mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-15 16:24:13 +08:00
cf3f89214e
In the case of a child pid namespace, rebooting the system does not really makes sense. When the pid namespace is used in conjunction with the other namespaces in order to create a linux container, the reboot syscall leads to some problems. A container can reboot the host. That can be fixed by dropping the sys_reboot capability but we are unable to correctly to poweroff/ halt/reboot a container and the container stays stuck at the shutdown time with the container's init process waiting indefinitively. After several attempts, no solution from userspace was found to reliabily handle the shutdown from a container. This patch propose to make the init process of the child pid namespace to exit with a signal status set to : SIGINT if the child pid namespace called "halt/poweroff" and SIGHUP if the child pid namespace called "reboot". When the reboot syscall is called and we are not in the initial pid namespace, we kill the pid namespace for "HALT", "POWEROFF", "RESTART", and "RESTART2". Otherwise we return EINVAL. Returning EINVAL is also an easy way to check if this feature is supported by the kernel when invoking another 'reboot' option like CAD. By this way the parent process of the child pid namespace knows if it rebooted or not and can take the right decision. Test case: ========== #include <alloca.h> #include <stdio.h> #include <sched.h> #include <unistd.h> #include <signal.h> #include <sys/reboot.h> #include <sys/types.h> #include <sys/wait.h> #include <linux/reboot.h> static int do_reboot(void *arg) { int *cmd = arg; if (reboot(*cmd)) printf("failed to reboot(%d): %m\n", *cmd); } int test_reboot(int cmd, int sig) { long stack_size = 4096; void *stack = alloca(stack_size) + stack_size; int status; pid_t ret; ret = clone(do_reboot, stack, CLONE_NEWPID | SIGCHLD, &cmd); if (ret < 0) { printf("failed to clone: %m\n"); return -1; } if (wait(&status) < 0) { printf("unexpected wait error: %m\n"); return -1; } if (!WIFSIGNALED(status)) { printf("child process exited but was not signaled\n"); return -1; } if (WTERMSIG(status) != sig) { printf("signal termination is not the one expected\n"); return -1; } return 0; } int main(int argc, char *argv[]) { int status; status = test_reboot(LINUX_REBOOT_CMD_RESTART, SIGHUP); if (status < 0) return 1; printf("reboot(LINUX_REBOOT_CMD_RESTART) succeed\n"); status = test_reboot(LINUX_REBOOT_CMD_RESTART2, SIGHUP); if (status < 0) return 1; printf("reboot(LINUX_REBOOT_CMD_RESTART2) succeed\n"); status = test_reboot(LINUX_REBOOT_CMD_HALT, SIGINT); if (status < 0) return 1; printf("reboot(LINUX_REBOOT_CMD_HALT) succeed\n"); status = test_reboot(LINUX_REBOOT_CMD_POWER_OFF, SIGINT); if (status < 0) return 1; printf("reboot(LINUX_REBOOT_CMD_POWERR_OFF) succeed\n"); status = test_reboot(LINUX_REBOOT_CMD_CAD_ON, -1); if (status >= 0) { printf("reboot(LINUX_REBOOT_CMD_CAD_ON) should have failed\n"); return 1; } printf("reboot(LINUX_REBOOT_CMD_CAD_ON) has failed as expected\n"); return 0; } [akpm@linux-foundation.org: tweak and add comments] [akpm@linux-foundation.org: checkpatch fixes] Signed-off-by: Daniel Lezcano <daniel.lezcano@free.fr> Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Tested-by: Serge Hallyn <serge.hallyn@canonical.com> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2058 lines
47 KiB
C
2058 lines
47 KiB
C
/*
|
|
* linux/kernel/sys.c
|
|
*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/prctl.h>
|
|
#include <linux/highuid.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/kmod.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/resource.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/device.h>
|
|
#include <linux/key.h>
|
|
#include <linux/times.h>
|
|
#include <linux/posix-timers.h>
|
|
#include <linux/security.h>
|
|
#include <linux/dcookies.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/cn_proc.h>
|
|
#include <linux/getcpu.h>
|
|
#include <linux/task_io_accounting_ops.h>
|
|
#include <linux/seccomp.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/fs_struct.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/syscore_ops.h>
|
|
#include <linux/version.h>
|
|
#include <linux/ctype.h>
|
|
|
|
#include <linux/compat.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/user_namespace.h>
|
|
|
|
#include <linux/kmsg_dump.h>
|
|
/* Move somewhere else to avoid recompiling? */
|
|
#include <generated/utsrelease.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/io.h>
|
|
#include <asm/unistd.h>
|
|
|
|
#ifndef SET_UNALIGN_CTL
|
|
# define SET_UNALIGN_CTL(a,b) (-EINVAL)
|
|
#endif
|
|
#ifndef GET_UNALIGN_CTL
|
|
# define GET_UNALIGN_CTL(a,b) (-EINVAL)
|
|
#endif
|
|
#ifndef SET_FPEMU_CTL
|
|
# define SET_FPEMU_CTL(a,b) (-EINVAL)
|
|
#endif
|
|
#ifndef GET_FPEMU_CTL
|
|
# define GET_FPEMU_CTL(a,b) (-EINVAL)
|
|
#endif
|
|
#ifndef SET_FPEXC_CTL
|
|
# define SET_FPEXC_CTL(a,b) (-EINVAL)
|
|
#endif
|
|
#ifndef GET_FPEXC_CTL
|
|
# define GET_FPEXC_CTL(a,b) (-EINVAL)
|
|
#endif
|
|
#ifndef GET_ENDIAN
|
|
# define GET_ENDIAN(a,b) (-EINVAL)
|
|
#endif
|
|
#ifndef SET_ENDIAN
|
|
# define SET_ENDIAN(a,b) (-EINVAL)
|
|
#endif
|
|
#ifndef GET_TSC_CTL
|
|
# define GET_TSC_CTL(a) (-EINVAL)
|
|
#endif
|
|
#ifndef SET_TSC_CTL
|
|
# define SET_TSC_CTL(a) (-EINVAL)
|
|
#endif
|
|
|
|
/*
|
|
* this is where the system-wide overflow UID and GID are defined, for
|
|
* architectures that now have 32-bit UID/GID but didn't in the past
|
|
*/
|
|
|
|
int overflowuid = DEFAULT_OVERFLOWUID;
|
|
int overflowgid = DEFAULT_OVERFLOWGID;
|
|
|
|
#ifdef CONFIG_UID16
|
|
EXPORT_SYMBOL(overflowuid);
|
|
EXPORT_SYMBOL(overflowgid);
|
|
#endif
|
|
|
|
/*
|
|
* the same as above, but for filesystems which can only store a 16-bit
|
|
* UID and GID. as such, this is needed on all architectures
|
|
*/
|
|
|
|
int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
|
|
int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
|
|
|
|
EXPORT_SYMBOL(fs_overflowuid);
|
|
EXPORT_SYMBOL(fs_overflowgid);
|
|
|
|
/*
|
|
* this indicates whether you can reboot with ctrl-alt-del: the default is yes
|
|
*/
|
|
|
|
int C_A_D = 1;
|
|
struct pid *cad_pid;
|
|
EXPORT_SYMBOL(cad_pid);
|
|
|
|
/*
|
|
* If set, this is used for preparing the system to power off.
|
|
*/
|
|
|
|
void (*pm_power_off_prepare)(void);
|
|
|
|
/*
|
|
* Returns true if current's euid is same as p's uid or euid,
|
|
* or has CAP_SYS_NICE to p's user_ns.
