mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-29 22:14:41 +08:00
577389a5db
Looking over the documentation it turns out enabling IPIP and SIT offloads for i40e is pretty straightforward. As such I decided to enable them with this patch. In my testing I am seeing an improvement of 8 to 10 Gb/s for IPIP and SIT tunnels with this offload enabled. Signed-off-by: Alexander Duyck <aduyck@mirantis.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
3007 lines
83 KiB
C
3007 lines
83 KiB
C
/*******************************************************************************
|
|
*
|
|
* Intel Ethernet Controller XL710 Family Linux Driver
|
|
* Copyright(c) 2013 - 2016 Intel Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* The full GNU General Public License is included in this distribution in
|
|
* the file called "COPYING".
|
|
*
|
|
* Contact Information:
|
|
* e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
|
|
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
*
|
|
******************************************************************************/
|
|
|
|
#include <linux/prefetch.h>
|
|
#include <net/busy_poll.h>
|
|
#include "i40e.h"
|
|
#include "i40e_prototype.h"
|
|
|
|
static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
|
|
u32 td_tag)
|
|
{
|
|
return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
|
|
((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
|
|
((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
|
|
((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
|
|
((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
|
|
}
|
|
|
|
#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
|
|
#define I40E_FD_CLEAN_DELAY 10
|
|
/**
|
|
* i40e_program_fdir_filter - Program a Flow Director filter
|
|
* @fdir_data: Packet data that will be filter parameters
|
|
* @raw_packet: the pre-allocated packet buffer for FDir
|
|
* @pf: The PF pointer
|
|
* @add: True for add/update, False for remove
|
|
**/
|
|
int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
|
|
struct i40e_pf *pf, bool add)
|
|
{
|
|
struct i40e_filter_program_desc *fdir_desc;
|
|
struct i40e_tx_buffer *tx_buf, *first;
|
|
struct i40e_tx_desc *tx_desc;
|
|
struct i40e_ring *tx_ring;
|
|
unsigned int fpt, dcc;
|
|
struct i40e_vsi *vsi;
|
|
struct device *dev;
|
|
dma_addr_t dma;
|
|
u32 td_cmd = 0;
|
|
u16 delay = 0;
|
|
u16 i;
|
|
|
|
/* find existing FDIR VSI */
|
|
vsi = NULL;
|
|
for (i = 0; i < pf->num_alloc_vsi; i++)
|
|
if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
|
|
vsi = pf->vsi[i];
|
|
if (!vsi)
|
|
return -ENOENT;
|
|
|
|
tx_ring = vsi->tx_rings[0];
|
|
dev = tx_ring->dev;
|
|
|
|
/* we need two descriptors to add/del a filter and we can wait */
|
|
do {
|
|
if (I40E_DESC_UNUSED(tx_ring) > 1)
|
|
break;
|
|
msleep_interruptible(1);
|
|
delay++;
|
|
} while (delay < I40E_FD_CLEAN_DELAY);
|
|
|
|
if (!(I40E_DESC_UNUSED(tx_ring) > 1))
|
|
return -EAGAIN;
|
|
|
|
dma = dma_map_single(dev, raw_packet,
|
|
I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
|
|
if (dma_mapping_error(dev, dma))
|
|
goto dma_fail;
|
|
|
|
/* grab the next descriptor */
|
|
i = tx_ring->next_to_use;
|
|
fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
|
|
first = &tx_ring->tx_bi[i];
|
|
memset(first, 0, sizeof(struct i40e_tx_buffer));
|
|
|
|
tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
|
|
|
|
fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
|
|
I40E_TXD_FLTR_QW0_QINDEX_MASK;
|
|
|
|
fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
|
|
I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
|
|
|
|
fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
|
|
I40E_TXD_FLTR_QW0_PCTYPE_MASK;
|
|
|
|
/* Use LAN VSI Id if not programmed by user */
|
|
if (fdir_data->dest_vsi == 0)
|
|
fpt |= (pf->vsi[pf->lan_vsi]->id) <<
|
|
I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
|
|
else
|
|
fpt |= ((u32)fdir_data->dest_vsi <<
|
|
I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
|
|
I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
|
|
|
|
dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
|
|
|
|
if (add)
|
|
dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
|
|
I40E_TXD_FLTR_QW1_PCMD_SHIFT;
|
|
else
|
|
dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
|
|
I40E_TXD_FLTR_QW1_PCMD_SHIFT;
|
|
|
|
dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
|
|
I40E_TXD_FLTR_QW1_DEST_MASK;
|
|
|
|
dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
|
|
I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
|
|
|
|
if (fdir_data->cnt_index != 0) {
|
|
dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
|
|
dcc |= ((u32)fdir_data->cnt_index <<
|
|
I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
|
|
I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
|
|
}
|
|
|
|
fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
|
|
fdir_desc->rsvd = cpu_to_le32(0);
|
|
fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
|
|
fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
|
|
|
|
/* Now program a dummy descriptor */
|
|
i = tx_ring->next_to_use;
|
|
tx_desc = I40E_TX_DESC(tx_ring, i);
|
|
tx_buf = &tx_ring->tx_bi[i];
|
|
|
|
tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
|
|
|
|
memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
|
|
|
|
/* record length, and DMA address */
|
|
dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
|
|
dma_unmap_addr_set(tx_buf, dma, dma);
|
|
|
|
tx_desc->buffer_addr = cpu_to_le64(dma);
|
|
td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
|
|
|
|
tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
|
|
tx_buf->raw_buf = (void *)raw_packet;
|
|
|
|
tx_desc->cmd_type_offset_bsz =
|
|
build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
|
|
|
|
/* Force memory writes to complete before letting h/w
|
|
* know there are new descriptors to fetch.
|
|
*/
|
|
wmb();
|
|
|
|
/* Mark the data descriptor to be watched */
|
|
first->next_to_watch = tx_desc;
|
|
|
|
writel(tx_ring->next_to_use, tx_ring->tail);
|
|
return 0;
|
|
|
|
dma_fail:
|
|
return -1;
|
|
}
|
|
|
|
#define IP_HEADER_OFFSET 14
|
|
#define I40E_UDPIP_DUMMY_PACKET_LEN 42
|
|
/**
|
|
* i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
|
|
* @vsi: pointer to the targeted VSI
|
|
* @fd_data: the flow director data required for the FDir descriptor
|
|
* @add: true adds a filter, false removes it
|
|
*
|
|
* Returns 0 if the filters were successfully added or removed
|
|
**/
|
|
static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
|
|
struct i40e_fdir_filter *fd_data,
|
|
bool add)
|
|
{
|
|
struct i40e_pf *pf = vsi->back;
|
|
struct udphdr *udp;
|
|
struct iphdr *ip;
|
|
bool err = false;
|
|
u8 *raw_packet;
|
|
int ret;
|
|
static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
|
|
0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
|
|
raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
|
|
if (!raw_packet)
|
|
return -ENOMEM;
|
|
memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
|
|
|
|
ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
|
|
udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
|
|
+ sizeof(struct iphdr));
|
|
|
|
ip->daddr = fd_data->dst_ip[0];
|
|
udp->dest = fd_data->dst_port;
|
|
ip->saddr = fd_data->src_ip[0];
|
|
udp->source = fd_data->src_port;
|
|
|
|
fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
|
|
ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
|
|
if (ret) {
|
|
dev_info(&pf->pdev->dev,
|
|
"PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
|
|
fd_data->pctype, fd_data->fd_id, ret);
|
|
err = true;
|
|
} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
|
|
if (add)
|
|
dev_info(&pf->pdev->dev,
|
|
"Filter OK for PCTYPE %d loc = %d\n",
|
|
fd_data->pctype, fd_data->fd_id);
|
|
else
|
|
dev_info(&pf->pdev->dev,
|
|
"Filter deleted for PCTYPE %d loc = %d\n",
|
|
fd_data->pctype, fd_data->fd_id);
|
|
}
|
|
if (err)
|
|
kfree(raw_packet);
|
|
|
|
return err ? -EOPNOTSUPP : 0;
|
|
}
|
|
|
|
#define I40E_TCPIP_DUMMY_PACKET_LEN 54
|
|
/**
|
|
* i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
|
|
* @vsi: pointer to the targeted VSI
|
|
* @fd_data: the flow director data required for the FDir descriptor
|
|
* @add: true adds a filter, false removes it
|
|
*
|
|
* Returns 0 if the filters were successfully added or removed
|
|
**/
|
|
static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
|
|
struct i40e_fdir_filter *fd_data,
|
|
bool add)
|
|
{
|
|
struct i40e_pf *pf = vsi->back;
|
|
struct tcphdr *tcp;
|
|
struct iphdr *ip;
|
|
bool err = false;
|
|
u8 *raw_packet;
|
|
int ret;
|
|
/* Dummy packet */
|
|
static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
|
|
0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
|
|
0x0, 0x72, 0, 0, 0, 0};
|
|
|
|
raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
|
|
if (!raw_packet)
|
|
return -ENOMEM;
|
|
memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
|
|
|
|
ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
|
|
tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
|
|
+ sizeof(struct iphdr));
|
|
|
|
ip->daddr = fd_data->dst_ip[0];
|
|
tcp->dest = fd_data->dst_port;
|
|
ip->saddr = fd_data->src_ip[0];
|
|
tcp->source = fd_data->src_port;
|
|
|
|
if (add) {
|
|
pf->fd_tcp_rule++;
|
|
if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
|
|
if (I40E_DEBUG_FD & pf->hw.debug_mask)
|
|
dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
|
|
pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
|
|
}
|
|
} else {
|
|
pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
|
|
(pf->fd_tcp_rule - 1) : 0;
|
|
if (pf->fd_tcp_rule == 0) {
|
|
pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
|
|
if (I40E_DEBUG_FD & pf->hw.debug_mask)
|
|
dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
|
|
}
|
|
}
|
|
|
|
fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
|
|
ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
|
|
|
|
if (ret) {
|
|
dev_info(&pf->pdev->dev,
|
|
"PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
|
|
fd_data->pctype, fd_data->fd_id, ret);
|
|
err = true;
|
|
} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
|
|
if (add)
|
|
dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
|
|
fd_data->pctype, fd_data->fd_id);
|
|
else
|
|
dev_info(&pf->pdev->dev,
|
|
"Filter deleted for PCTYPE %d loc = %d\n",
|
|
fd_data->pctype, fd_data->fd_id);
|
|
}
|
|
|
|
if (err)
|
|
kfree(raw_packet);
|
|
|
|
return err ? -EOPNOTSUPP : 0;
|
|
}
|
|
|
|
/**
|
|
* i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
|
|
* a specific flow spec
|
|
* @vsi: pointer to the targeted VSI
|
|
* @fd_data: the flow director data required for the FDir descriptor
|
|
* @add: true adds a filter, false removes it
|
|
*
|
|
* Returns 0 if the filters were successfully added or removed
|
|
**/
|
|
static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
|
|
struct i40e_fdir_filter *fd_data,
|
|
bool add)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
#define I40E_IP_DUMMY_PACKET_LEN 34
|
|
/**
|
|
* i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
|
|
* a specific flow spec
|
|
* @vsi: pointer to the targeted VSI
|
|
* @fd_data: the flow director data required for the FDir descriptor
|
|
* @add: true adds a filter, false removes it
|
|
*
|
|
* Returns 0 if the filters were successfully added or removed
|
|
**/
|
|
static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
|
|
struct i40e_fdir_filter *fd_data,
|
|
bool add)
|
|
{
|
|
struct i40e_pf *pf = vsi->back;
|
|
struct iphdr *ip;
|
|
bool err = false;
|
|
u8 *raw_packet;
|
|
int ret;
|
|
int i;
|
|
static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
|
|
0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0};
|
|
|
|
for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
|
|
i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
|
|
raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
|
|
if (!raw_packet)
|
|
return -ENOMEM;
|
|
memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
|
|
ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
|
|
|
|
ip->saddr = fd_data->src_ip[0];
|
|
ip->daddr = fd_data->dst_ip[0];
|
|
ip->protocol = 0;
|
|
|
|
fd_data->pctype = i;
|
|
ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
|
|
|
|
if (ret) {
|
|
dev_info(&pf->pdev->dev,
|
|
"PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
|
|
fd_data->pctype, fd_data->fd_id, ret);
|
|
err = true;
|
|
} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
|
|
if (add)
|
|
dev_info(&pf->pdev->dev,
|
|
"Filter OK for PCTYPE %d loc = %d\n",
|
|
fd_data->pctype, fd_data->fd_id);
|
|
else
|
|
dev_info(&pf->pdev->dev,
|
|
"Filter deleted for PCTYPE %d loc = %d\n",
|
|
fd_data->pctype, fd_data->fd_id);
|
|
}
|
|
}
|
|
|
|
if (err)
|
|
kfree(raw_packet);
|
|
|
|
return err ? -EOPNOTSUPP : 0;
|
|
}
|
|
|
|
/**
|
|
* i40e_add_del_fdir - Build raw packets to add/del fdir filter
|
|
* @vsi: pointer to the targeted VSI
|
|
* @cmd: command to get or set RX flow classification rules
|
|
* @add: true adds a filter, false removes it
|
|
*
|
|
**/
|
|
int i40e_add_del_fdir(struct i40e_vsi *vsi,
|
|
struct i40e_fdir_filter *input, bool add)
|
|
{
|
|
struct i40e_pf *pf = vsi->back;
|
|
int ret;
|
|
|
|
switch (input->flow_type & ~FLOW_EXT) {
|
|
case TCP_V4_FLOW:
|
|
ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
|
|
break;
|
|
case UDP_V4_FLOW:
|
|
ret = i40e_add_del_fdir_udpv4(vsi, input, add);
|
|
break;
|
|
case SCTP_V4_FLOW:
|
|
ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
|
|
break;
|
|
case IPV4_FLOW:
|
|
ret = i40e_add_del_fdir_ipv4(vsi, input, add);
|
|
break;
|
|
case IP_USER_FLOW:
|
|
switch (input->ip4_proto) {
|
|
case IPPROTO_TCP:
|
|
ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
|
|
break;
|
|
case IPPROTO_UDP:
|
|
ret = i40e_add_del_fdir_udpv4(vsi, input, add);
|
|
break;
|
|
case IPPROTO_SCTP:
|
|
ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
|
|
break;
|
|
default:
|
|
ret = i40e_add_del_fdir_ipv4(vsi, input, add);
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
|
|
input->flow_type);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
/* The buffer allocated here is freed by the i40e_clean_tx_ring() */
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* i40e_fd_handle_status - check the Programming Status for FD
|
|
* @rx_ring: the Rx ring for this descriptor
|
|
* @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
|
|
* @prog_id: the id originally used for programming
|
|
*
|
|
* This is used to verify if the FD programming or invalidation
|
|
* requested by SW to the HW is successful or not and take actions accordingly.
