mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-25 05:04:09 +08:00
9fe6299dde
When the kernel.print-fatal-signals sysctl has been enabled, a simple
userspace crash will cause the kernel to write a crash dump that contains,
among other things, the kernel gsbase into dmesg.
As suggested by Andy, limit output to pt_regs, FS_BASE and KERNEL_GS_BASE
in this case.
This also moves the bitness-specific logic from show_regs() into
process_{32,64}.c.
Fixes: 45807a1df9
("vdso: print fatal signals")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180831194151.123586-1-jannh@google.com
420 lines
12 KiB
C
420 lines
12 KiB
C
/*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
* Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
|
|
*/
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/module.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/kasan.h>
|
|
|
|
#include <asm/cpu_entry_area.h>
|
|
#include <asm/stacktrace.h>
|
|
#include <asm/unwind.h>
|
|
|
|
int panic_on_unrecovered_nmi;
|
|
int panic_on_io_nmi;
|
|
static int die_counter;
|
|
|
|
static struct pt_regs exec_summary_regs;
|
|
|
|
bool in_task_stack(unsigned long *stack, struct task_struct *task,
|
|
struct stack_info *info)
|
|
{
|
|
unsigned long *begin = task_stack_page(task);
|
|
unsigned long *end = task_stack_page(task) + THREAD_SIZE;
|
|
|
|
if (stack < begin || stack >= end)
|
|
return false;
|
|
|
|
info->type = STACK_TYPE_TASK;
|
|
info->begin = begin;
|
|
info->end = end;
|
|
info->next_sp = NULL;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool in_entry_stack(unsigned long *stack, struct stack_info *info)
|
|
{
|
|
struct entry_stack *ss = cpu_entry_stack(smp_processor_id());
|
|
|
|
void *begin = ss;
|
|
void *end = ss + 1;
|
|
|
|
if ((void *)stack < begin || (void *)stack >= end)
|
|
return false;
|
|
|
|
info->type = STACK_TYPE_ENTRY;
|
|
info->begin = begin;
|
|
info->end = end;
|
|
info->next_sp = NULL;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void printk_stack_address(unsigned long address, int reliable,
|
|
char *log_lvl)
|
|
{
|
|
touch_nmi_watchdog();
|
|
printk("%s %s%pB\n", log_lvl, reliable ? "" : "? ", (void *)address);
|
|
}
|
|
|
|
/*
|
|
* There are a couple of reasons for the 2/3rd prologue, courtesy of Linus:
|
|
*
|
|
* In case where we don't have the exact kernel image (which, if we did, we can
|
|
* simply disassemble and navigate to the RIP), the purpose of the bigger
|
|
* prologue is to have more context and to be able to correlate the code from
|
|
* the different toolchains better.
|
|
*
|
|
* In addition, it helps in recreating the register allocation of the failing
|
|
* kernel and thus make sense of the register dump.
|
|
*
|
|
* What is more, the additional complication of a variable length insn arch like
|
|
* x86 warrants having longer byte sequence before rIP so that the disassembler
|
|
* can "sync" up properly and find instruction boundaries when decoding the
|
|
* opcode bytes.
|
|
*
|
|
* Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random
|
|
* guesstimate in attempt to achieve all of the above.
|
|
*/
|
|
void show_opcodes(struct pt_regs *regs, const char *loglvl)
|
|
{
|
|
#define PROLOGUE_SIZE 42
|
|
#define EPILOGUE_SIZE 21
|
|
#define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE)
|
|
u8 opcodes[OPCODE_BUFSIZE];
|
|
unsigned long prologue = regs->ip - PROLOGUE_SIZE;
|
|
bool bad_ip;
|
|
|
|
/*
|
|
* Make sure userspace isn't trying to trick us into dumping kernel
|
|
* memory by pointing the userspace instruction pointer at it.
|
|
*/
|
|
bad_ip = user_mode(regs) &&
|
|
__chk_range_not_ok(prologue, OPCODE_BUFSIZE, TASK_SIZE_MAX);
|
|
|
|
if (bad_ip || probe_kernel_read(opcodes, (u8 *)prologue,
|
|
OPCODE_BUFSIZE)) {
|
|
printk("%sCode: Bad RIP value.\n", loglvl);
|
|
} else {
|
|
printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %"
|
|
__stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes,
|
|
opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1);
|
|
}
|
|
}
|
|
|
|
void show_ip(struct pt_regs *regs, const char *loglvl)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
printk("%sEIP: %pS\n", loglvl, (void *)regs->ip);
|
|
#else
|
|
printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip);
|
|
#endif
|
|
show_opcodes(regs, loglvl);
|
|
}
|
|
|
|
void show_iret_regs(struct pt_regs *regs)
|
|
{
|
|
show_ip(regs, KERN_DEFAULT);
|
|
printk(KERN_DEFAULT "RSP: %04x:%016lx EFLAGS: %08lx", (int)regs->ss,
|
|
regs->sp, regs->flags);
|
|
}
|
|
|
|
static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs,
|
|
bool partial)
|
|
{
|
|
/*
|
|
* These on_stack() checks aren't strictly necessary: the unwind code
|
|
* has already validated the 'regs' pointer. The checks are done for
|
|
* ordering reasons: if the registers are on the next stack, we don't
|
|
* want to print them out yet. Otherwise they'll be shown as part of
|
|
* the wrong stack. Later, when show_trace_log_lvl() switches to the
|
|
* next stack, this function will be called again with the same regs so
|
|
* they can be printed in the right context.
