linux/drivers/mtd/nand/raw/fsl_upm.c
Boris Brezillon 54309d6577 mtd: rawnand: fsl_upm: Implement exec_op()
Implement exec_op() so we can get rid of the legacy interface
implementation.

Signed-off-by: Boris Brezillon <boris.brezillon@collabora.com>
Reviewed-by: Miquel Raynal <miquel.raynal@bootlin.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20200603134922.1352340-9-boris.brezillon@collabora.com
2020-06-26 08:35:09 +02:00

407 lines
9.9 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Freescale UPM NAND driver.
*
* Copyright © 2007-2008 MontaVista Software, Inc.
*
* Author: Anton Vorontsov <avorontsov@ru.mvista.com>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/mtd.h>
#include <linux/of_platform.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <asm/fsl_lbc.h>
#define FSL_UPM_WAIT_RUN_PATTERN 0x1
#define FSL_UPM_WAIT_WRITE_BYTE 0x2
#define FSL_UPM_WAIT_WRITE_BUFFER 0x4
struct fsl_upm_nand {
struct nand_controller base;
struct device *dev;
struct nand_chip chip;
int last_ctrl;
struct fsl_upm upm;
uint8_t upm_addr_offset;
uint8_t upm_cmd_offset;
void __iomem *io_base;
struct gpio_desc *rnb_gpio[NAND_MAX_CHIPS];
uint32_t mchip_offsets[NAND_MAX_CHIPS];
uint32_t mchip_count;
uint32_t mchip_number;
int chip_delay;
uint32_t wait_flags;
};
static inline struct fsl_upm_nand *to_fsl_upm_nand(struct mtd_info *mtdinfo)
{
return container_of(mtd_to_nand(mtdinfo), struct fsl_upm_nand,
chip);
}
static int fun_chip_ready(struct nand_chip *chip)
{
struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
if (gpiod_get_value(fun->rnb_gpio[fun->mchip_number]))
return 1;
dev_vdbg(fun->dev, "busy\n");
return 0;
}
static void fun_wait_rnb(struct fsl_upm_nand *fun)
{
if (fun->rnb_gpio[fun->mchip_number] >= 0) {
int cnt = 1000000;
while (--cnt && !fun_chip_ready(&fun->chip))
cpu_relax();
if (!cnt)
dev_err(fun->dev, "tired waiting for RNB\n");
} else {
ndelay(100);
}
}
static void fun_cmd_ctrl(struct nand_chip *chip, int cmd, unsigned int ctrl)
{
struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
u32 mar;
if (!(ctrl & fun->last_ctrl)) {
fsl_upm_end_pattern(&fun->upm);
if (cmd == NAND_CMD_NONE)
return;
fun->last_ctrl = ctrl & (NAND_ALE | NAND_CLE);
}
if (ctrl & NAND_CTRL_CHANGE) {
if (ctrl & NAND_ALE)
fsl_upm_start_pattern(&fun->upm, fun->upm_addr_offset);
else if (ctrl & NAND_CLE)
fsl_upm_start_pattern(&fun->upm, fun->upm_cmd_offset);
}
mar = (cmd << (32 - fun->upm.width)) |
fun->mchip_offsets[fun->mchip_number];
fsl_upm_run_pattern(&fun->upm, chip->legacy.IO_ADDR_R, mar);
if (fun->wait_flags & FSL_UPM_WAIT_RUN_PATTERN)
fun_wait_rnb(fun);
}
static void fun_select_chip(struct nand_chip *chip, int mchip_nr)
{
struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
if (mchip_nr == -1) {
chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
} else if (mchip_nr >= 0 && mchip_nr < NAND_MAX_CHIPS) {
fun->mchip_number = mchip_nr;
chip->legacy.IO_ADDR_R = fun->io_base + fun->mchip_offsets[mchip_nr];
chip->legacy.IO_ADDR_W = chip->legacy.IO_ADDR_R;
} else {
BUG();
}
}
static uint8_t fun_read_byte(struct nand_chip *chip)
{
struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
return in_8(fun->chip.legacy.IO_ADDR_R);
}
static void fun_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
{
struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