|
|
*
|
|
* Called with rcu_read_lock, creds are safe
|
|
*/
|
|
static bool set_one_prio_perm(struct task_struct *p)
|
|
{
|
|
const struct cred *cred = current_cred(), *pcred = __task_cred(p);
|
|
|
|
if (pcred->user->user_ns == cred->user->user_ns &&
|
|
(pcred->uid == cred->euid ||
|
|
pcred->euid == cred->euid))
|
|
return true;
|
|
if (ns_capable(pcred->user->user_ns, CAP_SYS_NICE))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* set the priority of a task
|
|
* - the caller must hold the RCU read lock
|
|
*/
|
|
static int set_one_prio(struct task_struct *p, int niceval, int error)
|
|
{
|
|
int no_nice;
|
|
|
|
if (!set_one_prio_perm(p)) {
|
|
error = -EPERM;
|
|
goto out;
|
|
}
|
|
if (niceval < task_nice(p) && !can_nice(p, niceval)) {
|
|
error = -EACCES;
|
|
goto out;
|
|
}
|
|
no_nice = security_task_setnice(p, niceval);
|
|
if (no_nice) {
|
|
error = no_nice;
|
|
goto out;
|
|
}
|
|
if (error == -ESRCH)
|
|
error = 0;
|
|
set_user_nice(p, niceval);
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
|
|
{
|
|
struct task_struct *g, *p;
|
|
struct user_struct *user;
|
|
const struct cred *cred = current_cred();
|
|
int error = -EINVAL;
|
|
struct pid *pgrp;
|
|
|
|
if (which > PRIO_USER || which < PRIO_PROCESS)
|
|
goto out;
|
|
|
|
/* normalize: avoid signed division (rounding problems) */
|
|
error = -ESRCH;
|
|
if (niceval < -20)
|
|
niceval = -20;
|
|
if (niceval > 19)
|
|
niceval = 19;
|
|
|
|
rcu_read_lock();
|
|
read_lock(&tasklist_lock);
|
|
switch (which) {
|
|
case PRIO_PROCESS:
|
|
if (who)
|
|
p = find_task_by_vpid(who);
|
|
else
|
|
p = current;
|
|
if (p)
|
|
error = set_one_prio(p, niceval, error);
|
|
break;
|
|
case PRIO_PGRP:
|
|
if (who)
|
|
pgrp = find_vpid(who);
|
|
else
|
|
pgrp = task_pgrp(current);
|
|
do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
|
|
error = set_one_prio(p, niceval, error);
|
|
} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
|
|
break;
|
|
case PRIO_USER:
|
|
user = (struct user_struct *) cred->user;
|
|
if (!who)
|
|
who = cred->uid;
|
|
else if ((who != cred->uid) &&
|
|
!(user = find_user(who)))
|
|
goto out_unlock; /* No processes for this user */
|
|
|
|
do_each_thread(g, p) {
|
|
if (__task_cred(p)->uid == who)
|
|
error = set_one_prio(p, niceval, error);
|
|
} while_each_thread(g, p);
|
|
if (who != cred->uid)
|
|
free_uid(user); /* For find_user() */
|
|
break;
|
|
}
|
|
out_unlock:
|
|
read_unlock(&tasklist_lock);
|
|
rcu_read_unlock();
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Ugh. To avoid negative return values, "getpriority()" will
|
|
* not return the normal nice-value, but a negated value that
|
|
* has been offset by 20 (ie it returns 40..1 instead of -20..19)
|
|
* to stay compatible.
|
|
*/
|
|
SYSCALL_DEFINE2(getpriority, int, which, int, who)
|
|
{
|
|
struct task_struct *g, *p;
|
|
struct user_struct *user;
|
|
const struct cred *cred = current_cred();
|
|
long niceval, retval = -ESRCH;
|
|
struct pid *pgrp;
|
|
|
|
if (which > PRIO_USER || which < PRIO_PROCESS)
|
|
return -EINVAL;
|
|
|
|
rcu_read_lock();
|
|
read_lock(&tasklist_lock);
|
|
switch (which) {
|
|
case PRIO_PROCESS:
|
|
if (who)
|
|
p = find_task_by_vpid(who);
|
|
else
|
|
p = current;
|
|
if (p) {
|
|
niceval = 20 - task_nice(p);
|
|
if (niceval > retval)
|
|
retval = niceval;
|
|
}
|
|
break;
|
|
case PRIO_PGRP:
|
|
if (who)
|
|
pgrp = find_vpid(who);
|
|
else
|
|
pgrp = task_pgrp(current);
|
|
do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
|
|
niceval = 20 - task_nice(p);
|
|
if (niceval > retval)
|
|
retval = niceval;
|
|
} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
|
|
break;
|
|
case PRIO_USER:
|
|
user = (struct user_struct *) cred->user;
|
|
if (!who)
|
|
who = cred->uid;
|
|
else if ((who != cred->uid) &&
|
|
!(user = find_user(who)))
|
|
goto out_unlock; /* No processes for this user */
|
|
|
|
do_each_thread(g, p) {
|
|
if (__task_cred(p)->uid == who) {
|
|
niceval = 20 - task_nice(p);
|
|
if (niceval > retval)
|
|
retval = niceval;
|
|
}
|
|
} while_each_thread(g, p);
|
|
if (who != cred->uid)
|
|
free_uid(user); /* for find_user() */
|
|
break;
|
|
}
|
|
out_unlock:
|
|
read_unlock(&tasklist_lock);
|
|
rcu_read_unlock();
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* emergency_restart - reboot the system
|
|
*
|
|
* Without shutting down any hardware or taking any locks
|
|
* reboot the system. This is called when we know we are in
|
|
* trouble so this is our best effort to reboot. This is
|
|
* safe to call in interrupt context.
|
|
*/
|
|
void emergency_restart(void)
|
|
{
|
|
kmsg_dump(KMSG_DUMP_EMERG);
|
|
machine_emergency_restart();
|
|
}
|
|
EXPORT_SYMBOL_GPL(emergency_restart);
|
|
|
|
void kernel_restart_prepare(char *cmd)
|
|
{
|
|
blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
|
|
system_state = SYSTEM_RESTART;
|
|
usermodehelper_disable();
|
|
device_shutdown();
|
|
syscore_shutdown();
|
|
}
|
|
|
|
/**
|
|
* register_reboot_notifier - Register function to be called at reboot time
|
|
* @nb: Info about notifier function to be called
|
|
*
|
|
* Registers a function with the list of functions
|
|
* to be called at reboot time.
|
|
*
|
|
* Currently always returns zero, as blocking_notifier_chain_register()
|
|
* always returns zero.
|
|
*/
|
|
int register_reboot_notifier(struct notifier_block *nb)
|
|
{
|
|
return blocking_notifier_chain_register(&reboot_notifier_list, nb);
|
|
}
|
|
EXPORT_SYMBOL(register_reboot_notifier);
|
|
|
|
/**
|
|
* unregister_reboot_notifier - Unregister previously registered reboot notifier
|
|
* @nb: Hook to be unregistered
|
|
*
|
|
* Unregisters a previously registered reboot
|
|
* notifier function.
|
|
*
|
|
* Returns zero on success, or %-ENOENT on failure.
|
|
*/
|
|
int unregister_reboot_notifier(struct notifier_block *nb)
|
|
{
|
|
return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
|
|
}
|
|
EXPORT_SYMBOL(unregister_reboot_notifier);
|
|
|
|
/**
|
|
* kernel_restart - reboot the system
|
|
* @cmd: pointer to buffer containing command to execute for restart
|
|
* or %NULL
|
|
*
|
|
* Shutdown everything and perform a clean reboot.
|
|
* This is not safe to call in interrupt context.
|
|
*/
|
|
void kernel_restart(char *cmd)
|
|
{
|
|
kernel_restart_prepare(cmd);
|
|
if (!cmd)
|
|
printk(KERN_EMERG "Restarting system.\n");
|
|
else
|
|
printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
|
|
kmsg_dump(KMSG_DUMP_RESTART);
|
|
machine_restart(cmd);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kernel_restart);
|
|
|
|
static void kernel_shutdown_prepare(enum system_states state)
|
|
{
|
|
blocking_notifier_call_chain(&reboot_notifier_list,
|
|
(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
|
|
system_state = state;
|
|
usermodehelper_disable();
|
|
device_shutdown();
|
|
}
|
|
/**
|
|
* kernel_halt - halt the system
|
|
*
|
|
* Shutdown everything and perform a clean system halt.
|
|
*/
|
|
void kernel_halt(void)
|
|
{
|
|
kernel_shutdown_prepare(SYSTEM_HALT);
|
|
syscore_shutdown();
|
|
printk(KERN_EMERG "System halted.\n");
|
|
kmsg_dump(KMSG_DUMP_HALT);
|
|
machine_halt();
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(kernel_halt);
|
|
|
|
/**
|
|
* kernel_power_off - power_off the system
|
|
*
|
|
* Shutdown everything and perform a clean system power_off.
|
|
*/
|
|
void kernel_power_off(void)
|
|
{
|
|
kernel_shutdown_prepare(SYSTEM_POWER_OFF);
|
|
if (pm_power_off_prepare)
|
|
pm_power_off_prepare();
|
|
disable_nonboot_cpus();
|
|
syscore_shutdown();
|
|
printk(KERN_EMERG "Power down.\n");
|
|
kmsg_dump(KMSG_DUMP_POWEROFF);
|
|
machine_power_off();
|
|
}
|
|
EXPORT_SYMBOL_GPL(kernel_power_off);
|
|
|
|
static DEFINE_MUTEX(reboot_mutex);
|
|
|
|
/*
|
|
* Reboot system call: for obvious reasons only root may call it,
|
|
* and even root needs to set up some magic numbers in the registers
|
|
* so that some mistake won't make this reboot the whole machine.
|
|
* You can also set the meaning of the ctrl-alt-del-key here.
|
|
*
|
|
* reboot doesn't sync: do that yourself before calling this.
|
|
*/
|
|
SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
|
|
void __user *, arg)
|
|
{
|
|
char buffer[256];
|
|
int ret = 0;
|
|
|
|
/* We only trust the superuser with rebooting the system. */
|
|
if (!capable(CAP_SYS_BOOT))
|
|
return -EPERM;
|
|
|
|
/* For safety, we require "magic" arguments. */
|
|
if (magic1 != LINUX_REBOOT_MAGIC1 ||
|
|
(magic2 != LINUX_REBOOT_MAGIC2 &&
|
|
magic2 != LINUX_REBOOT_MAGIC2A &&
|
|
magic2 != LINUX_REBOOT_MAGIC2B &&
|
|
magic2 != LINUX_REBOOT_MAGIC2C))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* If pid namespaces are enabled and the current task is in a child
|
|
* pid_namespace, the command is handled by reboot_pid_ns() which will
|
|
* call do_exit().
