mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-10 15:54:39 +08:00
c321022244
Check that verifier allows passing a map of type: BPF_MAP_TYPE_REUSEPORT_SOCKARRARY, or BPF_MAP_TYPE_SOCKMAP, or BPF_MAP_TYPE_SOCKHASH ... to bpf_sk_select_reuseport helper. Suggested-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20200430104738.494180-1-jakub@cloudflare.com
1190 lines
31 KiB
C
1190 lines
31 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Testsuite for eBPF verifier
|
|
*
|
|
* Copyright (c) 2014 PLUMgrid, http://plumgrid.com
|
|
* Copyright (c) 2017 Facebook
|
|
* Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
|
|
*/
|
|
|
|
#include <endian.h>
|
|
#include <asm/types.h>
|
|
#include <linux/types.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <errno.h>
|
|
#include <string.h>
|
|
#include <stddef.h>
|
|
#include <stdbool.h>
|
|
#include <sched.h>
|
|
#include <limits.h>
|
|
#include <assert.h>
|
|
|
|
#include <sys/capability.h>
|
|
|
|
#include <linux/unistd.h>
|
|
#include <linux/filter.h>
|
|
#include <linux/bpf_perf_event.h>
|
|
#include <linux/bpf.h>
|
|
#include <linux/if_ether.h>
|
|
#include <linux/btf.h>
|
|
|
|
#include <bpf/bpf.h>
|
|
#include <bpf/libbpf.h>
|
|
|
|
#ifdef HAVE_GENHDR
|
|
# include "autoconf.h"
|
|
#else
|
|
# if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__)
|
|
# define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1
|
|
# endif
|
|
#endif
|
|
#include "bpf_rlimit.h"
|
|
#include "bpf_rand.h"
|
|
#include "bpf_util.h"
|
|
#include "test_btf.h"
|
|
#include "../../../include/linux/filter.h"
|
|
|
|
#define MAX_INSNS BPF_MAXINSNS
|
|
#define MAX_TEST_INSNS 1000000
|
|
#define MAX_FIXUPS 8
|
|
#define MAX_NR_MAPS 20
|
|
#define MAX_TEST_RUNS 8
|
|
#define POINTER_VALUE 0xcafe4all
|
|
#define TEST_DATA_LEN 64
|
|
|
|
#define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0)
|
|
#define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1)
|
|
|
|
#define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled"
|
|
static bool unpriv_disabled = false;
|
|
static int skips;
|
|
static bool verbose = false;
|
|
|
|
struct bpf_test {
|
|
const char *descr;
|
|
struct bpf_insn insns[MAX_INSNS];
|
|
struct bpf_insn *fill_insns;
|
|
int fixup_map_hash_8b[MAX_FIXUPS];
|
|
int fixup_map_hash_48b[MAX_FIXUPS];
|
|
int fixup_map_hash_16b[MAX_FIXUPS];
|
|
int fixup_map_array_48b[MAX_FIXUPS];
|
|
int fixup_map_sockmap[MAX_FIXUPS];
|
|
int fixup_map_sockhash[MAX_FIXUPS];
|
|
int fixup_map_xskmap[MAX_FIXUPS];
|
|
int fixup_map_stacktrace[MAX_FIXUPS];
|
|
int fixup_prog1[MAX_FIXUPS];
|
|
int fixup_prog2[MAX_FIXUPS];
|
|
int fixup_map_in_map[MAX_FIXUPS];
|
|
int fixup_cgroup_storage[MAX_FIXUPS];
|
|
int fixup_percpu_cgroup_storage[MAX_FIXUPS];
|
|
int fixup_map_spin_lock[MAX_FIXUPS];
|
|
int fixup_map_array_ro[MAX_FIXUPS];
|
|
int fixup_map_array_wo[MAX_FIXUPS];
|
|
int fixup_map_array_small[MAX_FIXUPS];
|
|
int fixup_sk_storage_map[MAX_FIXUPS];
|
|
int fixup_map_event_output[MAX_FIXUPS];
|
|
int fixup_map_reuseport_array[MAX_FIXUPS];
|
|
const char *errstr;
|
|
const char *errstr_unpriv;
|
|
uint32_t insn_processed;
|
|
int prog_len;
|
|
enum {
|
|
UNDEF,
|
|
ACCEPT,
|
|
REJECT,
|
|
VERBOSE_ACCEPT,
|
|
} result, result_unpriv;
|
|
enum bpf_prog_type prog_type;
|
|
uint8_t flags;
|
|
void (*fill_helper)(struct bpf_test *self);
|
|
uint8_t runs;
|
|
#define bpf_testdata_struct_t \
|
|
struct { \
|
|
uint32_t retval, retval_unpriv; \
|
|
union { \
|
|
__u8 data[TEST_DATA_LEN]; \
|
|
__u64 data64[TEST_DATA_LEN / 8]; \
|
|
}; \
|
|
}
|
|
union {
|
|
bpf_testdata_struct_t;
|
|
bpf_testdata_struct_t retvals[MAX_TEST_RUNS];
|
|
};
|
|
enum bpf_attach_type expected_attach_type;
|
|
};
|
|
|
|
/* Note we want this to be 64 bit aligned so that the end of our array is
|
|
* actually the end of the structure.