int i;
for (i = 0; i < len; i++)
buf[i] = in_8(fun->chip.legacy.IO_ADDR_R);
}
static void fun_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
{
struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
int i;
for (i = 0; i < len; i++) {
out_8(fun->chip.legacy.IO_ADDR_W, buf[i]);
if (fun->wait_flags & FSL_UPM_WAIT_WRITE_BYTE)
fun_wait_rnb(fun);
}
if (fun->wait_flags & FSL_UPM_WAIT_WRITE_BUFFER)
fun_wait_rnb(fun);
}
static int fun_chip_init(struct fsl_upm_nand *fun,
const struct device_node *upm_np,
const struct resource *io_res)
{
struct mtd_info *mtd = nand_to_mtd(&fun->chip);
int ret;
struct device_node *flash_np;
fun->chip.legacy.IO_ADDR_R = fun->io_base;
fun->chip.legacy.IO_ADDR_W = fun->io_base;
fun->chip.legacy.cmd_ctrl = fun_cmd_ctrl;
fun->chip.legacy.chip_delay = fun->chip_delay;
fun->chip.legacy.read_byte = fun_read_byte;
fun->chip.legacy.read_buf = fun_read_buf;
fun->chip.legacy.write_buf = fun_write_buf;
fun->chip.ecc.mode = NAND_ECC_SOFT;
fun->chip.ecc.algo = NAND_ECC_HAMMING;
if (fun->mchip_count > 1)
fun->chip.legacy.select_chip = fun_select_chip;
if (!fun->rnb_gpio[0])
fun->chip.legacy.dev_ready = fun_chip_ready;
fun->chip.controller = &fun->base;
mtd->dev.parent = fun->dev;
flash_np = of_get_next_child(upm_np, NULL);
if (!flash_np)
return -ENODEV;
nand_set_flash_node(&fun->chip, flash_np);
mtd->name = devm_kasprintf(fun->dev, GFP_KERNEL, "0x%llx.%pOFn",
(u64)io_res->start,
flash_np);
if (!mtd->name) {
ret = -ENOMEM;
goto err;
}
ret = nand_scan(&fun->chip, fun->mchip_count);
if (ret)
goto err;
ret = mtd_device_register(mtd, NULL, 0);
err:
of_node_put(flash_np);
return ret;
}
static int func_exec_instr(struct nand_chip *chip,
const struct nand_op_instr *instr)
{
struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
u32 mar, reg_offs = fun->mchip_offsets[fun->mchip_number];
unsigned int i;
const u8 *out;
u8 *in;
switch (instr->type) {
case NAND_OP_CMD_INSTR:
fsl_upm_start_pattern(&fun->upm, fun->upm_cmd_offset);
mar = (instr->ctx.cmd.opcode << (32 - fun->upm.width)) |
reg_offs;
fsl_upm_run_pattern(&fun->upm, fun->io_base + reg_offs, mar);
fsl_upm_end_pattern(&fun->upm);
return 0;
case NAND_OP_ADDR_INSTR:
fsl_upm_start_pattern(&fun->upm, fun->upm_addr_offset);
for (i = 0; i < instr->ctx.addr.naddrs; i++) {
mar = (instr->ctx.addr.addrs[i] << (32 - fun->upm.width)) |
reg_offs;
fsl_upm_run_pattern(&fun->upm, fun->io_base + reg_offs, mar);
}
fsl_upm_end_pattern(&fun->upm);
return 0;
case NAND_OP_DATA_IN_INSTR:
in = instr->ctx.data.buf.in;
for (i = 0; i < instr->ctx.data.len; i++)
in[i] = in_8(fun->io_base + reg_offs);
return 0;
case NAND_OP_DATA_OUT_INSTR:
out = instr->ctx.data.buf.out;
for (i = 0; i < instr->ctx.data.len; i++)
out_8(fun->io_base + reg_offs, out[i]);
return 0;
case NAND_OP_WAITRDY_INSTR:
if (!fun->rnb_gpio[fun->mchip_number])
return nand_soft_waitrdy(chip, instr->ctx.waitrdy.timeout_ms);
return nand_gpio_waitrdy(chip, fun->rnb_gpio[fun->mchip_number],
instr->ctx.waitrdy.timeout_ms);
default:
return -EINVAL;
}
return 0;
}
static int fun_exec_op(struct nand_chip *chip, const struct nand_operation *op,
bool check_only)
{
struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
unsigned int i;
int ret;
if (op->cs > NAND_MAX_CHIPS)
return -EINVAL;
if (check_only)
return 0;