|
|
**/
|
|
static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
|
|
union i40e_rx_desc *rx_desc, u8 prog_id)
|
|
{
|
|
struct i40e_pf *pf = rx_ring->vsi->back;
|
|
struct pci_dev *pdev = pf->pdev;
|
|
u32 fcnt_prog, fcnt_avail;
|
|
u32 error;
|
|
u64 qw;
|
|
|
|
qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
|
|
error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
|
|
I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
|
|
|
|
if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
|
|
pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
|
|
if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
|
|
(I40E_DEBUG_FD & pf->hw.debug_mask))
|
|
dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
|
|
pf->fd_inv);
|
|
|
|
/* Check if the programming error is for ATR.
|
|
* If so, auto disable ATR and set a state for
|
|
* flush in progress. Next time we come here if flush is in
|
|
* progress do nothing, once flush is complete the state will
|
|
* be cleared.
|
|
*/
|
|
if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
|
|
return;
|
|
|
|
pf->fd_add_err++;
|
|
/* store the current atr filter count */
|
|
pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
|
|
|
|
if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
|
|
(pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
|
|
pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
|
|
set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
|
|
}
|
|
|
|
/* filter programming failed most likely due to table full */
|
|
fcnt_prog = i40e_get_global_fd_count(pf);
|
|
fcnt_avail = pf->fdir_pf_filter_count;
|
|
/* If ATR is running fcnt_prog can quickly change,
|
|
* if we are very close to full, it makes sense to disable
|
|
* FD ATR/SB and then re-enable it when there is room.
|
|
*/
|
|
if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
|
|
if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
|
|
!(pf->auto_disable_flags &
|
|
I40E_FLAG_FD_SB_ENABLED)) {
|
|
if (I40E_DEBUG_FD & pf->hw.debug_mask)
|
|
dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
|
|
pf->auto_disable_flags |=
|
|
I40E_FLAG_FD_SB_ENABLED;
|
|
}
|
|
}
|
|
} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
|
|
if (I40E_DEBUG_FD & pf->hw.debug_mask)
|
|
dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
|
|
rx_desc->wb.qword0.hi_dword.fd_id);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* i40e_unmap_and_free_tx_resource - Release a Tx buffer
|
|
* @ring: the ring that owns the buffer
|
|
* @tx_buffer: the buffer to free
|
|
**/
|
|
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
|
|
struct i40e_tx_buffer *tx_buffer)
|
|
{
|
|
if (tx_buffer->skb) {
|
|
dev_kfree_skb_any(tx_buffer->skb);
|
|
if (dma_unmap_len(tx_buffer, len))
|
|
dma_unmap_single(ring->dev,
|
|
dma_unmap_addr(tx_buffer, dma),
|
|
dma_unmap_len(tx_buffer, len),
|
|
DMA_TO_DEVICE);
|
|
} else if (dma_unmap_len(tx_buffer, len)) {
|
|
dma_unmap_page(ring->dev,
|
|
dma_unmap_addr(tx_buffer, dma),
|
|
dma_unmap_len(tx_buffer, len),
|
|
DMA_TO_DEVICE);
|
|
}
|
|
|
|
if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
|
|
kfree(tx_buffer->raw_buf);
|
|
|
|
tx_buffer->next_to_watch = NULL;
|
|
tx_buffer->skb = NULL;
|
|
dma_unmap_len_set(tx_buffer, len, 0);
|
|
/* tx_buffer must be completely set up in the transmit path */
|
|
}
|
|
|
|
/**
|
|
* i40e_clean_tx_ring - Free any empty Tx buffers
|
|
* @tx_ring: ring to be cleaned
|
|
**/
|
|
void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
|
|
{
|
|
unsigned long bi_size;
|
|
u16 i;
|
|
|
|
/* ring already cleared, nothing to do */
|
|
if (!tx_ring->tx_bi)
|
|
return;
|
|
|
|
/* Free all the Tx ring sk_buffs */
|
|
for (i = 0; i < tx_ring->count; i++)
|
|
i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
|
|
|
|
bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
|
|
memset(tx_ring->tx_bi, 0, bi_size);
|
|
|
|
/* Zero out the descriptor ring */
|
|
memset(tx_ring->desc, 0, tx_ring->size);
|
|
|
|
tx_ring->next_to_use = 0;
|
|
tx_ring->next_to_clean = 0;
|
|
|
|
if (!tx_ring->netdev)
|
|
return;
|
|
|
|
/* cleanup Tx queue statistics */
|
|
netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
|
|
tx_ring->queue_index));
|
|
}
|
|
|
|
/**
|
|
* i40e_free_tx_resources - Free Tx resources per queue
|
|
* @tx_ring: Tx descriptor ring for a specific queue
|
|
*
|
|
* Free all transmit software resources
|
|
**/
|
|
void i40e_free_tx_resources(struct i40e_ring *tx_ring)
|
|
{
|
|
i40e_clean_tx_ring(tx_ring);
|
|
kfree(tx_ring->tx_bi);
|
|
tx_ring->tx_bi = NULL;
|
|
|
|
if (tx_ring->desc) {
|
|
dma_free_coherent(tx_ring->dev, tx_ring->size,
|
|
tx_ring->desc, tx_ring->dma);
|
|
tx_ring->desc = NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* i40e_get_tx_pending - how many tx descriptors not processed
|
|
* @tx_ring: the ring of descriptors
|
|
* @in_sw: is tx_pending being checked in SW or HW
|
|
*
|
|
* Since there is no access to the ring head register
|
|
* in XL710, we need to use our local copies
|
|
**/
|
|
u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
|
|
{
|
|
u32 head, tail;
|
|
|
|
if (!in_sw)
|
|
head = i40e_get_head(ring);
|
|
else
|
|
head = ring->next_to_clean;
|
|
tail = readl(ring->tail);
|
|
|
|
if (head != tail)
|
|
return (head < tail) ?
|
|
tail - head : (tail + ring->count - head);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define WB_STRIDE 0x3
|
|
|
|
/**
|
|
* i40e_clean_tx_irq - Reclaim resources after transmit completes
|
|
* @vsi: the VSI we care about
|
|
* @tx_ring: Tx ring to clean
|
|
* @napi_budget: Used to determine if we are in netpoll
|
|
*
|
|
* Returns true if there's any budget left (e.g. the clean is finished)
|
|
**/
|
|
static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
|
|
struct i40e_ring *tx_ring, int napi_budget)
|
|
{
|
|
u16 i = tx_ring->next_to_clean;
|
|
struct i40e_tx_buffer *tx_buf;
|
|
struct i40e_tx_desc *tx_head;
|
|
struct i40e_tx_desc *tx_desc;
|
|
unsigned int total_bytes = 0, total_packets = 0;
|
|
unsigned int budget = vsi->work_limit;
|
|
|
|
tx_buf = &tx_ring->tx_bi[i];
|
|
tx_desc = I40E_TX_DESC(tx_ring, i);
|
|
i -= tx_ring->count;
|
|
|
|
tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
|
|
|
|
do {
|
|
struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
|
|
|
|
/* if next_to_watch is not set then there is no work pending */
|
|
if (!eop_desc)
|
|
break;
|
|
|
|
/* prevent any other reads prior to eop_desc */
|
|
read_barrier_depends();
|
|
|
|
/* we have caught up to head, no work left to do */
|
|
if (tx_head == tx_desc)
|
|
break;
|
|
|
|
/* clear next_to_watch to prevent false hangs */
|
|
tx_buf->next_to_watch = NULL;
|
|
|
|
/* update the statistics for this packet */
|
|
total_bytes += tx_buf->bytecount;
|
|
total_packets += tx_buf->gso_segs;
|
|
|
|
/* free the skb */
|
|
napi_consume_skb(tx_buf->skb, napi_budget);
|
|
|
|
/* unmap skb header data */
|
|
dma_unmap_single(tx_ring->dev,
|
|
dma_unmap_addr(tx_buf, dma),
|
|
dma_unmap_len(tx_buf, len),
|
|
DMA_TO_DEVICE);
|
|
|
|
/* clear tx_buffer data */
|
|
tx_buf->skb = NULL;
|
|
dma_unmap_len_set(tx_buf, len, 0);
|
|
|
|
/* unmap remaining buffers */
|
|
while (tx_desc != eop_desc) {
|
|
|
|
tx_buf++;
|
|
tx_desc++;
|
|
i++;
|
|
if (unlikely(!i)) {
|
|
i -= tx_ring->count;
|
|
tx_buf = tx_ring->tx_bi;
|
|
tx_desc = I40E_TX_DESC(tx_ring, 0);
|
|
}
|
|
|
|
/* unmap any remaining paged data */
|
|
if (dma_unmap_len(tx_buf, len)) {
|
|
dma_unmap_page(tx_ring->dev,
|
|
dma_unmap_addr(tx_buf, dma),
|
|
dma_unmap_len(tx_buf, len),
|
|
DMA_TO_DEVICE);
|
|
dma_unmap_len_set(tx_buf, len, 0);
|
|
}
|
|
}
|
|
|
|
/* move us one more past the eop_desc for start of next pkt */
|
|
tx_buf++;
|
|
tx_desc++;
|
|
i++;
|
|
if (unlikely(!i)) {
|
|
i -= tx_ring->count;
|
|
tx_buf = tx_ring->tx_bi;
|
|
tx_desc = I40E_TX_DESC(tx_ring, 0);
|
|
}
|
|
|
|
prefetch(tx_desc);
|
|
|
|
/* update budget accounting */
|
|
budget--;
|
|
} while (likely(budget));
|
|
|
|
i += tx_ring->count;
|
|
tx_ring->next_to_clean = i;
|
|
u64_stats_update_begin(&tx_ring->syncp);
|
|
tx_ring->stats.bytes += total_bytes;
|
|
tx_ring->stats.packets += total_packets;
|
|
u64_stats_update_end(&tx_ring->syncp);
|
|
tx_ring->q_vector->tx.total_bytes += total_bytes;
|
|
tx_ring->q_vector->tx.total_packets += total_packets;
|
|
|
|
if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
|
|
unsigned int j = 0;
|
|
|
|
/* check to see if there are < 4 descriptors
|
|
* waiting to be written back, then kick the hardware to force
|
|
* them to be written back in case we stay in NAPI.
|
|
* In this mode on X722 we do not enable Interrupt.
|
|
*/
|
|
j = i40e_get_tx_pending(tx_ring, false);
|
|
|
|
if (budget &&
|
|
((j / (WB_STRIDE + 1)) == 0) && (j != 0) &&
|
|
!test_bit(__I40E_DOWN, &vsi->state) &&
|
|
(I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
|
|
tx_ring->arm_wb = true;
|
|
}
|
|
|
|
netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
|
|
tx_ring->queue_index),
|
|
total_packets, total_bytes);
|
|
|
|
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
|
|
if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
|
|
(I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
|
|
/* Make sure that anybody stopping the queue after this
|
|
* sees the new next_to_clean.