|
|
*/
|
|
ret = reboot_pid_ns(task_active_pid_ns(current), cmd);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Instead of trying to make the power_off code look like
|
|
* halt when pm_power_off is not set do it the easy way.
|
|
*/
|
|
if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
|
|
cmd = LINUX_REBOOT_CMD_HALT;
|
|
|
|
mutex_lock(&reboot_mutex);
|
|
switch (cmd) {
|
|
case LINUX_REBOOT_CMD_RESTART:
|
|
kernel_restart(NULL);
|
|
break;
|
|
|
|
case LINUX_REBOOT_CMD_CAD_ON:
|
|
C_A_D = 1;
|
|
break;
|
|
|
|
case LINUX_REBOOT_CMD_CAD_OFF:
|
|
C_A_D = 0;
|
|
break;
|
|
|
|
case LINUX_REBOOT_CMD_HALT:
|
|
kernel_halt();
|
|
do_exit(0);
|
|
panic("cannot halt");
|
|
|
|
case LINUX_REBOOT_CMD_POWER_OFF:
|
|
kernel_power_off();
|
|
do_exit(0);
|
|
break;
|
|
|
|
case LINUX_REBOOT_CMD_RESTART2:
|
|
if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
buffer[sizeof(buffer) - 1] = '\0';
|
|
|
|
kernel_restart(buffer);
|
|
break;
|
|
|
|
#ifdef CONFIG_KEXEC
|
|
case LINUX_REBOOT_CMD_KEXEC:
|
|
ret = kernel_kexec();
|
|
break;
|
|
#endif
|
|
|
|
#ifdef CONFIG_HIBERNATION
|
|
case LINUX_REBOOT_CMD_SW_SUSPEND:
|
|
ret = hibernate();
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
mutex_unlock(&reboot_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static void deferred_cad(struct work_struct *dummy)
|
|
{
|
|
kernel_restart(NULL);
|
|
}
|
|
|
|
/*
|
|
* This function gets called by ctrl-alt-del - ie the keyboard interrupt.
|
|
* As it's called within an interrupt, it may NOT sync: the only choice
|
|
* is whether to reboot at once, or just ignore the ctrl-alt-del.
|
|
*/
|
|
void ctrl_alt_del(void)
|
|
{
|
|
static DECLARE_WORK(cad_work, deferred_cad);
|
|
|
|
if (C_A_D)
|
|
schedule_work(&cad_work);
|
|
else
|
|
kill_cad_pid(SIGINT, 1);
|
|
}
|
|
|
|
/*
|
|
* Unprivileged users may change the real gid to the effective gid
|
|
* or vice versa. (BSD-style)
|
|
*
|
|
* If you set the real gid at all, or set the effective gid to a value not
|
|
* equal to the real gid, then the saved gid is set to the new effective gid.
|
|
*
|
|
* This makes it possible for a setgid program to completely drop its
|
|
* privileges, which is often a useful assertion to make when you are doing
|
|
* a security audit over a program.
|
|
*
|
|
* The general idea is that a program which uses just setregid() will be
|
|
* 100% compatible with BSD. A program which uses just setgid() will be
|
|
* 100% compatible with POSIX with saved IDs.
|
|
*
|
|
* SMP: There are not races, the GIDs are checked only by filesystem
|
|
* operations (as far as semantic preservation is concerned).
|
|
*/
|
|
SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
|
|
{
|
|
const struct cred *old;
|
|
struct cred *new;
|
|
int retval;
|
|
|
|
new = prepare_creds();
|
|
if (!new)
|
|
return -ENOMEM;
|
|
old = current_cred();
|
|
|
|
retval = -EPERM;
|
|
if (rgid != (gid_t) -1) {
|
|
if (old->gid == rgid ||
|
|
old->egid == rgid ||
|
|
nsown_capable(CAP_SETGID))
|
|
new->gid = rgid;
|
|
else
|
|
goto error;
|
|
}
|
|
if (egid != (gid_t) -1) {
|
|
if (old->gid == egid ||
|
|
old->egid == egid ||
|
|
old->sgid == egid ||
|
|
nsown_capable(CAP_SETGID))
|
|
new->egid = egid;
|
|
else
|
|
goto error;
|
|
}
|
|
|
|
if (rgid != (gid_t) -1 ||
|
|
(egid != (gid_t) -1 && egid != old->gid))
|
|
new->sgid = new->egid;
|
|
new->fsgid = new->egid;
|
|
|
|
return commit_creds(new);
|
|
|
|
error:
|
|
abort_creds(new);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* setgid() is implemented like SysV w/ SAVED_IDS
|
|
*
|
|
* SMP: Same implicit races as above.
|
|
*/
|
|
SYSCALL_DEFINE1(setgid, gid_t, gid)
|
|
{
|
|
const struct cred *old;
|
|
struct cred *new;
|
|
int retval;
|
|
|
|
new = prepare_creds();
|
|
if (!new)
|
|
return -ENOMEM;
|
|
old = current_cred();
|
|
|
|
retval = -EPERM;
|
|
if (nsown_capable(CAP_SETGID))
|
|
new->gid = new->egid = new->sgid = new->fsgid = gid;
|
|
else if (gid == old->gid || gid == old->sgid)
|
|
new->egid = new->fsgid = gid;
|
|
else
|
|
goto error;
|
|
|
|
return commit_creds(new);
|
|
|
|
error:
|
|
abort_creds(new);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* change the user struct in a credentials set to match the new UID
|
|
*/
|
|
static int set_user(struct cred *new)
|
|
{
|
|
struct user_struct *new_user;
|
|
|
|
new_user = alloc_uid(current_user_ns(), new->uid);
|
|
if (!new_user)
|
|
return -EAGAIN;
|
|
|
|
/*
|
|
* We don't fail in case of NPROC limit excess here because too many
|
|
* poorly written programs don't check set*uid() return code, assuming
|
|
* it never fails if called by root. We may still enforce NPROC limit
|
|
* for programs doing set*uid()+execve() by harmlessly deferring the
|
|
* failure to the execve() stage.
|
|
*/
|
|
if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
|
|
new_user != INIT_USER)
|
|
current->flags |= PF_NPROC_EXCEEDED;
|
|
else
|
|
current->flags &= ~PF_NPROC_EXCEEDED;
|
|
|
|
free_uid(new->user);
|
|
new->user = new_user;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Unprivileged users may change the real uid to the effective uid
|
|
* or vice versa. (BSD-style)
|
|
*
|
|
* If you set the real uid at all, or set the effective uid to a value not
|
|
* equal to the real uid, then the saved uid is set to the new effective uid.
|
|
*
|
|
* This makes it possible for a setuid program to completely drop its
|
|
* privileges, which is often a useful assertion to make when you are doing
|
|
* a security audit over a program.
|
|
*
|
|
* The general idea is that a program which uses just setreuid() will be
|
|
* 100% compatible with BSD. A program which uses just setuid() will be
|
|
* 100% compatible with POSIX with saved IDs.
|
|
*/
|
|
SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
|
|
{
|
|
const struct cred *old;
|
|
struct cred *new;
|
|
int retval;
|
|
|
|
new = prepare_creds();
|
|
if (!new)
|
|
return -ENOMEM;
|
|
old = current_cred();
|
|
|
|
retval = -EPERM;
|
|
if (ruid != (uid_t) -1) {
|
|
new->uid = ruid;
|
|
if (old->uid != ruid &&
|
|
old->euid != ruid &&
|
|
!nsown_capable(CAP_SETUID))
|
|
goto error;
|
|
}
|
|
|
|
if (euid != (uid_t) -1) {
|
|
new->euid = euid;
|
|
if (old->uid != euid &&
|
|
old->euid != euid &&
|
|
old->suid != euid &&
|
|
!nsown_capable(CAP_SETUID))
|
|
goto error;
|
|
}
|
|
|
|
if (new->uid != old->uid) {
|
|
retval = set_user(new);
|
|
if (retval < 0)
|
|
goto error;
|
|
}
|
|
if (ruid != (uid_t) -1 ||
|
|
(euid != (uid_t) -1 && euid != old->uid))
|
|
new->suid = new->euid;
|
|
new->fsuid = new->euid;
|
|
|
|
retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
|
|
if (retval < 0)
|
|
goto error;
|
|
|
|
return commit_creds(new);
|
|
|
|
error:
|
|
abort_creds(new);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* setuid() is implemented like SysV with SAVED_IDS
|
|
*
|
|
* Note that SAVED_ID's is deficient in that a setuid root program
|
|
* like sendmail, for example, cannot set its uid to be a normal
|
|
* user and then switch back, because if you're root, setuid() sets
|
|
* the saved uid too. If you don't like this, blame the bright people
|
|
* in the POSIX committee and/or USG. Note that the BSD-style setreuid()
|
|
* will allow a root program to temporarily drop privileges and be able to
|
|
* regain them by swapping the real and effective uid.
