mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-07 14:24:18 +08:00
07547fa73e
This driver has been implicitly relying on kmalloc alignment to be sufficient for DMA. This may no longer be the case with upcoming arm64 changes. This patch changes it to explicitly request DMA alignment from the Crypto API. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
1394 lines
42 KiB
C
1394 lines
42 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */
|
|
|
|
#include <crypto/internal/aead.h>
|
|
#include <crypto/authenc.h>
|
|
#include <crypto/scatterwalk.h>
|
|
#include <linux/dmapool.h>
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include "cc_buffer_mgr.h"
|
|
#include "cc_lli_defs.h"
|
|
#include "cc_cipher.h"
|
|
#include "cc_hash.h"
|
|
#include "cc_aead.h"
|
|
|
|
union buffer_array_entry {
|
|
struct scatterlist *sgl;
|
|
dma_addr_t buffer_dma;
|
|
};
|
|
|
|
struct buffer_array {
|
|
unsigned int num_of_buffers;
|
|
union buffer_array_entry entry[MAX_NUM_OF_BUFFERS_IN_MLLI];
|
|
unsigned int offset[MAX_NUM_OF_BUFFERS_IN_MLLI];
|
|
int nents[MAX_NUM_OF_BUFFERS_IN_MLLI];
|
|
int total_data_len[MAX_NUM_OF_BUFFERS_IN_MLLI];
|
|
bool is_last[MAX_NUM_OF_BUFFERS_IN_MLLI];
|
|
u32 *mlli_nents[MAX_NUM_OF_BUFFERS_IN_MLLI];
|
|
};
|
|
|
|
static inline char *cc_dma_buf_type(enum cc_req_dma_buf_type type)
|
|
{
|
|
switch (type) {
|
|
case CC_DMA_BUF_NULL:
|
|
return "BUF_NULL";
|
|
case CC_DMA_BUF_DLLI:
|
|
return "BUF_DLLI";
|
|
case CC_DMA_BUF_MLLI:
|
|
return "BUF_MLLI";
|
|
default:
|
|
return "BUF_INVALID";
|
|
}
|
|
}
|
|
|
|
/**
|
|
* cc_copy_mac() - Copy MAC to temporary location
|
|
*
|
|
* @dev: device object
|
|
* @req: aead request object
|
|
* @dir: [IN] copy from/to sgl
|
|
*/
|
|
static void cc_copy_mac(struct device *dev, struct aead_request *req,
|
|
enum cc_sg_cpy_direct dir)
|
|
{
|
|
struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
|
|
u32 skip = req->assoclen + req->cryptlen;
|
|
|
|
cc_copy_sg_portion(dev, areq_ctx->backup_mac, req->src,
|
|
(skip - areq_ctx->req_authsize), skip, dir);
|
|
}
|
|
|
|
/**
|
|
* cc_get_sgl_nents() - Get scatterlist number of entries.
|
|
*
|
|
* @dev: Device object
|
|
* @sg_list: SG list
|
|
* @nbytes: [IN] Total SGL data bytes.
|
|
* @lbytes: [OUT] Returns the amount of bytes at the last entry
|
|
*
|
|
* Return:
|
|
* Number of entries in the scatterlist
|
|
*/
|
|
static unsigned int cc_get_sgl_nents(struct device *dev,
|
|
struct scatterlist *sg_list,
|
|
unsigned int nbytes, u32 *lbytes)
|
|
{
|
|
unsigned int nents = 0;
|
|
|
|
*lbytes = 0;
|
|
|
|
while (nbytes && sg_list) {
|
|
nents++;
|
|
/* get the number of bytes in the last entry */
|
|
*lbytes = nbytes;
|
|
nbytes -= (sg_list->length > nbytes) ?
|
|
nbytes : sg_list->length;
|
|
sg_list = sg_next(sg_list);
|
|
}
|
|
|
|
dev_dbg(dev, "nents %d last bytes %d\n", nents, *lbytes);
|
|
return nents;
|
|
}
|
|
|
|
/**
|
|
* cc_copy_sg_portion() - Copy scatter list data,
|
|
* from to_skip to end, to dest and vice versa
|
|
*
|
|
* @dev: Device object
|
|
* @dest: Buffer to copy to/from
|
|
* @sg: SG list
|
|
* @to_skip: Number of bytes to skip before copying
|
|
* @end: Offset of last byte to copy
|
|
* @direct: Transfer direction (true == from SG list to buffer, false == from
|
|
* buffer to SG list)
|
|
*/
|
|
void cc_copy_sg_portion(struct device *dev, u8 *dest, struct scatterlist *sg,
|
|
u32 to_skip, u32 end, enum cc_sg_cpy_direct direct)
|
|
{
|
|
u32 nents;
|
|
|
|
nents = sg_nents_for_len(sg, end);
|
|
sg_copy_buffer(sg, nents, dest, (end - to_skip + 1), to_skip,
|
|
(direct == CC_SG_TO_BUF));
|
|
}
|
|
|
|
static int cc_render_buff_to_mlli(struct device *dev, dma_addr_t buff_dma,
|
|
u32 buff_size, u32 *curr_nents,
|
|
u32 **mlli_entry_pp)
|
|
{
|
|
u32 *mlli_entry_p = *mlli_entry_pp;
|
|
u32 new_nents;
|
|
|
|
/* Verify there is no memory overflow*/
|
|
new_nents = (*curr_nents + buff_size / CC_MAX_MLLI_ENTRY_SIZE + 1);
|
|
if (new_nents > MAX_NUM_OF_TOTAL_MLLI_ENTRIES) {
|
|
dev_err(dev, "Too many mlli entries. current %d max %d\n",
|
|
new_nents, MAX_NUM_OF_TOTAL_MLLI_ENTRIES);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*handle buffer longer than 64 kbytes */
|
|
while (buff_size > CC_MAX_MLLI_ENTRY_SIZE) {
|
|
cc_lli_set_addr(mlli_entry_p, buff_dma);
|
|
cc_lli_set_size(mlli_entry_p, CC_MAX_MLLI_ENTRY_SIZE);
|
|
dev_dbg(dev, "entry[%d]: single_buff=0x%08X size=%08X\n",
|
|
*curr_nents, mlli_entry_p[LLI_WORD0_OFFSET],
|
|
mlli_entry_p[LLI_WORD1_OFFSET]);
|
|
buff_dma += CC_MAX_MLLI_ENTRY_SIZE;
|
|
buff_size -= CC_MAX_MLLI_ENTRY_SIZE;
|
|
mlli_entry_p = mlli_entry_p + 2;
|
|
(*curr_nents)++;
|
|
}
|
|
/*Last entry */
|
|
cc_lli_set_addr(mlli_entry_p, buff_dma);
|
|
cc_lli_set_size(mlli_entry_p, buff_size);
|
|
dev_dbg(dev, "entry[%d]: single_buff=0x%08X size=%08X\n",
|
|
*curr_nents, mlli_entry_p[LLI_WORD0_OFFSET],
|
|
mlli_entry_p[LLI_WORD1_OFFSET]);
|
|
mlli_entry_p = mlli_entry_p + 2;
|
|
*mlli_entry_pp = mlli_entry_p;
|
|
(*curr_nents)++;
|
|
return 0;
|
|
}
|
|
|
|
static int cc_render_sg_to_mlli(struct device *dev, struct scatterlist *sgl,
|
|
u32 sgl_data_len, u32 sgl_offset,
|
|
u32 *curr_nents, u32 **mlli_entry_pp)
|
|
{
|
|
struct scatterlist *curr_sgl = sgl;
|
|
u32 *mlli_entry_p = *mlli_entry_pp;
|
|
s32 rc = 0;
|
|
|
|
for ( ; (curr_sgl && sgl_data_len);
|
|
curr_sgl = sg_next(curr_sgl)) {
|
|
u32 entry_data_len =
|
|
(sgl_data_len > sg_dma_len(curr_sgl) - sgl_offset) ?
