mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-01 11:24:25 +08:00
551509d267
The base versions handle constant folding now. Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
3464 lines
85 KiB
C
3464 lines
85 KiB
C
/*
|
|
* amd5536.c -- AMD 5536 UDC high/full speed USB device controller
|
|
*
|
|
* Copyright (C) 2005-2007 AMD (http://www.amd.com)
|
|
* Author: Thomas Dahlmann
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
/*
|
|
* The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
|
|
* It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
|
|
* provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
|
|
*
|
|
* Make sure that UDC is assigned to port 4 by BIOS settings (port can also
|
|
* be used as host port) and UOC bits PAD_EN and APU are set (should be done
|
|
* by BIOS init).
|
|
*
|
|
* UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
|
|
* work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
|
|
* can be used with gadget ether.
|
|
*/
|
|
|
|
/* debug control */
|
|
/* #define UDC_VERBOSE */
|
|
|
|
/* Driver strings */
|
|
#define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
|
|
#define UDC_DRIVER_VERSION_STRING "01.00.0206 - $Revision: #3 $"
|
|
|
|
/* system */
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/init.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/list.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/ioctl.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/dmapool.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/device.h>
|
|
#include <linux/io.h>
|
|
#include <linux/irq.h>
|
|
|
|
#include <asm/byteorder.h>
|
|
#include <asm/system.h>
|
|
#include <asm/unaligned.h>
|
|
|
|
/* gadget stack */
|
|
#include <linux/usb/ch9.h>
|
|
#include <linux/usb/gadget.h>
|
|
|
|
/* udc specific */
|
|
#include "amd5536udc.h"
|
|
|
|
|
|
static void udc_tasklet_disconnect(unsigned long);
|
|
static void empty_req_queue(struct udc_ep *);
|
|
static int udc_probe(struct udc *dev);
|
|
static void udc_basic_init(struct udc *dev);
|
|
static void udc_setup_endpoints(struct udc *dev);
|
|
static void udc_soft_reset(struct udc *dev);
|
|
static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
|
|
static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
|
|
static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
|
|
static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
|
|
unsigned long buf_len, gfp_t gfp_flags);
|
|
static int udc_remote_wakeup(struct udc *dev);
|
|
static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
|
|
static void udc_pci_remove(struct pci_dev *pdev);
|
|
|
|
/* description */
|
|
static const char mod_desc[] = UDC_MOD_DESCRIPTION;
|
|
static const char name[] = "amd5536udc";
|
|
|
|
/* structure to hold endpoint function pointers */
|
|
static const struct usb_ep_ops udc_ep_ops;
|
|
|
|
/* received setup data */
|
|
static union udc_setup_data setup_data;
|
|
|
|
/* pointer to device object */
|
|
static struct udc *udc;
|
|
|
|
/* irq spin lock for soft reset */
|
|
static DEFINE_SPINLOCK(udc_irq_spinlock);
|
|
/* stall spin lock */
|
|
static DEFINE_SPINLOCK(udc_stall_spinlock);
|
|
|
|
/*
|
|
* slave mode: pending bytes in rx fifo after nyet,
|
|
* used if EPIN irq came but no req was available
|
|
*/
|
|
static unsigned int udc_rxfifo_pending;
|
|
|
|
/* count soft resets after suspend to avoid loop */
|
|
static int soft_reset_occured;
|
|
static int soft_reset_after_usbreset_occured;
|
|
|
|
/* timer */
|
|
static struct timer_list udc_timer;
|
|
static int stop_timer;
|
|
|
|
/* set_rde -- Is used to control enabling of RX DMA. Problem is
|
|
* that UDC has only one bit (RDE) to enable/disable RX DMA for
|
|
* all OUT endpoints. So we have to handle race conditions like
|
|
* when OUT data reaches the fifo but no request was queued yet.
|
|
* This cannot be solved by letting the RX DMA disabled until a
|
|
* request gets queued because there may be other OUT packets
|
|
* in the FIFO (important for not blocking control traffic).
|
|
* The value of set_rde controls the correspondig timer.
|
|
*
|
|
* set_rde -1 == not used, means it is alloed to be set to 0 or 1
|
|
* set_rde 0 == do not touch RDE, do no start the RDE timer
|
|
* set_rde 1 == timer function will look whether FIFO has data
|
|
* set_rde 2 == set by timer function to enable RX DMA on next call
|
|
*/
|
|
static int set_rde = -1;
|
|
|
|
static DECLARE_COMPLETION(on_exit);
|
|
static struct timer_list udc_pollstall_timer;
|
|
static int stop_pollstall_timer;
|
|
static DECLARE_COMPLETION(on_pollstall_exit);
|
|
|
|
/* tasklet for usb disconnect */
|
|
static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
|
|
(unsigned long) &udc);
|
|
|
|
|
|
/* endpoint names used for print */
|
|
static const char ep0_string[] = "ep0in";
|
|
static const char *ep_string[] = {
|
|
ep0_string,
|
|
"ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
|
|
"ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
|
|
"ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
|
|
"ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
|
|
"ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
|
|
"ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
|
|
"ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
|
|
};
|
|
|
|
/* DMA usage flag */
|
|
static int use_dma = 1;
|
|
/* packet per buffer dma */
|
|
static int use_dma_ppb = 1;
|
|
/* with per descr. update */
|
|
static int use_dma_ppb_du;
|
|
/* buffer fill mode */
|
|
static int use_dma_bufferfill_mode;
|
|
/* full speed only mode */
|
|
static int use_fullspeed;
|
|
/* tx buffer size for high speed */
|
|
static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
|
|
|
|
/* module parameters */
|
|
module_param(use_dma, bool, S_IRUGO);
|
|
MODULE_PARM_DESC(use_dma, "true for DMA");
|
|
module_param(use_dma_ppb, bool, S_IRUGO);
|
|
MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
|
|
module_param(use_dma_ppb_du, bool, S_IRUGO);
|
|
MODULE_PARM_DESC(use_dma_ppb_du,
|
|
"true for DMA in packet per buffer mode with descriptor update");
|
|
module_param(use_fullspeed, bool, S_IRUGO);
|
|
MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/* Prints UDC device registers and endpoint irq registers */
|
|
static void print_regs(struct udc *dev)
|
|
{
|
|
DBG(dev, "------- Device registers -------\n");
|
|
DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
|
|
DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
|
|
DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
|
|
DBG(dev, "\n");
|
|
DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
|
|
DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
|
|
DBG(dev, "\n");
|
|
DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
|
|
DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
|
|
DBG(dev, "\n");
|
|
DBG(dev, "USE DMA = %d\n", use_dma);
|
|
if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
|
|
DBG(dev, "DMA mode = PPBNDU (packet per buffer "
|
|
"WITHOUT desc. update)\n");
|
|
dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
|
|
} else if (use_dma && use_dma_ppb_du && use_dma_ppb_du) {
|
|
DBG(dev, "DMA mode = PPBDU (packet per buffer "
|
|
"WITH desc. update)\n");
|
|
dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
|
|
}
|
|
if (use_dma && use_dma_bufferfill_mode) {
|
|
DBG(dev, "DMA mode = BF (buffer fill mode)\n");
|
|
dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
|
|
}
|
|
if (!use_dma) {
|
|
dev_info(&dev->pdev->dev, "FIFO mode\n");
|
|
}
|
|
DBG(dev, "-------------------------------------------------------\n");
|
|
}
|
|
|
|
/* Masks unused interrupts */
|
|
static int udc_mask_unused_interrupts(struct udc *dev)
|
|
{
|
|
u32 tmp;
|
|
|
|
/* mask all dev interrupts */
|
|
tmp = AMD_BIT(UDC_DEVINT_SVC) |
|
|
AMD_BIT(UDC_DEVINT_ENUM) |
|
|
AMD_BIT(UDC_DEVINT_US) |
|
|
AMD_BIT(UDC_DEVINT_UR) |
|
|
AMD_BIT(UDC_DEVINT_ES) |
|
|
AMD_BIT(UDC_DEVINT_SI) |
|
|
AMD_BIT(UDC_DEVINT_SOF)|
|
|
AMD_BIT(UDC_DEVINT_SC);
|
|
writel(tmp, &dev->regs->irqmsk);
|
|
|
|
/* mask all ep interrupts */
|
|
writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Enables endpoint 0 interrupts */
|
|
static int udc_enable_ep0_interrupts(struct udc *dev)
|
|
{
|
|
u32 tmp;
|
|
|
|
DBG(dev, "udc_enable_ep0_interrupts()\n");
|
|
|
|
/* read irq mask */
|
|
tmp = readl(&dev->regs->ep_irqmsk);
|
|
/* enable ep0 irq's */
|
|
tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
|
|
& AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
|
|
writel(tmp, &dev->regs->ep_irqmsk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Enables device interrupts for SET_INTF and SET_CONFIG */
|
|
static int udc_enable_dev_setup_interrupts(struct udc *dev)
|
|
{
|
|
u32 tmp;
|
|
|
|
DBG(dev, "enable device interrupts for setup data\n");
|
|
|
|
/* read irq mask */
|
|
tmp = readl(&dev->regs->irqmsk);
|
|
|
|
/* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
|
|
tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
|
|
& AMD_UNMASK_BIT(UDC_DEVINT_SC)
|
|
& AMD_UNMASK_BIT(UDC_DEVINT_UR)
|
|
& AMD_UNMASK_BIT(UDC_DEVINT_SVC)
|
|
& AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
|
|
writel(tmp, &dev->regs->irqmsk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Calculates fifo start of endpoint based on preceeding endpoints */
|
|
static int udc_set_txfifo_addr(struct udc_ep *ep)
|
|
{
|
|
struct udc *dev;
|
|
u32 tmp;
|
|
int i;
|
|
|
|
if (!ep || !(ep->in))
|
|
return -EINVAL;
|
|
|
|
dev = ep->dev;
|
|
ep->txfifo = dev->txfifo;
|
|
|
|
/* traverse ep's */
|
|
for (i = 0; i < ep->num; i++) {
|
|
if (dev->ep[i].regs) {
|
|
/* read fifo size */
|
|
tmp = readl(&dev->ep[i].regs->bufin_framenum);
|
|
tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
|
|
ep->txfifo += tmp;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
|
|
static u32 cnak_pending;
|
|
|
|
static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
|
|
{
|
|
if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
|
|
DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
|
|
cnak_pending |= 1 << (num);
|
|
ep->naking = 1;
|
|
} else
|
|
cnak_pending = cnak_pending & (~(1 << (num)));
|
|
}
|
|
|
|
|
|
/* Enables endpoint, is called by gadget driver */
|
|
static int
|
|
udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
|
|
{
|
|
struct udc_ep *ep;
|
|
struct udc *dev;
|
|
u32 tmp;
|
|
unsigned long iflags;
|
|
u8 udc_csr_epix;
|
|
unsigned maxpacket;
|
|
|
|
if (!usbep
|
|
|| usbep->name == ep0_string
|
|
|| !desc
|
|
|| desc->bDescriptorType != USB_DT_ENDPOINT)
|
|
return -EINVAL;
|
|
|
|
ep = container_of(usbep, struct udc_ep, ep);
|
|
dev = ep->dev;
|
|
|
|
DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
|
|
|
|
if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
|
|
return -ESHUTDOWN;
|
|
|
|
spin_lock_irqsave(&dev->lock, iflags);
|
|
ep->desc = desc;
|
|
|
|
ep->halted = 0;
|
|
|
|
/* set traffic type */
|
|
tmp = readl(&dev->ep[ep->num].regs->ctl);
|
|
tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
|
|
writel(tmp, &dev->ep[ep->num].regs->ctl);
|
|
|
|
/* set max packet size */
|
|
maxpacket = le16_to_cpu(desc->wMaxPacketSize);
|
|
tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
|
|
tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
|
|
ep->ep.maxpacket = maxpacket;
|
|
writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
|
|
|
|
/* IN ep */
|
|
if (ep->in) {
|
|
|
|
/* ep ix in UDC CSR register space */
|
|
udc_csr_epix = ep->num;
|
|
|
|
/* set buffer size (tx fifo entries) */
|
|
tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
|
|
/* double buffering: fifo size = 2 x max packet size */
|
|
tmp = AMD_ADDBITS(
|
|
tmp,
|
|
maxpacket * UDC_EPIN_BUFF_SIZE_MULT
|
|
/ UDC_DWORD_BYTES,
|
|
UDC_EPIN_BUFF_SIZE);
|
|
writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
|
|
|
|
/* calc. tx fifo base addr */
|
|
udc_set_txfifo_addr(ep);
|
|
|
|
/* flush fifo */
|
|
tmp = readl(&ep->regs->ctl);
|
|
tmp |= AMD_BIT(UDC_EPCTL_F);
|
|
writel(tmp, &ep->regs->ctl);
|
|
|
|
/* OUT ep */
|
|
} else {
|
|
/* ep ix in UDC CSR register space */
|
|
udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
|
|
|
|
/* set max packet size UDC CSR */
|
|
tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
|
|
tmp = AMD_ADDBITS(tmp, maxpacket,
|
|
UDC_CSR_NE_MAX_PKT);
|
|
writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
|
|
|
|
if (use_dma && !ep->in) {
|
|
/* alloc and init BNA dummy request */
|
|
ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
|
|
ep->bna_occurred = 0;
|
|
}
|
|
|
|
if (ep->num != UDC_EP0OUT_IX)
|
|
dev->data_ep_enabled = 1;
|
|
}
|
|
|
|
/* set ep values */
|
|
tmp = readl(&dev->csr->ne[udc_csr_epix]);
|
|
/* max packet */
|
|
tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
|
|
/* ep number */
|
|
tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
|
|
/* ep direction */
|
|
tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
|
|
/* ep type */
|
|
tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
|
|
/* ep config */
|
|
tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
|
|
/* ep interface */
|
|
tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
|
|
/* ep alt */
|
|
tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
|
|
/* write reg */
|
|
writel(tmp, &dev->csr->ne[udc_csr_epix]);
|
|
|
|
/* enable ep irq */
|
|
tmp = readl(&dev->regs->ep_irqmsk);
|
|
tmp &= AMD_UNMASK_BIT(ep->num);
|
|
writel(tmp, &dev->regs->ep_irqmsk);
|
|
|
|
/*
|
|
* clear NAK by writing CNAK
|
|
* avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
|
|
*/
|
|
if (!use_dma || ep->in) {
|
|
tmp = readl(&ep->regs->ctl);
|
|
tmp |= AMD_BIT(UDC_EPCTL_CNAK);
|
|
writel(tmp, &ep->regs->ctl);
|
|
ep->naking = 0;
|
|
UDC_QUEUE_CNAK(ep, ep->num);
|
|
}
|
|
tmp = desc->bEndpointAddress;
|
|
DBG(dev, "%s enabled\n", usbep->name);
|
|
|
|
spin_unlock_irqrestore(&dev->lock, iflags);
|
|
return 0;
|
|
}
|
|
|
|
/* Resets endpoint */
|
|
static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
|
|
{
|
|
u32 tmp;
|
|
|
|
VDBG(ep->dev, "ep-%d reset\n", ep->num);
|
|
ep->desc = NULL;
|
|
ep->ep.ops = &udc_ep_ops;
|
|
INIT_LIST_HEAD(&ep->queue);
|
|
|
|
ep->ep.maxpacket = (u16) ~0;
|
|
/* set NAK */
|
|
tmp = readl(&ep->regs->ctl);
|
|
tmp |= AMD_BIT(UDC_EPCTL_SNAK);
|
|
writel(tmp, &ep->regs->ctl);
|
|
ep->naking = 1;
|
|
|
|
/* disable interrupt */
|
|
tmp = readl(®s->ep_irqmsk);
|
|
tmp |= AMD_BIT(ep->num);
|
|
writel(tmp, ®s->ep_irqmsk);
|
|
|
|
if (ep->in) {
|
|
/* unset P and IN bit of potential former DMA */
|
|
tmp = readl(&ep->regs->ctl);
|
|
tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
|
|
writel(tmp, &ep->regs->ctl);
|
|
|
|
tmp = readl(&ep->regs->sts);
|
|
tmp |= AMD_BIT(UDC_EPSTS_IN);
|
|
writel(tmp, &ep->regs->sts);
|
|
|
|
/* flush the fifo */
|
|
tmp = readl(&ep->regs->ctl);
|
|
tmp |= AMD_BIT(UDC_EPCTL_F);
|
|
writel(tmp, &ep->regs->ctl);
|
|
|
|
}
|
|
/* reset desc pointer */
|
|
writel(0, &ep->regs->desptr);
|
|
}
|
|
|
|
/* Disables endpoint, is called by gadget driver */
|
|
static int udc_ep_disable(struct usb_ep *usbep)
|
|
{
|
|
struct udc_ep *ep = NULL;
|
|
unsigned long iflags;
|
|
|
|
if (!usbep)
|
|
return -EINVAL;
|
|
|
|
ep = container_of(usbep, struct udc_ep, ep);
|
|
if (usbep->name == ep0_string || !ep->desc)
|
|
return -EINVAL;
|
|
|
|
DBG(ep->dev, "Disable ep-%d\n", ep->num);
|
|
|
|
spin_lock_irqsave(&ep->dev->lock, iflags);
|
|
udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
|
|
empty_req_queue(ep);
|
|
ep_init(ep->dev->regs, ep);
|
|
spin_unlock_irqrestore(&ep->dev->lock, iflags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Allocates request packet, called by gadget driver */
|
|
static struct usb_request *
|
|
udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
|
|
{
|
|
struct udc_request *req;
|
|
struct udc_data_dma *dma_desc;
|
|
struct udc_ep *ep;
|
|
|
|
if (!usbep)
|
|
return NULL;
|
|
|
|
ep = container_of(usbep, struct udc_ep, ep);
|
|
|
|
VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
|
|
req = kzalloc(sizeof(struct udc_request), gfp);
|
|
if (!req)
|
|
return NULL;
|
|
|
|
req->req.dma = DMA_DONT_USE;
|
|
INIT_LIST_HEAD(&req->queue);
|
|
|
|
if (ep->dma) {
|
|
/* ep0 in requests are allocated from data pool here */
|
|
dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
|
|
&req->td_phys);
|
|
if (!dma_desc) {
|
|
kfree(req);
|
|
return NULL;
|
|
}
|
|
|
|
VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
|
|
"td_phys = %lx\n",
|
|
req, dma_desc,
|
|
(unsigned long)req->td_phys);
|
|
/* prevent from using desc. - set HOST BUSY */
|
|
dma_desc->status = AMD_ADDBITS(dma_desc->status,
|
|
UDC_DMA_STP_STS_BS_HOST_BUSY,
|
|
UDC_DMA_STP_STS_BS);
|
|
dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
|
|
req->td_data = dma_desc;
|
|
req->td_data_last = NULL;
|
|
req->chain_len = 1;
|
|
}
|
|
|
|
return &req->req;
|
|
}
|
|
|
|
/* Frees request packet, called by gadget driver */
|
|
static void
|
|
udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
|
|
{
|
|
struct udc_ep *ep;
|
|
struct udc_request *req;
|
|
|
|
if (!usbep || !usbreq)
|
|
return;
|
|
|
|
ep = container_of(usbep, struct udc_ep, ep);
|
|
req = container_of(usbreq, struct udc_request, req);
|
|
VDBG(ep->dev, "free_req req=%p\n", req);
|
|
BUG_ON(!list_empty(&req->queue));
|
|
if (req->td_data) {
|
|
VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
|
|
|
|
/* free dma chain if created */
|
|
if (req->chain_len > 1) {
|
|
udc_free_dma_chain(ep->dev, req);
|
|
}
|
|
|
|
pci_pool_free(ep->dev->data_requests, req->td_data,
|
|
req->td_phys);
|
|
}
|
|
kfree(req);
|
|
}
|
|
|
|
/* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
|
|
static void udc_init_bna_dummy(struct udc_request *req)
|
|
{
|
|
if (req) {
|
|
/* set last bit */
|
|
req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
|
|
/* set next pointer to itself */
|
|
req->td_data->next = req->td_phys;
|
|
/* set HOST BUSY */
|
|
req->td_data->status
|
|
= AMD_ADDBITS(req->td_data->status,
|
|
UDC_DMA_STP_STS_BS_DMA_DONE,
|
|
UDC_DMA_STP_STS_BS);
|
|
#ifdef UDC_VERBOSE
|
|
pr_debug("bna desc = %p, sts = %08x\n",
|
|
req->td_data, req->td_data->status);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* Allocate BNA dummy descriptor */
|
|
static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
|
|
{
|
|
struct udc_request *req = NULL;
|
|
struct usb_request *_req = NULL;
|
|
|
|
/* alloc the dummy request */
|
|
_req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
|
|
if (_req) {
|
|
req = container_of(_req, struct udc_request, req);
|
|
ep->bna_dummy_req = req;
|
|
udc_init_bna_dummy(req);
|
|
}
|
|
return req;
|
|
}
|
|
|
|
/* Write data to TX fifo for IN packets */
|
|
static void
|
|
udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
|
|
{
|
|
u8 *req_buf;
|
|
u32 *buf;
|
|
int i, j;
|
|
unsigned bytes = 0;
|
|
unsigned remaining = 0;
|
|
|
|
if (!req || !ep)
|
|
return;
|
|
|
|
req_buf = req->buf + req->actual;
|
|
prefetch(req_buf);
|
|
remaining = req->length - req->actual;
|
|
|
|
buf = (u32 *) req_buf;
|
|
|
|
bytes = ep->ep.maxpacket;
|
|
if (bytes > remaining)
|
|
bytes = remaining;
|
|
|
|
/* dwords first */
|
|
for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
|
|
writel(*(buf + i), ep->txfifo);
|
|
}
|
|
|
|
/* remaining bytes must be written by byte access */
|
|
for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
|
|
writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
|
|
ep->txfifo);
|
|
}
|
|
|
|
/* dummy write confirm */
|
|
writel(0, &ep->regs->confirm);
|
|
}
|
|
|
|
/* Read dwords from RX fifo for OUT transfers */
|
|
static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
|
|
{
|
|
int i;
|
|
|
|
VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
|
|
|
|
for (i = 0; i < dwords; i++) {
|
|
*(buf + i) = readl(dev->rxfifo);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Read bytes from RX fifo for OUT transfers */
|
|
static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
|
|
{
|
|
int i, j;
|
|
u32 tmp;
|
|
|
|
VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
|
|
|
|
/* dwords first */
|
|
for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
|
|
*((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
|
|
}
|
|
|
|
/* remaining bytes must be read by byte access */
|
|
if (bytes % UDC_DWORD_BYTES) {
|
|
tmp = readl(dev->rxfifo);
|
|
for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
|
|
*(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
|
|
tmp = tmp >> UDC_BITS_PER_BYTE;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Read data from RX fifo for OUT transfers */
|
|
static int
|
|
udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
|
|
{
|
|
u8 *buf;
|
|
unsigned buf_space;
|
|
unsigned bytes = 0;
|
|
unsigned finished = 0;
|
|
|
|
/* received number bytes */
|
|
bytes = readl(&ep->regs->sts);
|
|
bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
|
|
|
|
buf_space = req->req.length - req->req.actual;
|
|
buf = req->req.buf + req->req.actual;
|
|
if (bytes > buf_space) {
|
|
if ((buf_space % ep->ep.maxpacket) != 0) {
|
|
DBG(ep->dev,
|
|
"%s: rx %d bytes, rx-buf space = %d bytesn\n",
|
|
ep->ep.name, bytes, buf_space);
|
|
req->req.status = -EOVERFLOW;
|
|
}
|
|
bytes = buf_space;
|
|
}
|
|
req->req.actual += bytes;
|
|
|
|
/* last packet ? */
|
|
if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
|
|
|| ((req->req.actual == req->req.length) && !req->req.zero))
|
|
finished = 1;
|
|
|
|
/* read rx fifo bytes */
|
|
VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
|
|
udc_rxfifo_read_bytes(ep->dev, buf, bytes);
|
|
|
|
return finished;
|
|
}
|
|
|
|
/* create/re-init a DMA descriptor or a DMA descriptor chain */
|
|
static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
|
|
{
|
|
int retval = 0;
|
|
u32 tmp;
|
|
|
|
VDBG(ep->dev, "prep_dma\n");
|
|
VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
|
|
ep->num, req->td_data);
|
|
|
|
/* set buffer pointer */
|
|
req->td_data->bufptr = req->req.dma;
|
|
|
|
/* set last bit */
|
|
req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
|
|
|
|
/* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
|
|
if (use_dma_ppb) {
|
|
|
|
retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
|
|
if (retval != 0) {
|
|
if (retval == -ENOMEM)
|
|
DBG(ep->dev, "Out of DMA memory\n");
|
|
return retval;
|
|
}
|
|
if (ep->in) {
|
|
if (req->req.length == ep->ep.maxpacket) {
|
|
/* write tx bytes */
|
|
req->td_data->status =
|
|
AMD_ADDBITS(req->td_data->status,
|
|
ep->ep.maxpacket,
|
|
UDC_DMA_IN_STS_TXBYTES);
|
|
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
if (ep->in) {
|
|
VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
|
|
"maxpacket=%d ep%d\n",
|
|
use_dma_ppb, req->req.length,
|
|
ep->ep.maxpacket, ep->num);
|
|
/*
|
|
* if bytes < max packet then tx bytes must
|
|
* be written in packet per buffer mode
|
|
*/
|
|
if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
|
|
|| ep->num == UDC_EP0OUT_IX
|
|
|| ep->num == UDC_EP0IN_IX) {
|
|
/* write tx bytes */
|
|
req->td_data->status =
|
|
AMD_ADDBITS(req->td_data->status,
|
|
req->req.length,
|
|
UDC_DMA_IN_STS_TXBYTES);
|
|
/* reset frame num */
|
|
req->td_data->status =
|
|
AMD_ADDBITS(req->td_data->status,
|
|
0,
|
|
UDC_DMA_IN_STS_FRAMENUM);
|
|
}
|
|
/* set HOST BUSY */
|
|
req->td_data->status =
|
|
AMD_ADDBITS(req->td_data->status,
|
|
UDC_DMA_STP_STS_BS_HOST_BUSY,
|
|
UDC_DMA_STP_STS_BS);
|
|
} else {
|
|
VDBG(ep->dev, "OUT set host ready\n");
|
|
/* set HOST READY */
|
|
req->td_data->status =
|
|
AMD_ADDBITS(req->td_data->status,
|
|
UDC_DMA_STP_STS_BS_HOST_READY,
|
|
UDC_DMA_STP_STS_BS);
|
|
|
|
|
|
/* clear NAK by writing CNAK */
|
|
if (ep->naking) {
|
|
tmp = readl(&ep->regs->ctl);
|
|
tmp |= AMD_BIT(UDC_EPCTL_CNAK);
|
|
writel(tmp, &ep->regs->ctl);
|
|
ep->naking = 0;
|
|
UDC_QUEUE_CNAK(ep, ep->num);
|
|
}
|
|
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/* Completes request packet ... caller MUST hold lock */
|
|
static void
|
|
complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
|
|
__releases(ep->dev->lock)
|
|
__acquires(ep->dev->lock)
|
|
{
|
|
struct udc *dev;
|
|
unsigned halted;