|
|
*/
|
|
SYSCALL_DEFINE1(setuid, uid_t, uid)
|
|
{
|
|
const struct cred *old;
|
|
struct cred *new;
|
|
int retval;
|
|
|
|
new = prepare_creds();
|
|
if (!new)
|
|
return -ENOMEM;
|
|
old = current_cred();
|
|
|
|
retval = -EPERM;
|
|
if (nsown_capable(CAP_SETUID)) {
|
|
new->suid = new->uid = uid;
|
|
if (uid != old->uid) {
|
|
retval = set_user(new);
|
|
if (retval < 0)
|
|
goto error;
|
|
}
|
|
} else if (uid != old->uid && uid != new->suid) {
|
|
goto error;
|
|
}
|
|
|
|
new->fsuid = new->euid = uid;
|
|
|
|
retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
|
|
if (retval < 0)
|
|
goto error;
|
|
|
|
return commit_creds(new);
|
|
|
|
error:
|
|
abort_creds(new);
|
|
return retval;
|
|
}
|
|
|
|
|
|
/*
|
|
* This function implements a generic ability to update ruid, euid,
|
|
* and suid. This allows you to implement the 4.4 compatible seteuid().
|
|
*/
|
|
SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
|
|
{
|
|
const struct cred *old;
|
|
struct cred *new;
|
|
int retval;
|
|
|
|
new = prepare_creds();
|
|
if (!new)
|
|
return -ENOMEM;
|
|
|
|
old = current_cred();
|
|
|
|
retval = -EPERM;
|
|
if (!nsown_capable(CAP_SETUID)) {
|
|
if (ruid != (uid_t) -1 && ruid != old->uid &&
|
|
ruid != old->euid && ruid != old->suid)
|
|
goto error;
|
|
if (euid != (uid_t) -1 && euid != old->uid &&
|
|
euid != old->euid && euid != old->suid)
|
|
goto error;
|
|
if (suid != (uid_t) -1 && suid != old->uid &&
|
|
suid != old->euid && suid != old->suid)
|
|
goto error;
|
|
}
|
|
|
|
if (ruid != (uid_t) -1) {
|
|
new->uid = ruid;
|
|
if (ruid != old->uid) {
|
|
retval = set_user(new);
|
|
if (retval < 0)
|
|
goto error;
|
|
}
|
|
}
|
|
if (euid != (uid_t) -1)
|
|
new->euid = euid;
|
|
if (suid != (uid_t) -1)
|
|
new->suid = suid;
|
|
new->fsuid = new->euid;
|
|
|
|
retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
|
|
if (retval < 0)
|
|
goto error;
|
|
|
|
return commit_creds(new);
|
|
|
|
error:
|
|
abort_creds(new);
|
|
return retval;
|
|
}
|
|
|
|
SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
|
|
{
|
|
const struct cred *cred = current_cred();
|
|
int retval;
|
|
|
|
if (!(retval = put_user(cred->uid, ruid)) &&
|
|
!(retval = put_user(cred->euid, euid)))
|
|
retval = put_user(cred->suid, suid);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Same as above, but for rgid, egid, sgid.
|
|
*/
|
|
SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
|
|
{
|
|
const struct cred *old;
|
|
struct cred *new;
|
|
int retval;
|
|
|
|
new = prepare_creds();
|
|
if (!new)
|
|
return -ENOMEM;
|
|
old = current_cred();
|
|
|
|
retval = -EPERM;
|
|
if (!nsown_capable(CAP_SETGID)) {
|
|
if (rgid != (gid_t) -1 && rgid != old->gid &&
|
|
rgid != old->egid && rgid != old->sgid)
|
|
goto error;
|
|
if (egid != (gid_t) -1 && egid != old->gid &&
|
|
egid != old->egid && egid != old->sgid)
|
|
goto error;
|
|
if (sgid != (gid_t) -1 && sgid != old->gid &&
|
|
sgid != old->egid && sgid != old->sgid)
|
|
goto error;
|
|
}
|
|
|
|
if (rgid != (gid_t) -1)
|
|
new->gid = rgid;
|
|
if (egid != (gid_t) -1)
|
|
new->egid = egid;
|
|
if (sgid != (gid_t) -1)
|
|
new->sgid = sgid;
|
|
new->fsgid = new->egid;
|
|
|
|
return commit_creds(new);
|
|
|
|
error:
|
|
abort_creds(new);
|
|
return retval;
|
|
}
|
|
|
|
SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
|
|
{
|
|
const struct cred *cred = current_cred();
|
|
int retval;
|
|
|
|
if (!(retval = put_user(cred->gid, rgid)) &&
|
|
!(retval = put_user(cred->egid, egid)))
|
|
retval = put_user(cred->sgid, sgid);
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
/*
|
|
* "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
|
|
* is used for "access()" and for the NFS daemon (letting nfsd stay at
|
|
* whatever uid it wants to). It normally shadows "euid", except when
|
|
* explicitly set by setfsuid() or for access..
|
|
*/
|
|
SYSCALL_DEFINE1(setfsuid, uid_t, uid)
|
|
{
|
|
const struct cred *old;
|
|
struct cred *new;
|
|
uid_t old_fsuid;
|
|
|
|
new = prepare_creds();
|
|
if (!new)
|
|
return current_fsuid();
|
|
old = current_cred();
|
|
old_fsuid = old->fsuid;
|
|
|
|
if (uid == old->uid || uid == old->euid ||
|
|
uid == old->suid || uid == old->fsuid ||
|
|
nsown_capable(CAP_SETUID)) {
|
|
if (uid != old_fsuid) {
|
|
new->fsuid = uid;
|
|
if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
|
|
goto change_okay;
|
|
}
|
|
}
|
|
|
|
abort_creds(new);
|
|
return old_fsuid;
|
|
|
|
change_okay:
|
|
commit_creds(new);
|
|
return old_fsuid;
|
|
}
|
|
|
|
/*
|
|
* Samma på svenska..
|
|
*/
|
|
SYSCALL_DEFINE1(setfsgid, gid_t, gid)
|
|
{
|
|
const struct cred *old;
|
|
struct cred *new;
|
|
gid_t old_fsgid;
|
|
|
|
new = prepare_creds();
|
|
if (!new)
|
|
return current_fsgid();
|
|
old = current_cred();
|
|
old_fsgid = old->fsgid;
|
|
|
|
if (gid == old->gid || gid == old->egid ||
|
|
gid == old->sgid || gid == old->fsgid ||
|
|
nsown_capable(CAP_SETGID)) {
|
|
if (gid != old_fsgid) {
|
|
new->fsgid = gid;
|
|
goto change_okay;
|
|
}
|
|
}
|
|
|
|
abort_creds(new);
|
|
return old_fsgid;
|
|
|
|
change_okay:
|
|
commit_creds(new);
|
|
return old_fsgid;
|
|
}
|
|
|
|
void do_sys_times(struct tms *tms)
|
|
{
|
|
cputime_t tgutime, tgstime, cutime, cstime;
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
thread_group_times(current, &tgutime, &tgstime);
|
|
cutime = current->signal->cutime;
|
|
cstime = current->signal->cstime;
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
tms->tms_utime = cputime_to_clock_t(tgutime);
|
|
tms->tms_stime = cputime_to_clock_t(tgstime);
|
|
tms->tms_cutime = cputime_to_clock_t(cutime);
|
|
tms->tms_cstime = cputime_to_clock_t(cstime);
|
|
}
|
|
|
|
SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
|
|
{
|
|
if (tbuf) {
|
|
struct tms tmp;
|
|
|
|
do_sys_times(&tmp);
|
|
if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
|
|
return -EFAULT;
|
|
}
|
|
force_successful_syscall_return();
|
|
return (long) jiffies_64_to_clock_t(get_jiffies_64());
|
|
}
|
|
|
|
/*
|
|
* This needs some heavy checking ...
|
|
* I just haven't the stomach for it. I also don't fully
|
|
* understand sessions/pgrp etc. Let somebody who does explain it.