|
|
sg_dma_len(curr_sgl) - sgl_offset :
|
|
sgl_data_len;
|
|
sgl_data_len -= entry_data_len;
|
|
rc = cc_render_buff_to_mlli(dev, sg_dma_address(curr_sgl) +
|
|
sgl_offset, entry_data_len,
|
|
curr_nents, &mlli_entry_p);
|
|
if (rc)
|
|
return rc;
|
|
|
|
sgl_offset = 0;
|
|
}
|
|
*mlli_entry_pp = mlli_entry_p;
|
|
return 0;
|
|
}
|
|
|
|
static int cc_generate_mlli(struct device *dev, struct buffer_array *sg_data,
|
|
struct mlli_params *mlli_params, gfp_t flags)
|
|
{
|
|
u32 *mlli_p;
|
|
u32 total_nents = 0, prev_total_nents = 0;
|
|
int rc = 0, i;
|
|
|
|
dev_dbg(dev, "NUM of SG's = %d\n", sg_data->num_of_buffers);
|
|
|
|
/* Allocate memory from the pointed pool */
|
|
mlli_params->mlli_virt_addr =
|
|
dma_pool_alloc(mlli_params->curr_pool, flags,
|
|
&mlli_params->mlli_dma_addr);
|
|
if (!mlli_params->mlli_virt_addr) {
|
|
dev_err(dev, "dma_pool_alloc() failed\n");
|
|
rc = -ENOMEM;
|
|
goto build_mlli_exit;
|
|
}
|
|
/* Point to start of MLLI */
|
|
mlli_p = mlli_params->mlli_virt_addr;
|
|
/* go over all SG's and link it to one MLLI table */
|
|
for (i = 0; i < sg_data->num_of_buffers; i++) {
|
|
union buffer_array_entry *entry = &sg_data->entry[i];
|
|
u32 tot_len = sg_data->total_data_len[i];
|
|
u32 offset = sg_data->offset[i];
|
|
|
|
rc = cc_render_sg_to_mlli(dev, entry->sgl, tot_len, offset,
|
|
&total_nents, &mlli_p);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* set last bit in the current table */
|
|
if (sg_data->mlli_nents[i]) {
|
|
/*Calculate the current MLLI table length for the
|
|
*length field in the descriptor
|
|
*/
|
|
*sg_data->mlli_nents[i] +=
|
|
(total_nents - prev_total_nents);
|
|
prev_total_nents = total_nents;
|
|
}
|
|
}
|
|
|
|
/* Set MLLI size for the bypass operation */
|
|
mlli_params->mlli_len = (total_nents * LLI_ENTRY_BYTE_SIZE);
|
|
|
|
dev_dbg(dev, "MLLI params: virt_addr=%pK dma_addr=%pad mlli_len=0x%X\n",
|
|
mlli_params->mlli_virt_addr, &mlli_params->mlli_dma_addr,
|
|
mlli_params->mlli_len);
|
|
|
|
build_mlli_exit:
|
|
return rc;
|
|
}
|
|
|
|
static void cc_add_sg_entry(struct device *dev, struct buffer_array *sgl_data,
|
|
unsigned int nents, struct scatterlist *sgl,
|
|
unsigned int data_len, unsigned int data_offset,
|
|
bool is_last_table, u32 *mlli_nents)
|
|
{
|
|
unsigned int index = sgl_data->num_of_buffers;
|
|
|
|
dev_dbg(dev, "index=%u nents=%u sgl=%pK data_len=0x%08X is_last=%d\n",
|
|
index, nents, sgl, data_len, is_last_table);
|
|
sgl_data->nents[index] = nents;
|
|
sgl_data->entry[index].sgl = sgl;
|
|
sgl_data->offset[index] = data_offset;
|
|
sgl_data->total_data_len[index] = data_len;
|
|
sgl_data->is_last[index] = is_last_table;
|
|
sgl_data->mlli_nents[index] = mlli_nents;
|
|
if (sgl_data->mlli_nents[index])
|
|
*sgl_data->mlli_nents[index] = 0;
|
|
sgl_data->num_of_buffers++;
|
|
}
|
|
|
|
static int cc_map_sg(struct device *dev, struct scatterlist *sg,
|
|
unsigned int nbytes, int direction, u32 *nents,
|
|
u32 max_sg_nents, u32 *lbytes, u32 *mapped_nents)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (!nbytes) {
|
|
*mapped_nents = 0;
|
|
*lbytes = 0;
|
|
*nents = 0;
|
|
return 0;
|
|
}
|
|
|
|
*nents = cc_get_sgl_nents(dev, sg, nbytes, lbytes);
|
|
if (*nents > max_sg_nents) {
|
|
*nents = 0;
|
|
dev_err(dev, "Too many fragments. current %d max %d\n",
|
|
*nents, max_sg_nents);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = dma_map_sg(dev, sg, *nents, direction);
|
|
if (!ret) {
|
|
*nents = 0;
|
|
dev_err(dev, "dma_map_sg() sg buffer failed %d\n", ret);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
*mapped_nents = ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
cc_set_aead_conf_buf(struct device *dev, struct aead_req_ctx *areq_ctx,
|
|
u8 *config_data, struct buffer_array *sg_data,
|
|
unsigned int assoclen)
|
|
{
|
|
dev_dbg(dev, " handle additional data config set to DLLI\n");
|
|
/* create sg for the current buffer */
|
|
sg_init_one(&areq_ctx->ccm_adata_sg, config_data,
|
|
AES_BLOCK_SIZE + areq_ctx->ccm_hdr_size);
|
|
if (dma_map_sg(dev, &areq_ctx->ccm_adata_sg, 1, DMA_TO_DEVICE) != 1) {
|
|
dev_err(dev, "dma_map_sg() config buffer failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
dev_dbg(dev, "Mapped curr_buff: dma_address=%pad page=%p addr=%pK offset=%u length=%u\n",
|
|
&sg_dma_address(&areq_ctx->ccm_adata_sg),
|
|
sg_page(&areq_ctx->ccm_adata_sg),
|
|
sg_virt(&areq_ctx->ccm_adata_sg),
|
|
areq_ctx->ccm_adata_sg.offset, areq_ctx->ccm_adata_sg.length);
|
|
/* prepare for case of MLLI */
|
|
if (assoclen > 0) {
|
|
cc_add_sg_entry(dev, sg_data, 1, &areq_ctx->ccm_adata_sg,
|
|
(AES_BLOCK_SIZE + areq_ctx->ccm_hdr_size),
|
|
0, false, NULL);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int cc_set_hash_buf(struct device *dev, struct ahash_req_ctx *areq_ctx,
|
|
u8 *curr_buff, u32 curr_buff_cnt,
|
|
struct buffer_array *sg_data)
|
|
{
|
|
dev_dbg(dev, " handle curr buff %x set to DLLI\n", curr_buff_cnt);
|
|
/* create sg for the current buffer */
|
|
sg_init_one(areq_ctx->buff_sg, curr_buff, curr_buff_cnt);
|
|
if (dma_map_sg(dev, areq_ctx->buff_sg, 1, DMA_TO_DEVICE) != 1) {
|
|
dev_err(dev, "dma_map_sg() src buffer failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
dev_dbg(dev, "Mapped curr_buff: dma_address=%pad page=%p addr=%pK offset=%u length=%u\n",
|
|
&sg_dma_address(areq_ctx->buff_sg), sg_page(areq_ctx->buff_sg),
|
|
sg_virt(areq_ctx->buff_sg), areq_ctx->buff_sg->offset,
|
|
areq_ctx->buff_sg->length);
|
|
areq_ctx->data_dma_buf_type = CC_DMA_BUF_DLLI;
|
|
areq_ctx->curr_sg = areq_ctx->buff_sg;
|
|
areq_ctx->in_nents = 0;
|
|
/* prepare for case of MLLI */
|
|
cc_add_sg_entry(dev, sg_data, 1, areq_ctx->buff_sg, curr_buff_cnt, 0,
|
|
false, NULL);
|
|
return 0;
|
|
}
|
|
|
|
void cc_unmap_cipher_request(struct device *dev, void *ctx,
|
|
unsigned int ivsize, struct scatterlist *src,
|
|
struct scatterlist *dst)
|
|
{
|
|
struct cipher_req_ctx *req_ctx = (struct cipher_req_ctx *)ctx;
|
|
|
|
if (req_ctx->gen_ctx.iv_dma_addr) {
|
|
dev_dbg(dev, "Unmapped iv: iv_dma_addr=%pad iv_size=%u\n",
|
|
&req_ctx->gen_ctx.iv_dma_addr, ivsize);
|
|
dma_unmap_single(dev, req_ctx->gen_ctx.iv_dma_addr,
|
|
ivsize, DMA_BIDIRECTIONAL);
|
|
}
|
|
/* Release pool */
|
|