|
|
*/
|
|
smp_mb();
|
|
if (__netif_subqueue_stopped(tx_ring->netdev,
|
|
tx_ring->queue_index) &&
|
|
!test_bit(__I40E_DOWN, &vsi->state)) {
|
|
netif_wake_subqueue(tx_ring->netdev,
|
|
tx_ring->queue_index);
|
|
++tx_ring->tx_stats.restart_queue;
|
|
}
|
|
}
|
|
|
|
return !!budget;
|
|
}
|
|
|
|
/**
|
|
* i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
|
|
* @vsi: the VSI we care about
|
|
* @q_vector: the vector on which to enable writeback
|
|
*
|
|
**/
|
|
static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
|
|
struct i40e_q_vector *q_vector)
|
|
{
|
|
u16 flags = q_vector->tx.ring[0].flags;
|
|
u32 val;
|
|
|
|
if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
|
|
return;
|
|
|
|
if (q_vector->arm_wb_state)
|
|
return;
|
|
|
|
if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
|
|
val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
|
|
I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
|
|
|
|
wr32(&vsi->back->hw,
|
|
I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
|
|
val);
|
|
} else {
|
|
val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
|
|
I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
|
|
|
|
wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
|
|
}
|
|
q_vector->arm_wb_state = true;
|
|
}
|
|
|
|
/**
|
|
* i40e_force_wb - Issue SW Interrupt so HW does a wb
|
|
* @vsi: the VSI we care about
|
|
* @q_vector: the vector on which to force writeback
|
|
*
|
|
**/
|
|
void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
|
|
{
|
|
if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
|
|
u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
|
|
I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
|
|
I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
|
|
I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
|
|
/* allow 00 to be written to the index */
|
|
|
|
wr32(&vsi->back->hw,
|
|
I40E_PFINT_DYN_CTLN(q_vector->v_idx +
|
|
vsi->base_vector - 1), val);
|
|
} else {
|
|
u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
|
|
I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
|
|
I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
|
|
I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
|
|
/* allow 00 to be written to the index */
|
|
|
|
wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* i40e_set_new_dynamic_itr - Find new ITR level
|
|
* @rc: structure containing ring performance data
|
|
*
|
|
* Returns true if ITR changed, false if not
|
|
*
|
|
* Stores a new ITR value based on packets and byte counts during
|
|
* the last interrupt. The advantage of per interrupt computation
|
|
* is faster updates and more accurate ITR for the current traffic
|
|
* pattern. Constants in this function were computed based on
|
|
* theoretical maximum wire speed and thresholds were set based on
|
|
* testing data as well as attempting to minimize response time
|
|
* while increasing bulk throughput.
|
|
**/
|
|
static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
|
|
{
|
|
enum i40e_latency_range new_latency_range = rc->latency_range;
|
|
struct i40e_q_vector *qv = rc->ring->q_vector;
|
|
u32 new_itr = rc->itr;
|
|
int bytes_per_int;
|
|
int usecs;
|
|
|
|
if (rc->total_packets == 0 || !rc->itr)
|
|
return false;
|
|
|
|
/* simple throttlerate management
|
|
* 0-10MB/s lowest (50000 ints/s)
|
|
* 10-20MB/s low (20000 ints/s)
|
|
* 20-1249MB/s bulk (18000 ints/s)
|
|
* > 40000 Rx packets per second (8000 ints/s)
|
|
*
|
|
* The math works out because the divisor is in 10^(-6) which
|
|
* turns the bytes/us input value into MB/s values, but
|
|
* make sure to use usecs, as the register values written
|
|
* are in 2 usec increments in the ITR registers, and make sure
|
|
* to use the smoothed values that the countdown timer gives us.
|
|
*/
|
|
usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
|
|
bytes_per_int = rc->total_bytes / usecs;
|
|
|
|
switch (new_latency_range) {
|
|
case I40E_LOWEST_LATENCY:
|
|
if (bytes_per_int > 10)
|
|
new_latency_range = I40E_LOW_LATENCY;
|
|
break;
|
|
case I40E_LOW_LATENCY:
|
|
if (bytes_per_int > 20)
|
|
new_latency_range = I40E_BULK_LATENCY;
|
|
else if (bytes_per_int <= 10)
|
|
new_latency_range = I40E_LOWEST_LATENCY;
|
|
break;
|
|
case I40E_BULK_LATENCY:
|
|
case I40E_ULTRA_LATENCY:
|
|
default:
|
|
if (bytes_per_int <= 20)
|
|
new_latency_range = I40E_LOW_LATENCY;
|
|
break;
|
|
}
|
|
|
|
/* this is to adjust RX more aggressively when streaming small
|
|
* packets. The value of 40000 was picked as it is just beyond
|
|
* what the hardware can receive per second if in low latency
|
|
* mode.
|
|
*/
|
|
#define RX_ULTRA_PACKET_RATE 40000
|
|
|
|
if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
|
|
(&qv->rx == rc))
|
|
new_latency_range = I40E_ULTRA_LATENCY;
|
|
|
|
rc->latency_range = new_latency_range;
|
|
|
|
switch (new_latency_range) {
|
|
case I40E_LOWEST_LATENCY:
|
|
new_itr = I40E_ITR_50K;
|
|
break;
|
|
case I40E_LOW_LATENCY:
|
|
new_itr = I40E_ITR_20K;
|
|
break;
|
|
case I40E_BULK_LATENCY:
|
|
new_itr = I40E_ITR_18K;
|
|
break;
|
|
case I40E_ULTRA_LATENCY:
|
|
new_itr = I40E_ITR_8K;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
rc->total_bytes = 0;
|
|
rc->total_packets = 0;
|
|
|
|
if (new_itr != rc->itr) {
|
|
rc->itr = new_itr;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* i40e_clean_programming_status - clean the programming status descriptor
|
|
* @rx_ring: the rx ring that has this descriptor
|
|
* @rx_desc: the rx descriptor written back by HW
|
|
*
|
|
* Flow director should handle FD_FILTER_STATUS to check its filter programming
|
|
* status being successful or not and take actions accordingly. FCoE should
|
|
* handle its context/filter programming/invalidation status and take actions.
|
|
*
|
|
**/
|
|
static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
|
|
union i40e_rx_desc *rx_desc)
|
|
{
|
|
u64 qw;
|
|
u8 id;
|
|
|
|
qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
|
|
id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
|
|
I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
|
|
|
|
if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
|
|
i40e_fd_handle_status(rx_ring, rx_desc, id);
|
|
#ifdef I40E_FCOE
|
|
else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
|
|
(id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
|
|
i40e_fcoe_handle_status(rx_ring, rx_desc, id);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* i40e_setup_tx_descriptors - Allocate the Tx descriptors
|
|
* @tx_ring: the tx ring to set up
|
|
*
|
|
* Return 0 on success, negative on error
|
|
**/
|
|
int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
|
|
{
|
|
struct device *dev = tx_ring->dev;
|
|
int bi_size;
|
|
|
|
if (!dev)
|
|
return -ENOMEM;
|
|
|
|
/* warn if we are about to overwrite the pointer */
|
|
WARN_ON(tx_ring->tx_bi);
|
|
bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
|
|
tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
|
|
if (!tx_ring->tx_bi)
|
|
goto err;
|
|
|
|
/* round up to nearest 4K */
|
|
tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
|
|
/* add u32 for head writeback, align after this takes care of
|
|
* guaranteeing this is at least one cache line in size
|
|
*/
|
|
tx_ring->size += sizeof(u32);
|
|
tx_ring->size = ALIGN(tx_ring->size, 4096);
|
|
tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
|
|
&tx_ring->dma, GFP_KERNEL);
|
|
if (!tx_ring->desc) {
|
|
dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
|
|
tx_ring->size);
|
|
goto err;
|
|
}
|
|
|
|
tx_ring->next_to_use = 0;
|
|
tx_ring->next_to_clean = 0;
|
|
return 0;
|
|
|
|
err:
|
|
kfree(tx_ring->tx_bi);
|
|
tx_ring->tx_bi = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* i40e_clean_rx_ring - Free Rx buffers
|
|
* @rx_ring: ring to be cleaned
|
|
**/
|
|
void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
|
|
{
|
|
struct device *dev = rx_ring->dev;
|
|
struct i40e_rx_buffer *rx_bi;
|
|
unsigned long bi_size;
|
|
u16 i;
|
|
|
|
/* ring already cleared, nothing to do */
|
|
if (!rx_ring->rx_bi)
|
|
return;
|
|
|
|
if (ring_is_ps_enabled(rx_ring)) {
|
|
int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
|
|
|
|
rx_bi = &rx_ring->rx_bi[0];
|
|
if (rx_bi->hdr_buf) {
|
|
dma_free_coherent(dev,
|
|
bufsz,
|
|
rx_bi->hdr_buf,
|
|
rx_bi->dma);
|
|
for (i = 0; i < rx_ring->count; i++) {
|
|
rx_bi = &rx_ring->rx_bi[i];
|
|
rx_bi->dma = 0;
|
|
rx_bi->hdr_buf = NULL;
|
|
}
|
|
}
|
|
}
|
|
/* Free all the Rx ring sk_buffs */
|
|
for (i = 0; i < rx_ring->count; i++) {
|
|
rx_bi = &rx_ring->rx_bi[i];
|
|
if (rx_bi->dma) {
|
|
dma_unmap_single(dev,
|
|
rx_bi->dma,
|
|
rx_ring->rx_buf_len,
|
|
DMA_FROM_DEVICE);
|
|
rx_bi->dma = 0;
|
|
}
|
|
if (rx_bi->skb) {
|
|
dev_kfree_skb(rx_bi->skb);
|
|
rx_bi->skb = NULL;
|
|
}
|
|
if (rx_bi->page) {
|
|
if (rx_bi->page_dma) {
|
|
dma_unmap_page(dev,
|
|
rx_bi->page_dma,
|
|
PAGE_SIZE,
|
|
DMA_FROM_DEVICE);
|
|
rx_bi->page_dma = 0;
|
|
}
|
|
__free_page(rx_bi->page);
|
|
rx_bi->page = NULL;
|
|
rx_bi->page_offset = 0;
|
|
}
|
|
}
|
|
|
|
bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
|
|
memset(rx_ring->rx_bi, 0, bi_size);
|
|
|
|
/* Zero out the descriptor ring */
|
|
memset(rx_ring->desc, 0, rx_ring->size);
|
|
|
|
rx_ring->next_to_clean = 0;
|
|
rx_ring->next_to_use = 0;
|
|
}
|
|
|
|
/**
|
|
* i40e_free_rx_resources - Free Rx resources
|
|
* @rx_ring: ring to clean the resources from
|
|
*
|
|
* Free all receive software resources
|
|
**/
|
|
void i40e_free_rx_resources(struct i40e_ring *rx_ring)
|
|
{
|
|
i40e_clean_rx_ring(rx_ring);
|
|
kfree(rx_ring->rx_bi);
|
|
rx_ring->rx_bi = NULL;
|
|
|
|
if (rx_ring->desc) {
|
|
dma_free_coherent(rx_ring->dev, rx_ring->size,
|
|
rx_ring->desc, rx_ring->dma);
|
|
rx_ring->desc = NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* i40e_alloc_rx_headers - allocate rx header buffers
|
|
* @rx_ring: ring to alloc buffers
|
|
*
|
|
* Allocate rx header buffers for the entire ring. As these are static,
|
|
* this is only called when setting up a new ring.