|
|
|
|
VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
|
|
|
|
dev = ep->dev;
|
|
/* unmap DMA */
|
|
if (req->dma_mapping) {
|
|
if (ep->in)
|
|
pci_unmap_single(dev->pdev,
|
|
req->req.dma,
|
|
req->req.length,
|
|
PCI_DMA_TODEVICE);
|
|
else
|
|
pci_unmap_single(dev->pdev,
|
|
req->req.dma,
|
|
req->req.length,
|
|
PCI_DMA_FROMDEVICE);
|
|
req->dma_mapping = 0;
|
|
req->req.dma = DMA_DONT_USE;
|
|
}
|
|
|
|
halted = ep->halted;
|
|
ep->halted = 1;
|
|
|
|
/* set new status if pending */
|
|
if (req->req.status == -EINPROGRESS)
|
|
req->req.status = sts;
|
|
|
|
/* remove from ep queue */
|
|
list_del_init(&req->queue);
|
|
|
|
VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
|
|
&req->req, req->req.length, ep->ep.name, sts);
|
|
|
|
spin_unlock(&dev->lock);
|
|
req->req.complete(&ep->ep, &req->req);
|
|
spin_lock(&dev->lock);
|
|
ep->halted = halted;
|
|
}
|
|
|
|
/* frees pci pool descriptors of a DMA chain */
|
|
static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
|
|
{
|
|
|
|
int ret_val = 0;
|
|
struct udc_data_dma *td;
|
|
struct udc_data_dma *td_last = NULL;
|
|
unsigned int i;
|
|
|
|
DBG(dev, "free chain req = %p\n", req);
|
|
|
|
/* do not free first desc., will be done by free for request */
|
|
td_last = req->td_data;
|
|
td = phys_to_virt(td_last->next);
|
|
|
|
for (i = 1; i < req->chain_len; i++) {
|
|
|
|
pci_pool_free(dev->data_requests, td,
|
|
(dma_addr_t) td_last->next);
|
|
td_last = td;
|
|
td = phys_to_virt(td_last->next);
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/* Iterates to the end of a DMA chain and returns last descriptor */
|
|
static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
|
|
{
|
|
struct udc_data_dma *td;
|
|
|
|
td = req->td_data;
|
|
while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
|
|
td = phys_to_virt(td->next);
|
|
}
|
|
|
|
return td;
|
|
|
|
}
|
|
|
|
/* Iterates to the end of a DMA chain and counts bytes received */
|
|
static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
|
|
{
|
|
struct udc_data_dma *td;
|
|
u32 count;
|
|
|
|
td = req->td_data;
|
|
/* received number bytes */
|
|
count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
|
|
|
|
while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
|
|
td = phys_to_virt(td->next);
|
|
/* received number bytes */
|
|
if (td) {
|
|
count += AMD_GETBITS(td->status,
|
|
UDC_DMA_OUT_STS_RXBYTES);
|
|
}
|
|
}
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
/* Creates or re-inits a DMA chain */
|
|
static int udc_create_dma_chain(
|
|
struct udc_ep *ep,
|
|
struct udc_request *req,
|
|
unsigned long buf_len, gfp_t gfp_flags
|
|
)
|
|
{
|
|
unsigned long bytes = req->req.length;
|
|
unsigned int i;
|
|
dma_addr_t dma_addr;
|
|
struct udc_data_dma *td = NULL;
|
|
struct udc_data_dma *last = NULL;
|
|
unsigned long txbytes;
|
|
unsigned create_new_chain = 0;
|
|
unsigned len;
|
|
|
|
VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
|
|
bytes, buf_len);
|
|
dma_addr = DMA_DONT_USE;
|
|
|
|
/* unset L bit in first desc for OUT */
|
|
if (!ep->in) {
|
|
req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
|
|
}
|
|
|
|
/* alloc only new desc's if not already available */
|
|
len = req->req.length / ep->ep.maxpacket;
|
|
if (req->req.length % ep->ep.maxpacket) {
|
|
len++;
|
|
}
|
|
|
|
if (len > req->chain_len) {
|
|
/* shorter chain already allocated before */
|
|
if (req->chain_len > 1) {
|
|
udc_free_dma_chain(ep->dev, req);
|
|
}
|
|
req->chain_len = len;
|
|
create_new_chain = 1;
|
|
}
|
|
|
|
td = req->td_data;
|
|
/* gen. required number of descriptors and buffers */
|
|
for (i = buf_len; i < bytes; i += buf_len) {
|
|
/* create or determine next desc. */
|
|
if (create_new_chain) {
|
|
|
|
td = pci_pool_alloc(ep->dev->data_requests,
|
|
gfp_flags, &dma_addr);
|
|
if (!td)
|
|
return -ENOMEM;
|
|
|
|
td->status = 0;
|
|
} else if (i == buf_len) {
|
|
/* first td */
|
|
td = (struct udc_data_dma *) phys_to_virt(
|
|
req->td_data->next);
|
|
td->status = 0;
|
|
} else {
|
|
td = (struct udc_data_dma *) phys_to_virt(last->next);
|
|
td->status = 0;
|
|
}
|
|
|
|
|
|
if (td)
|
|
td->bufptr = req->req.dma + i; /* assign buffer */
|
|
else
|
|
break;
|
|
|
|
/* short packet ? */
|
|
if ((bytes - i) >= buf_len) {
|
|
txbytes = buf_len;
|
|
} else {
|
|
/* short packet */
|
|
txbytes = bytes - i;
|
|
}
|
|
|
|
/* link td and assign tx bytes */
|
|
if (i == buf_len) {
|
|
if (create_new_chain) {
|
|
req->td_data->next = dma_addr;
|
|
} else {
|
|
/* req->td_data->next = virt_to_phys(td); */
|
|
}
|
|
/* write tx bytes */
|
|
if (ep->in) {
|
|
/* first desc */
|
|
req->td_data->status =
|
|
AMD_ADDBITS(req->td_data->status,
|
|
ep->ep.maxpacket,
|
|
UDC_DMA_IN_STS_TXBYTES);
|
|
/* second desc */
|
|
td->status = AMD_ADDBITS(td->status,
|
|
txbytes,
|
|
UDC_DMA_IN_STS_TXBYTES);
|
|
}
|
|
} else {
|
|
if (create_new_chain) {
|
|
last->next = dma_addr;
|
|
} else {
|
|
/* last->next = virt_to_phys(td); */
|
|
}
|
|
if (ep->in) {
|
|
/* write tx bytes */
|
|
td->status = AMD_ADDBITS(td->status,
|
|
txbytes,
|
|
UDC_DMA_IN_STS_TXBYTES);
|
|
}
|
|
}
|
|
last = td;
|
|
}
|
|
/* set last bit */
|
|
if (td) {
|
|
td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
|
|
/* last desc. points to itself */
|
|
req->td_data_last = td;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Enabling RX DMA */
|
|
static void udc_set_rde(struct udc *dev)
|
|
{
|
|
u32 tmp;
|
|
|
|
VDBG(dev, "udc_set_rde()\n");
|
|
/* stop RDE timer */
|
|
if (timer_pending(&udc_timer)) {
|
|
set_rde = 0;
|
|
mod_timer(&udc_timer, jiffies - 1);
|
|
}
|
|
/* set RDE */
|
|
tmp = readl(&dev->regs->ctl);
|
|
tmp |= AMD_BIT(UDC_DEVCTL_RDE);
|
|
writel(tmp, &dev->regs->ctl);
|
|
}
|
|
|
|
/* Queues a request packet, called by gadget driver */
|
|
static int
|
|
udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
|
|
{
|
|
int retval = 0;
|
|
u8 open_rxfifo = 0;
|
|
unsigned long iflags;
|
|
struct udc_ep *ep;
|
|
struct udc_request *req;
|
|
struct udc *dev;
|
|
u32 tmp;
|
|
|
|
/* check the inputs */
|
|
req = container_of(usbreq, struct udc_request, req);
|
|
|
|
if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
|
|
|| !list_empty(&req->queue))
|
|
return -EINVAL;
|
|
|
|
ep = container_of(usbep, struct udc_ep, ep);
|
|
if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
|
|
return -EINVAL;
|
|
|
|
VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
|
|
dev = ep->dev;
|
|
|
|
if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
|
|
return -ESHUTDOWN;
|
|
|
|
/* map dma (usually done before) */
|
|
if (ep->dma && usbreq->length != 0
|
|
&& (usbreq->dma == DMA_DONT_USE || usbreq->dma == 0)) {
|
|
VDBG(dev, "DMA map req %p\n", req);
|
|
if (ep->in)
|
|
usbreq->dma = pci_map_single(dev->pdev,
|
|
usbreq->buf,
|
|
usbreq->length,
|
|
PCI_DMA_TODEVICE);
|
|
else
|
|
usbreq->dma = pci_map_single(dev->pdev,
|
|
usbreq->buf,
|
|
usbreq->length,
|
|
PCI_DMA_FROMDEVICE);
|
|
req->dma_mapping = 1;
|
|
}
|
|
|
|
VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
|
|
usbep->name, usbreq, usbreq->length,
|
|
req->td_data, usbreq->buf);
|
|
|
|
spin_lock_irqsave(&dev->lock, iflags);
|
|
usbreq->actual = 0;
|
|
usbreq->status = -EINPROGRESS;
|
|
req->dma_done = 0;
|
|
|
|
/* on empty queue just do first transfer */
|
|
if (list_empty(&ep->queue)) {
|
|
/* zlp */
|
|
if (usbreq->length == 0) {
|
|
/* IN zlp's are handled by hardware */
|
|
complete_req(ep, req, 0);
|
|
VDBG(dev, "%s: zlp\n", ep->ep.name);
|
|
/*
|
|
* if set_config or set_intf is waiting for ack by zlp
|
|
* then set CSR_DONE
|
|
*/
|
|
if (dev->set_cfg_not_acked) {
|
|
tmp = readl(&dev->regs->ctl);
|
|
tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
|
|
writel(tmp, &dev->regs->ctl);
|
|
dev->set_cfg_not_acked = 0;
|
|
}
|
|
/* setup command is ACK'ed now by zlp */
|
|
if (dev->waiting_zlp_ack_ep0in) {
|
|
/* clear NAK by writing CNAK in EP0_IN */
|
|
tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
|
|
tmp |= AMD_BIT(UDC_EPCTL_CNAK);
|
|
writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
|
|
dev->ep[UDC_EP0IN_IX].naking = 0;
|
|
UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
|
|
UDC_EP0IN_IX);
|
|
dev->waiting_zlp_ack_ep0in = 0;
|
|
}
|
|
goto finished;
|
|
}
|
|
if (ep->dma) {
|
|
retval = prep_dma(ep, req, gfp);
|
|
if (retval != 0)
|
|
goto finished;
|
|
/* write desc pointer to enable DMA */
|
|
if (ep->in) {
|
|
/* set HOST READY */
|
|
req->td_data->status =
|
|
AMD_ADDBITS(req->td_data->status,
|
|
UDC_DMA_IN_STS_BS_HOST_READY,
|
|
UDC_DMA_IN_STS_BS);
|
|
}
|
|
|
|
/* disabled rx dma while descriptor update */
|
|
if (!ep->in) {
|
|
/* stop RDE timer */
|
|
if (timer_pending(&udc_timer)) {
|
|
set_rde = 0;
|
|
mod_timer(&udc_timer, jiffies - 1);
|
|
}
|
|
/* clear RDE */
|
|
tmp = readl(&dev->regs->ctl);
|
|
tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
|
|
writel(tmp, &dev->regs->ctl);
|
|
open_rxfifo = 1;
|
|
|
|
/*
|
|
* if BNA occurred then let BNA dummy desc.
|
|
* point to current desc.
|
|
*/
|
|
if (ep->bna_occurred) {
|
|
VDBG(dev, "copy to BNA dummy desc.\n");
|
|
memcpy(ep->bna_dummy_req->td_data,
|
|
req->td_data,
|
|
sizeof(struct udc_data_dma));
|
|
}
|
|
}
|
|
/* write desc pointer */
|
|
writel(req->td_phys, &ep->regs->desptr);
|
|
|
|
/* clear NAK by writing CNAK */
|
|
if (ep->naking) {
|
|
tmp = readl(&ep->regs->ctl);
|
|
tmp |= AMD_BIT(UDC_EPCTL_CNAK);
|
|
writel(tmp, &ep->regs->ctl);
|
|
ep->naking = 0;
|
|
UDC_QUEUE_CNAK(ep, ep->num);
|
|
}
|
|
|
|
if (ep->in) {
|
|
/* enable ep irq */
|
|
tmp = readl(&dev->regs->ep_irqmsk);
|
|
tmp &= AMD_UNMASK_BIT(ep->num);
|
|
writel(tmp, &dev->regs->ep_irqmsk);
|
|
}
|
|
}
|
|
|
|
} else if (ep->dma) {
|
|
|
|
/*
|
|
* prep_dma not used for OUT ep's, this is not possible
|
|
* for PPB modes, because of chain creation reasons
|
|
*/
|
|
if (ep->in) {
|
|
retval = prep_dma(ep, req, gfp);
|
|
if (retval != 0)
|
|
goto finished;
|
|
}
|
|
}
|
|
VDBG(dev, "list_add\n");
|
|
/* add request to ep queue */
|
|
if (req) {
|
|
|
|
list_add_tail(&req->queue, &ep->queue);
|
|
|
|
/* open rxfifo if out data queued */
|
|
if (open_rxfifo) {
|
|
/* enable DMA */
|
|
req->dma_going = 1;
|
|
udc_set_rde(dev);
|
|
if (ep->num != UDC_EP0OUT_IX)
|
|
dev->data_ep_queued = 1;
|
|
}
|
|
/* stop OUT naking */
|
|
if (!ep->in) {
|
|
if (!use_dma && udc_rxfifo_pending) {
|
|
DBG(dev, "udc_queue(): pending bytes in "
|
|
"rxfifo after nyet\n");
|
|
/*
|
|
* read pending bytes afer nyet:
|
|
* referring to isr
|
|
*/
|
|
if (udc_rxfifo_read(ep, req)) {
|
|
/* finish */
|
|
complete_req(ep, req, 0);
|
|
}
|
|
udc_rxfifo_pending = 0;
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
finished:
|
|
spin_unlock_irqrestore(&dev->lock, iflags);
|
|
return retval;
|
|
}
|
|
|
|
/* Empty request queue of an endpoint; caller holds spinlock */
|
|
static void empty_req_queue(struct udc_ep *ep)
|
|
{
|
|
struct udc_request *req;
|
|
|
|
ep->halted = 1;
|
|
while (!list_empty(&ep->queue)) {
|
|
req = list_entry(ep->queue.next,
|
|
struct udc_request,
|
|
queue);
|
|
complete_req(ep, req, -ESHUTDOWN);
|
|
}
|
|
}
|
|
|
|
/* Dequeues a request packet, called by gadget driver */
|
|
static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
|
|
{
|
|
struct udc_ep *ep;
|
|
struct udc_request *req;
|
|
unsigned halted;
|
|
unsigned long iflags;
|
|
|
|
ep = container_of(usbep, struct udc_ep, ep);
|
|
if (!usbep || !usbreq || (!ep->desc && (ep->num != 0
|
|
&& ep->num != UDC_EP0OUT_IX)))
|
|
return -EINVAL;
|
|
|
|
req = container_of(usbreq, struct udc_request, req);
|
|
|
|
spin_lock_irqsave(&ep->dev->lock, iflags);
|
|
halted = ep->halted;
|
|
ep->halted = 1;
|
|
/* request in processing or next one */
|
|
if (ep->queue.next == &req->queue) {
|
|
if (ep->dma && req->dma_going) {
|
|
if (ep->in)
|
|
ep->cancel_transfer = 1;
|
|
else {
|
|
u32 tmp;
|
|
u32 dma_sts;
|
|
/* stop potential receive DMA */
|
|
tmp = readl(&udc->regs->ctl);
|
|
writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
|
|
&udc->regs->ctl);
|
|
/*
|
|
* Cancel transfer later in ISR
|
|
* if descriptor was touched.