|
|
*/
|
|
#define MAX_ENTRIES 11
|
|
|
|
struct test_val {
|
|
unsigned int index;
|
|
int foo[MAX_ENTRIES];
|
|
};
|
|
|
|
struct other_val {
|
|
long long foo;
|
|
long long bar;
|
|
};
|
|
|
|
static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self)
|
|
{
|
|
/* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */
|
|
#define PUSH_CNT 51
|
|
/* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */
|
|
unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6;
|
|
struct bpf_insn *insn = self->fill_insns;
|
|
int i = 0, j, k = 0;
|
|
|
|
insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
|
|
loop:
|
|
for (j = 0; j < PUSH_CNT; j++) {
|
|
insn[i++] = BPF_LD_ABS(BPF_B, 0);
|
|
/* jump to error label */
|
|
insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
|
|
i++;
|
|
insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
|
|
insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1);
|
|
insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2);
|
|
insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
|
|
BPF_FUNC_skb_vlan_push),
|
|
insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
|
|
i++;
|
|
}
|
|
|
|
for (j = 0; j < PUSH_CNT; j++) {
|
|
insn[i++] = BPF_LD_ABS(BPF_B, 0);
|
|
insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
|
|
i++;
|
|
insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
|
|
insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
|
|
BPF_FUNC_skb_vlan_pop),
|
|
insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
|
|
i++;
|
|
}
|
|
if (++k < 5)
|
|
goto loop;
|
|
|
|
for (; i < len - 3; i++)
|
|
insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef);
|
|
insn[len - 3] = BPF_JMP_A(1);
|
|
/* error label */
|
|
insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0);
|
|
insn[len - 1] = BPF_EXIT_INSN();
|
|
self->prog_len = len;
|
|
}
|
|
|
|
static void bpf_fill_jump_around_ld_abs(struct bpf_test *self)
|
|
{
|
|
struct bpf_insn *insn = self->fill_insns;
|
|
/* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns,
|
|
* but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted
|
|
* to extend the error value of the inlined ld_abs sequence which then
|
|
* contains 7 insns. so, set the dividend to 7 so the testcase could
|
|
* work on all arches.
|
|
*/
|
|
unsigned int len = (1 << 15) / 7;
|
|
int i = 0;
|
|
|
|
insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
|
|
insn[i++] = BPF_LD_ABS(BPF_B, 0);
|
|
insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2);
|
|
i++;
|
|
while (i < len - 1)
|
|
insn[i++] = BPF_LD_ABS(BPF_B, 1);
|
|
insn[i] = BPF_EXIT_INSN();
|
|
self->prog_len = i + 1;
|
|
}
|
|
|
|
static void bpf_fill_rand_ld_dw(struct bpf_test *self)
|
|
{
|
|
struct bpf_insn *insn = self->fill_insns;
|
|
uint64_t res = 0;
|
|
int i = 0;
|
|
|
|
insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0);
|
|
while (i < self->retval) {
|
|
uint64_t val = bpf_semi_rand_get();
|
|
struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) };
|
|
|
|
res ^= val;
|
|
insn[i++] = tmp[0];
|
|
insn[i++] = tmp[1];
|
|
insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
|
|
}
|
|
insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0);
|
|
insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32);
|
|
insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
|
|
insn[i] = BPF_EXIT_INSN();
|
|
self->prog_len = i + 1;
|
|
res ^= (res >> 32);
|
|
self->retval = (uint32_t)res;
|
|
}
|
|
|
|
#define MAX_JMP_SEQ 8192
|
|
|
|
/* test the sequence of 8k jumps */
|
|
static void bpf_fill_scale1(struct bpf_test *self)
|
|
{
|
|
struct bpf_insn *insn = self->fill_insns;
|
|
int i = 0, k = 0;
|
|
|
|
insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
|
|
/* test to check that the long sequence of jumps is acceptable */
|
|
while (k++ < MAX_JMP_SEQ) {
|
|
insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
|
|
BPF_FUNC_get_prandom_u32);
|
|
insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
|
|
insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
|
|
insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
|
|
-8 * (k % 64 + 1));
|
|
}
|
|
/* is_state_visited() doesn't allocate state for pruning for every jump.
|
|
* Hence multiply jmps by 4 to accommodate that heuristic
|
|
*/
|
|
while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
|
|
insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
|
|
insn[i] = BPF_EXIT_INSN();
|
|
self->prog_len = i + 1;
|
|
self->retval = 42;
|
|
}
|
|
|
|
/* test the sequence of 8k jumps in inner most function (function depth 8)*/
|
|
static void bpf_fill_scale2(struct bpf_test *self)
|
|
{
|
|
struct bpf_insn *insn = self->fill_insns;
|
|
int i = 0, k = 0;
|
|
|
|
#define FUNC_NEST 7
|
|
for (k = 0; k < FUNC_NEST; k++) {
|
|
insn[i++] = BPF_CALL_REL(1);
|
|
insn[i++] = BPF_EXIT_INSN();
|
|
}
|
|
insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
|
|
/* test to check that the long sequence of jumps is acceptable */
|
|
k = 0;
|
|
while (k++ < MAX_JMP_SEQ) {
|
|
insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
|
|
BPF_FUNC_get_prandom_u32);
|
|
insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
|
|
insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
|
|
insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
|
|
-8 * (k % (64 - 4 * FUNC_NEST) + 1));
|
|
}
|
|
while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
|
|
insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
|
|
insn[i] = BPF_EXIT_INSN();
|
|
self->prog_len = i + 1;
|
|
self->retval = 42;
|
|
}
|
|
|
|
static void bpf_fill_scale(struct bpf_test *self)
|
|
{
|
|
switch (self->retval) {
|
|
case 1:
|
|
return bpf_fill_scale1(self);
|
|
case 2:
|
|
return bpf_fill_scale2(self);
|
|
default:
|
|
self->prog_len = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */
|
|
#define BPF_SK_LOOKUP(func) \
|
|
/* struct bpf_sock_tuple tuple = {} */ \
|
|
BPF_MOV64_IMM(BPF_REG_2, 0), \
|
|
BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8), \
|
|
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16), \
|
|
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24), \
|
|
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32), \
|
|
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40), \
|
|
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48), \
|
|
/* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */ \
|
|
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), \
|
|
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48), \
|
|
BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)), \
|
|
BPF_MOV64_IMM(BPF_REG_4, 0), \
|
|
BPF_MOV64_IMM(BPF_REG_5, 0), \
|
|
BPF_EMIT_CALL(BPF_FUNC_ ## func)
|
|
|
|
/* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return
|
|
* value into 0 and does necessary preparation for direct packet access
|
|
* through r2. The allowed access range is 8 bytes.