|
|
**/
|
|
void i40e_alloc_rx_headers(struct i40e_ring *rx_ring)
|
|
{
|
|
struct device *dev = rx_ring->dev;
|
|
struct i40e_rx_buffer *rx_bi;
|
|
dma_addr_t dma;
|
|
void *buffer;
|
|
int buf_size;
|
|
int i;
|
|
|
|
if (rx_ring->rx_bi[0].hdr_buf)
|
|
return;
|
|
/* Make sure the buffers don't cross cache line boundaries. */
|
|
buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
|
|
buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
|
|
&dma, GFP_KERNEL);
|
|
if (!buffer)
|
|
return;
|
|
for (i = 0; i < rx_ring->count; i++) {
|
|
rx_bi = &rx_ring->rx_bi[i];
|
|
rx_bi->dma = dma + (i * buf_size);
|
|
rx_bi->hdr_buf = buffer + (i * buf_size);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* i40e_setup_rx_descriptors - Allocate Rx descriptors
|
|
* @rx_ring: Rx descriptor ring (for a specific queue) to setup
|
|
*
|
|
* Returns 0 on success, negative on failure
|
|
**/
|
|
int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
|
|
{
|
|
struct device *dev = rx_ring->dev;
|
|
int bi_size;
|
|
|
|
/* warn if we are about to overwrite the pointer */
|
|
WARN_ON(rx_ring->rx_bi);
|
|
bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
|
|
rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
|
|
if (!rx_ring->rx_bi)
|
|
goto err;
|
|
|
|
u64_stats_init(&rx_ring->syncp);
|
|
|
|
/* Round up to nearest 4K */
|
|
rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
|
|
? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
|
|
: rx_ring->count * sizeof(union i40e_32byte_rx_desc);
|
|
rx_ring->size = ALIGN(rx_ring->size, 4096);
|
|
rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
|
|
&rx_ring->dma, GFP_KERNEL);
|
|
|
|
if (!rx_ring->desc) {
|
|
dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
|
|
rx_ring->size);
|
|
goto err;
|
|
}
|
|
|
|
rx_ring->next_to_clean = 0;
|
|
rx_ring->next_to_use = 0;
|
|
|
|
return 0;
|
|
err:
|
|
kfree(rx_ring->rx_bi);
|
|
rx_ring->rx_bi = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* i40e_release_rx_desc - Store the new tail and head values
|
|
* @rx_ring: ring to bump
|
|
* @val: new head index
|
|
**/
|
|
static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
|
|
{
|
|
rx_ring->next_to_use = val;
|
|
/* Force memory writes to complete before letting h/w
|
|
* know there are new descriptors to fetch. (Only
|
|
* applicable for weak-ordered memory model archs,
|
|
* such as IA-64).
|
|
*/
|
|
wmb();
|
|
writel(val, rx_ring->tail);
|
|
}
|
|
|
|
/**
|
|
* i40e_alloc_rx_buffers_ps - Replace used receive buffers; packet split
|
|
* @rx_ring: ring to place buffers on
|
|
* @cleaned_count: number of buffers to replace
|
|
*
|
|
* Returns true if any errors on allocation
|
|
**/
|
|
bool i40e_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
|
|
{
|
|
u16 i = rx_ring->next_to_use;
|
|
union i40e_rx_desc *rx_desc;
|
|
struct i40e_rx_buffer *bi;
|
|
const int current_node = numa_node_id();
|
|
|
|
/* do nothing if no valid netdev defined */
|
|
if (!rx_ring->netdev || !cleaned_count)
|
|
return false;
|
|
|
|
while (cleaned_count--) {
|
|
rx_desc = I40E_RX_DESC(rx_ring, i);
|
|
bi = &rx_ring->rx_bi[i];
|
|
|
|
if (bi->skb) /* desc is in use */
|
|
goto no_buffers;
|
|
|
|
/* If we've been moved to a different NUMA node, release the
|
|
* page so we can get a new one on the current node.
|
|
*/
|
|
if (bi->page && page_to_nid(bi->page) != current_node) {
|
|
dma_unmap_page(rx_ring->dev,
|
|
bi->page_dma,
|
|
PAGE_SIZE,
|
|
DMA_FROM_DEVICE);
|
|
__free_page(bi->page);
|
|
bi->page = NULL;
|
|
bi->page_dma = 0;
|
|
rx_ring->rx_stats.realloc_count++;
|
|
} else if (bi->page) {
|
|
rx_ring->rx_stats.page_reuse_count++;
|
|
}
|
|
|
|
if (!bi->page) {
|
|
bi->page = alloc_page(GFP_ATOMIC);
|
|
if (!bi->page) {
|
|
rx_ring->rx_stats.alloc_page_failed++;
|
|
goto no_buffers;
|
|
}
|
|
bi->page_dma = dma_map_page(rx_ring->dev,
|
|
bi->page,
|
|
0,
|
|
PAGE_SIZE,
|
|
DMA_FROM_DEVICE);
|
|
if (dma_mapping_error(rx_ring->dev, bi->page_dma)) {
|
|
rx_ring->rx_stats.alloc_page_failed++;
|
|
__free_page(bi->page);
|
|
bi->page = NULL;
|
|
bi->page_dma = 0;
|
|
bi->page_offset = 0;
|
|
goto no_buffers;
|
|
}
|
|
bi->page_offset = 0;
|
|
}
|
|
|
|
/* Refresh the desc even if buffer_addrs didn't change
|
|
* because each write-back erases this info.
|
|
*/
|
|
rx_desc->read.pkt_addr =
|
|
cpu_to_le64(bi->page_dma + bi->page_offset);
|
|
rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
|
|
i++;
|
|
if (i == rx_ring->count)
|
|
i = 0;
|
|
}
|
|
|
|
if (rx_ring->next_to_use != i)
|
|
i40e_release_rx_desc(rx_ring, i);
|
|
|
|
return false;
|
|
|
|
no_buffers:
|
|
if (rx_ring->next_to_use != i)
|
|
i40e_release_rx_desc(rx_ring, i);
|
|
|
|
/* make sure to come back via polling to try again after
|
|
* allocation failure
|
|
*/
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* i40e_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
|
|
* @rx_ring: ring to place buffers on
|
|
* @cleaned_count: number of buffers to replace
|
|
*
|
|
* Returns true if any errors on allocation
|
|
**/
|
|
bool i40e_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
|
|
{
|
|
u16 i = rx_ring->next_to_use;
|
|
union i40e_rx_desc *rx_desc;
|
|
struct i40e_rx_buffer *bi;
|
|
struct sk_buff *skb;
|
|
|
|
/* do nothing if no valid netdev defined */
|
|
if (!rx_ring->netdev || !cleaned_count)
|
|
return false;
|
|
|
|
while (cleaned_count--) {
|
|
rx_desc = I40E_RX_DESC(rx_ring, i);
|
|
bi = &rx_ring->rx_bi[i];
|
|
skb = bi->skb;
|
|
|
|
if (!skb) {
|
|
skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
|
|
rx_ring->rx_buf_len,
|
|
GFP_ATOMIC |
|
|
__GFP_NOWARN);
|
|
if (!skb) {
|
|
rx_ring->rx_stats.alloc_buff_failed++;
|
|
goto no_buffers;
|
|
}
|
|
/* initialize queue mapping */
|
|
skb_record_rx_queue(skb, rx_ring->queue_index);
|
|
bi->skb = skb;
|
|
}
|
|
|
|
if (!bi->dma) {
|
|
bi->dma = dma_map_single(rx_ring->dev,
|
|
skb->data,
|
|
rx_ring->rx_buf_len,
|
|
DMA_FROM_DEVICE);
|
|
if (dma_mapping_error(rx_ring->dev, bi->dma)) {
|
|
rx_ring->rx_stats.alloc_buff_failed++;
|
|
bi->dma = 0;
|
|
dev_kfree_skb(bi->skb);
|
|
bi->skb = NULL;
|
|
goto no_buffers;
|
|
}
|
|
}
|
|
|
|
rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
|
|
rx_desc->read.hdr_addr = 0;
|
|
i++;
|
|
if (i == rx_ring->count)
|
|
i = 0;
|
|
}
|
|
|
|
if (rx_ring->next_to_use != i)
|
|
i40e_release_rx_desc(rx_ring, i);
|
|
|
|
return false;
|
|
|
|
no_buffers:
|
|
if (rx_ring->next_to_use != i)
|
|
i40e_release_rx_desc(rx_ring, i);
|
|
|
|
/* make sure to come back via polling to try again after
|
|
* allocation failure
|
|
*/
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* i40e_receive_skb - Send a completed packet up the stack
|
|
* @rx_ring: rx ring in play
|
|
* @skb: packet to send up
|
|
* @vlan_tag: vlan tag for packet
|
|
**/
|
|
static void i40e_receive_skb(struct i40e_ring *rx_ring,
|
|
struct sk_buff *skb, u16 vlan_tag)
|
|
{
|
|
struct i40e_q_vector *q_vector = rx_ring->q_vector;
|
|
|
|
if (vlan_tag & VLAN_VID_MASK)
|
|
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
|
|
|
|
napi_gro_receive(&q_vector->napi, skb);
|
|
}
|
|
|
|
/**
|
|
* i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
|
|
* @vsi: the VSI we care about
|
|
* @skb: skb currently being received and modified
|
|
* @rx_status: status value of last descriptor in packet
|
|
* @rx_error: error value of last descriptor in packet
|
|
* @rx_ptype: ptype value of last descriptor in packet
|
|
**/
|
|
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
|
|
struct sk_buff *skb,
|
|
u32 rx_status,
|
|
u32 rx_error,
|
|
u16 rx_ptype)
|
|
{
|
|
struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
|
|
bool ipv4, ipv6, ipv4_tunnel, ipv6_tunnel;
|
|
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
|
|
/* Rx csum enabled and ip headers found? */
|
|
if (!(vsi->netdev->features & NETIF_F_RXCSUM))
|
|
return;
|
|
|
|
/* did the hardware decode the packet and checksum? */
|
|
if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
|
|
return;
|
|
|
|
/* both known and outer_ip must be set for the below code to work */
|
|
if (!(decoded.known && decoded.outer_ip))
|
|
return;
|
|
|
|
ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
|
|
(decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
|
|
ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
|
|
(decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
|
|
|
|
if (ipv4 &&
|
|
(rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
|
|
BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
|
|
goto checksum_fail;
|
|
|
|
/* likely incorrect csum if alternate IP extension headers found */
|
|
if (ipv6 &&
|
|
rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
|
|
/* don't increment checksum err here, non-fatal err */
|
|
return;
|
|
|
|
/* there was some L4 error, count error and punt packet to the stack */
|
|
if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
|
|
goto checksum_fail;
|
|
|
|
/* handle packets that were not able to be checksummed due
|
|
* to arrival speed, in this case the stack can compute
|
|
* the csum.
|
|
*/
|
|
if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
|
|
return;
|
|
|
|
/* The hardware supported by this driver does not validate outer
|
|
* checksums for tunneled VXLAN or GENEVE frames. I don't agree
|
|
* with it but the specification states that you "MAY validate", it
|
|
* doesn't make it a hard requirement so if we have validated the
|
|
* inner checksum report CHECKSUM_UNNECESSARY.
|
|
*/
|
|
|
|
ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
|
|
(rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
|
|
ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
|
|
(rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
|
|
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
skb->csum_level = ipv4_tunnel || ipv6_tunnel;
|
|
|
|
return;
|
|
|
|
checksum_fail:
|
|
vsi->back->hw_csum_rx_error++;
|
|
}
|
|
|
|
/**
|
|
* i40e_ptype_to_htype - get a hash type
|
|
* @ptype: the ptype value from the descriptor
|
|
*
|
|
* Returns a hash type to be used by skb_set_hash
|
|
**/
|
|
static inline enum pkt_hash_types i40e_ptype_to_htype(u8 ptype)
|
|
{
|
|
struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
|
|
|
|
if (!decoded.known)
|
|
return PKT_HASH_TYPE_NONE;
|
|
|
|
if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
|
|
decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
|
|
return PKT_HASH_TYPE_L4;
|
|
else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
|
|
decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
|
|
return PKT_HASH_TYPE_L3;
|
|
else
|
|
return PKT_HASH_TYPE_L2;
|
|
}
|
|
|
|
/**
|
|
* i40e_rx_hash - set the hash value in the skb
|
|
* @ring: descriptor ring
|
|
* @rx_desc: specific descriptor
|
|
**/
|
|
static inline void i40e_rx_hash(struct i40e_ring *ring,
|
|
union i40e_rx_desc *rx_desc,
|
|
struct sk_buff *skb,
|
|
u8 rx_ptype)
|
|
{
|
|
u32 hash;
|
|
const __le64 rss_mask =
|
|
cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
|
|
I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
|
|
|
|
if (ring->netdev->features & NETIF_F_RXHASH)
|
|
return;
|
|
|
|
if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
|
|
hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
|
|
skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
|
|
* @rx_ring: rx ring to clean
|
|
* @budget: how many cleans we're allowed
|
|
*
|
|
* Returns true if there's any budget left (e.g. the clean is finished)
|
|
**/
|
|
static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, const int budget)
|
|
{
|
|
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
|
|
u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
|
|
u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
|
|
struct i40e_vsi *vsi = rx_ring->vsi;
|
|
u16 i = rx_ring->next_to_clean;
|
|
union i40e_rx_desc *rx_desc;
|
|
u32 rx_error, rx_status;
|
|
bool failure = false;
|
|
u8 rx_ptype;
|
|
u64 qword;
|
|
u32 copysize;
|
|
|
|
if (budget <= 0)
|
|
return 0;
|
|
|
|
do {
|
|
struct i40e_rx_buffer *rx_bi;
|
|
struct sk_buff *skb;
|
|
u16 vlan_tag;
|
|
/* return some buffers to hardware, one at a time is too slow */
|
|
if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
|
|
failure = failure ||
|
|
i40e_alloc_rx_buffers_ps(rx_ring,
|
|
cleaned_count);
|
|
cleaned_count = 0;
|
|
}
|
|
|
|
i = rx_ring->next_to_clean;
|
|
rx_desc = I40E_RX_DESC(rx_ring, i);
|
|
qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
|
|
rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
|
|
I40E_RXD_QW1_STATUS_SHIFT;
|
|
|
|
if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
|
|
break;
|
|
|
|
/* This memory barrier is needed to keep us from reading
|
|
* any other fields out of the rx_desc until we know the
|
|
* DD bit is set.