|
|
*/
|
|
dma_sts = AMD_GETBITS(req->td_data->status,
|
|
UDC_DMA_OUT_STS_BS);
|
|
if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
|
|
ep->cancel_transfer = 1;
|
|
else {
|
|
udc_init_bna_dummy(ep->req);
|
|
writel(ep->bna_dummy_req->td_phys,
|
|
&ep->regs->desptr);
|
|
}
|
|
writel(tmp, &udc->regs->ctl);
|
|
}
|
|
}
|
|
}
|
|
complete_req(ep, req, -ECONNRESET);
|
|
ep->halted = halted;
|
|
|
|
spin_unlock_irqrestore(&ep->dev->lock, iflags);
|
|
return 0;
|
|
}
|
|
|
|
/* Halt or clear halt of endpoint */
|
|
static int
|
|
udc_set_halt(struct usb_ep *usbep, int halt)
|
|
{
|
|
struct udc_ep *ep;
|
|
u32 tmp;
|
|
unsigned long iflags;
|
|
int retval = 0;
|
|
|
|
if (!usbep)
|
|
return -EINVAL;
|
|
|
|
pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
|
|
|
|
ep = container_of(usbep, struct udc_ep, ep);
|
|
if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
|
|
return -EINVAL;
|
|
if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
|
|
return -ESHUTDOWN;
|
|
|
|
spin_lock_irqsave(&udc_stall_spinlock, iflags);
|
|
/* halt or clear halt */
|
|
if (halt) {
|
|
if (ep->num == 0)
|
|
ep->dev->stall_ep0in = 1;
|
|
else {
|
|
/*
|
|
* set STALL
|
|
* rxfifo empty not taken into acount
|
|
*/
|
|
tmp = readl(&ep->regs->ctl);
|
|
tmp |= AMD_BIT(UDC_EPCTL_S);
|
|
writel(tmp, &ep->regs->ctl);
|
|
ep->halted = 1;
|
|
|
|
/* setup poll timer */
|
|
if (!timer_pending(&udc_pollstall_timer)) {
|
|
udc_pollstall_timer.expires = jiffies +
|
|
HZ * UDC_POLLSTALL_TIMER_USECONDS
|
|
/ (1000 * 1000);
|
|
if (!stop_pollstall_timer) {
|
|
DBG(ep->dev, "start polltimer\n");
|
|
add_timer(&udc_pollstall_timer);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/* ep is halted by set_halt() before */
|
|
if (ep->halted) {
|
|
tmp = readl(&ep->regs->ctl);
|
|
/* clear stall bit */
|
|
tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
|
|
/* clear NAK by writing CNAK */
|
|
tmp |= AMD_BIT(UDC_EPCTL_CNAK);
|
|
writel(tmp, &ep->regs->ctl);
|
|
ep->halted = 0;
|
|
UDC_QUEUE_CNAK(ep, ep->num);
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
|
|
return retval;
|
|
}
|
|
|
|
/* gadget interface */
|
|
static const struct usb_ep_ops udc_ep_ops = {
|
|
.enable = udc_ep_enable,
|
|
.disable = udc_ep_disable,
|
|
|
|
.alloc_request = udc_alloc_request,
|
|
.free_request = udc_free_request,
|
|
|
|
.queue = udc_queue,
|
|
.dequeue = udc_dequeue,
|
|
|
|
.set_halt = udc_set_halt,
|
|
/* fifo ops not implemented */
|
|
};
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* Get frame counter (not implemented) */
|
|
static int udc_get_frame(struct usb_gadget *gadget)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/* Remote wakeup gadget interface */
|
|
static int udc_wakeup(struct usb_gadget *gadget)
|
|
{
|
|
struct udc *dev;
|
|
|
|
if (!gadget)
|
|
return -EINVAL;
|
|
dev = container_of(gadget, struct udc, gadget);
|
|
udc_remote_wakeup(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* gadget operations */
|
|
static const struct usb_gadget_ops udc_ops = {
|
|
.wakeup = udc_wakeup,
|
|
.get_frame = udc_get_frame,
|
|
};
|
|
|
|
/* Setups endpoint parameters, adds endpoints to linked list */
|
|
static void make_ep_lists(struct udc *dev)
|
|
{
|
|
/* make gadget ep lists */
|
|
INIT_LIST_HEAD(&dev->gadget.ep_list);
|
|
list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
|
|
&dev->gadget.ep_list);
|
|
list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
|
|
&dev->gadget.ep_list);
|
|
list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
|
|
&dev->gadget.ep_list);
|
|
|
|
/* fifo config */
|
|
dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
|
|
if (dev->gadget.speed == USB_SPEED_FULL)
|
|
dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
|
|
else if (dev->gadget.speed == USB_SPEED_HIGH)
|
|
dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
|
|
dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
|
|
}
|
|
|
|
/* init registers at driver load time */
|
|
static int startup_registers(struct udc *dev)
|
|
{
|
|
u32 tmp;
|
|
|
|
/* init controller by soft reset */
|
|
udc_soft_reset(dev);
|
|
|
|
/* mask not needed interrupts */
|
|
udc_mask_unused_interrupts(dev);
|
|
|
|
/* put into initial config */
|
|
udc_basic_init(dev);
|
|
/* link up all endpoints */
|
|
udc_setup_endpoints(dev);
|
|
|
|
/* program speed */
|
|
tmp = readl(&dev->regs->cfg);
|
|
if (use_fullspeed) {
|
|
tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
|
|
} else {
|
|
tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
|
|
}
|
|
writel(tmp, &dev->regs->cfg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Inits UDC context */
|
|
static void udc_basic_init(struct udc *dev)
|
|
{
|
|
u32 tmp;
|
|
|
|
DBG(dev, "udc_basic_init()\n");
|
|
|
|
dev->gadget.speed = USB_SPEED_UNKNOWN;
|
|
|
|
/* stop RDE timer */
|
|
if (timer_pending(&udc_timer)) {
|
|
set_rde = 0;
|
|
mod_timer(&udc_timer, jiffies - 1);
|
|
}
|
|
/* stop poll stall timer */
|
|
if (timer_pending(&udc_pollstall_timer)) {
|
|
mod_timer(&udc_pollstall_timer, jiffies - 1);
|
|
}
|
|
/* disable DMA */
|
|
tmp = readl(&dev->regs->ctl);
|
|
tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
|
|
tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
|
|
writel(tmp, &dev->regs->ctl);
|
|
|
|
/* enable dynamic CSR programming */
|
|
tmp = readl(&dev->regs->cfg);
|
|
tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
|
|
/* set self powered */
|
|
tmp |= AMD_BIT(UDC_DEVCFG_SP);
|
|
/* set remote wakeupable */
|
|
tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
|
|
writel(tmp, &dev->regs->cfg);
|
|
|
|
make_ep_lists(dev);
|
|
|
|
dev->data_ep_enabled = 0;
|
|
dev->data_ep_queued = 0;
|
|
}
|
|
|
|
/* Sets initial endpoint parameters */
|
|
static void udc_setup_endpoints(struct udc *dev)
|
|
{
|
|
struct udc_ep *ep;
|
|
u32 tmp;
|
|
u32 reg;
|
|
|
|
DBG(dev, "udc_setup_endpoints()\n");
|
|
|
|
/* read enum speed */
|
|
tmp = readl(&dev->regs->sts);
|
|
tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
|
|
if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH) {
|
|
dev->gadget.speed = USB_SPEED_HIGH;
|
|
} else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL) {
|
|
dev->gadget.speed = USB_SPEED_FULL;
|
|
}
|
|
|
|
/* set basic ep parameters */
|
|
for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
|
|
ep = &dev->ep[tmp];
|
|
ep->dev = dev;
|
|
ep->ep.name = ep_string[tmp];
|
|
ep->num = tmp;
|
|
/* txfifo size is calculated at enable time */
|
|
ep->txfifo = dev->txfifo;
|
|
|
|
/* fifo size */
|
|
if (tmp < UDC_EPIN_NUM) {
|
|
ep->fifo_depth = UDC_TXFIFO_SIZE;
|
|
ep->in = 1;
|
|
} else {
|
|
ep->fifo_depth = UDC_RXFIFO_SIZE;
|
|
ep->in = 0;
|
|
|
|
}
|
|
ep->regs = &dev->ep_regs[tmp];
|
|
/*
|
|
* ep will be reset only if ep was not enabled before to avoid
|
|
* disabling ep interrupts when ENUM interrupt occurs but ep is
|
|
* not enabled by gadget driver
|
|
*/
|
|
if (!ep->desc) {
|
|
ep_init(dev->regs, ep);
|
|
}
|
|
|
|
if (use_dma) {
|
|
/*
|
|
* ep->dma is not really used, just to indicate that
|
|
* DMA is active: remove this
|
|
* dma regs = dev control regs
|
|
*/
|
|
ep->dma = &dev->regs->ctl;
|
|
|
|
/* nak OUT endpoints until enable - not for ep0 */
|
|
if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
|
|
&& tmp > UDC_EPIN_NUM) {
|
|
/* set NAK */
|
|
reg = readl(&dev->ep[tmp].regs->ctl);
|
|
reg |= AMD_BIT(UDC_EPCTL_SNAK);
|
|
writel(reg, &dev->ep[tmp].regs->ctl);
|
|
dev->ep[tmp].naking = 1;
|
|
|
|
}
|
|
}
|
|
}
|
|
/* EP0 max packet */
|
|
if (dev->gadget.speed == USB_SPEED_FULL) {
|
|
dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_FS_EP0IN_MAX_PKT_SIZE;
|
|
dev->ep[UDC_EP0OUT_IX].ep.maxpacket =
|
|
UDC_FS_EP0OUT_MAX_PKT_SIZE;
|
|
} else if (dev->gadget.speed == USB_SPEED_HIGH) {
|
|
dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
|
|
dev->ep[UDC_EP0OUT_IX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
|
|
}
|
|
|
|
/*
|
|
* with suspend bug workaround, ep0 params for gadget driver
|
|
* are set at gadget driver bind() call
|
|
*/
|
|
dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
|
|
dev->ep[UDC_EP0IN_IX].halted = 0;
|
|
INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
|
|
|
|
/* init cfg/alt/int */
|
|
dev->cur_config = 0;
|
|
dev->cur_intf = 0;
|
|
dev->cur_alt = 0;
|
|
}
|
|
|
|
/* Bringup after Connect event, initial bringup to be ready for ep0 events */
|
|
static void usb_connect(struct udc *dev)
|
|
{
|
|
|
|
dev_info(&dev->pdev->dev, "USB Connect\n");
|
|
|
|
dev->connected = 1;
|
|
|
|
/* put into initial config */
|
|
udc_basic_init(dev);
|
|
|
|
/* enable device setup interrupts */
|
|
udc_enable_dev_setup_interrupts(dev);
|
|
}
|
|
|
|
/*
|
|
* Calls gadget with disconnect event and resets the UDC and makes
|
|
* initial bringup to be ready for ep0 events
|
|
*/
|
|
static void usb_disconnect(struct udc *dev)
|
|
{
|
|
|
|
dev_info(&dev->pdev->dev, "USB Disconnect\n");
|
|
|
|
dev->connected = 0;
|
|
|
|
/* mask interrupts */
|
|
udc_mask_unused_interrupts(dev);
|
|
|
|
/* REVISIT there doesn't seem to be a point to having this
|
|
* talk to a tasklet ... do it directly, we already hold
|
|
* the spinlock needed to process the disconnect.
|
|
*/
|
|
|
|
tasklet_schedule(&disconnect_tasklet);
|
|
}
|
|
|
|
/* Tasklet for disconnect to be outside of interrupt context */
|
|
static void udc_tasklet_disconnect(unsigned long par)
|
|
{
|
|
struct udc *dev = (struct udc *)(*((struct udc **) par));
|
|
u32 tmp;
|
|
|
|
DBG(dev, "Tasklet disconnect\n");
|
|
spin_lock_irq(&dev->lock);
|
|
|
|
if (dev->driver) {
|
|
spin_unlock(&dev->lock);
|
|
dev->driver->disconnect(&dev->gadget);
|
|
spin_lock(&dev->lock);
|
|
|
|
/* empty queues */
|
|
for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
|
|
empty_req_queue(&dev->ep[tmp]);
|
|
}
|
|
|
|
}
|
|
|
|
/* disable ep0 */
|
|
ep_init(dev->regs,
|
|
&dev->ep[UDC_EP0IN_IX]);
|
|
|
|
|
|
if (!soft_reset_occured) {
|
|
/* init controller by soft reset */
|
|
udc_soft_reset(dev);
|
|
soft_reset_occured++;
|
|
}
|
|
|
|
/* re-enable dev interrupts */
|
|
udc_enable_dev_setup_interrupts(dev);
|
|
/* back to full speed ? */
|
|
if (use_fullspeed) {
|
|
tmp = readl(&dev->regs->cfg);
|
|
tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
|
|
writel(tmp, &dev->regs->cfg);
|
|
}
|
|
|
|
spin_unlock_irq(&dev->lock);
|
|
}
|
|
|
|
/* Reset the UDC core */
|
|
static void udc_soft_reset(struct udc *dev)
|
|
{
|
|
unsigned long flags;
|
|
|
|
DBG(dev, "Soft reset\n");
|
|
/*
|
|
* reset possible waiting interrupts, because int.
|
|
* status is lost after soft reset,
|
|
* ep int. status reset
|
|
*/
|
|
writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
|
|
/* device int. status reset */
|
|
writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
|
|
|
|
spin_lock_irqsave(&udc_irq_spinlock, flags);
|
|
writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
|
|
readl(&dev->regs->cfg);
|
|
spin_unlock_irqrestore(&udc_irq_spinlock, flags);
|
|
|
|
}
|
|
|
|
/* RDE timer callback to set RDE bit */
|
|
static void udc_timer_function(unsigned long v)
|
|
{
|
|
u32 tmp;
|
|
|
|
spin_lock_irq(&udc_irq_spinlock);
|
|
|
|
if (set_rde > 0) {
|
|
/*
|
|
* open the fifo if fifo was filled on last timer call
|
|
* conditionally
|
|
*/
|
|
if (set_rde > 1) {
|
|
/* set RDE to receive setup data */
|
|
tmp = readl(&udc->regs->ctl);
|
|
tmp |= AMD_BIT(UDC_DEVCTL_RDE);
|
|
writel(tmp, &udc->regs->ctl);
|
|
set_rde = -1;
|
|
} else if (readl(&udc->regs->sts)
|
|
& AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
|
|
/*
|
|
* if fifo empty setup polling, do not just
|
|
* open the fifo
|
|
*/
|
|
udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
|
|
if (!stop_timer) {
|
|
add_timer(&udc_timer);
|
|
}
|
|
} else {
|
|
/*
|
|
* fifo contains data now, setup timer for opening
|
|
* the fifo when timer expires to be able to receive
|
|
* setup packets, when data packets gets queued by
|
|
* gadget layer then timer will forced to expire with
|
|
* set_rde=0 (RDE is set in udc_queue())
|
|
*/
|
|
set_rde++;
|
|
/* debug: lhadmot_timer_start = 221070 */
|
|
udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
|
|
if (!stop_timer) {
|
|
add_timer(&udc_timer);
|
|
}
|
|
}
|
|
|
|
} else
|
|
set_rde = -1; /* RDE was set by udc_queue() */
|
|
spin_unlock_irq(&udc_irq_spinlock);
|
|
if (stop_timer)
|
|
complete(&on_exit);
|
|
|
|
}
|
|
|
|
/* Handle halt state, used in stall poll timer */
|
|
static void udc_handle_halt_state(struct udc_ep *ep)
|
|
{
|
|
u32 tmp;
|
|
/* set stall as long not halted */
|
|
if (ep->halted == 1) {
|
|
tmp = readl(&ep->regs->ctl);
|
|
/* STALL cleared ? */
|
|
if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
|
|
/*
|
|
* FIXME: MSC spec requires that stall remains
|
|
* even on receivng of CLEAR_FEATURE HALT. So
|
|
* we would set STALL again here to be compliant.