|
|
*
|
|
* OK, I think I have the protection semantics right.... this is really
|
|
* only important on a multi-user system anyway, to make sure one user
|
|
* can't send a signal to a process owned by another. -TYT, 12/12/91
|
|
*
|
|
* Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
|
|
* LBT 04.03.94
|
|
*/
|
|
SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
|
|
{
|
|
struct task_struct *p;
|
|
struct task_struct *group_leader = current->group_leader;
|
|
struct pid *pgrp;
|
|
int err;
|
|
|
|
if (!pid)
|
|
pid = task_pid_vnr(group_leader);
|
|
if (!pgid)
|
|
pgid = pid;
|
|
if (pgid < 0)
|
|
return -EINVAL;
|
|
rcu_read_lock();
|
|
|
|
/* From this point forward we keep holding onto the tasklist lock
|
|
* so that our parent does not change from under us. -DaveM
|
|
*/
|
|
write_lock_irq(&tasklist_lock);
|
|
|
|
err = -ESRCH;
|
|
p = find_task_by_vpid(pid);
|
|
if (!p)
|
|
goto out;
|
|
|
|
err = -EINVAL;
|
|
if (!thread_group_leader(p))
|
|
goto out;
|
|
|
|
if (same_thread_group(p->real_parent, group_leader)) {
|
|
err = -EPERM;
|
|
if (task_session(p) != task_session(group_leader))
|
|
goto out;
|
|
err = -EACCES;
|
|
if (p->did_exec)
|
|
goto out;
|
|
} else {
|
|
err = -ESRCH;
|
|
if (p != group_leader)
|
|
goto out;
|
|
}
|
|
|
|
err = -EPERM;
|
|
if (p->signal->leader)
|
|
goto out;
|
|
|
|
pgrp = task_pid(p);
|
|
if (pgid != pid) {
|
|
struct task_struct *g;
|
|
|
|
pgrp = find_vpid(pgid);
|
|
g = pid_task(pgrp, PIDTYPE_PGID);
|
|
if (!g || task_session(g) != task_session(group_leader))
|
|
goto out;
|
|
}
|
|
|
|
err = security_task_setpgid(p, pgid);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (task_pgrp(p) != pgrp)
|
|
change_pid(p, PIDTYPE_PGID, pgrp);
|
|
|
|
err = 0;
|
|
out:
|
|
/* All paths lead to here, thus we are safe. -DaveM */
|
|
write_unlock_irq(&tasklist_lock);
|
|
rcu_read_unlock();
|
|
return err;
|
|
}
|
|
|
|
SYSCALL_DEFINE1(getpgid, pid_t, pid)
|
|
{
|
|
struct task_struct *p;
|
|
struct pid *grp;
|
|
int retval;
|
|
|
|
rcu_read_lock();
|
|
if (!pid)
|
|
grp = task_pgrp(current);
|
|
else {
|
|
retval = -ESRCH;
|
|
p = find_task_by_vpid(pid);
|
|
if (!p)
|
|
goto out;
|
|
grp = task_pgrp(p);
|
|
if (!grp)
|
|
goto out;
|
|
|
|
retval = security_task_getpgid(p);
|
|
if (retval)
|
|
goto out;
|
|
}
|
|
retval = pid_vnr(grp);
|
|
out:
|
|
rcu_read_unlock();
|
|
return retval;
|
|
}
|
|
|
|
#ifdef __ARCH_WANT_SYS_GETPGRP
|
|
|
|
SYSCALL_DEFINE0(getpgrp)
|
|
{
|
|
return sys_getpgid(0);
|
|
}
|
|
|
|
#endif
|
|
|
|
SYSCALL_DEFINE1(getsid, pid_t, pid)
|
|
{
|
|
struct task_struct *p;
|
|
struct pid *sid;
|
|
int retval;
|
|
|
|
rcu_read_lock();
|
|
if (!pid)
|
|
sid = task_session(current);
|
|
else {
|
|
retval = -ESRCH;
|
|
p = find_task_by_vpid(pid);
|
|
if (!p)
|
|
goto out;
|
|
sid = task_session(p);
|
|
if (!sid)
|
|
goto out;
|
|
|
|
retval = security_task_getsid(p);
|
|
if (retval)
|
|
goto out;
|
|
}
|
|
retval = pid_vnr(sid);
|
|
out:
|
|
rcu_read_unlock();
|
|
return retval;
|
|
}
|
|
|
|
SYSCALL_DEFINE0(setsid)
|
|
{
|
|
struct task_struct *group_leader = current->group_leader;
|
|
struct pid *sid = task_pid(group_leader);
|
|
pid_t session = pid_vnr(sid);
|
|
int err = -EPERM;
|
|
|
|
write_lock_irq(&tasklist_lock);
|
|
/* Fail if I am already a session leader */
|
|
if (group_leader->signal->leader)
|
|
goto out;
|
|
|
|
/* Fail if a process group id already exists that equals the
|
|
* proposed session id.
|
|
*/
|
|
if (pid_task(sid, PIDTYPE_PGID))
|
|
goto out;
|
|
|
|
group_leader->signal->leader = 1;
|
|
__set_special_pids(sid);
|
|
|
|
proc_clear_tty(group_leader);
|
|
|
|
err = session;
|
|
out:
|
|
write_unlock_irq(&tasklist_lock);
|
|
if (err > 0) {
|
|
proc_sid_connector(group_leader);
|
|
sched_autogroup_create_attach(group_leader);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
DECLARE_RWSEM(uts_sem);
|
|
|
|
#ifdef COMPAT_UTS_MACHINE
|
|
#define override_architecture(name) \
|
|
(personality(current->personality) == PER_LINUX32 && \
|
|
copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
|
|
sizeof(COMPAT_UTS_MACHINE)))
|
|
#else
|
|
#define override_architecture(name) 0
|
|
#endif
|
|
|
|
/*
|
|
* Work around broken programs that cannot handle "Linux 3.0".
|
|
* Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
|
|
*/
|
|
static int override_release(char __user *release, int len)
|
|
{
|
|
int ret = 0;
|
|
char buf[65];
|
|
|
|
if (current->personality & UNAME26) {
|
|
char *rest = UTS_RELEASE;
|
|
int ndots = 0;
|
|
unsigned v;
|
|
|
|
while (*rest) {
|
|
if (*rest == '.' && ++ndots >= 3)
|
|
break;
|
|
if (!isdigit(*rest) && *rest != '.')
|
|
break;
|
|
rest++;
|
|
}
|
|
v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
|
|
snprintf(buf, len, "2.6.%u%s", v, rest);
|
|
ret = copy_to_user(release, buf, len);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
|
|
{
|
|
int errno = 0;
|
|
|
|
down_read(&uts_sem);
|
|
if (copy_to_user(name, utsname(), sizeof *name))
|
|
errno = -EFAULT;
|
|
up_read(&uts_sem);
|
|
|
|
if (!errno && override_release(name->release, sizeof(name->release)))
|
|
errno = -EFAULT;
|
|
if (!errno && override_architecture(name))
|
|
errno = -EFAULT;
|
|
return errno;
|
|
}
|
|
|
|
#ifdef __ARCH_WANT_SYS_OLD_UNAME
|
|
/*
|
|
* Old cruft
|
|
*/
|
|
SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
|
|
{
|
|
int error = 0;
|
|
|
|
if (!name)
|
|
return -EFAULT;
|
|
|
|
down_read(&uts_sem);
|
|
if (copy_to_user(name, utsname(), sizeof(*name)))
|
|
error = -EFAULT;
|
|
up_read(&uts_sem);
|
|
|
|
if (!error && override_release(name->release, sizeof(name->release)))
|
|
error = -EFAULT;
|
|
if (!error && override_architecture(name))
|
|
error = -EFAULT;
|
|
return error;
|
|
}
|
|
|
|
SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
|
|
{
|
|
int error;
|
|
|
|
if (!name)
|
|
return -EFAULT;
|
|
if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
|
|
return -EFAULT;
|
|
|
|
down_read(&uts_sem);
|
|
error = __copy_to_user(&name->sysname, &utsname()->sysname,
|
|
__OLD_UTS_LEN);
|
|
error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
|
|
error |= __copy_to_user(&name->nodename, &utsname()->nodename,
|
|
__OLD_UTS_LEN);
|
|
error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
|
|
error |= __copy_to_user(&name->release, &utsname()->release,
|
|
__OLD_UTS_LEN);
|
|
error |= __put_user(0, name->release + __OLD_UTS_LEN);
|
|
error |= __copy_to_user(&name->version, &utsname()->version,
|
|
__OLD_UTS_LEN);
|
|
error |= __put_user(0, name->version + __OLD_UTS_LEN);
|
|
error |= __copy_to_user(&name->machine, &utsname()->machine,
|
|
__OLD_UTS_LEN);
|
|
error |= __put_user(0, name->machine + __OLD_UTS_LEN);
|
|
up_read(&uts_sem);
|
|
|
|
if (!error && override_architecture(name))
|
|
error = -EFAULT;
|
|
if (!error && override_release(name->release, sizeof(name->release)))
|
|
error = -EFAULT;
|
|
return error ? -EFAULT : 0;
|
|
}
|
|
#endif
|
|
|
|
SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
|
|
{
|
|
int errno;
|
|
char tmp[__NEW_UTS_LEN];
|
|
|
|
if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (len < 0 || len > __NEW_UTS_LEN)
|
|
return -EINVAL;
|
|
down_write(&uts_sem);
|
|
errno = -EFAULT;
|
|
if (!copy_from_user(tmp, name, len)) {
|
|
struct new_utsname *u = utsname();
|
|
|
|
memcpy(u->nodename, tmp, len);
|
|
memset(u->nodename + len, 0, sizeof(u->nodename) - len);
|
|
errno = 0;
|
|
}
|
|
uts_proc_notify(UTS_PROC_HOSTNAME);
|
|
up_write(&uts_sem);
|
|
return errno;
|
|
}
|
|
|
|
#ifdef __ARCH_WANT_SYS_GETHOSTNAME
|
|
|
|
SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
|
|
{
|
|
int i, errno;
|
|
struct new_utsname *u;
|
|
|
|
if (len < 0)
|
|
return -EINVAL;
|
|
down_read(&uts_sem);
|
|
u = utsname();
|
|
i = 1 + strlen(u->nodename);
|
|
if (i > len)
|
|
i = len;
|
|
errno = 0;
|
|
if (copy_to_user(name, u->nodename, i))
|
|
errno = -EFAULT;
|
|
up_read(&uts_sem);
|
|
return errno;
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Only setdomainname; getdomainname can be implemented by calling
|
|
* uname()
|
|
*/
|
|
SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
|
|
{
|
|
int errno;
|
|
char tmp[__NEW_UTS_LEN];
|
|
|
|
if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (len < 0 || len > __NEW_UTS_LEN)
|
|
return -EINVAL;
|
|
|
|
down_write(&uts_sem);
|
|
errno = -EFAULT;
|
|
if (!copy_from_user(tmp, name, len)) {
|
|
struct new_utsname *u = utsname();
|
|
|
|
memcpy(u->domainname, tmp, len);
|
|
memset(u->domainname + len, 0, sizeof(u->domainname) - len);
|
|
errno = 0;
|
|
}
|
|
uts_proc_notify(UTS_PROC_DOMAINNAME);
|
|
up_write(&uts_sem);
|
|
return errno;
|
|
}
|
|
|
|
SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
|
|
{
|
|
struct rlimit value;
|
|
int ret;
|
|
|
|
ret = do_prlimit(current, resource, NULL, &value);
|
|
if (!ret)
|
|
ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
|
|
|
|
/*
|
|
* Back compatibility for getrlimit. Needed for some apps.