|
|
*/
|
|
dma_rmb();
|
|
/* sync header buffer for reading */
|
|
dma_sync_single_range_for_cpu(rx_ring->dev,
|
|
rx_ring->rx_bi[0].dma,
|
|
i * rx_ring->rx_hdr_len,
|
|
rx_ring->rx_hdr_len,
|
|
DMA_FROM_DEVICE);
|
|
if (i40e_rx_is_programming_status(qword)) {
|
|
i40e_clean_programming_status(rx_ring, rx_desc);
|
|
I40E_RX_INCREMENT(rx_ring, i);
|
|
continue;
|
|
}
|
|
rx_bi = &rx_ring->rx_bi[i];
|
|
skb = rx_bi->skb;
|
|
if (likely(!skb)) {
|
|
skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
|
|
rx_ring->rx_hdr_len,
|
|
GFP_ATOMIC |
|
|
__GFP_NOWARN);
|
|
if (!skb) {
|
|
rx_ring->rx_stats.alloc_buff_failed++;
|
|
failure = true;
|
|
break;
|
|
}
|
|
|
|
/* initialize queue mapping */
|
|
skb_record_rx_queue(skb, rx_ring->queue_index);
|
|
/* we are reusing so sync this buffer for CPU use */
|
|
dma_sync_single_range_for_cpu(rx_ring->dev,
|
|
rx_ring->rx_bi[0].dma,
|
|
i * rx_ring->rx_hdr_len,
|
|
rx_ring->rx_hdr_len,
|
|
DMA_FROM_DEVICE);
|
|
}
|
|
rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
|
|
I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
|
|
rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
|
|
I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
|
|
rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
|
|
I40E_RXD_QW1_LENGTH_SPH_SHIFT;
|
|
|
|
rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
|
|
I40E_RXD_QW1_ERROR_SHIFT;
|
|
rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
|
|
rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
|
|
|
|
rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
|
|
I40E_RXD_QW1_PTYPE_SHIFT;
|
|
/* sync half-page for reading */
|
|
dma_sync_single_range_for_cpu(rx_ring->dev,
|
|
rx_bi->page_dma,
|
|
rx_bi->page_offset,
|
|
PAGE_SIZE / 2,
|
|
DMA_FROM_DEVICE);
|
|
prefetch(page_address(rx_bi->page) + rx_bi->page_offset);
|
|
rx_bi->skb = NULL;
|
|
cleaned_count++;
|
|
copysize = 0;
|
|
if (rx_hbo || rx_sph) {
|
|
int len;
|
|
|
|
if (rx_hbo)
|
|
len = I40E_RX_HDR_SIZE;
|
|
else
|
|
len = rx_header_len;
|
|
memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
|
|
} else if (skb->len == 0) {
|
|
int len;
|
|
unsigned char *va = page_address(rx_bi->page) +
|
|
rx_bi->page_offset;
|
|
|
|
len = min(rx_packet_len, rx_ring->rx_hdr_len);
|
|
memcpy(__skb_put(skb, len), va, len);
|
|
copysize = len;
|
|
rx_packet_len -= len;
|
|
}
|
|
/* Get the rest of the data if this was a header split */
|
|
if (rx_packet_len) {
|
|
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
|
|
rx_bi->page,
|
|
rx_bi->page_offset + copysize,
|
|
rx_packet_len, I40E_RXBUFFER_2048);
|
|
|
|
/* If the page count is more than 2, then both halves
|
|
* of the page are used and we need to free it. Do it
|
|
* here instead of in the alloc code. Otherwise one
|
|
* of the half-pages might be released between now and
|
|
* then, and we wouldn't know which one to use.
|
|
* Don't call get_page and free_page since those are
|
|
* both expensive atomic operations that just change
|
|
* the refcount in opposite directions. Just give the
|
|
* page to the stack; he can have our refcount.
|
|
*/
|
|
if (page_count(rx_bi->page) > 2) {
|
|
dma_unmap_page(rx_ring->dev,
|
|
rx_bi->page_dma,
|
|
PAGE_SIZE,
|
|
DMA_FROM_DEVICE);
|
|
rx_bi->page = NULL;
|
|
rx_bi->page_dma = 0;
|
|
rx_ring->rx_stats.realloc_count++;
|
|
} else {
|
|
get_page(rx_bi->page);
|
|
/* switch to the other half-page here; the
|
|
* allocation code programs the right addr
|
|
* into HW. If we haven't used this half-page,
|
|
* the address won't be changed, and HW can
|
|
* just use it next time through.
|
|
*/
|
|
rx_bi->page_offset ^= PAGE_SIZE / 2;
|
|
}
|
|
|
|
}
|
|
I40E_RX_INCREMENT(rx_ring, i);
|
|
|
|
if (unlikely(
|
|
!(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
|
|
struct i40e_rx_buffer *next_buffer;
|
|
|
|
next_buffer = &rx_ring->rx_bi[i];
|
|
next_buffer->skb = skb;
|
|
rx_ring->rx_stats.non_eop_descs++;
|
|
continue;
|
|
}
|
|
|
|
/* ERR_MASK will only have valid bits if EOP set */
|
|
if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
|
|
dev_kfree_skb_any(skb);
|
|
continue;
|
|
}
|
|
|
|
i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
|
|
|
|
if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
|
|
i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
|
|
I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
|
|
I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
|
|
rx_ring->last_rx_timestamp = jiffies;
|
|
}
|
|
|
|
/* probably a little skewed due to removing CRC */
|
|
total_rx_bytes += skb->len;
|
|
total_rx_packets++;
|
|
|
|
skb->protocol = eth_type_trans(skb, rx_ring->netdev);
|
|
|
|
i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
|
|
|
|
vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
|
|
? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
|
|
: 0;
|
|
#ifdef I40E_FCOE
|
|
if (unlikely(
|
|
i40e_rx_is_fcoe(rx_ptype) &&
|
|
!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb))) {
|
|
dev_kfree_skb_any(skb);
|
|
continue;
|
|
}
|
|
#endif
|
|
i40e_receive_skb(rx_ring, skb, vlan_tag);
|
|
|
|
rx_desc->wb.qword1.status_error_len = 0;
|
|
|
|
} while (likely(total_rx_packets < budget));
|
|
|
|
u64_stats_update_begin(&rx_ring->syncp);
|
|
rx_ring->stats.packets += total_rx_packets;
|
|
rx_ring->stats.bytes += total_rx_bytes;
|
|
u64_stats_update_end(&rx_ring->syncp);
|
|
rx_ring->q_vector->rx.total_packets += total_rx_packets;
|
|
rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
|
|
|
|
return failure ? budget : total_rx_packets;
|
|
}
|
|
|
|
/**
|
|
* i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
|
|
* @rx_ring: rx ring to clean
|
|
* @budget: how many cleans we're allowed
|
|
*
|
|
* Returns number of packets cleaned
|
|
**/
|
|
static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
|
|
{
|
|
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
|
|
u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
|
|
struct i40e_vsi *vsi = rx_ring->vsi;
|
|
union i40e_rx_desc *rx_desc;
|
|
u32 rx_error, rx_status;
|
|
u16 rx_packet_len;
|
|
bool failure = false;
|
|
u8 rx_ptype;
|
|
u64 qword;
|
|
u16 i;
|
|
|
|
do {
|
|
struct i40e_rx_buffer *rx_bi;
|
|
struct sk_buff *skb;
|
|
u16 vlan_tag;
|
|
/* return some buffers to hardware, one at a time is too slow */
|
|
if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
|
|
failure = failure ||
|
|
i40e_alloc_rx_buffers_1buf(rx_ring,
|
|
cleaned_count);
|
|
cleaned_count = 0;
|
|
}
|
|
|
|
i = rx_ring->next_to_clean;
|
|
rx_desc = I40E_RX_DESC(rx_ring, i);
|
|
qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
|
|
rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
|
|
I40E_RXD_QW1_STATUS_SHIFT;
|
|
|
|
if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
|
|
break;
|
|
|
|
/* This memory barrier is needed to keep us from reading
|
|
* any other fields out of the rx_desc until we know the
|
|
* DD bit is set.
|
|
*/
|
|
dma_rmb();
|
|
|
|
if (i40e_rx_is_programming_status(qword)) {
|
|
i40e_clean_programming_status(rx_ring, rx_desc);
|
|
I40E_RX_INCREMENT(rx_ring, i);
|
|
continue;
|
|
}
|
|
rx_bi = &rx_ring->rx_bi[i];
|
|
skb = rx_bi->skb;
|
|
prefetch(skb->data);
|
|
|
|
rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
|
|
I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
|
|
|
|
rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
|
|
I40E_RXD_QW1_ERROR_SHIFT;
|
|
rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
|
|
|
|
rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
|
|
I40E_RXD_QW1_PTYPE_SHIFT;
|
|
rx_bi->skb = NULL;
|
|
cleaned_count++;
|
|
|
|
/* Get the header and possibly the whole packet
|
|
* If this is an skb from previous receive dma will be 0
|
|
*/
|
|
skb_put(skb, rx_packet_len);
|
|
dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
|
|
DMA_FROM_DEVICE);
|
|
rx_bi->dma = 0;
|
|
|
|
I40E_RX_INCREMENT(rx_ring, i);
|
|
|
|
if (unlikely(
|
|
!(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
|
|
rx_ring->rx_stats.non_eop_descs++;
|
|
continue;
|
|
}
|
|
|
|
/* ERR_MASK will only have valid bits if EOP set */
|
|
if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
|
|
dev_kfree_skb_any(skb);
|
|
continue;
|
|
}
|
|
|
|
i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
|
|
if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
|
|
i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
|
|
I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
|
|
I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
|
|
rx_ring->last_rx_timestamp = jiffies;
|
|
}
|
|
|
|
/* probably a little skewed due to removing CRC */
|
|
total_rx_bytes += skb->len;
|
|
total_rx_packets++;
|
|
|
|
skb->protocol = eth_type_trans(skb, rx_ring->netdev);
|
|
|
|
i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
|
|
|
|
vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
|
|
? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
|
|
: 0;
|
|
#ifdef I40E_FCOE
|
|
if (unlikely(
|
|
i40e_rx_is_fcoe(rx_ptype) &&
|
|
!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb))) {
|
|
dev_kfree_skb_any(skb);
|
|
continue;
|
|
}
|
|
#endif
|
|
i40e_receive_skb(rx_ring, skb, vlan_tag);
|
|
|
|
rx_desc->wb.qword1.status_error_len = 0;
|
|
} while (likely(total_rx_packets < budget));
|
|
|
|
u64_stats_update_begin(&rx_ring->syncp);
|
|
rx_ring->stats.packets += total_rx_packets;
|
|
rx_ring->stats.bytes += total_rx_bytes;
|
|
u64_stats_update_end(&rx_ring->syncp);
|
|
rx_ring->q_vector->rx.total_packets += total_rx_packets;
|
|
rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
|
|
|
|
return failure ? budget : total_rx_packets;
|
|
}
|
|
|
|
static u32 i40e_buildreg_itr(const int type, const u16 itr)
|
|
{
|
|
u32 val;
|
|
|
|
val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
|
|
/* Don't clear PBA because that can cause lost interrupts that
|
|
* came in while we were cleaning/polling
|
|
*/
|
|
(type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
|
|
(itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
|
|
|
|
return val;
|
|
}
|
|
|
|
/* a small macro to shorten up some long lines */
|
|
#define INTREG I40E_PFINT_DYN_CTLN
|
|
|
|
/**
|
|
* i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
|
|
* @vsi: the VSI we care about
|
|
* @q_vector: q_vector for which itr is being updated and interrupt enabled
|
|
*
|
|
**/
|
|
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
|
|
struct i40e_q_vector *q_vector)
|
|
{
|
|
struct i40e_hw *hw = &vsi->back->hw;
|
|
bool rx = false, tx = false;
|
|
u32 rxval, txval;
|
|
int vector;
|
|
int idx = q_vector->v_idx;
|
|
|
|
vector = (q_vector->v_idx + vsi->base_vector);
|
|
|
|
/* avoid dynamic calculation if in countdown mode OR if
|
|
* all dynamic is disabled
|
|
*/
|
|
rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
|
|
|
|
if (q_vector->itr_countdown > 0 ||
|
|
(!ITR_IS_DYNAMIC(vsi->rx_rings[idx]->rx_itr_setting) &&
|
|
!ITR_IS_DYNAMIC(vsi->tx_rings[idx]->tx_itr_setting))) {
|
|
goto enable_int;
|
|
}
|
|
|
|
if (ITR_IS_DYNAMIC(vsi->rx_rings[idx]->rx_itr_setting)) {
|
|
rx = i40e_set_new_dynamic_itr(&q_vector->rx);
|
|
rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
|
|
}
|
|
|
|
if (ITR_IS_DYNAMIC(vsi->tx_rings[idx]->tx_itr_setting)) {
|
|
tx = i40e_set_new_dynamic_itr(&q_vector->tx);
|
|
txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
|
|
}
|
|
|
|
if (rx || tx) {
|
|
/* get the higher of the two ITR adjustments and
|
|
* use the same value for both ITR registers
|
|
* when in adaptive mode (Rx and/or Tx)
|
|
*/
|
|
u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
|
|
|
|
q_vector->tx.itr = q_vector->rx.itr = itr;
|
|
txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
|
|
tx = true;
|
|
rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
|
|
rx = true;
|
|
}
|
|
|
|
/* only need to enable the interrupt once, but need
|
|
* to possibly update both ITR values
|
|
*/
|
|
if (rx) {
|
|
/* set the INTENA_MSK_MASK so that this first write
|
|
* won't actually enable the interrupt, instead just
|
|
* updating the ITR (it's bit 31 PF and VF)
|
|
*/
|
|
rxval |= BIT(31);
|
|
/* don't check _DOWN because interrupt isn't being enabled */
|
|
wr32(hw, INTREG(vector - 1), rxval);
|
|
}
|
|
|
|
enable_int:
|
|
if (!test_bit(__I40E_DOWN, &vsi->state))
|
|
wr32(hw, INTREG(vector - 1), txval);
|
|
|
|
if (q_vector->itr_countdown)
|
|
q_vector->itr_countdown--;
|
|
else
|
|
q_vector->itr_countdown = ITR_COUNTDOWN_START;
|
|
}
|
|
|
|
/**
|
|
* i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
|
|
* @napi: napi struct with our devices info in it
|
|
* @budget: amount of work driver is allowed to do this pass, in packets
|
|
*
|
|
* This function will clean all queues associated with a q_vector.