|
|
*/
|
|
#define BPF_DIRECT_PKT_R2 \
|
|
BPF_MOV64_IMM(BPF_REG_0, 0), \
|
|
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \
|
|
offsetof(struct __sk_buff, data)), \
|
|
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \
|
|
offsetof(struct __sk_buff, data_end)), \
|
|
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), \
|
|
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), \
|
|
BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1), \
|
|
BPF_EXIT_INSN()
|
|
|
|
/* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random
|
|
* positive u32, and zero-extend it into 64-bit.
|
|
*/
|
|
#define BPF_RAND_UEXT_R7 \
|
|
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \
|
|
BPF_FUNC_get_prandom_u32), \
|
|
BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \
|
|
BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33), \
|
|
BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33)
|
|
|
|
/* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random
|
|
* negative u32, and sign-extend it into 64-bit.
|
|
*/
|
|
#define BPF_RAND_SEXT_R7 \
|
|
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \
|
|
BPF_FUNC_get_prandom_u32), \
|
|
BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \
|
|
BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000), \
|
|
BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32), \
|
|
BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32)
|
|
|
|
static struct bpf_test tests[] = {
|
|
#define FILL_ARRAY
|
|
#include <verifier/tests.h>
|
|
#undef FILL_ARRAY
|
|
};
|
|
|
|
static int probe_filter_length(const struct bpf_insn *fp)
|
|
{
|
|
int len;
|
|
|
|
for (len = MAX_INSNS - 1; len > 0; --len)
|
|
if (fp[len].code != 0 || fp[len].imm != 0)
|
|
break;
|
|
return len + 1;
|
|
}
|
|
|
|
static bool skip_unsupported_map(enum bpf_map_type map_type)
|
|
{
|
|
if (!bpf_probe_map_type(map_type, 0)) {
|
|
printf("SKIP (unsupported map type %d)\n", map_type);
|
|
skips++;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static int __create_map(uint32_t type, uint32_t size_key,
|
|
uint32_t size_value, uint32_t max_elem,
|
|
uint32_t extra_flags)
|
|
{
|
|
int fd;
|
|
|
|
fd = bpf_create_map(type, size_key, size_value, max_elem,
|
|
(type == BPF_MAP_TYPE_HASH ?
|
|
BPF_F_NO_PREALLOC : 0) | extra_flags);
|
|
if (fd < 0) {
|
|
if (skip_unsupported_map(type))
|
|
return -1;
|
|
printf("Failed to create hash map '%s'!\n", strerror(errno));
|
|
}
|
|
|
|
return fd;
|
|
}
|
|
|
|
static int create_map(uint32_t type, uint32_t size_key,
|
|
uint32_t size_value, uint32_t max_elem)
|
|
{
|
|
return __create_map(type, size_key, size_value, max_elem, 0);
|
|
}
|
|
|
|
static void update_map(int fd, int index)
|
|
{
|
|
struct test_val value = {
|
|
.index = (6 + 1) * sizeof(int),
|
|
.foo[6] = 0xabcdef12,
|
|
};
|
|
|
|
assert(!bpf_map_update_elem(fd, &index, &value, 0));
|
|
}
|
|
|
|
static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret)
|
|
{
|
|
struct bpf_insn prog[] = {
|
|
BPF_MOV64_IMM(BPF_REG_0, ret),
|
|
BPF_EXIT_INSN(),
|
|
};
|
|
|
|
return bpf_load_program(prog_type, prog,
|
|
ARRAY_SIZE(prog), "GPL", 0, NULL, 0);
|
|
}
|
|
|
|
static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd,
|
|
int idx, int ret)
|
|
{
|
|
struct bpf_insn prog[] = {
|
|
BPF_MOV64_IMM(BPF_REG_3, idx),
|
|
BPF_LD_MAP_FD(BPF_REG_2, mfd),
|
|
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
|
|
BPF_FUNC_tail_call),
|
|
BPF_MOV64_IMM(BPF_REG_0, ret),
|
|
BPF_EXIT_INSN(),
|
|
};
|
|
|
|
return bpf_load_program(prog_type, prog,
|
|
ARRAY_SIZE(prog), "GPL", 0, NULL, 0);
|
|
}
|
|
|
|
static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem,
|
|
int p1key, int p2key, int p3key)
|
|
{
|
|
int mfd, p1fd, p2fd, p3fd;
|
|
|
|
mfd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, sizeof(int),
|
|
sizeof(int), max_elem, 0);
|
|
if (mfd < 0) {
|
|
if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY))
|
|
return -1;
|
|
printf("Failed to create prog array '%s'!\n", strerror(errno));
|
|
return -1;
|