if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI &&
|
|
req_ctx->mlli_params.mlli_virt_addr) {
|
|
dma_pool_free(req_ctx->mlli_params.curr_pool,
|
|
req_ctx->mlli_params.mlli_virt_addr,
|
|
req_ctx->mlli_params.mlli_dma_addr);
|
|
}
|
|
|
|
if (src != dst) {
|
|
dma_unmap_sg(dev, src, req_ctx->in_nents, DMA_TO_DEVICE);
|
|
dma_unmap_sg(dev, dst, req_ctx->out_nents, DMA_FROM_DEVICE);
|
|
dev_dbg(dev, "Unmapped req->dst=%pK\n", sg_virt(dst));
|
|
dev_dbg(dev, "Unmapped req->src=%pK\n", sg_virt(src));
|
|
} else {
|
|
dma_unmap_sg(dev, src, req_ctx->in_nents, DMA_BIDIRECTIONAL);
|
|
dev_dbg(dev, "Unmapped req->src=%pK\n", sg_virt(src));
|
|
}
|
|
}
|
|
|
|
int cc_map_cipher_request(struct cc_drvdata *drvdata, void *ctx,
|
|
unsigned int ivsize, unsigned int nbytes,
|
|
void *info, struct scatterlist *src,
|
|
struct scatterlist *dst, gfp_t flags)
|
|
{
|
|
struct cipher_req_ctx *req_ctx = (struct cipher_req_ctx *)ctx;
|
|
struct mlli_params *mlli_params = &req_ctx->mlli_params;
|
|
struct device *dev = drvdata_to_dev(drvdata);
|
|
struct buffer_array sg_data;
|
|
u32 dummy = 0;
|
|
int rc = 0;
|
|
u32 mapped_nents = 0;
|
|
int src_direction = (src != dst ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL);
|
|
|
|
req_ctx->dma_buf_type = CC_DMA_BUF_DLLI;
|
|
mlli_params->curr_pool = NULL;
|
|
sg_data.num_of_buffers = 0;
|
|
|
|
/* Map IV buffer */
|
|
if (ivsize) {
|
|
dump_byte_array("iv", info, ivsize);
|
|
req_ctx->gen_ctx.iv_dma_addr =
|
|
dma_map_single(dev, info, ivsize, DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(dev, req_ctx->gen_ctx.iv_dma_addr)) {
|
|
dev_err(dev, "Mapping iv %u B at va=%pK for DMA failed\n",
|
|
ivsize, info);
|
|
return -ENOMEM;
|
|
}
|
|
dev_dbg(dev, "Mapped iv %u B at va=%pK to dma=%pad\n",
|
|
ivsize, info, &req_ctx->gen_ctx.iv_dma_addr);
|
|
} else {
|
|
req_ctx->gen_ctx.iv_dma_addr = 0;
|
|
}
|
|
|
|
/* Map the src SGL */
|
|
rc = cc_map_sg(dev, src, nbytes, src_direction, &req_ctx->in_nents,
|
|
LLI_MAX_NUM_OF_DATA_ENTRIES, &dummy, &mapped_nents);
|
|
if (rc)
|
|
goto cipher_exit;
|
|
if (mapped_nents > 1)
|
|
req_ctx->dma_buf_type = CC_DMA_BUF_MLLI;
|
|
|
|
if (src == dst) {
|
|
/* Handle inplace operation */
|
|
if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) {
|
|
req_ctx->out_nents = 0;
|
|
cc_add_sg_entry(dev, &sg_data, req_ctx->in_nents, src,
|
|
nbytes, 0, true,
|
|
&req_ctx->in_mlli_nents);
|
|
}
|
|
} else {
|
|
/* Map the dst sg */
|
|
rc = cc_map_sg(dev, dst, nbytes, DMA_FROM_DEVICE,
|
|
&req_ctx->out_nents, LLI_MAX_NUM_OF_DATA_ENTRIES,
|
|
&dummy, &mapped_nents);
|
|
if (rc)
|
|
goto cipher_exit;
|
|
if (mapped_nents > 1)
|
|
req_ctx->dma_buf_type = CC_DMA_BUF_MLLI;
|
|
|
|
if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) {
|
|
cc_add_sg_entry(dev, &sg_data, req_ctx->in_nents, src,
|
|
nbytes, 0, true,
|
|
&req_ctx->in_mlli_nents);
|
|
cc_add_sg_entry(dev, &sg_data, req_ctx->out_nents, dst,
|
|
nbytes, 0, true,
|
|
&req_ctx->out_mlli_nents);
|
|
}
|
|
}
|
|
|
|
if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) {
|
|
mlli_params->curr_pool = drvdata->mlli_buffs_pool;
|
|
rc = cc_generate_mlli(dev, &sg_data, mlli_params, flags);
|
|
if (rc)
|
|
goto cipher_exit;
|
|
}
|
|
|
|
dev_dbg(dev, "areq_ctx->dma_buf_type = %s\n",
|
|
cc_dma_buf_type(req_ctx->dma_buf_type));
|
|
|
|
return 0;
|
|
|
|
cipher_exit:
|
|
cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
|
|
return rc;
|
|
}
|
|
|
|
void cc_unmap_aead_request(struct device *dev, struct aead_request *req)
|
|
{
|
|
struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
|
|
unsigned int hw_iv_size = areq_ctx->hw_iv_size;
|
|
struct cc_drvdata *drvdata = dev_get_drvdata(dev);
|
|
int src_direction = (req->src != req->dst ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL);
|
|
|
|
if (areq_ctx->mac_buf_dma_addr) {
|
|
dma_unmap_single(dev, areq_ctx->mac_buf_dma_addr,
|
|
MAX_MAC_SIZE, DMA_BIDIRECTIONAL);
|
|
}
|
|
|
|
if (areq_ctx->cipher_mode == DRV_CIPHER_GCTR) {
|
|
if (areq_ctx->hkey_dma_addr) {
|
|
dma_unmap_single(dev, areq_ctx->hkey_dma_addr,
|
|
AES_BLOCK_SIZE, DMA_BIDIRECTIONAL);
|
|
}
|
|
|
|
if (areq_ctx->gcm_block_len_dma_addr) {
|
|
dma_unmap_single(dev, areq_ctx->gcm_block_len_dma_addr,
|
|
AES_BLOCK_SIZE, DMA_TO_DEVICE);
|
|
}
|
|
|
|
if (areq_ctx->gcm_iv_inc1_dma_addr) {
|
|
dma_unmap_single(dev, areq_ctx->gcm_iv_inc1_dma_addr,
|
|
AES_BLOCK_SIZE, DMA_TO_DEVICE);
|
|
}
|
|
|
|
if (areq_ctx->gcm_iv_inc2_dma_addr) {
|
|
dma_unmap_single(dev, areq_ctx->gcm_iv_inc2_dma_addr,
|
|
AES_BLOCK_SIZE, DMA_TO_DEVICE);
|
|
}
|
|
}
|
|
|
|
if (areq_ctx->ccm_hdr_size != ccm_header_size_null) {
|
|
if (areq_ctx->ccm_iv0_dma_addr) {
|
|
dma_unmap_single(dev, areq_ctx->ccm_iv0_dma_addr,
|
|
AES_BLOCK_SIZE, DMA_TO_DEVICE);
|
|
}
|
|
|
|
dma_unmap_sg(dev, &areq_ctx->ccm_adata_sg, 1, DMA_TO_DEVICE);
|
|
}
|
|
if (areq_ctx->gen_ctx.iv_dma_addr) {
|
|
dma_unmap_single(dev, areq_ctx->gen_ctx.iv_dma_addr,
|
|
hw_iv_size, DMA_BIDIRECTIONAL);
|
|
kfree_sensitive(areq_ctx->gen_ctx.iv);
|
|
}
|
|
|
|
/* Release pool */
|
|
if ((areq_ctx->assoc_buff_type == CC_DMA_BUF_MLLI ||
|
|
areq_ctx->data_buff_type == CC_DMA_BUF_MLLI) &&
|
|
(areq_ctx->mlli_params.mlli_virt_addr)) {
|
|
dev_dbg(dev, "free MLLI buffer: dma=%pad virt=%pK\n",
|
|
&areq_ctx->mlli_params.mlli_dma_addr,
|
|
areq_ctx->mlli_params.mlli_virt_addr);
|
|
dma_pool_free(areq_ctx->mlli_params.curr_pool,
|
|
areq_ctx->mlli_params.mlli_virt_addr,
|
|
areq_ctx->mlli_params.mlli_dma_addr);
|
|
}
|
|
|
|
dev_dbg(dev, "Unmapping src sgl: req->src=%pK areq_ctx->src.nents=%u areq_ctx->assoc.nents=%u assoclen:%u cryptlen=%u\n",
|
|
sg_virt(req->src), areq_ctx->src.nents, areq_ctx->assoc.nents,
|
|
areq_ctx->assoclen, req->cryptlen);
|
|
|
|
dma_unmap_sg(dev, req->src, areq_ctx->src.mapped_nents, src_direction);
|
|
if (req->src != req->dst) {
|
|
dev_dbg(dev, "Unmapping dst sgl: req->dst=%pK\n",
|
|
sg_virt(req->dst));
|
|
dma_unmap_sg(dev, req->dst, areq_ctx->dst.mapped_nents, DMA_FROM_DEVICE);
|
|
}
|
|
if (drvdata->coherent &&
|
|
areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT &&
|
|
req->src == req->dst) {
|
|
/* copy back mac from temporary location to deal with possible
|
|
* data memory overriding that caused by cache coherence
|
|
* problem.