fun->mchip_number = op->cs;
for (i = 0; i < op->ninstrs; i++) {
ret = func_exec_instr(chip, &op->instrs[i]);
if (ret)
return ret;
if (op->instrs[i].delay_ns)
ndelay(op->instrs[i].delay_ns);
}
return 0;
}
static const struct nand_controller_ops fun_ops = {
.exec_op = fun_exec_op,
};
static int fun_probe(struct platform_device *ofdev)
{
struct fsl_upm_nand *fun;
struct resource *io_res;
const __be32 *prop;
int ret;
int size;
int i;
fun = devm_kzalloc(&ofdev->dev, sizeof(*fun), GFP_KERNEL);
if (!fun)
return -ENOMEM;
io_res = platform_get_resource(ofdev, IORESOURCE_MEM, 0);
fun->io_base = devm_ioremap_resource(&ofdev->dev, io_res);
if (IS_ERR(fun->io_base))
return PTR_ERR(fun->io_base);
ret = fsl_upm_find(io_res->start, &fun->upm);
if (ret) {
dev_err(&ofdev->dev, "can't find UPM\n");
return ret;
}
prop = of_get_property(ofdev->dev.of_node, "fsl,upm-addr-offset",
&size);
if (!prop || size != sizeof(uint32_t)) {
dev_err(&ofdev->dev, "can't get UPM address offset\n");
return -EINVAL;
}
fun->upm_addr_offset = *prop;
prop = of_get_property(ofdev->dev.of_node, "fsl,upm-cmd-offset", &size);
if (!prop || size != sizeof(uint32_t)) {
dev_err(&ofdev->dev, "can't get UPM command offset\n");
return -EINVAL;
}
fun->upm_cmd_offset = *prop;
prop = of_get_property(ofdev->dev.of_node,
"fsl,upm-addr-line-cs-offsets", &size);
if (prop && (size / sizeof(uint32_t)) > 0) {
fun->mchip_count = size / sizeof(uint32_t);
if (fun->mchip_count >= NAND_MAX_CHIPS) {
dev_err(&ofdev->dev, "too much multiple chips\n");
return -EINVAL;
}
for (i = 0; i < fun->mchip_count; i++)
fun->mchip_offsets[i] = be32_to_cpu(prop[i]);
} else {
fun->mchip_count = 1;
}
for (i = 0; i < fun->mchip_count; i++) {
fun->rnb_gpio[i] = devm_gpiod_get_index_optional(&ofdev->dev,
NULL, i,
GPIOD_IN);
if (IS_ERR(fun->rnb_gpio[i])) {
dev_err(&ofdev->dev, "RNB gpio #%d is invalid\n", i);
return PTR_ERR(fun->rnb_gpio[i]);
}
}
prop = of_get_property(ofdev->dev.of_node, "chip-delay", NULL);
if (prop)
fun->chip_delay = be32_to_cpup(prop);
else
fun->chip_delay = 50;
prop = of_get_property(ofdev->dev.of_node, "fsl,upm-wait-flags", &size);
if (prop && size == sizeof(uint32_t))
fun->wait_flags = be32_to_cpup(prop);
else
fun->wait_flags = FSL_UPM_WAIT_RUN_PATTERN |
FSL_UPM_WAIT_WRITE_BYTE;
nand_controller_init(&fun->base);
fun->base.ops = &fun_ops;
fun->dev = &ofdev->dev;
fun->last_ctrl = NAND_CLE;
ret = fun_chip_init(fun, ofdev->dev.of_node, io_res);
if (ret)
return ret;
dev_set_drvdata(&ofdev->dev, fun);
return 0;
}
static int fun_remove(struct platform_device *ofdev)
{
struct fsl_upm_nand *fun = dev_get_drvdata(&ofdev->dev);
struct nand_chip *chip = &fun->chip;
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
ret = mtd_device_unregister(mtd);
WARN_ON(ret);
nand_cleanup(chip);
return 0;
}
static const struct of_device_id of_fun_match[] = {
{ .compatible = "fsl,upm-nand" },
{},
};
MODULE_DEVICE_TABLE(of, of_fun_match);
static struct platform_driver of_fun_driver = {
.driver = {
.name = "fsl,upm-nand",
.of_match_table = of_fun_match,
},
.probe = fun_probe,
.remove = fun_remove,
};
module_platform_driver(of_fun_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Anton Vorontsov <avorontsov@ru.mvista.com>");
MODULE_DESCRIPTION("Driver for NAND chips working through Freescale "
"LocalBus User-Programmable Machine");