|
|
*/
|
|
|
|
SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
|
|
struct rlimit __user *, rlim)
|
|
{
|
|
struct rlimit x;
|
|
if (resource >= RLIM_NLIMITS)
|
|
return -EINVAL;
|
|
|
|
task_lock(current->group_leader);
|
|
x = current->signal->rlim[resource];
|
|
task_unlock(current->group_leader);
|
|
if (x.rlim_cur > 0x7FFFFFFF)
|
|
x.rlim_cur = 0x7FFFFFFF;
|
|
if (x.rlim_max > 0x7FFFFFFF)
|
|
x.rlim_max = 0x7FFFFFFF;
|
|
return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
|
|
}
|
|
|
|
#endif
|
|
|
|
static inline bool rlim64_is_infinity(__u64 rlim64)
|
|
{
|
|
#if BITS_PER_LONG < 64
|
|
return rlim64 >= ULONG_MAX;
|
|
#else
|
|
return rlim64 == RLIM64_INFINITY;
|
|
#endif
|
|
}
|
|
|
|
static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
|
|
{
|
|
if (rlim->rlim_cur == RLIM_INFINITY)
|
|
rlim64->rlim_cur = RLIM64_INFINITY;
|
|
else
|
|
rlim64->rlim_cur = rlim->rlim_cur;
|
|
if (rlim->rlim_max == RLIM_INFINITY)
|
|
rlim64->rlim_max = RLIM64_INFINITY;
|
|
else
|
|
rlim64->rlim_max = rlim->rlim_max;
|
|
}
|
|
|
|
static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
|
|
{
|
|
if (rlim64_is_infinity(rlim64->rlim_cur))
|
|
rlim->rlim_cur = RLIM_INFINITY;
|
|
else
|
|
rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
|
|
if (rlim64_is_infinity(rlim64->rlim_max))
|
|
rlim->rlim_max = RLIM_INFINITY;
|
|
else
|
|
rlim->rlim_max = (unsigned long)rlim64->rlim_max;
|
|
}
|
|
|
|
/* make sure you are allowed to change @tsk limits before calling this */
|
|
int do_prlimit(struct task_struct *tsk, unsigned int resource,
|
|
struct rlimit *new_rlim, struct rlimit *old_rlim)
|
|
{
|
|
struct rlimit *rlim;
|
|
int retval = 0;
|
|
|
|
if (resource >= RLIM_NLIMITS)
|
|
return -EINVAL;
|
|
if (new_rlim) {
|
|
if (new_rlim->rlim_cur > new_rlim->rlim_max)
|
|
return -EINVAL;
|
|
if (resource == RLIMIT_NOFILE &&
|
|
new_rlim->rlim_max > sysctl_nr_open)
|
|
return -EPERM;
|
|
}
|
|
|
|
/* protect tsk->signal and tsk->sighand from disappearing */
|
|
read_lock(&tasklist_lock);
|
|
if (!tsk->sighand) {
|
|
retval = -ESRCH;
|
|
goto out;
|
|
}
|
|
|
|
rlim = tsk->signal->rlim + resource;
|
|
task_lock(tsk->group_leader);
|
|
if (new_rlim) {
|
|
/* Keep the capable check against init_user_ns until
|
|
cgroups can contain all limits */
|
|
if (new_rlim->rlim_max > rlim->rlim_max &&
|
|
!capable(CAP_SYS_RESOURCE))
|
|
retval = -EPERM;
|
|
if (!retval)
|
|
retval = security_task_setrlimit(tsk->group_leader,
|
|
resource, new_rlim);
|
|
if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
|
|
/*
|
|
* The caller is asking for an immediate RLIMIT_CPU
|
|
* expiry. But we use the zero value to mean "it was
|
|
* never set". So let's cheat and make it one second
|
|
* instead
|
|
*/
|
|
new_rlim->rlim_cur = 1;
|
|
}
|
|
}
|
|
if (!retval) {
|
|
if (old_rlim)
|
|
*old_rlim = *rlim;
|
|
if (new_rlim)
|
|
*rlim = *new_rlim;
|
|
}
|
|
task_unlock(tsk->group_leader);
|
|
|
|
/*
|
|
* RLIMIT_CPU handling. Note that the kernel fails to return an error
|
|
* code if it rejected the user's attempt to set RLIMIT_CPU. This is a
|
|
* very long-standing error, and fixing it now risks breakage of
|
|
* applications, so we live with it
|
|
*/
|
|
if (!retval && new_rlim && resource == RLIMIT_CPU &&
|
|
new_rlim->rlim_cur != RLIM_INFINITY)
|
|
update_rlimit_cpu(tsk, new_rlim->rlim_cur);
|
|
out:
|
|
read_unlock(&tasklist_lock);
|
|
return retval;
|
|
}
|
|
|
|
/* rcu lock must be held */
|
|
static int check_prlimit_permission(struct task_struct *task)
|
|
{
|
|
const struct cred *cred = current_cred(), *tcred;
|
|
|
|
if (current == task)
|
|
return 0;
|
|
|
|
tcred = __task_cred(task);
|
|
if (cred->user->user_ns == tcred->user->user_ns &&
|
|
(cred->uid == tcred->euid &&
|
|
cred->uid == tcred->suid &&
|
|
cred->uid == tcred->uid &&
|
|
cred->gid == tcred->egid &&
|
|
cred->gid == tcred->sgid &&
|
|
cred->gid == tcred->gid))
|
|
return 0;
|
|
if (ns_capable(tcred->user->user_ns, CAP_SYS_RESOURCE))
|
|
return 0;
|
|
|
|
return -EPERM;
|
|
}
|
|
|
|
SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
|
|
const struct rlimit64 __user *, new_rlim,
|
|
struct rlimit64 __user *, old_rlim)
|
|
{
|
|
struct rlimit64 old64, new64;
|
|
struct rlimit old, new;
|
|
struct task_struct *tsk;
|
|
int ret;
|
|
|
|
if (new_rlim) {
|
|
if (copy_from_user(&new64, new_rlim, sizeof(new64)))
|
|
return -EFAULT;
|
|
rlim64_to_rlim(&new64, &new);
|
|
}
|
|
|
|
rcu_read_lock();
|
|
tsk = pid ? find_task_by_vpid(pid) : current;
|
|
if (!tsk) {
|
|
rcu_read_unlock();
|
|
return -ESRCH;
|
|
}
|
|
ret = check_prlimit_permission(tsk);
|
|
if (ret) {
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
get_task_struct(tsk);
|
|
rcu_read_unlock();
|
|
|
|
ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
|
|
old_rlim ? &old : NULL);
|
|
|
|
if (!ret && old_rlim) {
|
|
rlim_to_rlim64(&old, &old64);
|
|
if (copy_to_user(old_rlim, &old64, sizeof(old64)))
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
put_task_struct(tsk);
|
|
return ret;
|
|
}
|
|
|
|
SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
|
|
{
|
|
struct rlimit new_rlim;
|
|
|
|
if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
|
|
return -EFAULT;
|
|
return do_prlimit(current, resource, &new_rlim, NULL);
|
|
}
|
|
|
|
/*
|
|
* It would make sense to put struct rusage in the task_struct,
|
|
* except that would make the task_struct be *really big*. After
|
|
* task_struct gets moved into malloc'ed memory, it would
|
|
* make sense to do this. It will make moving the rest of the information
|
|
* a lot simpler! (Which we're not doing right now because we're not
|
|
* measuring them yet).