|
|
* But with current mass storage drivers this does
|
|
* not work (would produce endless host retries).
|
|
* So we clear halt on CLEAR_FEATURE.
|
|
*
|
|
DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
|
|
tmp |= AMD_BIT(UDC_EPCTL_S);
|
|
writel(tmp, &ep->regs->ctl);*/
|
|
|
|
/* clear NAK by writing CNAK */
|
|
tmp |= AMD_BIT(UDC_EPCTL_CNAK);
|
|
writel(tmp, &ep->regs->ctl);
|
|
ep->halted = 0;
|
|
UDC_QUEUE_CNAK(ep, ep->num);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Stall timer callback to poll S bit and set it again after */
|
|
static void udc_pollstall_timer_function(unsigned long v)
|
|
{
|
|
struct udc_ep *ep;
|
|
int halted = 0;
|
|
|
|
spin_lock_irq(&udc_stall_spinlock);
|
|
/*
|
|
* only one IN and OUT endpoints are handled
|
|
* IN poll stall
|
|
*/
|
|
ep = &udc->ep[UDC_EPIN_IX];
|
|
udc_handle_halt_state(ep);
|
|
if (ep->halted)
|
|
halted = 1;
|
|
/* OUT poll stall */
|
|
ep = &udc->ep[UDC_EPOUT_IX];
|
|
udc_handle_halt_state(ep);
|
|
if (ep->halted)
|
|
halted = 1;
|
|
|
|
/* setup timer again when still halted */
|
|
if (!stop_pollstall_timer && halted) {
|
|
udc_pollstall_timer.expires = jiffies +
|
|
HZ * UDC_POLLSTALL_TIMER_USECONDS
|
|
/ (1000 * 1000);
|
|
add_timer(&udc_pollstall_timer);
|
|
}
|
|
spin_unlock_irq(&udc_stall_spinlock);
|
|
|
|
if (stop_pollstall_timer)
|
|
complete(&on_pollstall_exit);
|
|
}
|
|
|
|
/* Inits endpoint 0 so that SETUP packets are processed */
|
|
static void activate_control_endpoints(struct udc *dev)
|
|
{
|
|
u32 tmp;
|
|
|
|
DBG(dev, "activate_control_endpoints\n");
|
|
|
|
/* flush fifo */
|
|
tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
|
|
tmp |= AMD_BIT(UDC_EPCTL_F);
|
|
writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
|
|
|
|
/* set ep0 directions */
|
|
dev->ep[UDC_EP0IN_IX].in = 1;
|
|
dev->ep[UDC_EP0OUT_IX].in = 0;
|
|
|
|
/* set buffer size (tx fifo entries) of EP0_IN */
|
|
tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
|
|
if (dev->gadget.speed == USB_SPEED_FULL)
|
|
tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
|
|
UDC_EPIN_BUFF_SIZE);
|
|
else if (dev->gadget.speed == USB_SPEED_HIGH)
|
|
tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
|
|
UDC_EPIN_BUFF_SIZE);
|
|
writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
|
|
|
|
/* set max packet size of EP0_IN */
|
|
tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
|
|
if (dev->gadget.speed == USB_SPEED_FULL)
|
|
tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
|
|
UDC_EP_MAX_PKT_SIZE);
|
|
else if (dev->gadget.speed == USB_SPEED_HIGH)
|
|
tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
|
|
UDC_EP_MAX_PKT_SIZE);
|
|
writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
|
|
|
|
/* set max packet size of EP0_OUT */
|
|
tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
|
|
if (dev->gadget.speed == USB_SPEED_FULL)
|
|
tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
|
|
UDC_EP_MAX_PKT_SIZE);
|
|
else if (dev->gadget.speed == USB_SPEED_HIGH)
|
|
tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
|
|
UDC_EP_MAX_PKT_SIZE);
|
|
writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
|
|
|
|
/* set max packet size of EP0 in UDC CSR */
|
|
tmp = readl(&dev->csr->ne[0]);
|
|
if (dev->gadget.speed == USB_SPEED_FULL)
|
|
tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
|
|
UDC_CSR_NE_MAX_PKT);
|
|
else if (dev->gadget.speed == USB_SPEED_HIGH)
|
|
tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
|
|
UDC_CSR_NE_MAX_PKT);
|
|
writel(tmp, &dev->csr->ne[0]);
|
|
|
|
if (use_dma) {
|
|
dev->ep[UDC_EP0OUT_IX].td->status |=
|
|
AMD_BIT(UDC_DMA_OUT_STS_L);
|
|
/* write dma desc address */
|
|
writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
|
|
&dev->ep[UDC_EP0OUT_IX].regs->subptr);
|
|
writel(dev->ep[UDC_EP0OUT_IX].td_phys,
|
|
&dev->ep[UDC_EP0OUT_IX].regs->desptr);
|
|
/* stop RDE timer */
|
|
if (timer_pending(&udc_timer)) {
|
|
set_rde = 0;
|
|
mod_timer(&udc_timer, jiffies - 1);
|
|
}
|
|
/* stop pollstall timer */
|
|
if (timer_pending(&udc_pollstall_timer)) {
|
|
mod_timer(&udc_pollstall_timer, jiffies - 1);
|
|
}
|
|
/* enable DMA */
|
|
tmp = readl(&dev->regs->ctl);
|
|
tmp |= AMD_BIT(UDC_DEVCTL_MODE)
|
|
| AMD_BIT(UDC_DEVCTL_RDE)
|
|
| AMD_BIT(UDC_DEVCTL_TDE);
|
|
if (use_dma_bufferfill_mode) {
|
|
tmp |= AMD_BIT(UDC_DEVCTL_BF);
|
|
} else if (use_dma_ppb_du) {
|
|
tmp |= AMD_BIT(UDC_DEVCTL_DU);
|
|
}
|
|
writel(tmp, &dev->regs->ctl);
|
|
}
|
|
|
|
/* clear NAK by writing CNAK for EP0IN */
|
|
tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
|
|
tmp |= AMD_BIT(UDC_EPCTL_CNAK);
|
|
writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
|
|
dev->ep[UDC_EP0IN_IX].naking = 0;
|
|
UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
|
|
|
|
/* clear NAK by writing CNAK for EP0OUT */
|
|
tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
|
|
tmp |= AMD_BIT(UDC_EPCTL_CNAK);
|
|
writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
|
|
dev->ep[UDC_EP0OUT_IX].naking = 0;
|
|
UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
|
|
}
|
|
|
|
/* Make endpoint 0 ready for control traffic */
|
|
static int setup_ep0(struct udc *dev)
|
|
{
|
|
activate_control_endpoints(dev);
|
|
/* enable ep0 interrupts */
|
|
udc_enable_ep0_interrupts(dev);
|
|
/* enable device setup interrupts */
|
|
udc_enable_dev_setup_interrupts(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Called by gadget driver to register itself */
|
|
int usb_gadget_register_driver(struct usb_gadget_driver *driver)
|
|
{
|
|
struct udc *dev = udc;
|
|
int retval;
|
|
u32 tmp;
|
|
|
|
if (!driver || !driver->bind || !driver->setup
|
|
|| driver->speed != USB_SPEED_HIGH)
|
|
return -EINVAL;
|
|
if (!dev)
|
|
return -ENODEV;
|
|
if (dev->driver)
|
|
return -EBUSY;
|
|
|
|
driver->driver.bus = NULL;
|
|
dev->driver = driver;
|
|
dev->gadget.dev.driver = &driver->driver;
|
|
|
|
retval = driver->bind(&dev->gadget);
|
|
|
|
/* Some gadget drivers use both ep0 directions.
|
|
* NOTE: to gadget driver, ep0 is just one endpoint...
|
|
*/
|
|
dev->ep[UDC_EP0OUT_IX].ep.driver_data =
|
|
dev->ep[UDC_EP0IN_IX].ep.driver_data;
|
|
|
|
if (retval) {
|
|
DBG(dev, "binding to %s returning %d\n",
|
|
driver->driver.name, retval);
|
|
dev->driver = NULL;
|
|
dev->gadget.dev.driver = NULL;
|
|
return retval;
|
|
}
|
|
|
|
/* get ready for ep0 traffic */
|
|
setup_ep0(dev);
|
|
|
|
/* clear SD */
|
|
tmp = readl(&dev->regs->ctl);
|
|
tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
|
|
writel(tmp, &dev->regs->ctl);
|
|
|
|
usb_connect(dev);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(usb_gadget_register_driver);
|
|
|
|
/* shutdown requests and disconnect from gadget */
|
|
static void
|
|
shutdown(struct udc *dev, struct usb_gadget_driver *driver)
|
|
__releases(dev->lock)
|
|
__acquires(dev->lock)
|
|
{
|
|
int tmp;
|
|
|
|
/* empty queues and init hardware */
|
|
udc_basic_init(dev);
|
|
for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
|
|
empty_req_queue(&dev->ep[tmp]);
|
|
}
|
|
|
|
if (dev->gadget.speed != USB_SPEED_UNKNOWN) {
|
|
spin_unlock(&dev->lock);
|
|
driver->disconnect(&dev->gadget);
|
|
spin_lock(&dev->lock);
|
|
}
|
|
/* init */
|
|
udc_setup_endpoints(dev);
|
|
}
|
|
|
|
/* Called by gadget driver to unregister itself */
|
|
int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
|
|
{
|
|
struct udc *dev = udc;
|
|
unsigned long flags;
|
|
u32 tmp;
|
|
|
|
if (!dev)
|
|
return -ENODEV;
|
|
if (!driver || driver != dev->driver || !driver->unbind)
|
|
return -EINVAL;
|
|
|
|
spin_lock_irqsave(&dev->lock, flags);
|
|
udc_mask_unused_interrupts(dev);
|
|
shutdown(dev, driver);
|
|
spin_unlock_irqrestore(&dev->lock, flags);
|
|
|
|
driver->unbind(&dev->gadget);
|
|
dev->gadget.dev.driver = NULL;
|
|
dev->driver = NULL;
|
|
|
|
/* set SD */
|
|
tmp = readl(&dev->regs->ctl);
|
|
tmp |= AMD_BIT(UDC_DEVCTL_SD);
|
|
writel(tmp, &dev->regs->ctl);
|
|
|
|
|
|
DBG(dev, "%s: unregistered\n", driver->driver.name);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(usb_gadget_unregister_driver);
|
|
|
|
|
|
/* Clear pending NAK bits */
|
|
static void udc_process_cnak_queue(struct udc *dev)
|
|
{
|
|
u32 tmp;
|
|
u32 reg;
|
|
|
|
/* check epin's */
|
|
DBG(dev, "CNAK pending queue processing\n");
|
|
for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
|
|
if (cnak_pending & (1 << tmp)) {
|
|
DBG(dev, "CNAK pending for ep%d\n", tmp);
|
|
/* clear NAK by writing CNAK */
|
|
reg = readl(&dev->ep[tmp].regs->ctl);
|
|
reg |= AMD_BIT(UDC_EPCTL_CNAK);
|
|
writel(reg, &dev->ep[tmp].regs->ctl);
|
|
dev->ep[tmp].naking = 0;
|
|
UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
|
|
}
|
|
}
|
|
/* ... and ep0out */
|
|
if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
|
|
DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
|
|
/* clear NAK by writing CNAK */
|
|
reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
|
|
reg |= AMD_BIT(UDC_EPCTL_CNAK);
|
|
writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
|
|
dev->ep[UDC_EP0OUT_IX].naking = 0;
|
|
UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
|
|
dev->ep[UDC_EP0OUT_IX].num);
|
|
}
|
|
}
|
|
|
|
/* Enabling RX DMA after setup packet */
|
|
static void udc_ep0_set_rde(struct udc *dev)
|
|
{
|
|
if (use_dma) {
|
|
/*
|
|
* only enable RXDMA when no data endpoint enabled
|
|
* or data is queued
|
|
*/
|
|
if (!dev->data_ep_enabled || dev->data_ep_queued) {
|
|
udc_set_rde(dev);
|
|
} else {
|
|
/*
|
|
* setup timer for enabling RDE (to not enable
|
|
* RXFIFO DMA for data endpoints to early)
|
|
*/
|
|
if (set_rde != 0 && !timer_pending(&udc_timer)) {
|
|
udc_timer.expires =
|
|
jiffies + HZ/UDC_RDE_TIMER_DIV;
|
|
set_rde = 1;
|
|
if (!stop_timer) {
|
|
add_timer(&udc_timer);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Interrupt handler for data OUT traffic */
|
|
static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
|
|
{
|
|
irqreturn_t ret_val = IRQ_NONE;
|
|
u32 tmp;
|
|
struct udc_ep *ep;
|
|
struct udc_request *req;
|
|
unsigned int count;
|
|
struct udc_data_dma *td = NULL;
|
|
unsigned dma_done;
|
|
|
|
VDBG(dev, "ep%d irq\n", ep_ix);
|
|
ep = &dev->ep[ep_ix];
|
|
|
|
tmp = readl(&ep->regs->sts);
|
|
if (use_dma) {
|
|
/* BNA event ? */
|
|
if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
|
|
DBG(dev, "BNA ep%dout occured - DESPTR = %x \n",
|
|
ep->num, readl(&ep->regs->desptr));
|
|
/* clear BNA */
|
|
writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
|
|
if (!ep->cancel_transfer)
|
|
ep->bna_occurred = 1;
|
|
else
|
|
ep->cancel_transfer = 0;
|
|
ret_val = IRQ_HANDLED;
|
|
goto finished;
|
|
}
|
|
}
|
|
/* HE event ? */
|
|
if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
|
|
dev_err(&dev->pdev->dev, "HE ep%dout occured\n", ep->num);
|
|
|
|
/* clear HE */
|
|
writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
|
|
ret_val = IRQ_HANDLED;
|
|
goto finished;
|
|
}
|
|
|
|
if (!list_empty(&ep->queue)) {
|
|
|
|
/* next request */
|
|
req = list_entry(ep->queue.next,
|
|
struct udc_request, queue);
|
|
} else {
|
|
req = NULL;
|
|
udc_rxfifo_pending = 1;
|
|
}
|
|
VDBG(dev, "req = %p\n", req);
|
|
/* fifo mode */
|
|
if (!use_dma) {
|
|
|
|
/* read fifo */
|
|
if (req && udc_rxfifo_read(ep, req)) {
|
|
ret_val = IRQ_HANDLED;
|
|
|
|
/* finish */
|
|
complete_req(ep, req, 0);
|
|
/* next request */
|
|
if (!list_empty(&ep->queue) && !ep->halted) {
|
|
req = list_entry(ep->queue.next,
|
|
struct udc_request, queue);
|
|
} else
|
|
req = NULL;
|
|
}
|
|
|
|
/* DMA */
|
|
} else if (!ep->cancel_transfer && req != NULL) {
|
|
ret_val = IRQ_HANDLED;
|
|
|
|
/* check for DMA done */
|
|
if (!use_dma_ppb) {
|
|
dma_done = AMD_GETBITS(req->td_data->status,
|
|
UDC_DMA_OUT_STS_BS);
|
|
/* packet per buffer mode - rx bytes */
|
|
} else {
|
|
/*
|
|
* if BNA occurred then recover desc. from
|
|
* BNA dummy desc.
