw = snd_usx2y_2c;
runtime->private_data = subs;
subs->pcm_substream = substream;
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 1000, 200000);
return 0;
}
static int snd_usx2y_pcm_close(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_usx2y_substream *subs = runtime->private_data;
subs->pcm_substream = NULL;
return 0;
}
static const struct snd_pcm_ops snd_usx2y_pcm_ops = {
.open = snd_usx2y_pcm_open,
.close = snd_usx2y_pcm_close,
.hw_params = snd_usx2y_pcm_hw_params,
.hw_free = snd_usx2y_pcm_hw_free,
.prepare = snd_usx2y_pcm_prepare,
.trigger = snd_usx2y_pcm_trigger,
.pointer = snd_usx2y_pcm_pointer,
};
/*
* free a usb stream instance
*/
static void usx2y_audio_stream_free(struct snd_usx2y_substream **usx2y_substream)
{
int stream;
for_each_pcm_streams(stream) {
kfree(usx2y_substream[stream]);
usx2y_substream[stream] = NULL;
}
}
static void snd_usx2y_pcm_private_free(struct snd_pcm *pcm)
{
struct snd_usx2y_substream **usx2y_stream = pcm->private_data;
if (usx2y_stream)
usx2y_audio_stream_free(usx2y_stream);
}
static int usx2y_audio_stream_new(struct snd_card *card, int playback_endpoint, int capture_endpoint)
{
struct snd_pcm *pcm;
int err, i;
struct snd_usx2y_substream **usx2y_substream =
usx2y(card)->subs + 2 * usx2y(card)->pcm_devs;
for (i = playback_endpoint ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
i <= SNDRV_PCM_STREAM_CAPTURE; ++i) {
usx2y_substream[i] = kzalloc(sizeof(struct snd_usx2y_substream), GFP_KERNEL);
if (!usx2y_substream[i])
return -ENOMEM;
usx2y_substream[i]->usx2y = usx2y(card);
}
if (playback_endpoint)
usx2y_substream[SNDRV_PCM_STREAM_PLAYBACK]->endpoint = playback_endpoint;
usx2y_substream[SNDRV_PCM_STREAM_CAPTURE]->endpoint = capture_endpoint;
err = snd_pcm_new(card, NAME_ALLCAPS" Audio", usx2y(card)->pcm_devs,
playback_endpoint ? 1 : 0, 1,
&pcm);
if (err < 0) {
usx2y_audio_stream_free(usx2y_substream);
return err;
}
if (playback_endpoint)
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_usx2y_pcm_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_usx2y_pcm_ops);
pcm->private_data = usx2y_substream;
pcm->private_free = snd_usx2y_pcm_private_free;
pcm->info_flags = 0;
sprintf(pcm->name, NAME_ALLCAPS" Audio #%d", usx2y(card)->pcm_devs);
if (playback_endpoint) {
snd_pcm_set_managed_buffer(pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream,
SNDRV_DMA_TYPE_CONTINUOUS,
NULL,
64*1024, 128*1024);
}
snd_pcm_set_managed_buffer(pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream,
SNDRV_DMA_TYPE_CONTINUOUS,
NULL,
64*1024, 128*1024);
usx2y(card)->pcm_devs++;
return 0;
}
/*
* create a chip instance and set its names.
*/
int usx2y_audio_create(struct snd_card *card)
{
int err;
err = usx2y_audio_stream_new(card, 0xA, 0x8);
if (err < 0)
return err;
if (le16_to_cpu(usx2y(card)->dev->descriptor.idProduct) == USB_ID_US428) {
err = usx2y_audio_stream_new(card, 0, 0xA);
if (err < 0)
return err;
}
if (le16_to_cpu(usx2y(card)->dev->descriptor.idProduct) != USB_ID_US122)
err = usx2y_rate_set(usx2y(card), 44100); // Lets us428 recognize output-volume settings, disturbs us122.
return err;
}