|
}
|
|
|
|
p1fd = create_prog_dummy_simple(prog_type, 42);
|
|
p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41);
|
|
p3fd = create_prog_dummy_simple(prog_type, 24);
|
|
if (p1fd < 0 || p2fd < 0 || p3fd < 0)
|
|
goto err;
|
|
if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0)
|
|
goto err;
|
|
if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0)
|
|
goto err;
|
|
if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) {
|
|
err:
|
|
close(mfd);
|
|
mfd = -1;
|
|
}
|
|
close(p3fd);
|
|
close(p2fd);
|
|
close(p1fd);
|
|
return mfd;
|
|
}
|
|
|
|
static int create_map_in_map(void)
|
|
{
|
|
int inner_map_fd, outer_map_fd;
|
|
|
|
inner_map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
|
|
sizeof(int), 1, 0);
|
|
if (inner_map_fd < 0) {
|
|
if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY))
|
|
return -1;
|
|
printf("Failed to create array '%s'!\n", strerror(errno));
|
|
return inner_map_fd;
|
|
}
|
|
|
|
outer_map_fd = bpf_create_map_in_map(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL,
|
|
sizeof(int), inner_map_fd, 1, 0);
|
|
if (outer_map_fd < 0) {
|
|
if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS))
|
|
return -1;
|
|
printf("Failed to create array of maps '%s'!\n",
|
|
strerror(errno));
|
|
}
|
|
|
|
close(inner_map_fd);
|
|
|
|
return outer_map_fd;
|
|
}
|
|
|
|
static int create_cgroup_storage(bool percpu)
|
|
{
|
|
enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE :
|
|
BPF_MAP_TYPE_CGROUP_STORAGE;
|
|
int fd;
|
|
|
|
fd = bpf_create_map(type, sizeof(struct bpf_cgroup_storage_key),
|
|
TEST_DATA_LEN, 0, 0);
|
|
if (fd < 0) {
|
|
if (skip_unsupported_map(type))
|
|
return -1;
|
|
printf("Failed to create cgroup storage '%s'!\n",
|
|
strerror(errno));
|
|
}
|
|
|
|
return fd;
|
|
}
|
|
|
|
/* struct bpf_spin_lock {
|
|
* int val;
|
|
* };
|
|
* struct val {
|
|
* int cnt;
|
|
* struct bpf_spin_lock l;
|
|
* };
|
|
*/
|
|
static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l";
|
|
static __u32 btf_raw_types[] = {
|
|
/* int */
|
|
BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
|
|
/* struct bpf_spin_lock */ /* [2] */
|
|
BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4),
|
|
BTF_MEMBER_ENC(15, 1, 0), /* int val; */
|
|
/* struct val */ /* [3] */
|
|
BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8),
|
|
BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */
|
|
BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */
|
|
};
|
|
|
|
static int load_btf(void)
|
|
{
|
|
struct btf_header hdr = {
|
|
.magic = BTF_MAGIC,
|
|
.version = BTF_VERSION,
|
|
.hdr_len = sizeof(struct btf_header),
|
|
.type_len = sizeof(btf_raw_types),
|
|
.str_off = sizeof(btf_raw_types),
|
|
.str_len = sizeof(btf_str_sec),
|
|
};
|
|
void *ptr, *raw_btf;
|
|
int btf_fd;
|
|
|
|
ptr = raw_btf = malloc(sizeof(hdr) + sizeof(btf_raw_types) +
|
|
sizeof(btf_str_sec));
|
|
|
|
memcpy(ptr, &hdr, sizeof(hdr));
|
|
ptr += sizeof(hdr);
|
|
memcpy(ptr, btf_raw_types, hdr.type_len);
|
|
ptr += hdr.type_len;
|
|
memcpy(ptr, btf_str_sec, hdr.str_len);
|
|
ptr += hdr.str_len;
|
|
|
|
btf_fd = bpf_load_btf(raw_btf, ptr - raw_btf, 0, 0, 0);
|
|
free(raw_btf);
|
|
if (btf_fd < 0)
|
|
return -1;
|
|
return btf_fd;
|
|
}
|
|
|
|
static int create_map_spin_lock(void)
|
|
{
|
|
struct bpf_create_map_attr attr = {
|
|
.name = "test_map",
|
|
.map_type = BPF_MAP_TYPE_ARRAY,
|
|
.key_size = 4,
|
|
.value_size = 8,
|
|
.max_entries = 1,
|
|
.btf_key_type_id = 1,
|
|
.btf_value_type_id = 3,
|
|
};
|
|
int fd, btf_fd;
|
|
|
|
btf_fd = load_btf();
|
|
if (btf_fd < 0)
|
|
return -1;
|
|
attr.btf_fd = btf_fd;
|
|
fd = bpf_create_map_xattr(&attr);
|
|
if (fd < 0)
|
|
printf("Failed to create map with spin_lock\n");
|
|
return fd;
|
|
}
|
|
|
|
static int create_sk_storage_map(void)
|
|
{
|
|
struct bpf_create_map_attr attr = {
|
|
.name = "test_map",
|
|
.map_type = BPF_MAP_TYPE_SK_STORAGE,
|
|
.key_size = 4,
|
|
.value_size = 8,
|
|
.max_entries = 0,
|
|
.map_flags = BPF_F_NO_PREALLOC,
|
|
.btf_key_type_id = 1,
|
|