|
|
*/
|
|
cc_copy_mac(dev, req, CC_SG_FROM_BUF);
|
|
}
|
|
}
|
|
|
|
static bool cc_is_icv_frag(unsigned int sgl_nents, unsigned int authsize,
|
|
u32 last_entry_data_size)
|
|
{
|
|
return ((sgl_nents > 1) && (last_entry_data_size < authsize));
|
|
}
|
|
|
|
static int cc_aead_chain_iv(struct cc_drvdata *drvdata,
|
|
struct aead_request *req,
|
|
struct buffer_array *sg_data,
|
|
bool is_last, bool do_chain)
|
|
{
|
|
struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
|
|
unsigned int hw_iv_size = areq_ctx->hw_iv_size;
|
|
struct device *dev = drvdata_to_dev(drvdata);
|
|
gfp_t flags = cc_gfp_flags(&req->base);
|
|
int rc = 0;
|
|
|
|
if (!req->iv) {
|
|
areq_ctx->gen_ctx.iv_dma_addr = 0;
|
|
areq_ctx->gen_ctx.iv = NULL;
|
|
goto chain_iv_exit;
|
|
}
|
|
|
|
areq_ctx->gen_ctx.iv = kmemdup(req->iv, hw_iv_size, flags);
|
|
if (!areq_ctx->gen_ctx.iv)
|
|
return -ENOMEM;
|
|
|
|
areq_ctx->gen_ctx.iv_dma_addr =
|
|
dma_map_single(dev, areq_ctx->gen_ctx.iv, hw_iv_size,
|
|
DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(dev, areq_ctx->gen_ctx.iv_dma_addr)) {
|
|
dev_err(dev, "Mapping iv %u B at va=%pK for DMA failed\n",
|
|
hw_iv_size, req->iv);
|
|
kfree_sensitive(areq_ctx->gen_ctx.iv);
|
|
areq_ctx->gen_ctx.iv = NULL;
|
|
rc = -ENOMEM;
|
|
goto chain_iv_exit;
|
|
}
|
|
|
|
dev_dbg(dev, "Mapped iv %u B at va=%pK to dma=%pad\n",
|
|
hw_iv_size, req->iv, &areq_ctx->gen_ctx.iv_dma_addr);
|
|
|
|
chain_iv_exit:
|
|
return rc;
|
|
}
|
|
|
|
static int cc_aead_chain_assoc(struct cc_drvdata *drvdata,
|
|
struct aead_request *req,
|
|
struct buffer_array *sg_data,
|
|
bool is_last, bool do_chain)
|
|
{
|
|
struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
|
|
int rc = 0;
|
|
int mapped_nents = 0;
|
|
struct device *dev = drvdata_to_dev(drvdata);
|
|
|
|
if (!sg_data) {
|
|
rc = -EINVAL;
|
|
goto chain_assoc_exit;
|
|
}
|
|
|
|
if (areq_ctx->assoclen == 0) {
|
|
areq_ctx->assoc_buff_type = CC_DMA_BUF_NULL;
|
|
areq_ctx->assoc.nents = 0;
|
|
areq_ctx->assoc.mlli_nents = 0;
|
|
dev_dbg(dev, "Chain assoc of length 0: buff_type=%s nents=%u\n",
|
|
cc_dma_buf_type(areq_ctx->assoc_buff_type),
|
|
areq_ctx->assoc.nents);
|
|
goto chain_assoc_exit;
|
|
}
|
|
|
|
mapped_nents = sg_nents_for_len(req->src, areq_ctx->assoclen);
|
|
if (mapped_nents < 0)
|
|
return mapped_nents;
|
|
|
|
if (mapped_nents > LLI_MAX_NUM_OF_ASSOC_DATA_ENTRIES) {
|
|
dev_err(dev, "Too many fragments. current %d max %d\n",
|
|
mapped_nents, LLI_MAX_NUM_OF_ASSOC_DATA_ENTRIES);
|
|
return -ENOMEM;
|
|
}
|
|
areq_ctx->assoc.nents = mapped_nents;
|
|
|
|
/* in CCM case we have additional entry for
|
|
* ccm header configurations
|
|
*/
|
|
if (areq_ctx->ccm_hdr_size != ccm_header_size_null) {
|
|
if ((mapped_nents + 1) > LLI_MAX_NUM_OF_ASSOC_DATA_ENTRIES) {
|
|
dev_err(dev, "CCM case.Too many fragments. Current %d max %d\n",
|
|
(areq_ctx->assoc.nents + 1),
|
|
LLI_MAX_NUM_OF_ASSOC_DATA_ENTRIES);
|
|
rc = -ENOMEM;
|
|
goto chain_assoc_exit;
|
|
}
|
|
}
|
|
|
|
if (mapped_nents == 1 && areq_ctx->ccm_hdr_size == ccm_header_size_null)
|
|
areq_ctx->assoc_buff_type = CC_DMA_BUF_DLLI;
|
|
else
|
|
areq_ctx->assoc_buff_type = CC_DMA_BUF_MLLI;
|
|
|
|
if (do_chain || areq_ctx->assoc_buff_type == CC_DMA_BUF_MLLI) {
|
|
dev_dbg(dev, "Chain assoc: buff_type=%s nents=%u\n",
|
|
cc_dma_buf_type(areq_ctx->assoc_buff_type),
|
|
areq_ctx->assoc.nents);
|
|
cc_add_sg_entry(dev, sg_data, areq_ctx->assoc.nents, req->src,
|
|
areq_ctx->assoclen, 0, is_last,
|
|
&areq_ctx->assoc.mlli_nents);
|
|
areq_ctx->assoc_buff_type = CC_DMA_BUF_MLLI;
|
|
}
|
|
|
|
chain_assoc_exit:
|
|
return rc;
|
|
}
|
|
|
|
static void cc_prepare_aead_data_dlli(struct aead_request *req,
|
|
u32 *src_last_bytes, u32 *dst_last_bytes)
|
|
{
|
|
struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
|
|
enum drv_crypto_direction direct = areq_ctx->gen_ctx.op_type;
|
|
unsigned int authsize = areq_ctx->req_authsize;
|
|
struct scatterlist *sg;
|
|
ssize_t offset;
|
|
|
|
areq_ctx->is_icv_fragmented = false;
|
|
|
|
if ((req->src == req->dst) || direct == DRV_CRYPTO_DIRECTION_DECRYPT) {
|
|
sg = areq_ctx->src_sgl;
|
|
offset = *src_last_bytes - authsize;
|
|
} else {
|
|
sg = areq_ctx->dst_sgl;
|
|
offset = *dst_last_bytes - authsize;
|
|
}
|
|
|
|
areq_ctx->icv_dma_addr = sg_dma_address(sg) + offset;
|
|
areq_ctx->icv_virt_addr = sg_virt(sg) + offset;
|
|
}
|
|
|
|
static void cc_prepare_aead_data_mlli(struct cc_drvdata *drvdata,
|
|
struct aead_request *req,
|
|
struct buffer_array *sg_data,
|
|
u32 *src_last_bytes, u32 *dst_last_bytes,
|
|
bool is_last_table)
|
|
{
|
|
struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
|
|
enum drv_crypto_direction direct = areq_ctx->gen_ctx.op_type;
|
|
unsigned int authsize = areq_ctx->req_authsize;
|
|
struct device *dev = drvdata_to_dev(drvdata);
|
|
struct scatterlist *sg;
|
|
|
|
if (req->src == req->dst) {
|
|
/*INPLACE*/
|
|
cc_add_sg_entry(dev, sg_data, areq_ctx->src.nents,
|
|
areq_ctx->src_sgl, areq_ctx->cryptlen,
|
|
areq_ctx->src_offset, is_last_table,
|
|
&areq_ctx->src.mlli_nents);
|
|
|
|
areq_ctx->is_icv_fragmented =
|
|
cc_is_icv_frag(areq_ctx->src.nents, authsize,
|
|
*src_last_bytes);
|
|
|
|
if (areq_ctx->is_icv_fragmented) {
|
|
/* Backup happens only when ICV is fragmented, ICV
|
|
* verification is made by CPU compare in order to
|
|
* simplify MAC verification upon request completion
|
|
*/
|
|
if (direct == DRV_CRYPTO_DIRECTION_DECRYPT) {
|
|
/* In coherent platforms (e.g. ACP)
|
|
* already copying ICV for any
|
|
* INPLACE-DECRYPT operation, hence
|
|
* we must neglect this code.