|
|
*/
|
|
if (!partial && on_stack(info, regs, sizeof(*regs))) {
|
|
__show_regs(regs, SHOW_REGS_SHORT);
|
|
|
|
} else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET,
|
|
IRET_FRAME_SIZE)) {
|
|
/*
|
|
* When an interrupt or exception occurs in entry code, the
|
|
* full pt_regs might not have been saved yet. In that case
|
|
* just print the iret frame.
|
|
*/
|
|
show_iret_regs(regs);
|
|
}
|
|
}
|
|
|
|
void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
|
|
unsigned long *stack, char *log_lvl)
|
|
{
|
|
struct unwind_state state;
|
|
struct stack_info stack_info = {0};
|
|
unsigned long visit_mask = 0;
|
|
int graph_idx = 0;
|
|
bool partial = false;
|
|
|
|
printk("%sCall Trace:\n", log_lvl);
|
|
|
|
unwind_start(&state, task, regs, stack);
|
|
stack = stack ? : get_stack_pointer(task, regs);
|
|
regs = unwind_get_entry_regs(&state, &partial);
|
|
|
|
/*
|
|
* Iterate through the stacks, starting with the current stack pointer.
|
|
* Each stack has a pointer to the next one.
|
|
*
|
|
* x86-64 can have several stacks:
|
|
* - task stack
|
|
* - interrupt stack
|
|
* - HW exception stacks (double fault, nmi, debug, mce)
|
|
* - entry stack
|
|
*
|
|
* x86-32 can have up to four stacks:
|
|
* - task stack
|
|
* - softirq stack
|
|
* - hardirq stack
|
|
* - entry stack
|
|
*/
|
|
for ( ; stack; stack = PTR_ALIGN(stack_info.next_sp, sizeof(long))) {
|
|
const char *stack_name;
|
|
|
|
if (get_stack_info(stack, task, &stack_info, &visit_mask)) {
|
|
/*
|
|
* We weren't on a valid stack. It's possible that
|
|
* we overflowed a valid stack into a guard page.
|
|
* See if the next page up is valid so that we can
|
|
* generate some kind of backtrace if this happens.
|
|
*/
|
|
stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack);
|
|
if (get_stack_info(stack, task, &stack_info, &visit_mask))
|
|
break;
|
|
}
|
|
|
|
stack_name = stack_type_name(stack_info.type);
|
|
if (stack_name)
|
|
printk("%s <%s>\n", log_lvl, stack_name);
|
|
|
|
if (regs)
|
|
show_regs_if_on_stack(&stack_info, regs, partial);
|
|
|
|
/*
|
|
* Scan the stack, printing any text addresses we find. At the
|
|
* same time, follow proper stack frames with the unwinder.
|
|
*
|
|
* Addresses found during the scan which are not reported by
|
|
* the unwinder are considered to be additional clues which are
|
|
* sometimes useful for debugging and are prefixed with '?'.
|
|
* This also serves as a failsafe option in case the unwinder
|
|
* goes off in the weeds.
|
|
*/
|
|
for (; stack < stack_info.end; stack++) {
|
|
unsigned long real_addr;
|
|
int reliable = 0;
|
|
unsigned long addr = READ_ONCE_NOCHECK(*stack);
|
|
unsigned long *ret_addr_p =
|
|
unwind_get_return_address_ptr(&state);
|
|
|
|
if (!__kernel_text_address(addr))
|
|
continue;
|
|
|
|
/*
|
|
* Don't print regs->ip again if it was already printed
|
|
* by show_regs_if_on_stack().
|
|
*/
|
|
if (regs && stack == ®s->ip)
|
|
goto next;
|
|
|
|
if (stack == ret_addr_p)
|
|
reliable = 1;
|
|
|
|
/*
|
|
* When function graph tracing is enabled for a
|
|
* function, its return address on the stack is
|
|
* replaced with the address of an ftrace handler
|
|
* (return_to_handler). In that case, before printing
|
|
* the "real" address, we want to print the handler
|
|
* address as an "unreliable" hint that function graph
|
|
* tracing was involved.
|
|
*/
|
|
real_addr = ftrace_graph_ret_addr(task, &graph_idx,
|
|
addr, stack);
|
|
if (real_addr != addr)
|
|
printk_stack_address(addr, 0, log_lvl);
|
|
printk_stack_address(real_addr, reliable, log_lvl);
|
|
|
|
if (!reliable)
|
|
continue;
|
|
|
|
next:
|
|
/*
|
|
* Get the next frame from the unwinder. No need to
|
|
* check for an error: if anything goes wrong, the rest
|
|
* of the addresses will just be printed as unreliable.
