linux/drivers/spi/spi-sirf.c
Arnd Bergmann 3af4ed7025 spi/sirf: fix MODULE_DEVICE_TABLE
This fixes building the spi-sirf driver as a loadable module, which uses
an incorrect MODULE_DEVICE_TABLE, by changing the reference to the
correct symbol.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
2013-04-23 19:27:00 +01:00

683 lines
18 KiB
C

/*
* SPI bus driver for CSR SiRFprimaII
*
* Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
*
* Licensed under GPLv2 or later.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/of_gpio.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>
#include <linux/pinctrl/consumer.h>
#define DRIVER_NAME "sirfsoc_spi"
#define SIRFSOC_SPI_CTRL 0x0000
#define SIRFSOC_SPI_CMD 0x0004
#define SIRFSOC_SPI_TX_RX_EN 0x0008
#define SIRFSOC_SPI_INT_EN 0x000C
#define SIRFSOC_SPI_INT_STATUS 0x0010
#define SIRFSOC_SPI_TX_DMA_IO_CTRL 0x0100
#define SIRFSOC_SPI_TX_DMA_IO_LEN 0x0104
#define SIRFSOC_SPI_TXFIFO_CTRL 0x0108
#define SIRFSOC_SPI_TXFIFO_LEVEL_CHK 0x010C
#define SIRFSOC_SPI_TXFIFO_OP 0x0110
#define SIRFSOC_SPI_TXFIFO_STATUS 0x0114
#define SIRFSOC_SPI_TXFIFO_DATA 0x0118
#define SIRFSOC_SPI_RX_DMA_IO_CTRL 0x0120
#define SIRFSOC_SPI_RX_DMA_IO_LEN 0x0124
#define SIRFSOC_SPI_RXFIFO_CTRL 0x0128
#define SIRFSOC_SPI_RXFIFO_LEVEL_CHK 0x012C
#define SIRFSOC_SPI_RXFIFO_OP 0x0130
#define SIRFSOC_SPI_RXFIFO_STATUS 0x0134
#define SIRFSOC_SPI_RXFIFO_DATA 0x0138
#define SIRFSOC_SPI_DUMMY_DELAY_CTL 0x0144
/* SPI CTRL register defines */
#define SIRFSOC_SPI_SLV_MODE BIT(16)
#define SIRFSOC_SPI_CMD_MODE BIT(17)
#define SIRFSOC_SPI_CS_IO_OUT BIT(18)
#define SIRFSOC_SPI_CS_IO_MODE BIT(19)
#define SIRFSOC_SPI_CLK_IDLE_STAT BIT(20)
#define SIRFSOC_SPI_CS_IDLE_STAT BIT(21)
#define SIRFSOC_SPI_TRAN_MSB BIT(22)
#define SIRFSOC_SPI_DRV_POS_EDGE BIT(23)
#define SIRFSOC_SPI_CS_HOLD_TIME BIT(24)
#define SIRFSOC_SPI_CLK_SAMPLE_MODE BIT(25)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_8 (0 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_12 (1 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_16 (2 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_32 (3 << 26)
#define SIRFSOC_SPI_CMD_BYTE_NUM(x) ((x & 3) << 28)
#define SIRFSOC_SPI_ENA_AUTO_CLR BIT(30)
#define SIRFSOC_SPI_MUL_DAT_MODE BIT(31)
/* Interrupt Enable */
#define SIRFSOC_SPI_RX_DONE_INT_EN BIT(0)
#define SIRFSOC_SPI_TX_DONE_INT_EN BIT(1)
#define SIRFSOC_SPI_RX_OFLOW_INT_EN BIT(2)
#define SIRFSOC_SPI_TX_UFLOW_INT_EN BIT(3)
#define SIRFSOC_SPI_RX_IO_DMA_INT_EN BIT(4)
#define SIRFSOC_SPI_TX_IO_DMA_INT_EN BIT(5)
#define SIRFSOC_SPI_RXFIFO_FULL_INT_EN BIT(6)
#define SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN BIT(7)
#define SIRFSOC_SPI_RXFIFO_THD_INT_EN BIT(8)
#define SIRFSOC_SPI_TXFIFO_THD_INT_EN BIT(9)
#define SIRFSOC_SPI_FRM_END_INT_EN BIT(10)
#define SIRFSOC_SPI_INT_MASK_ALL 0x1FFF
/* Interrupt status */
#define SIRFSOC_SPI_RX_DONE BIT(0)
#define SIRFSOC_SPI_TX_DONE BIT(1)
#define SIRFSOC_SPI_RX_OFLOW BIT(2)
#define SIRFSOC_SPI_TX_UFLOW BIT(3)
#define SIRFSOC_SPI_RX_FIFO_FULL BIT(6)