|
|
*
|
|
* When sampling multiple threads for RUSAGE_SELF, under SMP we might have
|
|
* races with threads incrementing their own counters. But since word
|
|
* reads are atomic, we either get new values or old values and we don't
|
|
* care which for the sums. We always take the siglock to protect reading
|
|
* the c* fields from p->signal from races with exit.c updating those
|
|
* fields when reaping, so a sample either gets all the additions of a
|
|
* given child after it's reaped, or none so this sample is before reaping.
|
|
*
|
|
* Locking:
|
|
* We need to take the siglock for CHILDEREN, SELF and BOTH
|
|
* for the cases current multithreaded, non-current single threaded
|
|
* non-current multithreaded. Thread traversal is now safe with
|
|
* the siglock held.
|
|
* Strictly speaking, we donot need to take the siglock if we are current and
|
|
* single threaded, as no one else can take our signal_struct away, no one
|
|
* else can reap the children to update signal->c* counters, and no one else
|
|
* can race with the signal-> fields. If we do not take any lock, the
|
|
* signal-> fields could be read out of order while another thread was just
|
|
* exiting. So we should place a read memory barrier when we avoid the lock.
|
|
* On the writer side, write memory barrier is implied in __exit_signal
|
|
* as __exit_signal releases the siglock spinlock after updating the signal->
|
|
* fields. But we don't do this yet to keep things simple.
|
|
*
|
|
*/
|
|
|
|
static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
|
|
{
|
|
r->ru_nvcsw += t->nvcsw;
|
|
r->ru_nivcsw += t->nivcsw;
|
|
r->ru_minflt += t->min_flt;
|
|
r->ru_majflt += t->maj_flt;
|
|
r->ru_inblock += task_io_get_inblock(t);
|
|
r->ru_oublock += task_io_get_oublock(t);
|
|
}
|
|
|
|
static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
|
|
{
|
|
struct task_struct *t;
|
|
unsigned long flags;
|
|
cputime_t tgutime, tgstime, utime, stime;
|
|
unsigned long maxrss = 0;
|
|
|
|
memset((char *) r, 0, sizeof *r);
|
|
utime = stime = 0;
|
|
|
|
if (who == RUSAGE_THREAD) {
|
|
task_times(current, &utime, &stime);
|
|
accumulate_thread_rusage(p, r);
|
|
maxrss = p->signal->maxrss;
|
|
goto out;
|
|
}
|
|
|
|
if (!lock_task_sighand(p, &flags))
|
|
return;
|
|
|
|
switch (who) {
|
|
case RUSAGE_BOTH:
|
|
case RUSAGE_CHILDREN:
|
|
utime = p->signal->cutime;
|
|
stime = p->signal->cstime;
|
|
r->ru_nvcsw = p->signal->cnvcsw;
|
|
r->ru_nivcsw = p->signal->cnivcsw;
|
|
r->ru_minflt = p->signal->cmin_flt;
|
|
r->ru_majflt = p->signal->cmaj_flt;
|
|
r->ru_inblock = p->signal->cinblock;
|
|
r->ru_oublock = p->signal->coublock;
|
|
maxrss = p->signal->cmaxrss;
|
|
|
|
if (who == RUSAGE_CHILDREN)
|
|
break;
|
|
|
|
case RUSAGE_SELF:
|
|
thread_group_times(p, &tgutime, &tgstime);
|
|
utime += tgutime;
|
|
stime += tgstime;
|
|
r->ru_nvcsw += p->signal->nvcsw;
|
|
r->ru_nivcsw += p->signal->nivcsw;
|
|
r->ru_minflt += p->signal->min_flt;
|
|
r->ru_majflt += p->signal->maj_flt;
|
|
r->ru_inblock += p->signal->inblock;
|
|
r->ru_oublock += p->signal->oublock;
|
|
if (maxrss < p->signal->maxrss)
|
|
maxrss = p->signal->maxrss;
|
|
t = p;
|
|
do {
|
|
accumulate_thread_rusage(t, r);
|
|
t = next_thread(t);
|
|
} while (t != p);
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
unlock_task_sighand(p, &flags);
|
|
|
|
out:
|
|
cputime_to_timeval(utime, &r->ru_utime);
|
|
cputime_to_timeval(stime, &r->ru_stime);
|
|
|
|
if (who != RUSAGE_CHILDREN) {
|
|
struct mm_struct *mm = get_task_mm(p);
|
|
if (mm) {
|
|
setmax_mm_hiwater_rss(&maxrss, mm);
|
|
mmput(mm);
|
|
}
|
|
}
|
|
r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
|
|
}
|
|
|
|
int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
|
|
{
|
|
struct rusage r;
|
|
k_getrusage(p, who, &r);
|
|
return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
|
|
}
|
|
|
|
SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
|
|
{
|
|
if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
|
|
who != RUSAGE_THREAD)
|
|
return -EINVAL;
|
|
return getrusage(current, who, ru);
|
|
}
|
|
|
|
SYSCALL_DEFINE1(umask, int, mask)
|
|
{
|
|
mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
|
|
return mask;
|
|
}
|
|
|
|
#ifdef CONFIG_CHECKPOINT_RESTORE
|
|
static int prctl_set_mm(int opt, unsigned long addr,
|
|
unsigned long arg4, unsigned long arg5)
|
|
{
|
|
unsigned long rlim = rlimit(RLIMIT_DATA);
|
|
unsigned long vm_req_flags;
|
|
unsigned long vm_bad_flags;
|
|
struct vm_area_struct *vma;
|
|
int error = 0;
|
|
struct mm_struct *mm = current->mm;
|
|
|
|
if (arg4 | arg5)
|
|
return -EINVAL;
|
|
|
|
if (!capable(CAP_SYS_RESOURCE))
|
|
return -EPERM;
|
|
|
|
if (addr >= TASK_SIZE)
|
|
return -EINVAL;
|
|
|
|
down_read(&mm->mmap_sem);
|
|
vma = find_vma(mm, addr);
|
|
|
|
if (opt != PR_SET_MM_START_BRK && opt != PR_SET_MM_BRK) {
|
|
/* It must be existing VMA */
|
|
if (!vma || vma->vm_start > addr)
|
|
goto out;
|
|
}
|
|
|
|
error = -EINVAL;
|
|
switch (opt) {
|
|
case PR_SET_MM_START_CODE:
|
|
case PR_SET_MM_END_CODE:
|
|
vm_req_flags = VM_READ | VM_EXEC;
|
|
vm_bad_flags = VM_WRITE | VM_MAYSHARE;
|
|
|
|
if ((vma->vm_flags & vm_req_flags) != vm_req_flags ||
|
|
(vma->vm_flags & vm_bad_flags))
|
|
goto out;
|
|
|
|
if (opt == PR_SET_MM_START_CODE)
|
|
mm->start_code = addr;
|
|
else
|
|
mm->end_code = addr;
|
|
break;
|
|
|
|
case PR_SET_MM_START_DATA:
|
|
case PR_SET_MM_END_DATA:
|
|
vm_req_flags = VM_READ | VM_WRITE;
|
|
vm_bad_flags = VM_EXEC | VM_MAYSHARE;
|
|
|
|
if ((vma->vm_flags & vm_req_flags) != vm_req_flags ||
|
|
(vma->vm_flags & vm_bad_flags))
|
|
goto out;
|
|
|
|
if (opt == PR_SET_MM_START_DATA)
|
|
mm->start_data = addr;
|
|
else
|
|
mm->end_data = addr;
|
|
break;
|
|
|
|
case PR_SET_MM_START_STACK:
|
|
|
|
#ifdef CONFIG_STACK_GROWSUP
|
|
vm_req_flags = VM_READ | VM_WRITE | VM_GROWSUP;
|
|
#else
|
|
vm_req_flags = VM_READ | VM_WRITE | VM_GROWSDOWN;
|
|
#endif
|
|
if ((vma->vm_flags & vm_req_flags) != vm_req_flags)
|
|
goto out;
|
|
|
|
mm->start_stack = addr;
|
|
break;
|
|
|
|
case PR_SET_MM_START_BRK:
|
|
if (addr <= mm->end_data)
|
|
goto out;
|
|
|
|
if (rlim < RLIM_INFINITY &&
|
|
(mm->brk - addr) +
|
|
(mm->end_data - mm->start_data) > rlim)
|
|
goto out;
|
|
|
|
mm->start_brk = addr;
|
|
break;
|
|
|
|
case PR_SET_MM_BRK:
|
|
if (addr <= mm->end_data)
|
|
goto out;