|
|
*
|
|
* Returns the amount of work done
|
|
**/
|
|
int i40e_napi_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
struct i40e_q_vector *q_vector =
|
|
container_of(napi, struct i40e_q_vector, napi);
|
|
struct i40e_vsi *vsi = q_vector->vsi;
|
|
struct i40e_ring *ring;
|
|
bool clean_complete = true;
|
|
bool arm_wb = false;
|
|
int budget_per_ring;
|
|
int work_done = 0;
|
|
|
|
if (test_bit(__I40E_DOWN, &vsi->state)) {
|
|
napi_complete(napi);
|
|
return 0;
|
|
}
|
|
|
|
/* Clear hung_detected bit */
|
|
clear_bit(I40E_Q_VECTOR_HUNG_DETECT, &q_vector->hung_detected);
|
|
/* Since the actual Tx work is minimal, we can give the Tx a larger
|
|
* budget and be more aggressive about cleaning up the Tx descriptors.
|
|
*/
|
|
i40e_for_each_ring(ring, q_vector->tx) {
|
|
if (!i40e_clean_tx_irq(vsi, ring, budget)) {
|
|
clean_complete = false;
|
|
continue;
|
|
}
|
|
arm_wb |= ring->arm_wb;
|
|
ring->arm_wb = false;
|
|
}
|
|
|
|
/* Handle case where we are called by netpoll with a budget of 0 */
|
|
if (budget <= 0)
|
|
goto tx_only;
|
|
|
|
/* We attempt to distribute budget to each Rx queue fairly, but don't
|
|
* allow the budget to go below 1 because that would exit polling early.
|
|
*/
|
|
budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
|
|
|
|
i40e_for_each_ring(ring, q_vector->rx) {
|
|
int cleaned;
|
|
|
|
if (ring_is_ps_enabled(ring))
|
|
cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
|
|
else
|
|
cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
|
|
|
|
work_done += cleaned;
|
|
/* if we clean as many as budgeted, we must not be done */
|
|
if (cleaned >= budget_per_ring)
|
|
clean_complete = false;
|
|
}
|
|
|
|
/* If work not completed, return budget and polling will return */
|
|
if (!clean_complete) {
|
|
tx_only:
|
|
if (arm_wb) {
|
|
q_vector->tx.ring[0].tx_stats.tx_force_wb++;
|
|
i40e_enable_wb_on_itr(vsi, q_vector);
|
|
}
|
|
return budget;
|
|
}
|
|
|
|
if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
|
|
q_vector->arm_wb_state = false;
|
|
|
|
/* Work is done so exit the polling mode and re-enable the interrupt */
|
|
napi_complete_done(napi, work_done);
|
|
if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
|
|
i40e_update_enable_itr(vsi, q_vector);
|
|
} else { /* Legacy mode */
|
|
i40e_irq_dynamic_enable_icr0(vsi->back, false);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i40e_atr - Add a Flow Director ATR filter
|
|
* @tx_ring: ring to add programming descriptor to
|
|
* @skb: send buffer
|
|
* @tx_flags: send tx flags
|
|
**/
|
|
static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
|
|
u32 tx_flags)
|
|
{
|
|
struct i40e_filter_program_desc *fdir_desc;
|
|
struct i40e_pf *pf = tx_ring->vsi->back;
|
|
union {
|
|
unsigned char *network;
|
|
struct iphdr *ipv4;
|
|
struct ipv6hdr *ipv6;
|
|
} hdr;
|
|
struct tcphdr *th;
|
|
unsigned int hlen;
|
|
u32 flex_ptype, dtype_cmd;
|
|
int l4_proto;
|
|
u16 i;
|
|
|
|
/* make sure ATR is enabled */
|
|
if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
|
|
return;
|
|
|
|
if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
|
|
return;
|
|
|
|
/* if sampling is disabled do nothing */
|
|
if (!tx_ring->atr_sample_rate)
|
|
return;
|
|
|
|
/* Currently only IPv4/IPv6 with TCP is supported */
|
|
if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
|
|
return;
|
|
|
|
/* snag network header to get L4 type and address */
|
|
hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
|
|
skb_inner_network_header(skb) : skb_network_header(skb);
|
|
|
|
/* Note: tx_flags gets modified to reflect inner protocols in
|
|
* tx_enable_csum function if encap is enabled.
|
|
*/
|
|
if (tx_flags & I40E_TX_FLAGS_IPV4) {
|
|
/* access ihl as u8 to avoid unaligned access on ia64 */
|
|
hlen = (hdr.network[0] & 0x0F) << 2;
|
|
l4_proto = hdr.ipv4->protocol;
|
|
} else {
|
|
hlen = hdr.network - skb->data;
|
|
l4_proto = ipv6_find_hdr(skb, &hlen, IPPROTO_TCP, NULL, NULL);
|
|
hlen -= hdr.network - skb->data;
|
|
}
|
|
|
|
if (l4_proto != IPPROTO_TCP)
|
|
return;
|
|
|
|
th = (struct tcphdr *)(hdr.network + hlen);
|
|
|
|
/* Due to lack of space, no more new filters can be programmed */
|
|
if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
|
|
return;
|
|
if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
|
|
(!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE))) {
|
|
/* HW ATR eviction will take care of removing filters on FIN
|
|
* and RST packets.
|
|
*/
|
|
if (th->fin || th->rst)
|
|
return;
|
|
}
|
|
|
|
tx_ring->atr_count++;
|
|
|
|
/* sample on all syn/fin/rst packets or once every atr sample rate */
|
|
if (!th->fin &&
|
|
!th->syn &&
|
|
!th->rst &&
|
|
(tx_ring->atr_count < tx_ring->atr_sample_rate))
|
|
return;
|
|
|
|
tx_ring->atr_count = 0;
|
|
|
|
/* grab the next descriptor */
|
|
i = tx_ring->next_to_use;
|
|
fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
|
|
|
|
i++;
|
|
tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
|
|
|
|
flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
|
|
I40E_TXD_FLTR_QW0_QINDEX_MASK;
|
|
flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
|
|
(I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
|
|
I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
|
|
(I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
|
|
I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
|
|
|
|
flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
|
|
|
|
dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
|
|
|
|
dtype_cmd |= (th->fin || th->rst) ?
|
|
(I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
|
|
I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
|
|
(I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
|
|
I40E_TXD_FLTR_QW1_PCMD_SHIFT);
|
|
|
|
dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
|
|
I40E_TXD_FLTR_QW1_DEST_SHIFT;
|
|
|
|
dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
|
|
I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
|
|
|
|
dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
|
|
if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
|
|
dtype_cmd |=
|
|
((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
|
|
I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
|
|
I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
|
|
else
|
|
dtype_cmd |=
|
|
((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
|
|
I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
|
|
I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
|
|
|
|
if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
|
|
(!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)))
|
|
dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
|
|
|
|
fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
|
|
fdir_desc->rsvd = cpu_to_le32(0);
|
|
fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
|
|
fdir_desc->fd_id = cpu_to_le32(0);
|
|
}
|
|
|
|
/**
|
|
* i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
|
|
* @skb: send buffer
|
|
* @tx_ring: ring to send buffer on
|
|
* @flags: the tx flags to be set
|
|
*
|
|
* Checks the skb and set up correspondingly several generic transmit flags
|
|
* related to VLAN tagging for the HW, such as VLAN, DCB, etc.
|
|
*
|
|
* Returns error code indicate the frame should be dropped upon error and the
|
|
* otherwise returns 0 to indicate the flags has been set properly.
|
|
**/
|
|
#ifdef I40E_FCOE
|
|
inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
|
|
struct i40e_ring *tx_ring,
|
|
u32 *flags)
|
|
#else
|
|
static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
|
|
struct i40e_ring *tx_ring,
|
|
u32 *flags)
|
|
#endif
|
|
{
|
|
__be16 protocol = skb->protocol;
|
|
u32 tx_flags = 0;
|
|
|
|
if (protocol == htons(ETH_P_8021Q) &&
|
|
!(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
|
|
/* When HW VLAN acceleration is turned off by the user the
|
|
* stack sets the protocol to 8021q so that the driver
|
|
* can take any steps required to support the SW only
|
|
* VLAN handling. In our case the driver doesn't need
|
|
* to take any further steps so just set the protocol
|
|
* to the encapsulated ethertype.