|
|
*/
|
|
if (!drvdata->coherent)
|
|
cc_copy_mac(dev, req, CC_SG_TO_BUF);
|
|
|
|
areq_ctx->icv_virt_addr = areq_ctx->backup_mac;
|
|
} else {
|
|
areq_ctx->icv_virt_addr = areq_ctx->mac_buf;
|
|
areq_ctx->icv_dma_addr =
|
|
areq_ctx->mac_buf_dma_addr;
|
|
}
|
|
} else { /* Contig. ICV */
|
|
sg = &areq_ctx->src_sgl[areq_ctx->src.nents - 1];
|
|
/*Should hanlde if the sg is not contig.*/
|
|
areq_ctx->icv_dma_addr = sg_dma_address(sg) +
|
|
(*src_last_bytes - authsize);
|
|
areq_ctx->icv_virt_addr = sg_virt(sg) +
|
|
(*src_last_bytes - authsize);
|
|
}
|
|
|
|
} else if (direct == DRV_CRYPTO_DIRECTION_DECRYPT) {
|
|
/*NON-INPLACE and DECRYPT*/
|
|
cc_add_sg_entry(dev, sg_data, areq_ctx->src.nents,
|
|
areq_ctx->src_sgl, areq_ctx->cryptlen,
|
|
areq_ctx->src_offset, is_last_table,
|
|
&areq_ctx->src.mlli_nents);
|
|
cc_add_sg_entry(dev, sg_data, areq_ctx->dst.nents,
|
|
areq_ctx->dst_sgl, areq_ctx->cryptlen,
|
|
areq_ctx->dst_offset, is_last_table,
|
|
&areq_ctx->dst.mlli_nents);
|
|
|
|
areq_ctx->is_icv_fragmented =
|
|
cc_is_icv_frag(areq_ctx->src.nents, authsize,
|
|
*src_last_bytes);
|
|
/* Backup happens only when ICV is fragmented, ICV
|
|
|
|
* verification is made by CPU compare in order to simplify
|
|
* MAC verification upon request completion
|
|
*/
|
|
if (areq_ctx->is_icv_fragmented) {
|
|
cc_copy_mac(dev, req, CC_SG_TO_BUF);
|
|
areq_ctx->icv_virt_addr = areq_ctx->backup_mac;
|
|
|
|
} else { /* Contig. ICV */
|
|
sg = &areq_ctx->src_sgl[areq_ctx->src.nents - 1];
|
|
/*Should hanlde if the sg is not contig.*/
|
|
areq_ctx->icv_dma_addr = sg_dma_address(sg) +
|
|
(*src_last_bytes - authsize);
|
|
areq_ctx->icv_virt_addr = sg_virt(sg) +
|
|
(*src_last_bytes - authsize);
|
|
}
|
|
|
|
} else {
|
|
/*NON-INPLACE and ENCRYPT*/
|
|
cc_add_sg_entry(dev, sg_data, areq_ctx->dst.nents,
|
|
areq_ctx->dst_sgl, areq_ctx->cryptlen,
|
|
areq_ctx->dst_offset, is_last_table,
|
|
&areq_ctx->dst.mlli_nents);
|
|
cc_add_sg_entry(dev, sg_data, areq_ctx->src.nents,
|
|
areq_ctx->src_sgl, areq_ctx->cryptlen,
|
|
areq_ctx->src_offset, is_last_table,
|
|
&areq_ctx->src.mlli_nents);
|
|
|
|
areq_ctx->is_icv_fragmented =
|
|
cc_is_icv_frag(areq_ctx->dst.nents, authsize,
|
|
*dst_last_bytes);
|
|
|
|
if (!areq_ctx->is_icv_fragmented) {
|
|
sg = &areq_ctx->dst_sgl[areq_ctx->dst.nents - 1];
|
|
/* Contig. ICV */
|
|
areq_ctx->icv_dma_addr = sg_dma_address(sg) +
|
|
(*dst_last_bytes - authsize);
|
|
areq_ctx->icv_virt_addr = sg_virt(sg) +
|
|
(*dst_last_bytes - authsize);
|
|
} else {
|
|
areq_ctx->icv_dma_addr = areq_ctx->mac_buf_dma_addr;
|
|
areq_ctx->icv_virt_addr = areq_ctx->mac_buf;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int cc_aead_chain_data(struct cc_drvdata *drvdata,
|
|
struct aead_request *req,
|
|
struct buffer_array *sg_data,
|
|
bool is_last_table, bool do_chain)
|
|
{
|
|
struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
|
|
struct device *dev = drvdata_to_dev(drvdata);
|
|
enum drv_crypto_direction direct = areq_ctx->gen_ctx.op_type;
|
|
unsigned int authsize = areq_ctx->req_authsize;
|
|
unsigned int src_last_bytes = 0, dst_last_bytes = 0;
|
|
int rc = 0;
|
|
u32 src_mapped_nents = 0, dst_mapped_nents = 0;
|
|
u32 offset = 0;
|
|
/* non-inplace mode */
|
|
unsigned int size_for_map = req->assoclen + req->cryptlen;
|
|
u32 sg_index = 0;
|
|
u32 size_to_skip = req->assoclen;
|
|
struct scatterlist *sgl;
|
|
|
|
offset = size_to_skip;
|
|
|
|
if (!sg_data)
|
|
return -EINVAL;
|
|
|
|
areq_ctx->src_sgl = req->src;
|
|
areq_ctx->dst_sgl = req->dst;
|
|
|
|
size_for_map += (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
|
|
authsize : 0;
|
|
src_mapped_nents = cc_get_sgl_nents(dev, req->src, size_for_map,
|
|
&src_last_bytes);
|
|
sg_index = areq_ctx->src_sgl->length;
|
|
//check where the data starts
|
|
while (src_mapped_nents && (sg_index <= size_to_skip)) {
|
|
src_mapped_nents--;
|
|
offset -= areq_ctx->src_sgl->length;
|
|
sgl = sg_next(areq_ctx->src_sgl);
|
|
if (!sgl)
|
|
break;
|
|
areq_ctx->src_sgl = sgl;
|
|
sg_index += areq_ctx->src_sgl->length;
|
|
}
|
|
if (src_mapped_nents > LLI_MAX_NUM_OF_DATA_ENTRIES) {
|
|
dev_err(dev, "Too many fragments. current %d max %d\n",
|
|
src_mapped_nents, LLI_MAX_NUM_OF_DATA_ENTRIES);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
areq_ctx->src.nents = src_mapped_nents;
|
|
|
|
areq_ctx->src_offset = offset;
|
|
|
|
if (req->src != req->dst) {
|
|
size_for_map = req->assoclen + req->cryptlen;
|
|
|
|
if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT)
|
|
size_for_map += authsize;
|
|
else
|
|
size_for_map -= authsize;
|
|
|
|
rc = cc_map_sg(dev, req->dst, size_for_map, DMA_FROM_DEVICE,
|
|
&areq_ctx->dst.mapped_nents,
|
|
LLI_MAX_NUM_OF_DATA_ENTRIES, &dst_last_bytes,
|
|
&dst_mapped_nents);
|
|
if (rc)
|
|
goto chain_data_exit;
|
|
}
|
|
|
|
dst_mapped_nents = cc_get_sgl_nents(dev, req->dst, size_for_map,
|
|
&dst_last_bytes);
|
|
sg_index = areq_ctx->dst_sgl->length;
|
|
offset = size_to_skip;
|
|
|
|
//check where the data starts
|
|
while (dst_mapped_nents && sg_index <= size_to_skip) {
|
|
dst_mapped_nents--;
|
|
offset -= areq_ctx->dst_sgl->length;
|
|
sgl = sg_next(areq_ctx->dst_sgl);
|
|
if (!sgl)
|
|
break;
|
|
areq_ctx->dst_sgl = sgl;
|
|
sg_index += areq_ctx->dst_sgl->length;
|
|
}
|
|
if (dst_mapped_nents > LLI_MAX_NUM_OF_DATA_ENTRIES) {
|
|
dev_err(dev, "Too many fragments. current %d max %d\n",
|
|
dst_mapped_nents, LLI_MAX_NUM_OF_DATA_ENTRIES);
|
|
return -ENOMEM;
|
|
}
|
|
areq_ctx->dst.nents = dst_mapped_nents;
|
|
areq_ctx->dst_offset = offset;
|
|
