linux/drivers/powercap/dtpm_devfreq.c
Lukasz Luba 27d2c37e7d powercap/dtpm_devfreq: Use new Energy Model interface to get table
Energy Model framework support modifications at runtime of the power
values. Use the new EM table API which is protected with RCU. Align the
code so that this RCU read section is short.

This change is not expected to alter the general functionality.

Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2024-02-08 15:00:31 +01:00

211 lines
4.8 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright 2021 Linaro Limited
*
* Author: Daniel Lezcano <daniel.lezcano@linaro.org>
*
* The devfreq device combined with the energy model and the load can
* give an estimation of the power consumption as well as limiting the
* power.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/cpumask.h>
#include <linux/devfreq.h>
#include <linux/dtpm.h>
#include <linux/energy_model.h>
#include <linux/of.h>
#include <linux/pm_qos.h>
#include <linux/slab.h>
#include <linux/units.h>
struct dtpm_devfreq {
struct dtpm dtpm;
struct dev_pm_qos_request qos_req;
struct devfreq *devfreq;
};
static struct dtpm_devfreq *to_dtpm_devfreq(struct dtpm *dtpm)
{
return container_of(dtpm, struct dtpm_devfreq, dtpm);
}
static int update_pd_power_uw(struct dtpm *dtpm)
{
struct dtpm_devfreq *dtpm_devfreq = to_dtpm_devfreq(dtpm);
struct devfreq *devfreq = dtpm_devfreq->devfreq;
struct device *dev = devfreq->dev.parent;
struct em_perf_domain *pd = em_pd_get(dev);
struct em_perf_state *table;
rcu_read_lock();
table = em_perf_state_from_pd(pd);
dtpm->power_min = table[0].power;
dtpm->power_max = table[pd->nr_perf_states - 1].power;
rcu_read_unlock();
return 0;
}
static u64 set_pd_power_limit(struct dtpm *dtpm, u64 power_limit)
{
struct dtpm_devfreq *dtpm_devfreq = to_dtpm_devfreq(dtpm);
struct devfreq *devfreq = dtpm_devfreq->devfreq;
struct device *dev = devfreq->dev.parent;
struct em_perf_domain *pd = em_pd_get(dev);
struct em_perf_state *table;
unsigned long freq;
int i;
rcu_read_lock();
table = em_perf_state_from_pd(pd);
for (i = 0; i < pd->nr_perf_states; i++) {
if (table[i].power > power_limit)
break;
}
freq = table[i - 1].frequency;
power_limit = table[i - 1].power;
rcu_read_unlock();
dev_pm_qos_update_request(&dtpm_devfreq->qos_req, freq);
return power_limit;
}
static void _normalize_load(struct devfreq_dev_status *status)
{
if (status->total_time > 0xfffff) {
status->total_time >>= 10;
status->busy_time >>= 10;
}
status->busy_time <<= 10;
status->busy_time /= status->total_time ? : 1;
status->busy_time = status->busy_time ? : 1;
status->total_time = 1024;
}
static u64 get_pd_power_uw(struct dtpm *dtpm)
{
struct dtpm_devfreq *dtpm_devfreq = to_dtpm_devfreq(dtpm);
struct devfreq *devfreq = dtpm_devfreq->devfreq;
struct device *dev = devfreq->dev.parent;
struct em_perf_domain *pd = em_pd_get(dev);
struct devfreq_dev_status status;
struct em_perf_state *table;
unsigned long freq;
u64 power = 0;
int i;
mutex_lock(&devfreq->lock);
status = devfreq->last_status;
mutex_unlock(&devfreq->lock);
freq = DIV_ROUND_UP(status.current_frequency, HZ_PER_KHZ);
_normalize_load(&status);
rcu_read_lock();
table = em_perf_state_from_pd(pd);
for (i = 0; i < pd->nr_perf_states; i++) {
if (table[i].frequency < freq)
continue;
power = table[i].power;
power *= status.busy_time;
power >>= 10;
break;
}
rcu_read_unlock();
return power;
}
static void pd_release(struct dtpm *dtpm)
{
struct dtpm_devfreq *dtpm_devfreq = to_dtpm_devfreq(dtpm);
if (dev_pm_qos_request_active(&dtpm_devfreq->qos_req))
dev_pm_qos_remove_request(&dtpm_devfreq->qos_req);
kfree(dtpm_devfreq);
}
static struct dtpm_ops dtpm_ops = {
.set_power_uw = set_pd_power_limit,
.get_power_uw = get_pd_power_uw,
.update_power_uw = update_pd_power_uw,
.release = pd_release,
};
static int __dtpm_devfreq_setup(struct devfreq *devfreq, struct dtpm *parent)
{
struct device *dev = devfreq->dev.parent;
struct dtpm_devfreq *dtpm_devfreq;
struct em_perf_domain *pd;
int ret = -ENOMEM;
pd = em_pd_get(dev);
if (!pd) {
ret = dev_pm_opp_of_register_em(dev, NULL);
if (ret) {
pr_err("No energy model available for '%s'\n", dev_name(dev));
return -EINVAL;
}
}
dtpm_devfreq = kzalloc(sizeof(*dtpm_devfreq), GFP_KERNEL);
if (!dtpm_devfreq)
return -ENOMEM;
dtpm_init(&dtpm_devfreq->dtpm, &dtpm_ops);
dtpm_devfreq->devfreq = devfreq;
ret = dtpm_register(dev_name(dev), &dtpm_devfreq->dtpm, parent);
if (ret) {
pr_err("Failed to register '%s': %d\n", dev_name(dev), ret);
kfree(dtpm_devfreq);
return ret;
}
ret = dev_pm_qos_add_request(dev, &dtpm_devfreq->qos_req,
DEV_PM_QOS_MAX_FREQUENCY,
PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE);
if (ret) {
pr_err("Failed to add QoS request: %d\n", ret);
goto out_dtpm_unregister;
}
dtpm_update_power(&dtpm_devfreq->dtpm);
return 0;
out_dtpm_unregister:
dtpm_unregister(&dtpm_devfreq->dtpm);
return ret;
}
static int dtpm_devfreq_setup(struct dtpm *dtpm, struct device_node *np)
{
struct devfreq *devfreq;
devfreq = devfreq_get_devfreq_by_node(np);
if (IS_ERR(devfreq))
return 0;
return __dtpm_devfreq_setup(devfreq, dtpm);
}
struct dtpm_subsys_ops dtpm_devfreq_ops = {
.name = KBUILD_MODNAME,
.setup = dtpm_devfreq_setup,
};