|
|
|
|
if (rlim < RLIM_INFINITY &&
|
|
(addr - mm->start_brk) +
|
|
(mm->end_data - mm->start_data) > rlim)
|
|
goto out;
|
|
|
|
mm->brk = addr;
|
|
break;
|
|
|
|
default:
|
|
error = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
error = 0;
|
|
|
|
out:
|
|
up_read(&mm->mmap_sem);
|
|
|
|
return error;
|
|
}
|
|
#else /* CONFIG_CHECKPOINT_RESTORE */
|
|
static int prctl_set_mm(int opt, unsigned long addr,
|
|
unsigned long arg4, unsigned long arg5)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
|
|
SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
|
|
unsigned long, arg4, unsigned long, arg5)
|
|
{
|
|
struct task_struct *me = current;
|
|
unsigned char comm[sizeof(me->comm)];
|
|
long error;
|
|
|
|
error = security_task_prctl(option, arg2, arg3, arg4, arg5);
|
|
if (error != -ENOSYS)
|
|
return error;
|
|
|
|
error = 0;
|
|
switch (option) {
|
|
case PR_SET_PDEATHSIG:
|
|
if (!valid_signal(arg2)) {
|
|
error = -EINVAL;
|
|
break;
|
|
}
|
|
me->pdeath_signal = arg2;
|
|
error = 0;
|
|
break;
|
|
case PR_GET_PDEATHSIG:
|
|
error = put_user(me->pdeath_signal, (int __user *)arg2);
|
|
break;
|
|
case PR_GET_DUMPABLE:
|
|
error = get_dumpable(me->mm);
|
|
break;
|
|
case PR_SET_DUMPABLE:
|
|
if (arg2 < 0 || arg2 > 1) {
|
|
error = -EINVAL;
|
|
break;
|
|
}
|
|
set_dumpable(me->mm, arg2);
|
|
error = 0;
|
|
break;
|
|
|
|
case PR_SET_UNALIGN:
|
|
error = SET_UNALIGN_CTL(me, arg2);
|
|
break;
|
|
case PR_GET_UNALIGN:
|
|
error = GET_UNALIGN_CTL(me, arg2);
|
|
break;
|
|
case PR_SET_FPEMU:
|
|
error = SET_FPEMU_CTL(me, arg2);
|
|
break;
|
|
case PR_GET_FPEMU:
|
|
error = GET_FPEMU_CTL(me, arg2);
|
|
break;
|
|
case PR_SET_FPEXC:
|
|
error = SET_FPEXC_CTL(me, arg2);
|
|
break;
|
|
case PR_GET_FPEXC:
|
|
error = GET_FPEXC_CTL(me, arg2);
|
|
break;
|
|
case PR_GET_TIMING:
|
|
error = PR_TIMING_STATISTICAL;
|
|
break;
|
|
case PR_SET_TIMING:
|
|
if (arg2 != PR_TIMING_STATISTICAL)
|
|
error = -EINVAL;
|
|
else
|
|
error = 0;
|
|
break;
|
|
|
|
case PR_SET_NAME:
|
|
comm[sizeof(me->comm)-1] = 0;
|
|
if (strncpy_from_user(comm, (char __user *)arg2,
|
|
sizeof(me->comm) - 1) < 0)
|
|
return -EFAULT;
|
|
set_task_comm(me, comm);
|
|
proc_comm_connector(me);
|
|
return 0;
|
|
case PR_GET_NAME:
|
|
get_task_comm(comm, me);
|
|
if (copy_to_user((char __user *)arg2, comm,
|
|
sizeof(comm)))
|
|
return -EFAULT;
|
|
return 0;
|
|
case PR_GET_ENDIAN:
|
|
error = GET_ENDIAN(me, arg2);
|
|
break;
|
|
case PR_SET_ENDIAN:
|
|
error = SET_ENDIAN(me, arg2);
|
|
break;
|
|
|
|
case PR_GET_SECCOMP:
|
|
error = prctl_get_seccomp();
|
|
break;
|
|
case PR_SET_SECCOMP:
|
|
error = prctl_set_seccomp(arg2);
|
|
break;
|
|
case PR_GET_TSC:
|
|
error = GET_TSC_CTL(arg2);
|
|
break;
|
|
case PR_SET_TSC:
|
|
error = SET_TSC_CTL(arg2);
|
|
break;
|
|
case PR_TASK_PERF_EVENTS_DISABLE:
|
|
error = perf_event_task_disable();
|
|
break;
|
|
case PR_TASK_PERF_EVENTS_ENABLE:
|
|
error = perf_event_task_enable();
|
|
break;
|
|
case PR_GET_TIMERSLACK:
|
|
error = current->timer_slack_ns;
|
|
break;
|
|
case PR_SET_TIMERSLACK:
|
|
if (arg2 <= 0)
|
|
current->timer_slack_ns =
|
|
current->default_timer_slack_ns;
|
|
else
|
|
current->timer_slack_ns = arg2;
|
|
error = 0;
|
|
break;
|
|
case PR_MCE_KILL:
|
|
if (arg4 | arg5)
|
|
return -EINVAL;
|
|
switch (arg2) {
|
|
case PR_MCE_KILL_CLEAR:
|
|
if (arg3 != 0)
|
|
return -EINVAL;
|
|
current->flags &= ~PF_MCE_PROCESS;
|
|
break;
|
|
case PR_MCE_KILL_SET:
|
|
current->flags |= PF_MCE_PROCESS;
|
|
if (arg3 == PR_MCE_KILL_EARLY)
|
|
current->flags |= PF_MCE_EARLY;
|
|
else if (arg3 == PR_MCE_KILL_LATE)
|
|
current->flags &= ~PF_MCE_EARLY;
|
|
else if (arg3 == PR_MCE_KILL_DEFAULT)
|
|
current->flags &=
|
|
~(PF_MCE_EARLY|PF_MCE_PROCESS);
|
|
else
|
|
return -EINVAL;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
error = 0;
|
|
break;
|
|
case PR_MCE_KILL_GET:
|
|
if (arg2 | arg3 | arg4 | arg5)
|
|
return -EINVAL;
|
|
if (current->flags & PF_MCE_PROCESS)
|
|
error = (current->flags & PF_MCE_EARLY) ?
|
|
PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
|
|
else
|
|
error = PR_MCE_KILL_DEFAULT;
|
|
break;
|
|
case PR_SET_MM:
|
|
error = prctl_set_mm(arg2, arg3, arg4, arg5);
|
|
break;
|
|
case PR_SET_CHILD_SUBREAPER:
|
|
me->signal->is_child_subreaper = !!arg2;
|
|
error = 0;
|
|
break;
|
|
case PR_GET_CHILD_SUBREAPER:
|
|
error = put_user(me->signal->is_child_subreaper,
|
|
(int __user *) arg2);
|
|
break;
|
|
default:
|
|
error = -EINVAL;
|
|
break;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
|
|
struct getcpu_cache __user *, unused)
|
|
{
|
|
int err = 0;
|
|
int cpu = raw_smp_processor_id();
|
|
if (cpup)
|
|
err |= put_user(cpu, cpup);
|
|
if (nodep)
|
|
err |= put_user(cpu_to_node(cpu), nodep);
|
|
return err ? -EFAULT : 0;
|
|
}
|
|
|
|
char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
|
|
|
|
static void argv_cleanup(struct subprocess_info *info)
|
|
{
|
|
argv_free(info->argv);
|
|
}
|
|
|
|
/**
|
|
* orderly_poweroff - Trigger an orderly system poweroff
|
|
* @force: force poweroff if command execution fails
|
|
*
|
|
* This may be called from any context to trigger a system shutdown.
|
|
* If the orderly shutdown fails, it will force an immediate shutdown.
|
|
*/
|
|
int orderly_poweroff(bool force)
|
|
{
|
|
int argc;
|
|
char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
|
|
static char *envp[] = {
|
|
"HOME=/",
|
|
"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
|
|
NULL
|
|
};
|
|
int ret = -ENOMEM;
|
|
struct subprocess_info *info;
|
|
|
|
if (argv == NULL) {
|
|
printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
|
|
__func__, poweroff_cmd);
|
|
goto out;
|
|
}
|
|
|
|
info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
|
|
if (info == NULL) {
|
|
argv_free(argv);
|
|
goto out;
|
|
}
|
|
|
|
call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL);
|
|
|
|
ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
|
|
|
|
out:
|
|
if (ret && force) {
|
|
printk(KERN_WARNING "Failed to start orderly shutdown: "
|
|
"forcing the issue\n");
|
|
|
|
/* I guess this should try to kick off some daemon to
|
|
sync and poweroff asap. Or not even bother syncing
|
|
if we're doing an emergency shutdown? */
|
|
emergency_sync();
|
|
kernel_power_off();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(orderly_poweroff);
|