if (src_mapped_nents > 1 ||
|
|
dst_mapped_nents > 1 ||
|
|
do_chain) {
|
|
areq_ctx->data_buff_type = CC_DMA_BUF_MLLI;
|
|
cc_prepare_aead_data_mlli(drvdata, req, sg_data,
|
|
&src_last_bytes, &dst_last_bytes,
|
|
is_last_table);
|
|
} else {
|
|
areq_ctx->data_buff_type = CC_DMA_BUF_DLLI;
|
|
cc_prepare_aead_data_dlli(req, &src_last_bytes,
|
|
&dst_last_bytes);
|
|
}
|
|
|
|
chain_data_exit:
|
|
return rc;
|
|
}
|
|
|
|
static void cc_update_aead_mlli_nents(struct cc_drvdata *drvdata,
|
|
struct aead_request *req)
|
|
{
|
|
struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
|
|
u32 curr_mlli_size = 0;
|
|
|
|
if (areq_ctx->assoc_buff_type == CC_DMA_BUF_MLLI) {
|
|
areq_ctx->assoc.sram_addr = drvdata->mlli_sram_addr;
|
|
curr_mlli_size = areq_ctx->assoc.mlli_nents *
|
|
LLI_ENTRY_BYTE_SIZE;
|
|
}
|
|
|
|
if (areq_ctx->data_buff_type == CC_DMA_BUF_MLLI) {
|
|
/*Inplace case dst nents equal to src nents*/
|
|
if (req->src == req->dst) {
|
|
areq_ctx->dst.mlli_nents = areq_ctx->src.mlli_nents;
|
|
areq_ctx->src.sram_addr = drvdata->mlli_sram_addr +
|
|
curr_mlli_size;
|
|
areq_ctx->dst.sram_addr = areq_ctx->src.sram_addr;
|
|
if (!areq_ctx->is_single_pass)
|
|
areq_ctx->assoc.mlli_nents +=
|
|
areq_ctx->src.mlli_nents;
|
|
} else {
|
|
if (areq_ctx->gen_ctx.op_type ==
|
|
DRV_CRYPTO_DIRECTION_DECRYPT) {
|
|
areq_ctx->src.sram_addr =
|
|
drvdata->mlli_sram_addr +
|
|
curr_mlli_size;
|
|
areq_ctx->dst.sram_addr =
|
|
areq_ctx->src.sram_addr +
|
|
areq_ctx->src.mlli_nents *
|
|
LLI_ENTRY_BYTE_SIZE;
|
|
if (!areq_ctx->is_single_pass)
|
|
areq_ctx->assoc.mlli_nents +=
|
|
areq_ctx->src.mlli_nents;
|
|
} else {
|
|
areq_ctx->dst.sram_addr =
|
|
drvdata->mlli_sram_addr +
|
|
curr_mlli_size;
|
|
areq_ctx->src.sram_addr =
|
|
areq_ctx->dst.sram_addr +
|
|
areq_ctx->dst.mlli_nents *
|
|
LLI_ENTRY_BYTE_SIZE;
|
|
if (!areq_ctx->is_single_pass)
|
|
areq_ctx->assoc.mlli_nents +=
|
|
areq_ctx->dst.mlli_nents;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int cc_map_aead_request(struct cc_drvdata *drvdata, struct aead_request *req)
|
|
{
|
|
struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
|
|
struct mlli_params *mlli_params = &areq_ctx->mlli_params;
|
|
struct device *dev = drvdata_to_dev(drvdata);
|
|
struct buffer_array sg_data;
|
|
unsigned int authsize = areq_ctx->req_authsize;
|
|
int rc = 0;
|
|
dma_addr_t dma_addr;
|
|
u32 mapped_nents = 0;
|
|
u32 dummy = 0; /*used for the assoc data fragments */
|
|
u32 size_to_map;
|
|
gfp_t flags = cc_gfp_flags(&req->base);
|
|
|
|
mlli_params->curr_pool = NULL;
|
|
sg_data.num_of_buffers = 0;
|
|
|
|
/* copy mac to a temporary location to deal with possible
|
|
* data memory overriding that caused by cache coherence problem.
|
|
*/
|
|
if (drvdata->coherent &&
|
|
areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT &&
|
|
req->src == req->dst)
|
|
cc_copy_mac(dev, req, CC_SG_TO_BUF);
|
|
|
|
/* cacluate the size for cipher remove ICV in decrypt*/
|
|
areq_ctx->cryptlen = (areq_ctx->gen_ctx.op_type ==
|
|
DRV_CRYPTO_DIRECTION_ENCRYPT) ?
|
|
req->cryptlen :
|
|
(req->cryptlen - authsize);
|
|
|
|
dma_addr = dma_map_single(dev, areq_ctx->mac_buf, MAX_MAC_SIZE,
|
|
DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(dev, dma_addr)) {
|
|
dev_err(dev, "Mapping mac_buf %u B at va=%pK for DMA failed\n",
|
|
MAX_MAC_SIZE, areq_ctx->mac_buf);
|
|
rc = -ENOMEM;
|
|
goto aead_map_failure;
|
|
}
|
|
areq_ctx->mac_buf_dma_addr = dma_addr;
|
|
|
|
if (areq_ctx->ccm_hdr_size != ccm_header_size_null) {
|
|
void *addr = areq_ctx->ccm_config + CCM_CTR_COUNT_0_OFFSET;
|
|
|
|
dma_addr = dma_map_single(dev, addr, AES_BLOCK_SIZE,
|
|
DMA_TO_DEVICE);
|
|
|
|
if (dma_mapping_error(dev, dma_addr)) {
|
|
dev_err(dev, "Mapping mac_buf %u B at va=%pK for DMA failed\n",
|
|
AES_BLOCK_SIZE, addr);
|
|
areq_ctx->ccm_iv0_dma_addr = 0;
|
|
rc = -ENOMEM;
|
|
goto aead_map_failure;
|
|
}
|
|
areq_ctx->ccm_iv0_dma_addr = dma_addr;
|
|
|
|
rc = cc_set_aead_conf_buf(dev, areq_ctx, areq_ctx->ccm_config,
|
|
&sg_data, areq_ctx->assoclen);
|
|
if (rc)
|
|
goto aead_map_failure;
|
|
}
|
|
|
|
if (areq_ctx->cipher_mode == DRV_CIPHER_GCTR) {
|
|
dma_addr = dma_map_single(dev, areq_ctx->hkey, AES_BLOCK_SIZE,
|
|
DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(dev, dma_addr)) {
|
|
dev_err(dev, "Mapping hkey %u B at va=%pK for DMA failed\n",
|
|
AES_BLOCK_SIZE, areq_ctx->hkey);
|
|
rc = -ENOMEM;
|
|
goto aead_map_failure;
|
|
}
|
|
areq_ctx->hkey_dma_addr = dma_addr;
|
|
|
|
dma_addr = dma_map_single(dev, &areq_ctx->gcm_len_block,
|
|
AES_BLOCK_SIZE, DMA_TO_DEVICE);
|
|
if (dma_mapping_error(dev, dma_addr)) {
|
|
dev_err(dev, "Mapping gcm_len_block %u B at va=%pK for DMA failed\n",
|
|
AES_BLOCK_SIZE, &areq_ctx->gcm_len_block);
|
|
rc = -ENOMEM;
|
|
goto aead_map_failure;
|
|
}
|
|
areq_ctx->gcm_block_len_dma_addr = dma_addr;
|
|
|
|
dma_addr = dma_map_single(dev, areq_ctx->gcm_iv_inc1,
|
|
AES_BLOCK_SIZE, DMA_TO_DEVICE);
|
|
|
|
if (dma_mapping_error(dev, dma_addr)) {
|
|
dev_err(dev, "Mapping gcm_iv_inc1 %u B at va=%pK for DMA failed\n",
|
|
AES_BLOCK_SIZE, (areq_ctx->gcm_iv_inc1));
|
|
areq_ctx->gcm_iv_inc1_dma_addr = 0;
|
|
rc = -ENOMEM;
|
|
goto aead_map_failure;
|
|
}
|
|
areq_ctx->gcm_iv_inc1_dma_addr = dma_addr;
|
|
|
|
dma_addr = dma_map_single(dev, areq_ctx->gcm_iv_inc2,
|
|
AES_BLOCK_SIZE, DMA_TO_DEVICE);
|
|
|
|
if (dma_mapping_error(dev, dma_addr)) {
|
|
dev_err(dev, "Mapping gcm_iv_inc2 %u B at va=%pK for DMA failed\n",
|
|
AES_BLOCK_SIZE, (areq_ctx->gcm_iv_inc2));
|
|
areq_ctx->gcm_iv_inc2_dma_addr = 0;
|
|
rc = -ENOMEM;
|