.btf_value_type_id = 3,
|
|
};
|
|
int fd, btf_fd;
|
|
|
|
btf_fd = load_btf();
|
|
if (btf_fd < 0)
|
|
return -1;
|
|
attr.btf_fd = btf_fd;
|
|
fd = bpf_create_map_xattr(&attr);
|
|
close(attr.btf_fd);
|
|
if (fd < 0)
|
|
printf("Failed to create sk_storage_map\n");
|
|
return fd;
|
|
}
|
|
|
|
static char bpf_vlog[UINT_MAX >> 8];
|
|
|
|
static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type,
|
|
struct bpf_insn *prog, int *map_fds)
|
|
{
|
|
int *fixup_map_hash_8b = test->fixup_map_hash_8b;
|
|
int *fixup_map_hash_48b = test->fixup_map_hash_48b;
|
|
int *fixup_map_hash_16b = test->fixup_map_hash_16b;
|
|
int *fixup_map_array_48b = test->fixup_map_array_48b;
|
|
int *fixup_map_sockmap = test->fixup_map_sockmap;
|
|
int *fixup_map_sockhash = test->fixup_map_sockhash;
|
|
int *fixup_map_xskmap = test->fixup_map_xskmap;
|
|
int *fixup_map_stacktrace = test->fixup_map_stacktrace;
|
|
int *fixup_prog1 = test->fixup_prog1;
|
|
int *fixup_prog2 = test->fixup_prog2;
|
|
int *fixup_map_in_map = test->fixup_map_in_map;
|
|
int *fixup_cgroup_storage = test->fixup_cgroup_storage;
|
|
int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage;
|
|
int *fixup_map_spin_lock = test->fixup_map_spin_lock;
|
|
int *fixup_map_array_ro = test->fixup_map_array_ro;
|
|
int *fixup_map_array_wo = test->fixup_map_array_wo;
|
|
int *fixup_map_array_small = test->fixup_map_array_small;
|
|
int *fixup_sk_storage_map = test->fixup_sk_storage_map;
|
|
int *fixup_map_event_output = test->fixup_map_event_output;
|
|
int *fixup_map_reuseport_array = test->fixup_map_reuseport_array;
|
|
|
|
if (test->fill_helper) {
|
|
test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn));
|
|
test->fill_helper(test);
|
|
}
|
|
|
|
/* Allocating HTs with 1 elem is fine here, since we only test
|
|
* for verifier and not do a runtime lookup, so the only thing
|
|
* that really matters is value size in this case.
|
|
*/
|
|
if (*fixup_map_hash_8b) {
|
|
map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
|
|
sizeof(long long), 1);
|
|
do {
|
|
prog[*fixup_map_hash_8b].imm = map_fds[0];
|
|
fixup_map_hash_8b++;
|
|
} while (*fixup_map_hash_8b);
|
|
}
|
|
|
|
if (*fixup_map_hash_48b) {
|
|
map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
|
|
sizeof(struct test_val), 1);
|
|
do {
|
|
prog[*fixup_map_hash_48b].imm = map_fds[1];
|
|
fixup_map_hash_48b++;
|
|
} while (*fixup_map_hash_48b);
|
|
}
|
|
|
|
if (*fixup_map_hash_16b) {
|
|
map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
|
|
sizeof(struct other_val), 1);
|
|
do {
|
|
prog[*fixup_map_hash_16b].imm = map_fds[2];
|
|
fixup_map_hash_16b++;
|
|
} while (*fixup_map_hash_16b);
|
|
}
|
|
|
|
if (*fixup_map_array_48b) {
|
|
map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
|
|
sizeof(struct test_val), 1);
|
|
update_map(map_fds[3], 0);
|
|
do {
|
|
prog[*fixup_map_array_48b].imm = map_fds[3];
|
|
fixup_map_array_48b++;
|
|
} while (*fixup_map_array_48b);
|
|
}
|
|
|
|
if (*fixup_prog1) {
|
|
map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2);
|
|
do {
|
|
prog[*fixup_prog1].imm = map_fds[4];
|
|
fixup_prog1++;
|
|
} while (*fixup_prog1);
|
|
}
|
|
|
|
if (*fixup_prog2) {
|
|
map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2);
|
|
do {
|
|
prog[*fixup_prog2].imm = map_fds[5];
|
|
fixup_prog2++;
|
|
} while (*fixup_prog2);
|
|
}
|
|
|
|
if (*fixup_map_in_map) {
|
|
map_fds[6] = create_map_in_map();
|
|
do {
|
|
prog[*fixup_map_in_map].imm = map_fds[6];
|
|
fixup_map_in_map++;
|
|
} while (*fixup_map_in_map);
|
|
}
|
|
|
|
if (*fixup_cgroup_storage) {
|
|
map_fds[7] = create_cgroup_storage(false);
|
|
do {
|
|
prog[*fixup_cgroup_storage].imm = map_fds[7];
|
|
fixup_cgroup_storage++;
|
|
} while (*fixup_cgroup_storage);
|
|
}
|
|
|
|
if (*fixup_percpu_cgroup_storage) {
|
|
map_fds[8] = create_cgroup_storage(true);
|
|
do {
|
|
prog[*fixup_percpu_cgroup_storage].imm = map_fds[8];
|
|
fixup_percpu_cgroup_storage++;
|
|
} while (*fixup_percpu_cgroup_storage);
|
|
}
|
|
if (*fixup_map_sockmap) {
|
|