|
|
*/
|
|
if (ep->bna_occurred) {
|
|
VDBG(dev, "Recover desc. from BNA dummy\n");
|
|
memcpy(req->td_data, ep->bna_dummy_req->td_data,
|
|
sizeof(struct udc_data_dma));
|
|
ep->bna_occurred = 0;
|
|
udc_init_bna_dummy(ep->req);
|
|
}
|
|
td = udc_get_last_dma_desc(req);
|
|
dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
|
|
}
|
|
if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
|
|
/* buffer fill mode - rx bytes */
|
|
if (!use_dma_ppb) {
|
|
/* received number bytes */
|
|
count = AMD_GETBITS(req->td_data->status,
|
|
UDC_DMA_OUT_STS_RXBYTES);
|
|
VDBG(dev, "rx bytes=%u\n", count);
|
|
/* packet per buffer mode - rx bytes */
|
|
} else {
|
|
VDBG(dev, "req->td_data=%p\n", req->td_data);
|
|
VDBG(dev, "last desc = %p\n", td);
|
|
/* received number bytes */
|
|
if (use_dma_ppb_du) {
|
|
/* every desc. counts bytes */
|
|
count = udc_get_ppbdu_rxbytes(req);
|
|
} else {
|
|
/* last desc. counts bytes */
|
|
count = AMD_GETBITS(td->status,
|
|
UDC_DMA_OUT_STS_RXBYTES);
|
|
if (!count && req->req.length
|
|
== UDC_DMA_MAXPACKET) {
|
|
/*
|
|
* on 64k packets the RXBYTES
|
|
* field is zero
|
|
*/
|
|
count = UDC_DMA_MAXPACKET;
|
|
}
|
|
}
|
|
VDBG(dev, "last desc rx bytes=%u\n", count);
|
|
}
|
|
|
|
tmp = req->req.length - req->req.actual;
|
|
if (count > tmp) {
|
|
if ((tmp % ep->ep.maxpacket) != 0) {
|
|
DBG(dev, "%s: rx %db, space=%db\n",
|
|
ep->ep.name, count, tmp);
|
|
req->req.status = -EOVERFLOW;
|
|
}
|
|
count = tmp;
|
|
}
|
|
req->req.actual += count;
|
|
req->dma_going = 0;
|
|
/* complete request */
|
|
complete_req(ep, req, 0);
|
|
|
|
/* next request */
|
|
if (!list_empty(&ep->queue) && !ep->halted) {
|
|
req = list_entry(ep->queue.next,
|
|
struct udc_request,
|
|
queue);
|
|
/*
|
|
* DMA may be already started by udc_queue()
|
|
* called by gadget drivers completion
|
|
* routine. This happens when queue
|
|
* holds one request only.
|
|
*/
|
|
if (req->dma_going == 0) {
|
|
/* next dma */
|
|
if (prep_dma(ep, req, GFP_ATOMIC) != 0)
|
|
goto finished;
|
|
/* write desc pointer */
|
|
writel(req->td_phys,
|
|
&ep->regs->desptr);
|
|
req->dma_going = 1;
|
|
/* enable DMA */
|
|
udc_set_rde(dev);
|
|
}
|
|
} else {
|
|
/*
|
|
* implant BNA dummy descriptor to allow
|
|
* RXFIFO opening by RDE
|
|
*/
|
|
if (ep->bna_dummy_req) {
|
|
/* write desc pointer */
|
|
writel(ep->bna_dummy_req->td_phys,
|
|
&ep->regs->desptr);
|
|
ep->bna_occurred = 0;
|
|
}
|
|
|
|
/*
|
|
* schedule timer for setting RDE if queue
|
|
* remains empty to allow ep0 packets pass
|
|
* through
|
|
*/
|
|
if (set_rde != 0
|
|
&& !timer_pending(&udc_timer)) {
|
|
udc_timer.expires =
|
|
jiffies
|
|
+ HZ*UDC_RDE_TIMER_SECONDS;
|
|
set_rde = 1;
|
|
if (!stop_timer) {
|
|
add_timer(&udc_timer);
|
|
}
|
|
}
|
|
if (ep->num != UDC_EP0OUT_IX)
|
|
dev->data_ep_queued = 0;
|
|
}
|
|
|
|
} else {
|
|
/*
|
|
* RX DMA must be reenabled for each desc in PPBDU mode
|
|
* and must be enabled for PPBNDU mode in case of BNA
|
|
*/
|
|
udc_set_rde(dev);
|
|
}
|
|
|
|
} else if (ep->cancel_transfer) {
|
|
ret_val = IRQ_HANDLED;
|
|
ep->cancel_transfer = 0;
|
|
}
|
|
|
|
/* check pending CNAKS */
|
|
if (cnak_pending) {
|
|
/* CNAk processing when rxfifo empty only */
|
|
if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
|
|
udc_process_cnak_queue(dev);
|
|
}
|
|
}
|
|
|
|
/* clear OUT bits in ep status */
|
|
writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
|
|
finished:
|
|
return ret_val;
|
|
}
|
|
|
|
/* Interrupt handler for data IN traffic */
|
|
static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
|
|
{
|
|
irqreturn_t ret_val = IRQ_NONE;
|
|
u32 tmp;
|
|
u32 epsts;
|
|
struct udc_ep *ep;
|
|
struct udc_request *req;
|
|
struct udc_data_dma *td;
|
|
unsigned dma_done;
|
|
unsigned len;
|
|
|
|
ep = &dev->ep[ep_ix];
|
|
|
|
epsts = readl(&ep->regs->sts);
|
|
if (use_dma) {
|
|
/* BNA ? */
|
|
if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
|
|
dev_err(&dev->pdev->dev,
|
|
"BNA ep%din occured - DESPTR = %08lx \n",
|
|
ep->num,
|
|
(unsigned long) readl(&ep->regs->desptr));
|
|
|
|
/* clear BNA */
|
|
writel(epsts, &ep->regs->sts);
|
|
ret_val = IRQ_HANDLED;
|
|
goto finished;
|
|
}
|
|
}
|
|
/* HE event ? */
|
|
if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
|
|
dev_err(&dev->pdev->dev,
|
|
"HE ep%dn occured - DESPTR = %08lx \n",
|
|
ep->num, (unsigned long) readl(&ep->regs->desptr));
|
|
|
|
/* clear HE */
|
|
writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
|
|
ret_val = IRQ_HANDLED;
|
|
goto finished;
|
|
}
|
|
|
|
/* DMA completion */
|
|
if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
|
|
VDBG(dev, "TDC set- completion\n");
|
|
ret_val = IRQ_HANDLED;
|
|
if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
|
|
req = list_entry(ep->queue.next,
|
|
struct udc_request, queue);
|
|
if (req) {
|
|
/*
|
|
* length bytes transfered
|
|
* check dma done of last desc. in PPBDU mode
|
|
*/
|
|
if (use_dma_ppb_du) {
|
|
td = udc_get_last_dma_desc(req);
|
|
if (td) {
|
|
dma_done =
|
|
AMD_GETBITS(td->status,
|
|
UDC_DMA_IN_STS_BS);
|
|
/* don't care DMA done */
|
|
req->req.actual =
|
|
req->req.length;
|
|
}
|
|
} else {
|
|
/* assume all bytes transferred */
|
|
req->req.actual = req->req.length;
|
|
}
|
|
|
|
if (req->req.actual == req->req.length) {
|
|
/* complete req */
|
|
complete_req(ep, req, 0);
|
|
req->dma_going = 0;
|
|
/* further request available ? */
|
|
if (list_empty(&ep->queue)) {
|
|
/* disable interrupt */
|
|
tmp = readl(
|
|
&dev->regs->ep_irqmsk);
|
|
tmp |= AMD_BIT(ep->num);
|
|
writel(tmp,
|
|
&dev->regs->ep_irqmsk);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
ep->cancel_transfer = 0;
|
|
|
|
}
|
|
/*
|
|
* status reg has IN bit set and TDC not set (if TDC was handled,
|
|
* IN must not be handled (UDC defect) ?
|
|
*/
|
|
if ((epsts & AMD_BIT(UDC_EPSTS_IN))
|
|
&& !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
|
|
ret_val = IRQ_HANDLED;
|
|
if (!list_empty(&ep->queue)) {
|
|
/* next request */
|
|
req = list_entry(ep->queue.next,
|
|
struct udc_request, queue);
|
|
/* FIFO mode */
|
|
if (!use_dma) {
|
|
/* write fifo */
|
|
udc_txfifo_write(ep, &req->req);
|
|
len = req->req.length - req->req.actual;
|
|
if (len > ep->ep.maxpacket)
|
|
len = ep->ep.maxpacket;
|
|
req->req.actual += len;
|
|
if (req->req.actual == req->req.length
|
|
|| (len != ep->ep.maxpacket)) {
|
|
/* complete req */
|
|
complete_req(ep, req, 0);
|
|
}
|
|
/* DMA */
|
|
} else if (req && !req->dma_going) {
|
|
VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
|
|
req, req->td_data);
|
|
if (req->td_data) {
|
|
|
|
req->dma_going = 1;
|
|
|
|
/*
|
|
* unset L bit of first desc.
|
|
* for chain
|
|
*/
|
|
if (use_dma_ppb && req->req.length >
|
|
ep->ep.maxpacket) {
|
|
req->td_data->status &=
|
|
AMD_CLEAR_BIT(
|
|
UDC_DMA_IN_STS_L);
|
|
}
|
|
|
|
/* write desc pointer */
|
|
writel(req->td_phys, &ep->regs->desptr);
|
|
|
|
/* set HOST READY */
|
|
req->td_data->status =
|
|
AMD_ADDBITS(
|
|
req->td_data->status,
|
|
UDC_DMA_IN_STS_BS_HOST_READY,
|
|
UDC_DMA_IN_STS_BS);
|
|
|
|
/* set poll demand bit */
|
|
tmp = readl(&ep->regs->ctl);
|
|
tmp |= AMD_BIT(UDC_EPCTL_P);
|
|
writel(tmp, &ep->regs->ctl);
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
/* clear status bits */
|
|
writel(epsts, &ep->regs->sts);
|
|
|
|
finished:
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
/* Interrupt handler for Control OUT traffic */
|
|
static irqreturn_t udc_control_out_isr(struct udc *dev)
|
|
__releases(dev->lock)
|
|
__acquires(dev->lock)
|
|
{
|
|
irqreturn_t ret_val = IRQ_NONE;
|
|
u32 tmp;
|
|
int setup_supported;
|
|
u32 count;
|
|
int set = 0;
|
|
struct udc_ep *ep;
|
|
struct udc_ep *ep_tmp;
|
|
|
|
ep = &dev->ep[UDC_EP0OUT_IX];
|
|
|
|
/* clear irq */
|
|
writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
|
|
|
|
tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
|
|
/* check BNA and clear if set */
|
|
if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
|
|
VDBG(dev, "ep0: BNA set\n");
|
|
writel(AMD_BIT(UDC_EPSTS_BNA),
|
|
&dev->ep[UDC_EP0OUT_IX].regs->sts);
|
|
ep->bna_occurred = 1;
|
|
ret_val = IRQ_HANDLED;
|
|
goto finished;
|
|
}
|
|
|
|
/* type of data: SETUP or DATA 0 bytes */
|
|
tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
|
|
VDBG(dev, "data_typ = %x\n", tmp);
|
|
|
|
/* setup data */
|
|
if (tmp == UDC_EPSTS_OUT_SETUP) {
|
|
ret_val = IRQ_HANDLED;
|
|
|
|
ep->dev->stall_ep0in = 0;
|
|
dev->waiting_zlp_ack_ep0in = 0;
|
|
|
|
/* set NAK for EP0_IN */
|
|
tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
|
|
tmp |= AMD_BIT(UDC_EPCTL_SNAK);
|
|
writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
|
|
dev->ep[UDC_EP0IN_IX].naking = 1;
|
|
/* get setup data */
|
|
if (use_dma) {
|
|
|
|
/* clear OUT bits in ep status */
|
|
writel(UDC_EPSTS_OUT_CLEAR,
|
|
&dev->ep[UDC_EP0OUT_IX].regs->sts);
|
|
|
|
setup_data.data[0] =
|
|
dev->ep[UDC_EP0OUT_IX].td_stp->data12;
|
|
setup_data.data[1] =
|
|
dev->ep[UDC_EP0OUT_IX].td_stp->data34;
|
|
/* set HOST READY */
|
|
dev->ep[UDC_EP0OUT_IX].td_stp->status =
|
|
UDC_DMA_STP_STS_BS_HOST_READY;
|
|
} else {
|
|
/* read fifo */
|
|
udc_rxfifo_read_dwords(dev, setup_data.data, 2);
|
|
}
|
|
|
|
/* determine direction of control data */
|
|
if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
|
|
dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
|
|
/* enable RDE */
|
|
udc_ep0_set_rde(dev);
|
|
set = 0;
|
|
} else {
|
|
dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
|
|
/*
|
|
* implant BNA dummy descriptor to allow RXFIFO opening
|
|
* by RDE
|
|
*/
|
|
if (ep->bna_dummy_req) {
|
|
/* write desc pointer */
|
|
writel(ep->bna_dummy_req->td_phys,
|
|
&dev->ep[UDC_EP0OUT_IX].regs->desptr);
|
|
ep->bna_occurred = 0;
|
|
}
|
|
|
|
set = 1;
|
|
dev->ep[UDC_EP0OUT_IX].naking = 1;
|
|
/*
|
|
* setup timer for enabling RDE (to not enable
|
|
* RXFIFO DMA for data to early)
|
|
*/
|
|
set_rde = 1;
|
|
if (!timer_pending(&udc_timer)) {
|
|
udc_timer.expires = jiffies +
|
|
HZ/UDC_RDE_TIMER_DIV;
|
|
if (!stop_timer) {
|
|
add_timer(&udc_timer);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* mass storage reset must be processed here because
|
|
* next packet may be a CLEAR_FEATURE HALT which would not
|
|
* clear the stall bit when no STALL handshake was received
|
|
* before (autostall can cause this)
|
|
*/
|
|
if (setup_data.data[0] == UDC_MSCRES_DWORD0
|
|
&& setup_data.data[1] == UDC_MSCRES_DWORD1) {
|
|
DBG(dev, "MSC Reset\n");
|
|
/*
|
|
* clear stall bits
|
|
* only one IN and OUT endpoints are handled
|
|
*/
|
|
ep_tmp = &udc->ep[UDC_EPIN_IX];
|
|
udc_set_halt(&ep_tmp->ep, 0);
|
|
ep_tmp = &udc->ep[UDC_EPOUT_IX];
|
|
udc_set_halt(&ep_tmp->ep, 0);
|
|
}
|
|
|
|
/* call gadget with setup data received */
|
|
spin_unlock(&dev->lock);
|
|
setup_supported = dev->driver->setup(&dev->gadget,
|
|
&setup_data.request);
|
|
spin_lock(&dev->lock);
|
|
|
|
tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
|
|
/* ep0 in returns data (not zlp) on IN phase */
|
|
if (setup_supported >= 0 && setup_supported <
|
|
UDC_EP0IN_MAXPACKET) {
|
|
/* clear NAK by writing CNAK in EP0_IN */
|
|
tmp |= AMD_BIT(UDC_EPCTL_CNAK);
|
|
writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
|
|
dev->ep[UDC_EP0IN_IX].naking = 0;
|
|
UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
|
|
|
|
/* if unsupported request then stall */
|
|
} else if (setup_supported < 0) {
|
|
tmp |= AMD_BIT(UDC_EPCTL_S);
|
|
writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
|
|
} else
|
|
dev->waiting_zlp_ack_ep0in = 1;
|
|
|
|
|
|
/* clear NAK by writing CNAK in EP0_OUT */
|
|
if (!set) {
|
|
tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
|
|
tmp |= AMD_BIT(UDC_EPCTL_CNAK);
|
|
writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
|
|
dev->ep[UDC_EP0OUT_IX].naking = 0;
|
|
UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
|
|
}
|
|
|
|
if (!use_dma) {
|
|
/* clear OUT bits in ep status */
|
|
writel(UDC_EPSTS_OUT_CLEAR,
|
|
&dev->ep[UDC_EP0OUT_IX].regs->sts);
|
|
}
|
|
|
|
/* data packet 0 bytes */
|
|
} else if (tmp == UDC_EPSTS_OUT_DATA) {
|
|
/* clear OUT bits in ep status */
|
|
writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
|
|
|
|
/* get setup data: only 0 packet */
|
|
if (use_dma) {
|
|
/* no req if 0 packet, just reactivate */
|
|
if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
|
|
VDBG(dev, "ZLP\n");
|
|
|
|
/* set HOST READY */
|
|
dev->ep[UDC_EP0OUT_IX].td->status =
|
|
AMD_ADDBITS(
|
|
dev->ep[UDC_EP0OUT_IX].td->status,
|
|
UDC_DMA_OUT_STS_BS_HOST_READY,
|
|
UDC_DMA_OUT_STS_BS);
|
|
/* enable RDE */
|
|
udc_ep0_set_rde(dev);
|
|
ret_val = IRQ_HANDLED;
|
|
|
|
} else {
|
|
/* control write */
|
|
ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
|
|
/* re-program desc. pointer for possible ZLPs */
|
|
writel(dev->ep[UDC_EP0OUT_IX].td_phys,
|
|
&dev->ep[UDC_EP0OUT_IX].regs->desptr);
|
|
/* enable RDE */
|
|
udc_ep0_set_rde(dev);
|
|
}
|
|
} else {
|
|
|
|
/* received number bytes */
|
|
count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
|
|
count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
|
|
/* out data for fifo mode not working */
|
|
count = 0;
|
|
|
|
/* 0 packet or real data ? */
|
|
if (count != 0) {
|
|
ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
|
|
} else {
|
|
/* dummy read confirm */
|
|
readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
|
|
ret_val = IRQ_HANDLED;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* check pending CNAKS */
|
|
if (cnak_pending) {
|
|
/* CNAk processing when rxfifo empty only */
|
|
if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
|
|
udc_process_cnak_queue(dev);
|
|
}
|
|
}
|
|
|
|
finished:
|
|
return ret_val;
|
|
}
|
|
|
|
/* Interrupt handler for Control IN traffic */
|
|
static irqreturn_t udc_control_in_isr(struct udc *dev)
|
|
{
|
|
irqreturn_t ret_val = IRQ_NONE;
|
|
u32 tmp;
|
|
struct udc_ep *ep;
|
|
struct udc_request *req;
|
|
unsigned len;
|
|
|
|
ep = &dev->ep[UDC_EP0IN_IX];
|
|
|
|
/* clear irq */
|
|
writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
|
|
|
|
tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
|
|
/* DMA completion */
|
|
if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
|
|
VDBG(dev, "isr: TDC clear \n");
|
|
ret_val = IRQ_HANDLED;
|
|
|
|
/* clear TDC bit */
|
|
writel(AMD_BIT(UDC_EPSTS_TDC),
|
|
&dev->ep[UDC_EP0IN_IX].regs->sts);
|
|
|
|
/* status reg has IN bit set ? */
|
|
} else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
|
|
ret_val = IRQ_HANDLED;
|
|
|
|
if (ep->dma) {
|
|
/* clear IN bit */
|
|
writel(AMD_BIT(UDC_EPSTS_IN),
|
|
&dev->ep[UDC_EP0IN_IX].regs->sts);
|
|
}
|
|
if (dev->stall_ep0in) {
|
|
DBG(dev, "stall ep0in\n");
|
|
/* halt ep0in */
|
|
tmp = readl(&ep->regs->ctl);
|
|
tmp |= AMD_BIT(UDC_EPCTL_S);
|
|
writel(tmp, &ep->regs->ctl);
|
|
} else {
|
|
if (!list_empty(&ep->queue)) {
|
|
/* next request */
|
|
req = list_entry(ep->queue.next,
|
|
struct udc_request, queue);
|
|
|
|
if (ep->dma) {
|
|
/* write desc pointer */
|
|
writel(req->td_phys, &ep->regs->desptr);
|
|
/* set HOST READY */
|
|
req->td_data->status =
|
|
AMD_ADDBITS(
|
|
req->td_data->status,
|
|
UDC_DMA_STP_STS_BS_HOST_READY,
|
|
UDC_DMA_STP_STS_BS);
|
|
|
|
/* set poll demand bit */
|
|
tmp =
|
|
readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
|
|
tmp |= AMD_BIT(UDC_EPCTL_P);
|
|
writel(tmp,
|
|
&dev->ep[UDC_EP0IN_IX].regs->ctl);
|
|
|
|
/* all bytes will be transferred */
|
|
req->req.actual = req->req.length;
|
|
|
|
/* complete req */
|
|
complete_req(ep, req, 0);
|
|
|
|
} else {
|
|
/* write fifo */
|
|
udc_txfifo_write(ep, &req->req);
|
|
|
|
/* lengh bytes transfered */
|
|
len = req->req.length - req->req.actual;
|
|
if (len > ep->ep.maxpacket)
|
|
len = ep->ep.maxpacket;
|
|
|
|
req->req.actual += len;
|
|
if (req->req.actual == req->req.length
|
|
|| (len != ep->ep.maxpacket)) {
|
|
/* complete req */
|
|
complete_req(ep, req, 0);
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
ep->halted = 0;
|
|
dev->stall_ep0in = 0;
|
|
if (!ep->dma) {
|
|
/* clear IN bit */
|
|
writel(AMD_BIT(UDC_EPSTS_IN),
|
|
&dev->ep[UDC_EP0IN_IX].regs->sts);
|
|
}
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
|
|
/* Interrupt handler for global device events */
|
|
static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
|
|
__releases(dev->lock)
|
|
__acquires(dev->lock)
|
|
{
|
|
irqreturn_t ret_val = IRQ_NONE;
|
|
u32 tmp;
|
|
u32 cfg;
|
|
struct udc_ep *ep;
|
|
u16 i;
|
|
u8 udc_csr_epix;
|
|
|
|
/* SET_CONFIG irq ? */
|
|
if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
|
|
ret_val = IRQ_HANDLED;
|
|
|
|
/* read config value */
|
|
tmp = readl(&dev->regs->sts);
|
|
cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
|
|
DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
|
|
dev->cur_config = cfg;
|
|
dev->set_cfg_not_acked = 1;
|
|
|
|
/* make usb request for gadget driver */
|
|
memset(&setup_data, 0 , sizeof(union udc_setup_data));
|
|
setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
|
|
setup_data.request.wValue = cpu_to_le16(dev->cur_config);
|
|
|
|
/* programm the NE registers */
|
|
for (i = 0; i < UDC_EP_NUM; i++) {
|
|
ep = &dev->ep[i];
|
|
if (ep->in) {
|
|
|
|
/* ep ix in UDC CSR register space */
|
|
udc_csr_epix = ep->num;
|
|
|
|
|
|
/* OUT ep */
|
|
} else {
|
|
/* ep ix in UDC CSR register space */
|
|
udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
|
|
}
|
|
|
|
tmp = readl(&dev->csr->ne[udc_csr_epix]);
|
|
/* ep cfg */
|
|
tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
|
|
UDC_CSR_NE_CFG);
|
|
/* write reg */
|
|
writel(tmp, &dev->csr->ne[udc_csr_epix]);
|
|
|
|
/* clear stall bits */
|
|
ep->halted = 0;
|
|
tmp = readl(&ep->regs->ctl);
|
|
tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
|
|
writel(tmp, &ep->regs->ctl);
|
|
}
|
|
/* call gadget zero with setup data received */
|
|
spin_unlock(&dev->lock);
|
|
tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
|
|
spin_lock(&dev->lock);
|
|
|
|
} /* SET_INTERFACE ? */
|
|
if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
|
|
ret_val = IRQ_HANDLED;
|
|
|
|
dev->set_cfg_not_acked = 1;
|
|
/* read interface and alt setting values */
|
|
tmp = readl(&dev->regs->sts);
|
|
dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
|
|
dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
|
|
|
|
/* make usb request for gadget driver */
|
|
memset(&setup_data, 0 , sizeof(union udc_setup_data));
|
|
setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
|
|
setup_data.request.bRequestType = USB_RECIP_INTERFACE;
|
|
setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
|
|
setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
|
|
|
|
DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
|
|
dev->cur_alt, dev->cur_intf);
|
|
|
|
/* programm the NE registers */
|
|
for (i = 0; i < UDC_EP_NUM; i++) {
|
|
ep = &dev->ep[i];
|
|
if (ep->in) {
|
|
|
|
/* ep ix in UDC CSR register space */
|
|
udc_csr_epix = ep->num;
|
|
|
|
|
|
/* OUT ep */
|
|
} else {
|
|
/* ep ix in UDC CSR register space */
|
|
udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
|
|
}
|
|
|
|
/* UDC CSR reg */
|
|
/* set ep values */
|
|
tmp = readl(&dev->csr->ne[udc_csr_epix]);
|
|
/* ep interface */
|
|
tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
|
|
UDC_CSR_NE_INTF);
|
|
/* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
|
|
/* ep alt */
|
|
tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
|
|
UDC_CSR_NE_ALT);
|
|
/* write reg */
|
|
writel(tmp, &dev->csr->ne[udc_csr_epix]);
|
|
|
|
/* clear stall bits */
|
|
ep->halted = 0;
|
|
tmp = readl(&ep->regs->ctl);
|
|
tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
|
|
writel(tmp, &ep->regs->ctl);
|
|
}
|
|
|
|
/* call gadget zero with setup data received */
|
|
spin_unlock(&dev->lock);
|
|
tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
|
|
spin_lock(&dev->lock);
|
|
|
|
} /* USB reset */
|
|
if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
|
|
DBG(dev, "USB Reset interrupt\n");
|
|
ret_val = IRQ_HANDLED;
|
|
|
|
/* allow soft reset when suspend occurs */
|
|
soft_reset_occured = 0;
|
|
|
|
dev->waiting_zlp_ack_ep0in = 0;
|
|
dev->set_cfg_not_acked = 0;
|
|
|
|
/* mask not needed interrupts */
|
|
udc_mask_unused_interrupts(dev);
|
|
|
|
/* call gadget to resume and reset configs etc. */
|
|
spin_unlock(&dev->lock);
|
|
if (dev->sys_suspended && dev->driver->resume) {
|
|
dev->driver->resume(&dev->gadget);
|
|
dev->sys_suspended = 0;
|
|
}
|
|
dev->driver->disconnect(&dev->gadget);
|
|
spin_lock(&dev->lock);
|
|
|
|
/* disable ep0 to empty req queue */
|
|
empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
|
|
ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
|
|
|
|
/* soft reset when rxfifo not empty */
|
|
tmp = readl(&dev->regs->sts);
|
|
if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
|
|
&& !soft_reset_after_usbreset_occured) {
|
|
udc_soft_reset(dev);
|
|
soft_reset_after_usbreset_occured++;
|
|
}
|
|
|
|
/*
|
|
* DMA reset to kill potential old DMA hw hang,
|
|
* POLL bit is already reset by ep_init() through
|
|
* disconnect()
|
|
*/
|
|
DBG(dev, "DMA machine reset\n");
|
|
tmp = readl(&dev->regs->cfg);
|
|
writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
|
|
writel(tmp, &dev->regs->cfg);
|
|
|
|
/* put into initial config */
|
|
udc_basic_init(dev);
|
|
|
|
/* enable device setup interrupts */
|
|
udc_enable_dev_setup_interrupts(dev);
|
|
|
|
/* enable suspend interrupt */
|
|
tmp = readl(&dev->regs->irqmsk);
|
|
tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
|
|
writel(tmp, &dev->regs->irqmsk);
|
|
|
|
} /* USB suspend */
|
|
if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
|
|
DBG(dev, "USB Suspend interrupt\n");
|
|
ret_val = IRQ_HANDLED;
|
|
if (dev->driver->suspend) {
|
|
spin_unlock(&dev->lock);
|
|
dev->sys_suspended = 1;
|
|
dev->driver->suspend(&dev->gadget);
|
|
spin_lock(&dev->lock);
|
|
}
|
|
} /* new speed ? */
|
|
if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
|
|
DBG(dev, "ENUM interrupt\n");
|
|
ret_val = IRQ_HANDLED;
|
|
soft_reset_after_usbreset_occured = 0;
|
|
|
|
/* disable ep0 to empty req queue */
|
|
empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
|
|
ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
|
|
|
|
/* link up all endpoints */
|
|
udc_setup_endpoints(dev);
|
|
if (dev->gadget.speed == USB_SPEED_HIGH) {
|
|
dev_info(&dev->pdev->dev, "Connect: speed = %s\n",
|
|
"high");
|
|
} else if (dev->gadget.speed == USB_SPEED_FULL) {
|
|
dev_info(&dev->pdev->dev, "Connect: speed = %s\n",