#define SIRFSOC_SPI_TXFIFO_EMPTY BIT(7)
#define SIRFSOC_SPI_RXFIFO_THD_REACH BIT(8)
#define SIRFSOC_SPI_TXFIFO_THD_REACH BIT(9)
#define SIRFSOC_SPI_FRM_END BIT(10)
/* TX RX enable */
#define SIRFSOC_SPI_RX_EN BIT(0)
#define SIRFSOC_SPI_TX_EN BIT(1)
#define SIRFSOC_SPI_CMD_TX_EN BIT(2)
#define SIRFSOC_SPI_IO_MODE_SEL BIT(0)
#define SIRFSOC_SPI_RX_DMA_FLUSH BIT(2)
/* FIFO OPs */
#define SIRFSOC_SPI_FIFO_RESET BIT(0)
#define SIRFSOC_SPI_FIFO_START BIT(1)
/* FIFO CTRL */
#define SIRFSOC_SPI_FIFO_WIDTH_BYTE (0 << 0)
#define SIRFSOC_SPI_FIFO_WIDTH_WORD (1 << 0)
#define SIRFSOC_SPI_FIFO_WIDTH_DWORD (2 << 0)
/* FIFO Status */
#define SIRFSOC_SPI_FIFO_LEVEL_MASK 0xFF
#define SIRFSOC_SPI_FIFO_FULL BIT(8)
#define SIRFSOC_SPI_FIFO_EMPTY BIT(9)
/* 256 bytes rx/tx FIFO */
#define SIRFSOC_SPI_FIFO_SIZE 256
#define SIRFSOC_SPI_DAT_FRM_LEN_MAX (64 * 1024)
#define SIRFSOC_SPI_FIFO_SC(x) ((x) & 0x3F)
#define SIRFSOC_SPI_FIFO_LC(x) (((x) & 0x3F) << 10)
#define SIRFSOC_SPI_FIFO_HC(x) (((x) & 0x3F) << 20)
#define SIRFSOC_SPI_FIFO_THD(x) (((x) & 0xFF) << 2)
struct sirfsoc_spi {
struct spi_bitbang bitbang;
struct completion done;
void __iomem *base;
u32 ctrl_freq; /* SPI controller clock speed */
struct clk *clk;
struct pinctrl *p;
/* rx & tx bufs from the spi_transfer */
const void *tx;
void *rx;
/* place received word into rx buffer */
void (*rx_word) (struct sirfsoc_spi *);
/* get word from tx buffer for sending */
void (*tx_word) (struct sirfsoc_spi *);
/* number of words left to be tranmitted/received */
unsigned int left_tx_cnt;
unsigned int left_rx_cnt;
/* tasklet to push tx msg into FIFO */
struct tasklet_struct tasklet_tx;
int chipselect[0];
};
static void spi_sirfsoc_rx_word_u8(struct sirfsoc_spi *sspi)
{
u32 data;
u8 *rx = sspi->rx;
data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
if (rx) {
*rx++ = (u8) data;
sspi->rx = rx;
}
sspi->left_rx_cnt--;
}
static void spi_sirfsoc_tx_word_u8(struct sirfsoc_spi *sspi)
{
u32 data = 0;
const u8 *tx = sspi->tx;
if (tx) {
data = *tx++;
sspi->tx = tx;
}
writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
sspi->left_tx_cnt--;
}
static void spi_sirfsoc_rx_word_u16(struct sirfsoc_spi *sspi)
{
u32 data;
u16 *rx = sspi->rx;
data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
if (rx) {
*rx++ = (u16) data;
sspi->rx = rx;
}
sspi->left_rx_cnt--;
}
static void spi_sirfsoc_tx_word_u16(struct sirfsoc_spi *sspi)
{
u32 data = 0;
const u16 *tx = sspi->tx;
if (tx) {
data = *tx++;
sspi->tx = tx;
}
writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
sspi->left_tx_cnt--;
}
static void spi_sirfsoc_rx_word_u32(struct sirfsoc_spi *sspi)
{
u32 data;
u32 *rx = sspi->rx;
data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
if (rx) {
*rx++ = (u32) data;
sspi->rx = rx;
}
sspi->left_rx_cnt--;
}
static void spi_sirfsoc_tx_word_u32(struct sirfsoc_spi *sspi)
{
u32 data = 0;
const u32 *tx = sspi->tx;
if (tx) {
data = *tx++;
sspi->tx = tx;
}
writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
sspi->left_tx_cnt--;
}
static void spi_sirfsoc_tasklet_tx(unsigned long arg)