map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int),
|
|
sizeof(int), 1);
|
|
do {
|
|
prog[*fixup_map_sockmap].imm = map_fds[9];
|
|
fixup_map_sockmap++;
|
|
} while (*fixup_map_sockmap);
|
|
}
|
|
if (*fixup_map_sockhash) {
|
|
map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int),
|
|
sizeof(int), 1);
|
|
do {
|
|
prog[*fixup_map_sockhash].imm = map_fds[10];
|
|
fixup_map_sockhash++;
|
|
} while (*fixup_map_sockhash);
|
|
}
|
|
if (*fixup_map_xskmap) {
|
|
map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int),
|
|
sizeof(int), 1);
|
|
do {
|
|
prog[*fixup_map_xskmap].imm = map_fds[11];
|
|
fixup_map_xskmap++;
|
|
} while (*fixup_map_xskmap);
|
|
}
|
|
if (*fixup_map_stacktrace) {
|
|
map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32),
|
|
sizeof(u64), 1);
|
|
do {
|
|
prog[*fixup_map_stacktrace].imm = map_fds[12];
|
|
fixup_map_stacktrace++;
|
|
} while (*fixup_map_stacktrace);
|
|
}
|
|
if (*fixup_map_spin_lock) {
|
|
map_fds[13] = create_map_spin_lock();
|
|
do {
|
|
prog[*fixup_map_spin_lock].imm = map_fds[13];
|
|
fixup_map_spin_lock++;
|
|
} while (*fixup_map_spin_lock);
|
|
}
|
|
if (*fixup_map_array_ro) {
|
|
map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
|
|
sizeof(struct test_val), 1,
|
|
BPF_F_RDONLY_PROG);
|
|
update_map(map_fds[14], 0);
|
|
do {
|
|
prog[*fixup_map_array_ro].imm = map_fds[14];
|
|
fixup_map_array_ro++;
|
|
} while (*fixup_map_array_ro);
|
|
}
|
|
if (*fixup_map_array_wo) {
|
|
map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
|
|
sizeof(struct test_val), 1,
|
|
BPF_F_WRONLY_PROG);
|
|
update_map(map_fds[15], 0);
|
|
do {
|
|
prog[*fixup_map_array_wo].imm = map_fds[15];
|
|
fixup_map_array_wo++;
|
|
} while (*fixup_map_array_wo);
|
|
}
|
|
if (*fixup_map_array_small) {
|
|
map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
|
|
1, 1, 0);
|
|
update_map(map_fds[16], 0);
|
|
do {
|
|
prog[*fixup_map_array_small].imm = map_fds[16];
|
|
fixup_map_array_small++;
|
|
} while (*fixup_map_array_small);
|
|
}
|
|
if (*fixup_sk_storage_map) {
|
|
map_fds[17] = create_sk_storage_map();
|
|
do {
|
|
prog[*fixup_sk_storage_map].imm = map_fds[17];
|
|
fixup_sk_storage_map++;
|
|
} while (*fixup_sk_storage_map);
|
|
}
|
|
if (*fixup_map_event_output) {
|
|
map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY,
|
|
sizeof(int), sizeof(int), 1, 0);
|
|
do {
|
|
prog[*fixup_map_event_output].imm = map_fds[18];
|
|
fixup_map_event_output++;
|
|
} while (*fixup_map_event_output);
|
|
}
|
|
if (*fixup_map_reuseport_array) {
|
|
map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
|
|
sizeof(u32), sizeof(u64), 1, 0);
|
|
do {
|
|
prog[*fixup_map_reuseport_array].imm = map_fds[19];
|
|
fixup_map_reuseport_array++;
|
|
} while (*fixup_map_reuseport_array);
|
|
}
|
|
}
|
|
|
|
static int set_admin(bool admin)
|
|
{
|
|
cap_t caps;
|
|
const cap_value_t cap_val = CAP_SYS_ADMIN;
|
|
int ret = -1;
|
|
|
|
caps = cap_get_proc();
|
|
if (!caps) {
|
|
perror("cap_get_proc");
|
|
return -1;
|
|
}
|
|
if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_val,
|
|
admin ? CAP_SET : CAP_CLEAR)) {
|
|
perror("cap_set_flag");
|
|
goto out;
|
|
}
|
|
if (cap_set_proc(caps)) {
|
|
perror("cap_set_proc");
|
|
goto out;
|
|
}
|
|
ret = 0;
|
|
out:
|
|
if (cap_free(caps))
|
|
perror("cap_free");
|
|
return ret;
|
|
}
|
|
|
|
static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val,
|
|
void *data, size_t size_data)
|
|
{
|
|
__u8 tmp[TEST_DATA_LEN << 2];
|
|
__u32 size_tmp = sizeof(tmp);
|
|
uint32_t retval;
|
|
int err;
|
|
|
|
if (unpriv)
|
|
set_admin(true);
|
|
err = bpf_prog_test_run(fd_prog, 1, data, size_data,
|
|
tmp, &size_tmp, &retval, NULL);
|
|
if (unpriv)
|
|
set_admin(false);
|
|
if (err && errno != 524/*ENOTSUPP*/ && errno != EPERM) {
|
|
printf("Unexpected bpf_prog_test_run error ");
|
|
return err;
|
|
}
|
|
if (!err && retval != expected_val &&
|
|
expected_val != POINTER_VALUE) {
|
|
printf("FAIL retval %d != %d ", retval, expected_val);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool cmp_str_seq(const char *log, const char *exp)