|
|
"full");
|
|
}
|
|
|
|
/* init ep 0 */
|
|
activate_control_endpoints(dev);
|
|
|
|
/* enable ep0 interrupts */
|
|
udc_enable_ep0_interrupts(dev);
|
|
}
|
|
/* session valid change interrupt */
|
|
if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
|
|
DBG(dev, "USB SVC interrupt\n");
|
|
ret_val = IRQ_HANDLED;
|
|
|
|
/* check that session is not valid to detect disconnect */
|
|
tmp = readl(&dev->regs->sts);
|
|
if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
|
|
/* disable suspend interrupt */
|
|
tmp = readl(&dev->regs->irqmsk);
|
|
tmp |= AMD_BIT(UDC_DEVINT_US);
|
|
writel(tmp, &dev->regs->irqmsk);
|
|
DBG(dev, "USB Disconnect (session valid low)\n");
|
|
/* cleanup on disconnect */
|
|
usb_disconnect(udc);
|
|
}
|
|
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/* Interrupt Service Routine, see Linux Kernel Doc for parameters */
|
|
static irqreturn_t udc_irq(int irq, void *pdev)
|
|
{
|
|
struct udc *dev = pdev;
|
|
u32 reg;
|
|
u16 i;
|
|
u32 ep_irq;
|
|
irqreturn_t ret_val = IRQ_NONE;
|
|
|
|
spin_lock(&dev->lock);
|
|
|
|
/* check for ep irq */
|
|
reg = readl(&dev->regs->ep_irqsts);
|
|
if (reg) {
|
|
if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
|
|
ret_val |= udc_control_out_isr(dev);
|
|
if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
|
|
ret_val |= udc_control_in_isr(dev);
|
|
|
|
/*
|
|
* data endpoint
|
|
* iterate ep's
|
|
*/
|
|
for (i = 1; i < UDC_EP_NUM; i++) {
|
|
ep_irq = 1 << i;
|
|
if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
|
|
continue;
|
|
|
|
/* clear irq status */
|
|
writel(ep_irq, &dev->regs->ep_irqsts);
|
|
|
|
/* irq for out ep ? */
|
|
if (i > UDC_EPIN_NUM)
|
|
ret_val |= udc_data_out_isr(dev, i);
|
|
else
|
|
ret_val |= udc_data_in_isr(dev, i);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/* check for dev irq */
|
|
reg = readl(&dev->regs->irqsts);
|
|
if (reg) {
|
|
/* clear irq */
|
|
writel(reg, &dev->regs->irqsts);
|
|
ret_val |= udc_dev_isr(dev, reg);
|
|
}
|
|
|
|
|
|
spin_unlock(&dev->lock);
|
|
return ret_val;
|
|
}
|
|
|
|
/* Tears down device */
|
|
static void gadget_release(struct device *pdev)
|
|
{
|
|
struct amd5536udc *dev = dev_get_drvdata(pdev);
|
|
kfree(dev);
|
|
}
|
|
|
|
/* Cleanup on device remove */
|
|
static void udc_remove(struct udc *dev)
|
|
{
|
|
/* remove timer */
|
|
stop_timer++;
|
|
if (timer_pending(&udc_timer))
|
|
wait_for_completion(&on_exit);
|
|
if (udc_timer.data)
|
|
del_timer_sync(&udc_timer);
|
|
/* remove pollstall timer */
|
|
stop_pollstall_timer++;
|
|
if (timer_pending(&udc_pollstall_timer))
|
|
wait_for_completion(&on_pollstall_exit);
|
|
if (udc_pollstall_timer.data)
|
|
del_timer_sync(&udc_pollstall_timer);
|
|
udc = NULL;
|
|
}
|
|
|
|
/* Reset all pci context */
|
|
static void udc_pci_remove(struct pci_dev *pdev)
|
|
{
|
|
struct udc *dev;
|
|
|
|
dev = pci_get_drvdata(pdev);
|
|
|
|
/* gadget driver must not be registered */
|
|
BUG_ON(dev->driver != NULL);
|
|
|
|
/* dma pool cleanup */
|
|
if (dev->data_requests)
|
|
pci_pool_destroy(dev->data_requests);
|
|
|
|
if (dev->stp_requests) {
|
|
/* cleanup DMA desc's for ep0in */
|
|
pci_pool_free(dev->stp_requests,
|
|
dev->ep[UDC_EP0OUT_IX].td_stp,
|
|
dev->ep[UDC_EP0OUT_IX].td_stp_dma);
|
|
pci_pool_free(dev->stp_requests,
|
|
dev->ep[UDC_EP0OUT_IX].td,
|
|
dev->ep[UDC_EP0OUT_IX].td_phys);
|
|
|
|
pci_pool_destroy(dev->stp_requests);
|
|
}
|
|
|
|
/* reset controller */
|
|
writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
|
|
if (dev->irq_registered)
|
|
free_irq(pdev->irq, dev);
|
|
if (dev->regs)
|
|
iounmap(dev->regs);
|
|
if (dev->mem_region)
|
|
release_mem_region(pci_resource_start(pdev, 0),
|
|
pci_resource_len(pdev, 0));
|
|
if (dev->active)
|
|
pci_disable_device(pdev);
|
|
|
|
device_unregister(&dev->gadget.dev);
|
|
pci_set_drvdata(pdev, NULL);
|
|
|
|
udc_remove(dev);
|
|
}
|
|
|
|
/* create dma pools on init */
|
|
static int init_dma_pools(struct udc *dev)
|
|
{
|
|
struct udc_stp_dma *td_stp;
|
|
struct udc_data_dma *td_data;
|
|
int retval;
|
|
|
|
/* consistent DMA mode setting ? */
|
|
if (use_dma_ppb) {
|
|
use_dma_bufferfill_mode = 0;
|
|
} else {
|
|
use_dma_ppb_du = 0;
|
|
use_dma_bufferfill_mode = 1;
|
|
}
|
|
|
|
/* DMA setup */
|
|
dev->data_requests = dma_pool_create("data_requests", NULL,
|
|
sizeof(struct udc_data_dma), 0, 0);
|
|
if (!dev->data_requests) {
|
|
DBG(dev, "can't get request data pool\n");
|
|
retval = -ENOMEM;
|
|
goto finished;
|
|
}
|
|
|
|
/* EP0 in dma regs = dev control regs */
|
|
dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
|
|
|
|
/* dma desc for setup data */
|
|
dev->stp_requests = dma_pool_create("setup requests", NULL,
|
|
sizeof(struct udc_stp_dma), 0, 0);
|
|
if (!dev->stp_requests) {
|
|
DBG(dev, "can't get stp request pool\n");
|
|
retval = -ENOMEM;
|
|
goto finished;
|
|
}
|
|
/* setup */
|
|
td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
|
|
&dev->ep[UDC_EP0OUT_IX].td_stp_dma);
|
|
if (td_stp == NULL) {
|
|
retval = -ENOMEM;
|
|
goto finished;
|
|
}
|
|
dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
|
|
|
|
/* data: 0 packets !? */
|
|
td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
|
|
&dev->ep[UDC_EP0OUT_IX].td_phys);
|
|
if (td_data == NULL) {
|
|
retval = -ENOMEM;
|
|
goto finished;
|
|
}
|
|
dev->ep[UDC_EP0OUT_IX].td = td_data;
|
|
return 0;
|
|
|
|
finished:
|
|
return retval;
|
|
}
|
|
|
|
/* Called by pci bus driver to init pci context */
|
|
static int udc_pci_probe(
|
|
struct pci_dev *pdev,
|
|
const struct pci_device_id *id
|
|
)
|
|
{
|
|
struct udc *dev;
|
|
unsigned long resource;
|
|
unsigned long len;
|
|
int retval = 0;
|
|
|
|
/* one udc only */
|
|
if (udc) {
|
|
dev_dbg(&pdev->dev, "already probed\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* init */
|
|
dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
|
|
if (!dev) {
|
|
retval = -ENOMEM;
|
|
goto finished;
|
|
}
|
|
|
|
/* pci setup */
|
|
if (pci_enable_device(pdev) < 0) {
|
|
kfree(dev);
|
|
dev = NULL;
|
|
retval = -ENODEV;
|
|
goto finished;
|
|
}
|
|
dev->active = 1;
|
|
|
|
/* PCI resource allocation */
|
|
resource = pci_resource_start(pdev, 0);
|
|
len = pci_resource_len(pdev, 0);
|
|
|
|
if (!request_mem_region(resource, len, name)) {
|
|
dev_dbg(&pdev->dev, "pci device used already\n");
|
|
kfree(dev);
|
|
dev = NULL;
|
|
retval = -EBUSY;
|
|
goto finished;
|
|
}
|
|
dev->mem_region = 1;
|
|
|
|
dev->virt_addr = ioremap_nocache(resource, len);
|
|
if (dev->virt_addr == NULL) {
|
|
dev_dbg(&pdev->dev, "start address cannot be mapped\n");
|
|
kfree(dev);
|
|
dev = NULL;
|
|
retval = -EFAULT;
|
|
goto finished;
|
|
}
|
|
|
|
if (!pdev->irq) {
|
|
dev_err(&dev->pdev->dev, "irq not set\n");
|
|
kfree(dev);
|
|
dev = NULL;
|
|
retval = -ENODEV;
|
|
goto finished;
|
|
}
|
|
|
|
if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
|
|
dev_dbg(&dev->pdev->dev, "request_irq(%d) fail\n", pdev->irq);
|
|
kfree(dev);
|
|
dev = NULL;
|
|
retval = -EBUSY;
|
|
goto finished;
|
|
}
|
|
dev->irq_registered = 1;
|
|
|
|
pci_set_drvdata(pdev, dev);
|
|
|
|
/* chip revision for Hs AMD5536 */
|
|
dev->chiprev = pdev->revision;
|
|
|
|
pci_set_master(pdev);
|
|
pci_try_set_mwi(pdev);
|
|
|
|
/* init dma pools */
|
|
if (use_dma) {
|
|
retval = init_dma_pools(dev);
|
|
if (retval != 0)
|
|
goto finished;
|
|
}
|
|
|
|
dev->phys_addr = resource;
|
|
dev->irq = pdev->irq;
|
|
dev->pdev = pdev;
|
|
dev->gadget.dev.parent = &pdev->dev;
|
|
dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
|
|
|
|
/* general probing */
|
|
if (udc_probe(dev) == 0)
|
|
return 0;
|
|
|
|
finished:
|
|
if (dev)
|
|
udc_pci_remove(pdev);
|
|
return retval;
|
|
}
|
|
|
|
/* general probe */
|
|
static int udc_probe(struct udc *dev)
|
|
{
|
|
char tmp[128];
|
|
u32 reg;
|
|
int retval;
|
|
|
|
/* mark timer as not initialized */
|
|
udc_timer.data = 0;
|
|
udc_pollstall_timer.data = 0;
|
|
|
|
/* device struct setup */
|
|
spin_lock_init(&dev->lock);
|
|
dev->gadget.ops = &udc_ops;
|
|
|
|
dev_set_name(&dev->gadget.dev, "gadget");
|
|
dev->gadget.dev.release = gadget_release;
|
|
dev->gadget.name = name;
|
|
dev->gadget.name = name;
|
|
dev->gadget.is_dualspeed = 1;
|
|
|
|
/* udc csr registers base */
|
|
dev->csr = dev->virt_addr + UDC_CSR_ADDR;
|
|
/* dev registers base */
|
|
dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
|
|
/* ep registers base */
|
|
dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
|
|
/* fifo's base */
|
|
dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
|
|
dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
|
|
|
|
/* init registers, interrupts, ... */
|
|
startup_registers(dev);
|
|
|
|
dev_info(&dev->pdev->dev, "%s\n", mod_desc);
|
|
|
|
snprintf(tmp, sizeof tmp, "%d", dev->irq);
|
|
dev_info(&dev->pdev->dev,
|
|
"irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
|
|
tmp, dev->phys_addr, dev->chiprev,
|
|
(dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
|
|
strcpy(tmp, UDC_DRIVER_VERSION_STRING);
|
|
if (dev->chiprev == UDC_HSA0_REV) {
|
|
dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
|
|
retval = -ENODEV;
|
|
goto finished;
|
|
}
|
|
dev_info(&dev->pdev->dev,
|
|
"driver version: %s(for Geode5536 B1)\n", tmp);
|
|
udc = dev;
|
|
|
|
retval = device_register(&dev->gadget.dev);
|
|
if (retval)
|
|
goto finished;
|
|
|
|
/* timer init */
|
|
init_timer(&udc_timer);
|
|
udc_timer.function = udc_timer_function;
|
|
udc_timer.data = 1;
|
|
/* timer pollstall init */
|
|
init_timer(&udc_pollstall_timer);
|
|
udc_pollstall_timer.function = udc_pollstall_timer_function;
|
|
udc_pollstall_timer.data = 1;
|
|
|
|
/* set SD */
|
|
reg = readl(&dev->regs->ctl);
|
|
reg |= AMD_BIT(UDC_DEVCTL_SD);
|
|
writel(reg, &dev->regs->ctl);
|
|
|
|
/* print dev register info */
|
|
print_regs(dev);
|
|
|
|
return 0;
|
|
|
|
finished:
|
|
return retval;
|
|
}
|
|
|
|
/* Initiates a remote wakeup */
|
|
static int udc_remote_wakeup(struct udc *dev)
|
|
{
|
|
unsigned long flags;
|
|
u32 tmp;
|
|
|
|
DBG(dev, "UDC initiates remote wakeup\n");
|
|
|
|
spin_lock_irqsave(&dev->lock, flags);
|
|
|
|
tmp = readl(&dev->regs->ctl);
|
|
tmp |= AMD_BIT(UDC_DEVCTL_RES);
|
|
writel(tmp, &dev->regs->ctl);
|
|
tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
|
|
writel(tmp, &dev->regs->ctl);
|
|
|
|
spin_unlock_irqrestore(&dev->lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
/* PCI device parameters */
|
|
static const struct pci_device_id pci_id[] = {
|
|
{
|
|
PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
|
|
.class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
|
|
.class_mask = 0xffffffff,
|
|
},
|
|
{},
|
|
};
|
|
MODULE_DEVICE_TABLE(pci, pci_id);
|
|
|
|
/* PCI functions */
|
|
static struct pci_driver udc_pci_driver = {
|
|
.name = (char *) name,
|
|
.id_table = pci_id,
|
|
.probe = udc_pci_probe,
|
|
.remove = udc_pci_remove,
|
|
};
|
|
|
|
/* Inits driver */
|
|
static int __init init(void)
|
|
{
|
|
return pci_register_driver(&udc_pci_driver);
|
|
}
|
|
module_init(init);
|
|
|
|
/* Cleans driver */
|
|
static void __exit cleanup(void)
|
|
{
|
|
pci_unregister_driver(&udc_pci_driver);
|
|
}
|
|
module_exit(cleanup);
|
|
|
|
MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
|
|
MODULE_AUTHOR("Thomas Dahlmann");
|
|
MODULE_LICENSE("GPL");
|
|
|