|
|
*/
|
|
skb->protocol = vlan_get_protocol(skb);
|
|
goto out;
|
|
}
|
|
|
|
/* if we have a HW VLAN tag being added, default to the HW one */
|
|
if (skb_vlan_tag_present(skb)) {
|
|
tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
|
|
tx_flags |= I40E_TX_FLAGS_HW_VLAN;
|
|
/* else if it is a SW VLAN, check the next protocol and store the tag */
|
|
} else if (protocol == htons(ETH_P_8021Q)) {
|
|
struct vlan_hdr *vhdr, _vhdr;
|
|
|
|
vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
|
|
if (!vhdr)
|
|
return -EINVAL;
|
|
|
|
protocol = vhdr->h_vlan_encapsulated_proto;
|
|
tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
|
|
tx_flags |= I40E_TX_FLAGS_SW_VLAN;
|
|
}
|
|
|
|
if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
|
|
goto out;
|
|
|
|
/* Insert 802.1p priority into VLAN header */
|
|
if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
|
|
(skb->priority != TC_PRIO_CONTROL)) {
|
|
tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
|
|
tx_flags |= (skb->priority & 0x7) <<
|
|
I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
|
|
if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
|
|
struct vlan_ethhdr *vhdr;
|
|
int rc;
|
|
|
|
rc = skb_cow_head(skb, 0);
|
|
if (rc < 0)
|
|
return rc;
|
|
vhdr = (struct vlan_ethhdr *)skb->data;
|
|
vhdr->h_vlan_TCI = htons(tx_flags >>
|
|
I40E_TX_FLAGS_VLAN_SHIFT);
|
|
} else {
|
|
tx_flags |= I40E_TX_FLAGS_HW_VLAN;
|
|
}
|
|
}
|
|
|
|
out:
|
|
*flags = tx_flags;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i40e_tso - set up the tso context descriptor
|
|
* @skb: ptr to the skb we're sending
|
|
* @hdr_len: ptr to the size of the packet header
|
|
* @cd_type_cmd_tso_mss: Quad Word 1
|
|
*
|
|
* Returns 0 if no TSO can happen, 1 if tso is going, or error
|
|
**/
|
|
static int i40e_tso(struct sk_buff *skb, u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
|
|
{
|
|
u64 cd_cmd, cd_tso_len, cd_mss;
|
|
union {
|
|
struct iphdr *v4;
|
|
struct ipv6hdr *v6;
|
|
unsigned char *hdr;
|
|
} ip;
|
|
union {
|
|
struct tcphdr *tcp;
|
|
struct udphdr *udp;
|
|
unsigned char *hdr;
|
|
} l4;
|
|
u32 paylen, l4_offset;
|
|
int err;
|
|
|
|
if (skb->ip_summed != CHECKSUM_PARTIAL)
|
|
return 0;
|
|
|
|
if (!skb_is_gso(skb))
|
|
return 0;
|
|
|
|
err = skb_cow_head(skb, 0);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
ip.hdr = skb_network_header(skb);
|
|
l4.hdr = skb_transport_header(skb);
|
|
|
|
/* initialize outer IP header fields */
|
|
if (ip.v4->version == 4) {
|
|
ip.v4->tot_len = 0;
|
|
ip.v4->check = 0;
|
|
} else {
|
|
ip.v6->payload_len = 0;
|
|
}
|
|
|
|
if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
|
|
SKB_GSO_IPIP |
|
|
SKB_GSO_SIT |
|
|
SKB_GSO_UDP_TUNNEL |
|
|
SKB_GSO_UDP_TUNNEL_CSUM)) {
|
|
if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM) {
|
|
/* determine offset of outer transport header */
|
|
l4_offset = l4.hdr - skb->data;
|
|
|
|
/* remove payload length from outer checksum */
|
|
paylen = skb->len - l4_offset;
|
|
csum_replace_by_diff(&l4.udp->check, htonl(paylen));
|
|
}
|
|
|
|
/* reset pointers to inner headers */
|
|
ip.hdr = skb_inner_network_header(skb);
|
|
l4.hdr = skb_inner_transport_header(skb);
|
|
|
|
/* initialize inner IP header fields */
|
|
if (ip.v4->version == 4) {
|
|
ip.v4->tot_len = 0;
|
|
ip.v4->check = 0;
|
|
} else {
|
|
ip.v6->payload_len = 0;
|
|
}
|
|
}
|
|
|
|
/* determine offset of inner transport header */
|
|
l4_offset = l4.hdr - skb->data;
|
|
|
|
/* remove payload length from inner checksum */
|
|
paylen = skb->len - l4_offset;
|
|
csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
|
|
|
|
/* compute length of segmentation header */
|
|
*hdr_len = (l4.tcp->doff * 4) + l4_offset;
|
|
|
|
/* find the field values */
|
|
cd_cmd = I40E_TX_CTX_DESC_TSO;
|
|
cd_tso_len = skb->len - *hdr_len;
|
|
cd_mss = skb_shinfo(skb)->gso_size;
|
|
*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
|
|
(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
|
|
(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* i40e_tsyn - set up the tsyn context descriptor
|
|
* @tx_ring: ptr to the ring to send
|
|
* @skb: ptr to the skb we're sending
|
|
* @tx_flags: the collected send information
|
|
* @cd_type_cmd_tso_mss: Quad Word 1
|
|
*
|
|
* Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
|
|
**/
|
|
static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
|
|
u32 tx_flags, u64 *cd_type_cmd_tso_mss)
|
|
{
|
|
struct i40e_pf *pf;
|
|
|
|
if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
|
|
return 0;
|
|
|
|
/* Tx timestamps cannot be sampled when doing TSO */
|
|
if (tx_flags & I40E_TX_FLAGS_TSO)
|
|
return 0;
|
|
|
|
/* only timestamp the outbound packet if the user has requested it and
|
|
* we are not already transmitting a packet to be timestamped
|
|
*/
|
|
pf = i40e_netdev_to_pf(tx_ring->netdev);
|
|
if (!(pf->flags & I40E_FLAG_PTP))
|
|
return 0;
|
|
|
|
if (pf->ptp_tx &&
|
|
!test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
|
|
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
|
|
pf->ptp_tx_skb = skb_get(skb);
|
|
} else {
|
|
return 0;
|
|
}
|
|
|
|
*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
|
|
I40E_TXD_CTX_QW1_CMD_SHIFT;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* i40e_tx_enable_csum - Enable Tx checksum offloads
|
|
* @skb: send buffer
|
|
* @tx_flags: pointer to Tx flags currently set
|
|
* @td_cmd: Tx descriptor command bits to set
|
|
* @td_offset: Tx descriptor header offsets to set
|
|
* @tx_ring: Tx descriptor ring
|
|
* @cd_tunneling: ptr to context desc bits
|
|
**/
|
|
static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
|
|
u32 *td_cmd, u32 *td_offset,
|
|
struct i40e_ring *tx_ring,
|
|
u32 *cd_tunneling)
|
|
{
|
|
union {
|
|
struct iphdr *v4;
|
|
struct ipv6hdr *v6;
|
|
unsigned char *hdr;
|
|
} ip;
|
|
union {
|
|
struct tcphdr *tcp;
|
|
struct udphdr *udp;
|
|
unsigned char *hdr;
|
|
} l4;
|
|
unsigned char *exthdr;
|
|
u32 offset, cmd = 0;
|
|
__be16 frag_off;
|
|
u8 l4_proto = 0;
|
|
|
|
if (skb->ip_summed != CHECKSUM_PARTIAL)
|
|
return 0;
|
|
|
|
ip.hdr = skb_network_header(skb);
|
|
l4.hdr = skb_transport_header(skb);
|
|
|
|
/* compute outer L2 header size */
|
|
offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
|
|
|
|
if (skb->encapsulation) {
|
|
u32 tunnel = 0;
|
|
/* define outer network header type */
|
|
if (*tx_flags & I40E_TX_FLAGS_IPV4) {
|
|
tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
|
|
I40E_TX_CTX_EXT_IP_IPV4 :
|
|
I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
|
|
|
|
l4_proto = ip.v4->protocol;
|
|
} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
|
|
tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
|
|
|
|
exthdr = ip.hdr + sizeof(*ip.v6);
|
|
l4_proto = ip.v6->nexthdr;
|
|
if (l4.hdr != exthdr)
|
|
ipv6_skip_exthdr(skb, exthdr - skb->data,
|
|
&l4_proto, &frag_off);
|
|
}
|
|
|
|
/* define outer transport */
|
|
switch (l4_proto) {
|
|
case IPPROTO_UDP:
|
|
tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
|
|
*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
|
|
break;
|
|
case IPPROTO_GRE:
|
|
tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
|
|
*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
|
|
break;
|
|
case IPPROTO_IPIP:
|
|
case IPPROTO_IPV6:
|
|
*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
|
|
l4.hdr = skb_inner_network_header(skb);
|
|
break;
|
|
default:
|
|
if (*tx_flags & I40E_TX_FLAGS_TSO)
|
|
return -1;
|
|
|
|
skb_checksum_help(skb);
|
|
return 0;
|
|
}
|
|
|
|
/* compute outer L3 header size */
|
|
tunnel |= ((l4.hdr - ip.hdr) / 4) <<
|
|
I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
|
|
|
|
/* switch IP header pointer from outer to inner header */
|
|
ip.hdr = skb_inner_network_header(skb);
|
|
|
|
/* compute tunnel header size */
|
|
tunnel |= ((ip.hdr - l4.hdr) / 2) <<
|
|
I40E_TXD_CTX_QW0_NATLEN_SHIFT;
|
|
|
|
/* indicate if we need to offload outer UDP header */
|
|
if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
|
|
(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
|
|
tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
|
|
|
|
/* record tunnel offload values */
|
|
*cd_tunneling |= tunnel;
|
|
|
|
/* switch L4 header pointer from outer to inner */
|
|
l4.hdr = skb_inner_transport_header(skb);
|
|
l4_proto = 0;
|
|
|
|
/* reset type as we transition from outer to inner headers */
|
|
*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
|
|
if (ip.v4->version == 4)
|
|
*tx_flags |= I40E_TX_FLAGS_IPV4;
|
|
if (ip.v6->version == 6)
|
|
*tx_flags |= I40E_TX_FLAGS_IPV6;
|
|
}
|
|
|
|
/* Enable IP checksum offloads */
|
|
if (*tx_flags & I40E_TX_FLAGS_IPV4) {
|
|
l4_proto = ip.v4->protocol;
|
|
/* the stack computes the IP header already, the only time we
|
|
* need the hardware to recompute it is in the case of TSO.
|
|
*/
|
|
cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
|
|
I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
|
|
I40E_TX_DESC_CMD_IIPT_IPV4;
|
|
} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
|
|
cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
|
|
|
|
exthdr = ip.hdr + sizeof(*ip.v6);
|
|
l4_proto = ip.v6->nexthdr;
|
|
if (l4.hdr != exthdr)
|
|
ipv6_skip_exthdr(skb, exthdr - skb->data,
|
|
&l4_proto, &frag_off);
|
|
}
|
|
|
|
/* compute inner L3 header size */
|
|
offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
|
|
|
|
/* Enable L4 checksum offloads */
|
|
switch (l4_proto) {
|
|
case IPPROTO_TCP:
|
|
/* enable checksum offloads */
|
|
cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
|
|
offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
|
|
break;
|
|
case IPPROTO_SCTP:
|
|
/* enable SCTP checksum offload */
|
|
cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
|
|
offset |= (sizeof(struct sctphdr) >> 2) <<
|
|
I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
|
|
break;
|
|
case IPPROTO_UDP:
|
|
/* enable UDP checksum offload */
|
|
cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
|
|
offset |= (sizeof(struct udphdr) >> 2) <<
|
|
I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
|
|
break;
|
|
default:
|
|
if (*tx_flags & I40E_TX_FLAGS_TSO)
|
|
return -1;
|
|
skb_checksum_help(skb);
|
|
return 0;
|
|
}
|
|
|
|
*td_cmd |= cmd;
|
|
*td_offset |= offset;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* i40e_create_tx_ctx Build the Tx context descriptor
|
|
* @tx_ring: ring to create the descriptor on
|
|
* @cd_type_cmd_tso_mss: Quad Word 1
|
|
* @cd_tunneling: Quad Word 0 - bits 0-31
|
|
* @cd_l2tag2: Quad Word 0 - bits 32-63
|
|
**/
|
|
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
|
|
const u64 cd_type_cmd_tso_mss,
|
|
const u32 cd_tunneling, const u32 cd_l2tag2)
|
|
{
|
|
struct i40e_tx_context_desc *context_desc;
|
|
int i = tx_ring->next_to_use;
|
|
|
|
if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
|
|
!cd_tunneling && !cd_l2tag2)
|
|
return;
|
|
|
|
/* grab the next descriptor */
|
|
context_desc = I40E_TX_CTXTDESC(tx_ring, i);
|
|
|
|
i++;
|
|
tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
|
|
|
|
/* cpu_to_le32 and assign to struct fields */
|
|
context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
|
|
context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
|
|
context_desc->rsvd = cpu_to_le16(0);
|
|
context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
|
|
}
|
|
|
|
/**
|
|
* __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
|
|
* @tx_ring: the ring to be checked
|
|
* @size: the size buffer we want to assure is available
|
|
*
|
|
* Returns -EBUSY if a stop is needed, else 0
|
|
**/
|
|
int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
|
|
{
|
|
netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
|
|
/* Memory barrier before checking head and tail */
|
|
smp_mb();
|
|
|
|
/* Check again in a case another CPU has just made room available. */
|
|
if (likely(I40E_DESC_UNUSED(tx_ring) < size))
|
|
return -EBUSY;
|
|
|
|
/* A reprieve! - use start_queue because it doesn't call schedule */
|
|
netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
|
|
++tx_ring->tx_stats.restart_queue;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __i40e_chk_linearize - Check if there are more than 8 buffers per packet
|
|
* @skb: send buffer
|
|
*
|
|
* Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
|
|
* and so we need to figure out the cases where we need to linearize the skb.
|
|
*
|
|
* For TSO we need to count the TSO header and segment payload separately.
|
|
* As such we need to check cases where we have 7 fragments or more as we
|
|
* can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
|
|
* the segment payload in the first descriptor, and another 7 for the
|
|
* fragments.
|
|
**/
|
|
bool __i40e_chk_linearize(struct sk_buff *skb)
|
|
{
|
|
const struct skb_frag_struct *frag, *stale;
|
|
int nr_frags, sum;
|
|
|
|
/* no need to check if number of frags is less than 7 */
|
|
nr_frags = skb_shinfo(skb)->nr_frags;
|
|
if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
|
|
return false;
|
|
|
|
/* We need to walk through the list and validate that each group
|
|
* of 6 fragments totals at least gso_size. However we don't need
|
|
* to perform such validation on the last 6 since the last 6 cannot
|
|
* inherit any data from a descriptor after them.