{
struct sirfsoc_spi *sspi = (struct sirfsoc_spi *)arg;
/* Fill Tx FIFO while there are left words to be transmitted */
while (!((readl(sspi->base + SIRFSOC_SPI_TXFIFO_STATUS) &
SIRFSOC_SPI_FIFO_FULL)) &&
sspi->left_tx_cnt)
sspi->tx_word(sspi);
}
static irqreturn_t spi_sirfsoc_irq(int irq, void *dev_id)
{
struct sirfsoc_spi *sspi = dev_id;
u32 spi_stat = readl(sspi->base + SIRFSOC_SPI_INT_STATUS);
writel(spi_stat, sspi->base + SIRFSOC_SPI_INT_STATUS);
/* Error Conditions */
if (spi_stat & SIRFSOC_SPI_RX_OFLOW ||
spi_stat & SIRFSOC_SPI_TX_UFLOW) {
complete(&sspi->done);
writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
}
if (spi_stat & SIRFSOC_SPI_FRM_END) {
while (!((readl(sspi->base + SIRFSOC_SPI_RXFIFO_STATUS)
& SIRFSOC_SPI_FIFO_EMPTY)) &&
sspi->left_rx_cnt)
sspi->rx_word(sspi);
/* Received all words */
if ((sspi->left_rx_cnt == 0) && (sspi->left_tx_cnt == 0)) {
complete(&sspi->done);
writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
}
}
if (spi_stat & SIRFSOC_SPI_RXFIFO_THD_REACH ||
spi_stat & SIRFSOC_SPI_TXFIFO_THD_REACH ||
spi_stat & SIRFSOC_SPI_RX_FIFO_FULL ||
spi_stat & SIRFSOC_SPI_TXFIFO_EMPTY)
tasklet_schedule(&sspi->tasklet_tx);
return IRQ_HANDLED;
}
static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t)
{
struct sirfsoc_spi *sspi;
int timeout = t->len * 10;
sspi = spi_master_get_devdata(spi->master);
sspi->tx = t->tx_buf;
sspi->rx = t->rx_buf;
sspi->left_tx_cnt = sspi->left_rx_cnt = t->len;
INIT_COMPLETION(sspi->done);
writel(SIRFSOC_SPI_INT_MASK_ALL, sspi->base + SIRFSOC_SPI_INT_STATUS);
if (t->len == 1) {
writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
SIRFSOC_SPI_ENA_AUTO_CLR,
sspi->base + SIRFSOC_SPI_CTRL);
writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
} else if ((t->len > 1) && (t->len < SIRFSOC_SPI_DAT_FRM_LEN_MAX)) {
writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
SIRFSOC_SPI_MUL_DAT_MODE |
SIRFSOC_SPI_ENA_AUTO_CLR,
sspi->base + SIRFSOC_SPI_CTRL);
writel(t->len - 1, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
writel(t->len - 1, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
} else {
writel(readl(sspi->base + SIRFSOC_SPI_CTRL),
sspi->base + SIRFSOC_SPI_CTRL);
writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
}
writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
/* Send the first word to trigger the whole tx/rx process */
sspi->tx_word(sspi);
writel(SIRFSOC_SPI_RX_OFLOW_INT_EN | SIRFSOC_SPI_TX_UFLOW_INT_EN |
SIRFSOC_SPI_RXFIFO_THD_INT_EN | SIRFSOC_SPI_TXFIFO_THD_INT_EN |
SIRFSOC_SPI_FRM_END_INT_EN | SIRFSOC_SPI_RXFIFO_FULL_INT_EN |
SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN, sspi->base + SIRFSOC_SPI_INT_EN);
writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN, sspi->base + SIRFSOC_SPI_TX_RX_EN);
if (wait_for_completion_timeout(&sspi->done, timeout) == 0)
dev_err(&spi->dev, "transfer timeout\n");
/* TX, RX FIFO stop */
writel(0, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
writel(0, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