|
goto aead_map_failure;
|
|
}
|
|
areq_ctx->gcm_iv_inc2_dma_addr = dma_addr;
|
|
}
|
|
|
|
size_to_map = req->cryptlen + req->assoclen;
|
|
/* If we do in-place encryption, we also need the auth tag */
|
|
if ((areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_ENCRYPT) &&
|
|
(req->src == req->dst)) {
|
|
size_to_map += authsize;
|
|
}
|
|
|
|
rc = cc_map_sg(dev, req->src, size_to_map,
|
|
(req->src != req->dst ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL),
|
|
&areq_ctx->src.mapped_nents,
|
|
(LLI_MAX_NUM_OF_ASSOC_DATA_ENTRIES +
|
|
LLI_MAX_NUM_OF_DATA_ENTRIES),
|
|
&dummy, &mapped_nents);
|
|
if (rc)
|
|
goto aead_map_failure;
|
|
|
|
if (areq_ctx->is_single_pass) {
|
|
/*
|
|
* Create MLLI table for:
|
|
* (1) Assoc. data
|
|
* (2) Src/Dst SGLs
|
|
* Note: IV is contg. buffer (not an SGL)
|
|
*/
|
|
rc = cc_aead_chain_assoc(drvdata, req, &sg_data, true, false);
|
|
if (rc)
|
|
goto aead_map_failure;
|
|
rc = cc_aead_chain_iv(drvdata, req, &sg_data, true, false);
|
|
if (rc)
|
|
goto aead_map_failure;
|
|
rc = cc_aead_chain_data(drvdata, req, &sg_data, true, false);
|
|
if (rc)
|
|
goto aead_map_failure;
|
|
} else { /* DOUBLE-PASS flow */
|
|
/*
|
|
* Prepare MLLI table(s) in this order:
|
|
*
|
|
* If ENCRYPT/DECRYPT (inplace):
|
|
* (1) MLLI table for assoc
|
|
* (2) IV entry (chained right after end of assoc)
|
|
* (3) MLLI for src/dst (inplace operation)
|
|
*
|
|
* If ENCRYPT (non-inplace)
|
|
* (1) MLLI table for assoc
|
|
* (2) IV entry (chained right after end of assoc)
|
|
* (3) MLLI for dst
|
|
* (4) MLLI for src
|
|
*
|
|
* If DECRYPT (non-inplace)
|
|
* (1) MLLI table for assoc
|
|
* (2) IV entry (chained right after end of assoc)
|
|
* (3) MLLI for src
|
|
* (4) MLLI for dst
|
|
*/
|
|
rc = cc_aead_chain_assoc(drvdata, req, &sg_data, false, true);
|
|
if (rc)
|
|
goto aead_map_failure;
|
|
rc = cc_aead_chain_iv(drvdata, req, &sg_data, false, true);
|
|
if (rc)
|
|
goto aead_map_failure;
|
|
rc = cc_aead_chain_data(drvdata, req, &sg_data, true, true);
|
|
if (rc)
|
|
goto aead_map_failure;
|
|
}
|
|
|
|
/* Mlli support -start building the MLLI according to the above
|
|
* results
|
|
*/
|
|
if (areq_ctx->assoc_buff_type == CC_DMA_BUF_MLLI ||
|
|
areq_ctx->data_buff_type == CC_DMA_BUF_MLLI) {
|
|
mlli_params->curr_pool = drvdata->mlli_buffs_pool;
|
|
rc = cc_generate_mlli(dev, &sg_data, mlli_params, flags);
|
|
if (rc)
|
|
goto aead_map_failure;
|
|
|
|
cc_update_aead_mlli_nents(drvdata, req);
|
|
dev_dbg(dev, "assoc params mn %d\n",
|
|
areq_ctx->assoc.mlli_nents);
|
|
dev_dbg(dev, "src params mn %d\n", areq_ctx->src.mlli_nents);
|
|
dev_dbg(dev, "dst params mn %d\n", areq_ctx->dst.mlli_nents);
|
|
}
|
|
return 0;
|
|
|
|
aead_map_failure:
|
|
cc_unmap_aead_request(dev, req);
|
|
return rc;
|
|
}
|
|
|
|
int cc_map_hash_request_final(struct cc_drvdata *drvdata, void *ctx,
|
|
struct scatterlist *src, unsigned int nbytes,
|
|
bool do_update, gfp_t flags)
|
|
{
|
|
struct ahash_req_ctx *areq_ctx = (struct ahash_req_ctx *)ctx;
|
|
struct device *dev = drvdata_to_dev(drvdata);
|
|
u8 *curr_buff = cc_hash_buf(areq_ctx);
|
|
u32 *curr_buff_cnt = cc_hash_buf_cnt(areq_ctx);
|
|
struct mlli_params *mlli_params = &areq_ctx->mlli_params;
|
|
struct buffer_array sg_data;
|
|
int rc = 0;
|
|
u32 dummy = 0;
|
|
u32 mapped_nents = 0;
|
|
|
|
dev_dbg(dev, "final params : curr_buff=%pK curr_buff_cnt=0x%X nbytes = 0x%X src=%pK curr_index=%u\n",
|
|
curr_buff, *curr_buff_cnt, nbytes, src, areq_ctx->buff_index);
|
|
/* Init the type of the dma buffer */
|
|
areq_ctx->data_dma_buf_type = CC_DMA_BUF_NULL;
|
|
mlli_params->curr_pool = NULL;
|
|
sg_data.num_of_buffers = 0;
|
|
areq_ctx->in_nents = 0;
|
|
|
|
if (nbytes == 0 && *curr_buff_cnt == 0) {
|
|
/* nothing to do */
|
|
return 0;
|
|
}
|
|
|
|
/* map the previous buffer */
|
|
if (*curr_buff_cnt) {
|
|
rc = cc_set_hash_buf(dev, areq_ctx, curr_buff, *curr_buff_cnt,
|
|
&sg_data);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
if (src && nbytes > 0 && do_update) {
|
|
rc = cc_map_sg(dev, src, nbytes, DMA_TO_DEVICE,
|
|
&areq_ctx->in_nents, LLI_MAX_NUM_OF_DATA_ENTRIES,
|
|
&dummy, &mapped_nents);
|
|
if (rc)
|
|
goto unmap_curr_buff;
|
|
if (src && mapped_nents == 1 &&
|
|
areq_ctx->data_dma_buf_type == CC_DMA_BUF_NULL) {
|
|
memcpy(areq_ctx->buff_sg, src,
|
|
sizeof(struct scatterlist));
|
|
areq_ctx->buff_sg->length = nbytes;
|
|
areq_ctx->curr_sg = areq_ctx->buff_sg;
|
|
areq_ctx->data_dma_buf_type = CC_DMA_BUF_DLLI;
|
|
} else {
|
|
areq_ctx->data_dma_buf_type = CC_DMA_BUF_MLLI;
|
|
}
|
|
}
|
|
|
|
/*build mlli */
|
|
if (areq_ctx->data_dma_buf_type == CC_DMA_BUF_MLLI) {
|
|
mlli_params->curr_pool = drvdata->mlli_buffs_pool;
|
|
/* add the src data to the sg_data */
|
|
cc_add_sg_entry(dev, &sg_data, areq_ctx->in_nents, src, nbytes,
|
|
0, true, &areq_ctx->mlli_nents);
|
|
rc = cc_generate_mlli(dev, &sg_data, mlli_params, flags);
|
|
if (rc)
|
|
goto fail_unmap_din;
|
|
}
|
|
/* change the buffer index for the unmap function */
|
|
areq_ctx->buff_index = (areq_ctx->buff_index ^ 1);
|
|
dev_dbg(dev, "areq_ctx->data_dma_buf_type = %s\n",
|
|
cc_dma_buf_type(areq_ctx->data_dma_buf_type));
|
|
return 0;
|
|
|
|
fail_unmap_din:
|
|
dma_unmap_sg(dev, src, areq_ctx->in_nents, DMA_TO_DEVICE);
|
|
|
|
unmap_curr_buff:
|
|
if (*curr_buff_cnt)
|
|
dma_unmap_sg(dev, areq_ctx->buff_sg, 1, DMA_TO_DEVICE);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int cc_map_hash_request_update(struct cc_drvdata *drvdata, void *ctx,
|
|
struct scatterlist *src, unsigned int nbytes,
|
|