|
|
{
|
|
char needle[80];
|
|
const char *p, *q;
|
|
int len;
|
|
|
|
do {
|
|
p = strchr(exp, '\t');
|
|
if (!p)
|
|
p = exp + strlen(exp);
|
|
|
|
len = p - exp;
|
|
if (len >= sizeof(needle) || !len) {
|
|
printf("FAIL\nTestcase bug\n");
|
|
return false;
|
|
}
|
|
strncpy(needle, exp, len);
|
|
needle[len] = 0;
|
|
q = strstr(log, needle);
|
|
if (!q) {
|
|
printf("FAIL\nUnexpected verifier log in successful load!\n"
|
|
"EXP: %s\nRES:\n", needle);
|
|
return false;
|
|
}
|
|
log = q + len;
|
|
exp = p + 1;
|
|
} while (*p);
|
|
return true;
|
|
}
|
|
|
|
static void do_test_single(struct bpf_test *test, bool unpriv,
|
|
int *passes, int *errors)
|
|
{
|
|
int fd_prog, expected_ret, alignment_prevented_execution;
|
|
int prog_len, prog_type = test->prog_type;
|
|
struct bpf_insn *prog = test->insns;
|
|
struct bpf_load_program_attr attr;
|
|
int run_errs, run_successes;
|
|
int map_fds[MAX_NR_MAPS];
|
|
const char *expected_err;
|
|
int fixup_skips;
|
|
__u32 pflags;
|
|
int i, err;
|
|
|
|
for (i = 0; i < MAX_NR_MAPS; i++)
|
|
map_fds[i] = -1;
|
|
|
|
if (!prog_type)
|
|
prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
|
|
fixup_skips = skips;
|
|
do_test_fixup(test, prog_type, prog, map_fds);
|
|
if (test->fill_insns) {
|
|
prog = test->fill_insns;
|
|
prog_len = test->prog_len;
|
|
} else {
|
|
prog_len = probe_filter_length(prog);
|
|
}
|
|
/* If there were some map skips during fixup due to missing bpf
|
|
* features, skip this test.
|
|
*/
|
|
if (fixup_skips != skips)
|
|
return;
|
|
|
|
pflags = BPF_F_TEST_RND_HI32;
|
|
if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT)
|
|
pflags |= BPF_F_STRICT_ALIGNMENT;
|
|
if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
|
|
pflags |= BPF_F_ANY_ALIGNMENT;
|
|
if (test->flags & ~3)
|
|
pflags |= test->flags;
|
|
|
|
expected_ret = unpriv && test->result_unpriv != UNDEF ?
|
|
test->result_unpriv : test->result;
|
|
expected_err = unpriv && test->errstr_unpriv ?
|
|
test->errstr_unpriv : test->errstr;
|
|
memset(&attr, 0, sizeof(attr));
|
|
attr.prog_type = prog_type;
|
|
attr.expected_attach_type = test->expected_attach_type;
|
|
attr.insns = prog;
|
|
attr.insns_cnt = prog_len;
|
|
attr.license = "GPL";
|
|
if (verbose)
|
|
attr.log_level = 1;
|
|
else if (expected_ret == VERBOSE_ACCEPT)
|
|
attr.log_level = 2;
|
|
else
|
|
attr.log_level = 4;
|
|
attr.prog_flags = pflags;
|
|
|
|
fd_prog = bpf_load_program_xattr(&attr, bpf_vlog, sizeof(bpf_vlog));
|
|
if (fd_prog < 0 && !bpf_probe_prog_type(prog_type, 0)) {
|
|
printf("SKIP (unsupported program type %d)\n", prog_type);
|
|
skips++;
|
|
goto close_fds;
|
|
}
|
|
|
|
alignment_prevented_execution = 0;
|
|
|
|
if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) {
|
|
if (fd_prog < 0) {
|
|
printf("FAIL\nFailed to load prog '%s'!\n",
|
|
strerror(errno));
|
|
goto fail_log;
|
|
}
|
|
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
|
|
if (fd_prog >= 0 &&
|
|
(test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS))
|
|
alignment_prevented_execution = 1;
|
|
#endif
|
|
if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) {
|
|
goto fail_log;
|
|
}
|
|
} else {
|
|
if (fd_prog >= 0) {
|
|
printf("FAIL\nUnexpected success to load!\n");
|
|
goto fail_log;
|
|
}
|
|
if (!expected_err || !strstr(bpf_vlog, expected_err)) {
|
|
printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n",
|
|
expected_err, bpf_vlog);
|
|
goto fail_log;
|
|
}
|
|
}
|
|
|
|
if (test->insn_processed) {
|
|
uint32_t insn_processed;
|
|
char *proc;
|
|
|
|
proc = strstr(bpf_vlog, "processed ");
|
|
insn_processed = atoi(proc + 10);
|
|
if (test->insn_processed != insn_processed) {
|
|
printf("FAIL\nUnexpected insn_processed %u vs %u\n",
|
|
insn_processed, test->insn_processed);
|
|
goto fail_log;
|
|
}
|
|
}
|
|
|
|
if (verbose)
|
|
printf(", verifier log:\n%s", bpf_vlog);
|
|
|
|
run_errs = 0;
|
|
run_successes = 0;
|
|
if (!alignment_prevented_execution && fd_prog >= 0) {
|
|
uint32_t expected_val;