writel(0, sspi->base + SIRFSOC_SPI_TX_RX_EN);
writel(0, sspi->base + SIRFSOC_SPI_INT_EN);
return t->len - sspi->left_rx_cnt;
}
static void spi_sirfsoc_chipselect(struct spi_device *spi, int value)
{
struct sirfsoc_spi *sspi = spi_master_get_devdata(spi->master);
if (sspi->chipselect[spi->chip_select] == 0) {
u32 regval = readl(sspi->base + SIRFSOC_SPI_CTRL);
regval |= SIRFSOC_SPI_CS_IO_OUT;
switch (value) {
case BITBANG_CS_ACTIVE:
if (spi->mode & SPI_CS_HIGH)
regval |= SIRFSOC_SPI_CS_IO_OUT;
else
regval &= ~SIRFSOC_SPI_CS_IO_OUT;
break;
case BITBANG_CS_INACTIVE:
if (spi->mode & SPI_CS_HIGH)
regval &= ~SIRFSOC_SPI_CS_IO_OUT;
else
regval |= SIRFSOC_SPI_CS_IO_OUT;
break;
}
writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
} else {
int gpio = sspi->chipselect[spi->chip_select];
gpio_direction_output(gpio, spi->mode & SPI_CS_HIGH ? 0 : 1);
}
}
static int
spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
{
struct sirfsoc_spi *sspi;
u8 bits_per_word = 0;
int hz = 0;
u32 regval;
u32 txfifo_ctrl, rxfifo_ctrl;
u32 fifo_size = SIRFSOC_SPI_FIFO_SIZE / 4;
sspi = spi_master_get_devdata(spi->master);
bits_per_word = (t) ? t->bits_per_word : spi->bits_per_word;
hz = t && t->speed_hz ? t->speed_hz : spi->max_speed_hz;
/* Enable IO mode for RX, TX */
writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL);
writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL);
regval = (sspi->ctrl_freq / (2 * hz)) - 1;
if (regval > 0xFFFF || regval < 0) {
dev_err(&spi->dev, "Speed %d not supported\n", hz);
return -EINVAL;
}
switch (bits_per_word) {
case 8:
regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_8;
sspi->rx_word = spi_sirfsoc_rx_word_u8;
sspi->tx_word = spi_sirfsoc_tx_word_u8;
txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
SIRFSOC_SPI_FIFO_WIDTH_BYTE;
rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
SIRFSOC_SPI_FIFO_WIDTH_BYTE;
break;
case 12:
case 16:
regval |= (bits_per_word == 12) ? SIRFSOC_SPI_TRAN_DAT_FORMAT_12 :
SIRFSOC_SPI_TRAN_DAT_FORMAT_16;
sspi->rx_word = spi_sirfsoc_rx_word_u16;
sspi->tx_word = spi_sirfsoc_tx_word_u16;
txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
SIRFSOC_SPI_FIFO_WIDTH_WORD;
rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
SIRFSOC_SPI_FIFO_WIDTH_WORD;
break;
case 32:
regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_32;
sspi->rx_word = spi_sirfsoc_rx_word_u32;
sspi->tx_word = spi_sirfsoc_tx_word_u32;
txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
SIRFSOC_SPI_FIFO_WIDTH_DWORD;
rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
SIRFSOC_SPI_FIFO_WIDTH_DWORD;
break;
default:
dev_err(&spi->dev, "Bits per word %d not supported\n",
bits_per_word);
return -EINVAL;
}
if (!(spi->mode & SPI_CS_HIGH))
regval |= SIRFSOC_SPI_CS_IDLE_STAT;
if (!(spi->mode & SPI_LSB_FIRST))
regval |= SIRFSOC_SPI_TRAN_MSB;
if (spi->mode & SPI_CPOL)
regval |= SIRFSOC_SPI_CLK_IDLE_STAT;
/*
* Data should be driven at least 1/2 cycle before the fetch edge to make
* sure that data gets stable at the fetch edge.