unsigned int block_size, gfp_t flags)
|
|
{
|
|
struct ahash_req_ctx *areq_ctx = (struct ahash_req_ctx *)ctx;
|
|
struct device *dev = drvdata_to_dev(drvdata);
|
|
u8 *curr_buff = cc_hash_buf(areq_ctx);
|
|
u32 *curr_buff_cnt = cc_hash_buf_cnt(areq_ctx);
|
|
u8 *next_buff = cc_next_buf(areq_ctx);
|
|
u32 *next_buff_cnt = cc_next_buf_cnt(areq_ctx);
|
|
struct mlli_params *mlli_params = &areq_ctx->mlli_params;
|
|
unsigned int update_data_len;
|
|
u32 total_in_len = nbytes + *curr_buff_cnt;
|
|
struct buffer_array sg_data;
|
|
unsigned int swap_index = 0;
|
|
int rc = 0;
|
|
u32 dummy = 0;
|
|
u32 mapped_nents = 0;
|
|
|
|
dev_dbg(dev, " update params : curr_buff=%pK curr_buff_cnt=0x%X nbytes=0x%X src=%pK curr_index=%u\n",
|
|
curr_buff, *curr_buff_cnt, nbytes, src, areq_ctx->buff_index);
|
|
/* Init the type of the dma buffer */
|
|
areq_ctx->data_dma_buf_type = CC_DMA_BUF_NULL;
|
|
mlli_params->curr_pool = NULL;
|
|
areq_ctx->curr_sg = NULL;
|
|
sg_data.num_of_buffers = 0;
|
|
areq_ctx->in_nents = 0;
|
|
|
|
if (total_in_len < block_size) {
|
|
dev_dbg(dev, " less than one block: curr_buff=%pK *curr_buff_cnt=0x%X copy_to=%pK\n",
|
|
curr_buff, *curr_buff_cnt, &curr_buff[*curr_buff_cnt]);
|
|
areq_ctx->in_nents = sg_nents_for_len(src, nbytes);
|
|
sg_copy_to_buffer(src, areq_ctx->in_nents,
|
|
&curr_buff[*curr_buff_cnt], nbytes);
|
|
*curr_buff_cnt += nbytes;
|
|
return 1;
|
|
}
|
|
|
|
/* Calculate the residue size*/
|
|
*next_buff_cnt = total_in_len & (block_size - 1);
|
|
/* update data len */
|
|
update_data_len = total_in_len - *next_buff_cnt;
|
|
|
|
dev_dbg(dev, " temp length : *next_buff_cnt=0x%X update_data_len=0x%X\n",
|
|
*next_buff_cnt, update_data_len);
|
|
|
|
/* Copy the new residue to next buffer */
|
|
if (*next_buff_cnt) {
|
|
dev_dbg(dev, " handle residue: next buff %pK skip data %u residue %u\n",
|
|
next_buff, (update_data_len - *curr_buff_cnt),
|
|
*next_buff_cnt);
|
|
cc_copy_sg_portion(dev, next_buff, src,
|
|
(update_data_len - *curr_buff_cnt),
|
|
nbytes, CC_SG_TO_BUF);
|
|
/* change the buffer index for next operation */
|
|
swap_index = 1;
|
|
}
|
|
|
|
if (*curr_buff_cnt) {
|
|
rc = cc_set_hash_buf(dev, areq_ctx, curr_buff, *curr_buff_cnt,
|
|
&sg_data);
|
|
if (rc)
|
|
return rc;
|
|
/* change the buffer index for next operation */
|
|
swap_index = 1;
|
|
}
|
|
|
|
if (update_data_len > *curr_buff_cnt) {
|
|
rc = cc_map_sg(dev, src, (update_data_len - *curr_buff_cnt),
|
|
DMA_TO_DEVICE, &areq_ctx->in_nents,
|
|
LLI_MAX_NUM_OF_DATA_ENTRIES, &dummy,
|
|
&mapped_nents);
|
|
if (rc)
|
|
goto unmap_curr_buff;
|
|
if (mapped_nents == 1 &&
|
|
areq_ctx->data_dma_buf_type == CC_DMA_BUF_NULL) {
|
|
/* only one entry in the SG and no previous data */
|
|
memcpy(areq_ctx->buff_sg, src,
|
|
sizeof(struct scatterlist));
|
|
areq_ctx->buff_sg->length = update_data_len;
|
|
areq_ctx->data_dma_buf_type = CC_DMA_BUF_DLLI;
|
|
areq_ctx->curr_sg = areq_ctx->buff_sg;
|
|
} else {
|
|
areq_ctx->data_dma_buf_type = CC_DMA_BUF_MLLI;
|
|
}
|
|
}
|
|
|
|
if (areq_ctx->data_dma_buf_type == CC_DMA_BUF_MLLI) {
|
|
mlli_params->curr_pool = drvdata->mlli_buffs_pool;
|
|
/* add the src data to the sg_data */
|
|
cc_add_sg_entry(dev, &sg_data, areq_ctx->in_nents, src,
|
|
(update_data_len - *curr_buff_cnt), 0, true,
|
|
&areq_ctx->mlli_nents);
|
|
rc = cc_generate_mlli(dev, &sg_data, mlli_params, flags);
|
|
if (rc)
|
|
goto fail_unmap_din;
|
|
}
|
|
areq_ctx->buff_index = (areq_ctx->buff_index ^ swap_index);
|
|
|
|
return 0;
|
|
|
|
fail_unmap_din:
|
|
dma_unmap_sg(dev, src, areq_ctx->in_nents, DMA_TO_DEVICE);
|
|
|
|
unmap_curr_buff:
|
|
if (*curr_buff_cnt)
|
|
dma_unmap_sg(dev, areq_ctx->buff_sg, 1, DMA_TO_DEVICE);
|
|
|
|
return rc;
|
|
}
|
|
|
|
void cc_unmap_hash_request(struct device *dev, void *ctx,
|
|
struct scatterlist *src, bool do_revert)
|
|
{
|
|
struct ahash_req_ctx *areq_ctx = (struct ahash_req_ctx *)ctx;
|
|
u32 *prev_len = cc_next_buf_cnt(areq_ctx);
|
|
|
|
/*In case a pool was set, a table was
|
|
*allocated and should be released
|
|
*/
|
|
if (areq_ctx->mlli_params.curr_pool) {
|
|
dev_dbg(dev, "free MLLI buffer: dma=%pad virt=%pK\n",
|
|
&areq_ctx->mlli_params.mlli_dma_addr,
|
|
areq_ctx->mlli_params.mlli_virt_addr);
|
|
dma_pool_free(areq_ctx->mlli_params.curr_pool,
|
|
areq_ctx->mlli_params.mlli_virt_addr,
|
|
areq_ctx->mlli_params.mlli_dma_addr);
|
|
}
|
|
|
|
if (src && areq_ctx->in_nents) {
|
|
dev_dbg(dev, "Unmapped sg src: virt=%pK dma=%pad len=0x%X\n",
|
|
sg_virt(src), &sg_dma_address(src), sg_dma_len(src));
|
|
dma_unmap_sg(dev, src,
|
|
areq_ctx->in_nents, DMA_TO_DEVICE);
|
|
}
|
|
|
|
if (*prev_len) {
|
|
dev_dbg(dev, "Unmapped buffer: areq_ctx->buff_sg=%pK dma=%pad len 0x%X\n",
|
|
sg_virt(areq_ctx->buff_sg),
|
|
&sg_dma_address(areq_ctx->buff_sg),
|
|
sg_dma_len(areq_ctx->buff_sg));
|
|
dma_unmap_sg(dev, areq_ctx->buff_sg, 1, DMA_TO_DEVICE);
|
|
if (!do_revert) {
|
|
/* clean the previous data length for update
|
|
* operation
|
|
*/
|
|
*prev_len = 0;
|
|
} else {
|
|
areq_ctx->buff_index ^= 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
int cc_buffer_mgr_init(struct cc_drvdata *drvdata)
|
|
{
|
|
struct device *dev = drvdata_to_dev(drvdata);
|
|
|
|
drvdata->mlli_buffs_pool =
|
|
dma_pool_create("dx_single_mlli_tables", dev,
|
|
MAX_NUM_OF_TOTAL_MLLI_ENTRIES *
|
|
LLI_ENTRY_BYTE_SIZE,
|
|
MLLI_TABLE_MIN_ALIGNMENT, 0);
|
|
|
|
if (!drvdata->mlli_buffs_pool)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cc_buffer_mgr_fini(struct cc_drvdata *drvdata)
|
|
{
|
|
dma_pool_destroy(drvdata->mlli_buffs_pool);
|
|
return 0;
|
|
}
|