|
|
int i;
|
|
|
|
if (!test->runs)
|
|
test->runs = 1;
|
|
|
|
for (i = 0; i < test->runs; i++) {
|
|
if (unpriv && test->retvals[i].retval_unpriv)
|
|
expected_val = test->retvals[i].retval_unpriv;
|
|
else
|
|
expected_val = test->retvals[i].retval;
|
|
|
|
err = do_prog_test_run(fd_prog, unpriv, expected_val,
|
|
test->retvals[i].data,
|
|
sizeof(test->retvals[i].data));
|
|
if (err) {
|
|
printf("(run %d/%d) ", i + 1, test->runs);
|
|
run_errs++;
|
|
} else {
|
|
run_successes++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!run_errs) {
|
|
(*passes)++;
|
|
if (run_successes > 1)
|
|
printf("%d cases ", run_successes);
|
|
printf("OK");
|
|
if (alignment_prevented_execution)
|
|
printf(" (NOTE: not executed due to unknown alignment)");
|
|
printf("\n");
|
|
} else {
|
|
printf("\n");
|
|
goto fail_log;
|
|
}
|
|
close_fds:
|
|
if (test->fill_insns)
|
|
free(test->fill_insns);
|
|
close(fd_prog);
|
|
for (i = 0; i < MAX_NR_MAPS; i++)
|
|
close(map_fds[i]);
|
|
sched_yield();
|
|
return;
|
|
fail_log:
|
|
(*errors)++;
|
|
printf("%s", bpf_vlog);
|
|
goto close_fds;
|
|
}
|
|
|
|
static bool is_admin(void)
|
|
{
|
|
cap_t caps;
|
|
cap_flag_value_t sysadmin = CAP_CLEAR;
|
|
const cap_value_t cap_val = CAP_SYS_ADMIN;
|
|
|
|
#ifdef CAP_IS_SUPPORTED
|
|
if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) {
|
|
perror("cap_get_flag");
|
|
return false;
|
|
}
|
|
#endif
|
|
caps = cap_get_proc();
|
|
if (!caps) {
|
|
perror("cap_get_proc");
|
|
return false;
|
|
}
|
|
if (cap_get_flag(caps, cap_val, CAP_EFFECTIVE, &sysadmin))
|
|
perror("cap_get_flag");
|
|
if (cap_free(caps))
|
|
perror("cap_free");
|
|
return (sysadmin == CAP_SET);
|
|
}
|
|
|
|
static void get_unpriv_disabled()
|
|
{
|
|
char buf[2];
|
|
FILE *fd;
|
|
|
|
fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r");
|
|
if (!fd) {
|
|
perror("fopen /proc/sys/"UNPRIV_SYSCTL);
|
|
unpriv_disabled = true;
|
|
return;
|
|
}
|
|
if (fgets(buf, 2, fd) == buf && atoi(buf))
|
|
unpriv_disabled = true;
|
|
fclose(fd);
|
|
}
|
|
|
|
static bool test_as_unpriv(struct bpf_test *test)
|
|
{
|
|
return !test->prog_type ||
|
|
test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER ||
|
|
test->prog_type == BPF_PROG_TYPE_CGROUP_SKB;
|
|
}
|
|
|
|
static int do_test(bool unpriv, unsigned int from, unsigned int to)
|
|
{
|
|
int i, passes = 0, errors = 0;
|
|
|
|
for (i = from; i < to; i++) {
|
|
struct bpf_test *test = &tests[i];
|
|
|
|
/* Program types that are not supported by non-root we
|
|
* skip right away.
|
|
*/
|
|
if (test_as_unpriv(test) && unpriv_disabled) {
|
|
printf("#%d/u %s SKIP\n", i, test->descr);
|
|
skips++;
|
|
} else if (test_as_unpriv(test)) {
|
|
if (!unpriv)
|
|
set_admin(false);
|
|
printf("#%d/u %s ", i, test->descr);
|
|
do_test_single(test, true, &passes, &errors);
|
|
if (!unpriv)
|
|
set_admin(true);
|
|
}
|
|
|
|
if (unpriv) {
|
|
printf("#%d/p %s SKIP\n", i, test->descr);
|
|
skips++;
|
|
} else {
|
|
printf("#%d/p %s ", i, test->descr);
|
|
do_test_single(test, false, &passes, &errors);
|
|
}
|
|
}
|
|
|
|
printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes,
|
|
skips, errors);
|
|
return errors ? EXIT_FAILURE : EXIT_SUCCESS;
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
unsigned int from = 0, to = ARRAY_SIZE(tests);
|
|
bool unpriv = !is_admin();
|
|
int arg = 1;
|
|
|
|
if (argc > 1 && strcmp(argv[1], "-v") == 0) {
|
|
arg++;
|
|
verbose = true;
|
|
argc--;
|
|
}
|
|
|
|
if (argc == 3) {
|
|
unsigned int l = atoi(argv[arg]);
|
|
unsigned int u = atoi(argv[arg + 1]);
|
|
|
|
if (l < to && u < to) {
|
|
from = l;
|
|
to = u + 1;
|
|
}
|
|
} else if (argc == 2) {
|
|
unsigned int t = atoi(argv[arg]);
|
|
|
|
if (t < to) {
|
|
from = t;
|
|
to = t + 1;
|
|
}
|
|
}
|
|
|
|
get_unpriv_disabled();
|
|
if (unpriv && unpriv_disabled) {
|
|
printf("Cannot run as unprivileged user with sysctl %s.\n",
|
|
UNPRIV_SYSCTL);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
bpf_semi_rand_init();
|
|
return do_test(unpriv, from, to);
|
|
}
|