*/
if (((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA)) ||
(!(spi->mode & SPI_CPOL) && !(spi->mode & SPI_CPHA)))
regval &= ~SIRFSOC_SPI_DRV_POS_EDGE;
else
regval |= SIRFSOC_SPI_DRV_POS_EDGE;
writel(SIRFSOC_SPI_FIFO_SC(fifo_size - 2) |
SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
SIRFSOC_SPI_FIFO_HC(2),
sspi->base + SIRFSOC_SPI_TXFIFO_LEVEL_CHK);
writel(SIRFSOC_SPI_FIFO_SC(2) |
SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
SIRFSOC_SPI_FIFO_HC(fifo_size - 2),
sspi->base + SIRFSOC_SPI_RXFIFO_LEVEL_CHK);
writel(txfifo_ctrl, sspi->base + SIRFSOC_SPI_TXFIFO_CTRL);
writel(rxfifo_ctrl, sspi->base + SIRFSOC_SPI_RXFIFO_CTRL);
writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
return 0;
}
static int spi_sirfsoc_setup(struct spi_device *spi)
{
struct sirfsoc_spi *sspi;
if (!spi->max_speed_hz)
return -EINVAL;
sspi = spi_master_get_devdata(spi->master);
if (!spi->bits_per_word)
spi->bits_per_word = 8;
return spi_sirfsoc_setup_transfer(spi, NULL);
}
static int spi_sirfsoc_probe(struct platform_device *pdev)
{
struct sirfsoc_spi *sspi;
struct spi_master *master;
struct resource *mem_res;
int num_cs, cs_gpio, irq;
int i;
int ret;
ret = of_property_read_u32(pdev->dev.of_node,
"sirf,spi-num-chipselects", &num_cs);
if (ret < 0) {
dev_err(&pdev->dev, "Unable to get chip select number\n");
goto err_cs;
}
master = spi_alloc_master(&pdev->dev, sizeof(*sspi) + sizeof(int) * num_cs);
if (!master) {
dev_err(&pdev->dev, "Unable to allocate SPI master\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, master);
sspi = spi_master_get_devdata(master);
mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!mem_res) {
dev_err(&pdev->dev, "Unable to get IO resource\n");
ret = -ENODEV;
goto free_master;
}
master->num_chipselect = num_cs;
for (i = 0; i < master->num_chipselect; i++) {
cs_gpio = of_get_named_gpio(pdev->dev.of_node, "cs-gpios", i);
if (cs_gpio < 0) {
dev_err(&pdev->dev, "can't get cs gpio from DT\n");
ret = -ENODEV;
goto free_master;
}
sspi->chipselect[i] = cs_gpio;
if (cs_gpio == 0)
continue; /* use cs from spi controller */
ret = gpio_request(cs_gpio, DRIVER_NAME);
if (ret) {
while (i > 0) {
i--;
if (sspi->chipselect[i] > 0)
gpio_free(sspi->chipselect[i]);
}
dev_err(&pdev->dev, "fail to request cs gpios\n");
goto free_master;
}
}
sspi->base = devm_ioremap_resource(&pdev->dev, mem_res);
if (IS_ERR(sspi->base)) {
ret = PTR_ERR(sspi->base);
goto free_master;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = -ENXIO;
goto free_master;
}
ret = devm_request_irq(&pdev->dev, irq, spi_sirfsoc_irq, 0,
DRIVER_NAME, sspi);
if (ret)
goto free_master;
sspi->bitbang.master = spi_master_get(master);
sspi->bitbang.chipselect = spi_sirfsoc_chipselect;
sspi->bitbang.setup_transfer = spi_sirfsoc_setup_transfer;