|
|
*/
|
|
nr_frags -= I40E_MAX_BUFFER_TXD - 2;
|
|
frag = &skb_shinfo(skb)->frags[0];
|
|
|
|
/* Initialize size to the negative value of gso_size minus 1. We
|
|
* use this as the worst case scenerio in which the frag ahead
|
|
* of us only provides one byte which is why we are limited to 6
|
|
* descriptors for a single transmit as the header and previous
|
|
* fragment are already consuming 2 descriptors.
|
|
*/
|
|
sum = 1 - skb_shinfo(skb)->gso_size;
|
|
|
|
/* Add size of frags 0 through 4 to create our initial sum */
|
|
sum += skb_frag_size(frag++);
|
|
sum += skb_frag_size(frag++);
|
|
sum += skb_frag_size(frag++);
|
|
sum += skb_frag_size(frag++);
|
|
sum += skb_frag_size(frag++);
|
|
|
|
/* Walk through fragments adding latest fragment, testing it, and
|
|
* then removing stale fragments from the sum.
|
|
*/
|
|
stale = &skb_shinfo(skb)->frags[0];
|
|
for (;;) {
|
|
sum += skb_frag_size(frag++);
|
|
|
|
/* if sum is negative we failed to make sufficient progress */
|
|
if (sum < 0)
|
|
return true;
|
|
|
|
/* use pre-decrement to avoid processing last fragment */
|
|
if (!--nr_frags)
|
|
break;
|
|
|
|
sum -= skb_frag_size(stale++);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* i40e_tx_map - Build the Tx descriptor
|
|
* @tx_ring: ring to send buffer on
|
|
* @skb: send buffer
|
|
* @first: first buffer info buffer to use
|
|
* @tx_flags: collected send information
|
|
* @hdr_len: size of the packet header
|
|
* @td_cmd: the command field in the descriptor
|
|
* @td_offset: offset for checksum or crc
|
|
**/
|
|
#ifdef I40E_FCOE
|
|
inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
|
|
struct i40e_tx_buffer *first, u32 tx_flags,
|
|
const u8 hdr_len, u32 td_cmd, u32 td_offset)
|
|
#else
|
|
static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
|
|
struct i40e_tx_buffer *first, u32 tx_flags,
|
|
const u8 hdr_len, u32 td_cmd, u32 td_offset)
|
|
#endif
|
|
{
|
|
unsigned int data_len = skb->data_len;
|
|
unsigned int size = skb_headlen(skb);
|
|
struct skb_frag_struct *frag;
|
|
struct i40e_tx_buffer *tx_bi;
|
|
struct i40e_tx_desc *tx_desc;
|
|
u16 i = tx_ring->next_to_use;
|
|
u32 td_tag = 0;
|
|
dma_addr_t dma;
|
|
u16 gso_segs;
|
|
u16 desc_count = 0;
|
|
bool tail_bump = true;
|
|
bool do_rs = false;
|
|
|
|
if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
|
|
td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
|
|
td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
|
|
I40E_TX_FLAGS_VLAN_SHIFT;
|
|
}
|
|
|
|
if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
|
|
gso_segs = skb_shinfo(skb)->gso_segs;
|
|
else
|
|
gso_segs = 1;
|
|
|
|
/* multiply data chunks by size of headers */
|
|
first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
|
|
first->gso_segs = gso_segs;
|
|
first->skb = skb;
|
|
first->tx_flags = tx_flags;
|
|
|
|
dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
|
|
|
|
tx_desc = I40E_TX_DESC(tx_ring, i);
|
|
tx_bi = first;
|
|
|
|
for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
|
|
unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
|
|
|
|
if (dma_mapping_error(tx_ring->dev, dma))
|
|
goto dma_error;
|
|
|
|
/* record length, and DMA address */
|
|
dma_unmap_len_set(tx_bi, len, size);
|
|
dma_unmap_addr_set(tx_bi, dma, dma);
|
|
|
|
/* align size to end of page */
|
|
max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
|
|
tx_desc->buffer_addr = cpu_to_le64(dma);
|
|
|
|
while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
|
|
tx_desc->cmd_type_offset_bsz =
|
|
build_ctob(td_cmd, td_offset,
|
|
max_data, td_tag);
|
|
|
|
tx_desc++;
|
|
i++;
|
|
desc_count++;
|
|
|
|
if (i == tx_ring->count) {
|
|
tx_desc = I40E_TX_DESC(tx_ring, 0);
|
|
i = 0;
|
|
}
|
|
|
|
dma += max_data;
|
|
size -= max_data;
|
|
|
|
max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
|
|
tx_desc->buffer_addr = cpu_to_le64(dma);
|
|
}
|
|
|
|
if (likely(!data_len))
|
|
break;
|
|
|
|
tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
|
|
size, td_tag);
|
|
|
|
tx_desc++;
|
|
i++;
|
|
desc_count++;
|
|
|
|
if (i == tx_ring->count) {
|
|
tx_desc = I40E_TX_DESC(tx_ring, 0);
|
|
i = 0;
|
|
}
|
|
|
|
size = skb_frag_size(frag);
|
|
data_len -= size;
|
|
|
|
dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
|
|
DMA_TO_DEVICE);
|
|
|
|
tx_bi = &tx_ring->tx_bi[i];
|
|
}
|
|
|
|
/* set next_to_watch value indicating a packet is present */
|
|
first->next_to_watch = tx_desc;
|
|
|
|
i++;
|
|
if (i == tx_ring->count)
|
|
i = 0;
|
|
|
|
tx_ring->next_to_use = i;
|
|
|
|
netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
|
|
tx_ring->queue_index),
|
|
first->bytecount);
|
|
i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
|
|
|
|
/* Algorithm to optimize tail and RS bit setting:
|
|
* if xmit_more is supported
|
|
* if xmit_more is true
|
|
* do not update tail and do not mark RS bit.
|
|
* if xmit_more is false and last xmit_more was false
|
|
* if every packet spanned less than 4 desc
|
|
* then set RS bit on 4th packet and update tail
|
|
* on every packet
|
|
* else
|
|
* update tail and set RS bit on every packet.
|
|
* if xmit_more is false and last_xmit_more was true
|
|
* update tail and set RS bit.
|
|
*
|
|
* Optimization: wmb to be issued only in case of tail update.
|
|
* Also optimize the Descriptor WB path for RS bit with the same
|
|
* algorithm.
|
|
*
|
|
* Note: If there are less than 4 packets
|
|
* pending and interrupts were disabled the service task will
|
|
* trigger a force WB.
|
|
*/
|
|
if (skb->xmit_more &&
|
|
!netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
|
|
tx_ring->queue_index))) {
|
|
tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
|
|
tail_bump = false;
|
|
} else if (!skb->xmit_more &&
|
|
!netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
|
|
tx_ring->queue_index)) &&
|
|
(!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
|
|
(tx_ring->packet_stride < WB_STRIDE) &&
|
|
(desc_count < WB_STRIDE)) {
|
|
tx_ring->packet_stride++;
|
|
} else {
|
|
tx_ring->packet_stride = 0;
|
|
tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
|
|
do_rs = true;
|
|
}
|
|
if (do_rs)
|
|
tx_ring->packet_stride = 0;
|
|
|
|
tx_desc->cmd_type_offset_bsz =
|
|
build_ctob(td_cmd, td_offset, size, td_tag) |
|
|
cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
|
|
I40E_TX_DESC_CMD_EOP) <<
|
|
I40E_TXD_QW1_CMD_SHIFT);
|
|
|
|
/* notify HW of packet */
|
|
if (!tail_bump)
|
|
prefetchw(tx_desc + 1);
|
|
|
|
if (tail_bump) {
|
|
/* Force memory writes to complete before letting h/w
|
|
* know there are new descriptors to fetch. (Only
|
|
* applicable for weak-ordered memory model archs,
|
|
* such as IA-64).
|
|
*/
|
|
wmb();
|
|
writel(i, tx_ring->tail);
|
|
}
|
|
|
|
return;
|
|
|
|
dma_error:
|
|
dev_info(tx_ring->dev, "TX DMA map failed\n");
|
|
|
|
/* clear dma mappings for failed tx_bi map */
|
|
for (;;) {
|
|
tx_bi = &tx_ring->tx_bi[i];
|
|
i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
|
|
if (tx_bi == first)
|
|
break;
|
|
if (i == 0)
|
|
i = tx_ring->count;
|
|
i--;
|
|
}
|
|
|
|
tx_ring->next_to_use = i;
|
|
}
|
|
|
|
/**
|
|
* i40e_xmit_frame_ring - Sends buffer on Tx ring
|
|
* @skb: send buffer
|
|
* @tx_ring: ring to send buffer on
|
|
*
|
|
* Returns NETDEV_TX_OK if sent, else an error code
|
|
**/
|
|
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
|
|
struct i40e_ring *tx_ring)
|
|
{
|
|
u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
|
|
u32 cd_tunneling = 0, cd_l2tag2 = 0;
|
|
struct i40e_tx_buffer *first;
|
|
u32 td_offset = 0;
|
|
u32 tx_flags = 0;
|
|
__be16 protocol;
|
|
u32 td_cmd = 0;
|
|
u8 hdr_len = 0;
|
|
int tso, count;
|
|
int tsyn;
|
|
|
|
/* prefetch the data, we'll need it later */
|
|
prefetch(skb->data);
|
|
|
|
count = i40e_xmit_descriptor_count(skb);
|
|
if (i40e_chk_linearize(skb, count)) {
|
|
if (__skb_linearize(skb))
|
|
goto out_drop;
|
|
count = i40e_txd_use_count(skb->len);
|
|
tx_ring->tx_stats.tx_linearize++;
|
|
}
|
|
|
|
/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
|
|
* + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
|
|
* + 4 desc gap to avoid the cache line where head is,
|
|
* + 1 desc for context descriptor,
|
|
* otherwise try next time
|
|
*/
|
|
if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
|
|
tx_ring->tx_stats.tx_busy++;
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
|
|
/* prepare the xmit flags */
|
|
if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
|
|
goto out_drop;
|
|
|
|
/* obtain protocol of skb */
|
|
protocol = vlan_get_protocol(skb);
|
|
|
|
/* record the location of the first descriptor for this packet */
|
|
first = &tx_ring->tx_bi[tx_ring->next_to_use];
|
|
|
|
/* setup IPv4/IPv6 offloads */
|
|
if (protocol == htons(ETH_P_IP))
|
|
tx_flags |= I40E_TX_FLAGS_IPV4;
|
|
else if (protocol == htons(ETH_P_IPV6))
|
|
tx_flags |= I40E_TX_FLAGS_IPV6;
|
|
|
|
tso = i40e_tso(skb, &hdr_len, &cd_type_cmd_tso_mss);
|
|
|
|
if (tso < 0)
|
|
goto out_drop;
|
|
else if (tso)
|
|
tx_flags |= I40E_TX_FLAGS_TSO;
|
|
|
|
/* Always offload the checksum, since it's in the data descriptor */
|
|
tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
|
|
tx_ring, &cd_tunneling);
|
|
if (tso < 0)
|
|
goto out_drop;
|
|
|
|
tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
|
|
|
|
if (tsyn)
|
|
tx_flags |= I40E_TX_FLAGS_TSYN;
|
|
|
|
skb_tx_timestamp(skb);
|
|
|
|
/* always enable CRC insertion offload */
|
|
td_cmd |= I40E_TX_DESC_CMD_ICRC;
|
|
|
|
i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
|
|
cd_tunneling, cd_l2tag2);
|
|
|
|
/* Add Flow Director ATR if it's enabled.
|
|
*
|
|
* NOTE: this must always be directly before the data descriptor.
|
|
*/
|
|
i40e_atr(tx_ring, skb, tx_flags);
|
|
|
|
i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
|
|
td_cmd, td_offset);
|
|
|
|
return NETDEV_TX_OK;
|
|
|
|
out_drop:
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/**
|
|
* i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
|
|
* @skb: send buffer
|
|
* @netdev: network interface device structure
|
|
*
|
|
* Returns NETDEV_TX_OK if sent, else an error code
|
|
**/
|
|
netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
|
|
{
|
|
struct i40e_netdev_priv *np = netdev_priv(netdev);
|
|
struct i40e_vsi *vsi = np->vsi;
|
|
struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
|
|
|
|
/* hardware can't handle really short frames, hardware padding works
|
|
* beyond this point
|
|
*/
|
|
if (skb_put_padto(skb, I40E_MIN_TX_LEN))
|
|
return NETDEV_TX_OK;
|
|
|
|
return i40e_xmit_frame_ring(skb, tx_ring);
|
|
}
|