|
|
*/
|
|
unwind_next_frame(&state);
|
|
|
|
/* if the frame has entry regs, print them */
|
|
regs = unwind_get_entry_regs(&state, &partial);
|
|
if (regs)
|
|
show_regs_if_on_stack(&stack_info, regs, partial);
|
|
}
|
|
|
|
if (stack_name)
|
|
printk("%s </%s>\n", log_lvl, stack_name);
|
|
}
|
|
}
|
|
|
|
void show_stack(struct task_struct *task, unsigned long *sp)
|
|
{
|
|
task = task ? : current;
|
|
|
|
/*
|
|
* Stack frames below this one aren't interesting. Don't show them
|
|
* if we're printing for %current.
|
|
*/
|
|
if (!sp && task == current)
|
|
sp = get_stack_pointer(current, NULL);
|
|
|
|
show_trace_log_lvl(task, NULL, sp, KERN_DEFAULT);
|
|
}
|
|
|
|
void show_stack_regs(struct pt_regs *regs)
|
|
{
|
|
show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
|
|
}
|
|
|
|
static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
|
|
static int die_owner = -1;
|
|
static unsigned int die_nest_count;
|
|
|
|
unsigned long oops_begin(void)
|
|
{
|
|
int cpu;
|
|
unsigned long flags;
|
|
|
|
oops_enter();
|
|
|
|
/* racy, but better than risking deadlock. */
|
|
raw_local_irq_save(flags);
|
|
cpu = smp_processor_id();
|
|
if (!arch_spin_trylock(&die_lock)) {
|
|
if (cpu == die_owner)
|
|
/* nested oops. should stop eventually */;
|
|
else
|
|
arch_spin_lock(&die_lock);
|
|
}
|
|
die_nest_count++;
|
|
die_owner = cpu;
|
|
console_verbose();
|
|
bust_spinlocks(1);
|
|
return flags;
|
|
}
|
|
NOKPROBE_SYMBOL(oops_begin);
|
|
|
|
void __noreturn rewind_stack_do_exit(int signr);
|
|
|
|
void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
|
|
{
|
|
if (regs && kexec_should_crash(current))
|
|
crash_kexec(regs);
|
|
|
|
bust_spinlocks(0);
|
|
die_owner = -1;
|
|
add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
|
|
die_nest_count--;
|
|
if (!die_nest_count)
|
|
/* Nest count reaches zero, release the lock. */
|
|
arch_spin_unlock(&die_lock);
|
|
raw_local_irq_restore(flags);
|
|
oops_exit();
|
|
|
|
/* Executive summary in case the oops scrolled away */
|
|
__show_regs(&exec_summary_regs, SHOW_REGS_ALL);
|
|
|
|
if (!signr)
|
|
return;
|
|
if (in_interrupt())
|
|
panic("Fatal exception in interrupt");
|
|
if (panic_on_oops)
|
|
panic("Fatal exception");
|
|
|
|
/*
|
|
* We're not going to return, but we might be on an IST stack or
|
|
* have very little stack space left. Rewind the stack and kill
|
|
* the task.
|
|
* Before we rewind the stack, we have to tell KASAN that we're going to
|
|
* reuse the task stack and that existing poisons are invalid.
|
|
*/
|
|
kasan_unpoison_task_stack(current);
|
|
rewind_stack_do_exit(signr);
|
|
}
|
|
NOKPROBE_SYMBOL(oops_end);
|
|
|
|
int __die(const char *str, struct pt_regs *regs, long err)
|
|
{
|
|
/* Save the regs of the first oops for the executive summary later. */
|
|
if (!die_counter)
|
|
exec_summary_regs = *regs;
|
|
|
|
printk(KERN_DEFAULT
|
|
"%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter,
|
|
IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT" : "",
|
|
IS_ENABLED(CONFIG_SMP) ? " SMP" : "",
|
|
debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "",
|
|
IS_ENABLED(CONFIG_KASAN) ? " KASAN" : "",
|
|
IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ?
|
|
(boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : "");
|
|
|
|
show_regs(regs);
|
|
print_modules();
|
|
|
|
if (notify_die(DIE_OOPS, str, regs, err,
|
|
current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(__die);
|
|
|
|
/*
|
|
* This is gone through when something in the kernel has done something bad
|
|
* and is about to be terminated:
|
|
*/
|
|
void die(const char *str, struct pt_regs *regs, long err)
|
|
{
|
|
unsigned long flags = oops_begin();
|
|
int sig = SIGSEGV;
|
|
|
|
if (__die(str, regs, err))
|
|
sig = 0;
|
|
oops_end(flags, regs, sig);
|
|
}
|
|
|
|
void show_regs(struct pt_regs *regs)
|
|
{
|
|
show_regs_print_info(KERN_DEFAULT);
|
|
|
|
__show_regs(regs, user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL);
|
|
|
|
/*
|
|
* When in-kernel, we also print out the stack at the time of the fault..
|
|
*/
|
|
if (!user_mode(regs))
|
|
show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
|
|
}
|