sspi->bitbang.txrx_bufs = spi_sirfsoc_transfer;
sspi->bitbang.master->setup = spi_sirfsoc_setup;
master->bus_num = pdev->id;
sspi->bitbang.master->dev.of_node = pdev->dev.of_node;
sspi->p = pinctrl_get_select_default(&pdev->dev);
ret = IS_ERR(sspi->p);
if (ret)
goto free_master;
sspi->clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(sspi->clk)) {
ret = -EINVAL;
goto free_pin;
}
clk_prepare_enable(sspi->clk);
sspi->ctrl_freq = clk_get_rate(sspi->clk);
init_completion(&sspi->done);
tasklet_init(&sspi->tasklet_tx, spi_sirfsoc_tasklet_tx,
(unsigned long)sspi);
writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
/* We are not using dummy delay between command and data */
writel(0, sspi->base + SIRFSOC_SPI_DUMMY_DELAY_CTL);
ret = spi_bitbang_start(&sspi->bitbang);
if (ret)
goto free_clk;
dev_info(&pdev->dev, "registerred, bus number = %d\n", master->bus_num);
return 0;
free_clk:
clk_disable_unprepare(sspi->clk);
clk_put(sspi->clk);
free_pin:
pinctrl_put(sspi->p);
free_master:
spi_master_put(master);
err_cs:
return ret;
}
static int spi_sirfsoc_remove(struct platform_device *pdev)
{
struct spi_master *master;
struct sirfsoc_spi *sspi;
int i;
master = platform_get_drvdata(pdev);
sspi = spi_master_get_devdata(master);
spi_bitbang_stop(&sspi->bitbang);
for (i = 0; i < master->num_chipselect; i++) {
if (sspi->chipselect[i] > 0)
gpio_free(sspi->chipselect[i]);
}
clk_disable_unprepare(sspi->clk);
clk_put(sspi->clk);
pinctrl_put(sspi->p);
spi_master_put(master);
return 0;
}
#ifdef CONFIG_PM
static int spi_sirfsoc_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct spi_master *master = platform_get_drvdata(pdev);
struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
clk_disable(sspi->clk);
return 0;
}
static int spi_sirfsoc_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct spi_master *master = platform_get_drvdata(pdev);
struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
clk_enable(sspi->clk);
writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
return 0;
}
static const struct dev_pm_ops spi_sirfsoc_pm_ops = {
.suspend = spi_sirfsoc_suspend,
.resume = spi_sirfsoc_resume,
};
#endif
static const struct of_device_id spi_sirfsoc_of_match[] = {
{ .compatible = "sirf,prima2-spi", },
{ .compatible = "sirf,marco-spi", },
{}
};
MODULE_DEVICE_TABLE(of, spi_sirfsoc_of_match);
static struct platform_driver spi_sirfsoc_driver = {
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
#ifdef CONFIG_PM
.pm = &spi_sirfsoc_pm_ops,
#endif
.of_match_table = spi_sirfsoc_of_match,
},
.probe = spi_sirfsoc_probe,
.remove = spi_sirfsoc_remove,
};
module_platform_driver(spi_sirfsoc_driver);
MODULE_DESCRIPTION("SiRF SoC SPI master driver");
MODULE_AUTHOR("Zhiwu Song <Zhiwu.Song@csr.com>, "
"Barry Song <Baohua.Song@csr.com>");
MODULE_LICENSE("GPL v2");