linux/drivers/firmware/cirrus/cs_dsp.c
Charles Keepax a4b976552f
firmware: cs_dsp: Add memory chunk helpers
Add helpers that can be layered on top of a buffer read from or to be
written to the DSP to faciliate accessing datastructures within the DSP
memory. These functions handle adding the padding bytes for the DSP,
converting to big endian, and packing arbitrary length data.

Signed-off-by: Charles Keepax <ckeepax@opensource.cirrus.com>
Link: https://lore.kernel.org/r/20220722094851.92521-2-ckeepax@opensource.cirrus.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2022-07-22 13:40:00 +01:00

3290 lines
85 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* cs_dsp.c -- Cirrus Logic DSP firmware support
*
* Based on sound/soc/codecs/wm_adsp.c
*
* Copyright 2012 Wolfson Microelectronics plc
* Copyright (C) 2015-2021 Cirrus Logic, Inc. and
* Cirrus Logic International Semiconductor Ltd.
*/
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/firmware/cirrus/cs_dsp.h>
#include <linux/firmware/cirrus/wmfw.h>
#define cs_dsp_err(_dsp, fmt, ...) \
dev_err(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
#define cs_dsp_warn(_dsp, fmt, ...) \
dev_warn(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
#define cs_dsp_info(_dsp, fmt, ...) \
dev_info(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
#define cs_dsp_dbg(_dsp, fmt, ...) \
dev_dbg(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
#define ADSP1_CONTROL_1 0x00
#define ADSP1_CONTROL_2 0x02
#define ADSP1_CONTROL_3 0x03
#define ADSP1_CONTROL_4 0x04
#define ADSP1_CONTROL_5 0x06
#define ADSP1_CONTROL_6 0x07
#define ADSP1_CONTROL_7 0x08
#define ADSP1_CONTROL_8 0x09
#define ADSP1_CONTROL_9 0x0A
#define ADSP1_CONTROL_10 0x0B
#define ADSP1_CONTROL_11 0x0C
#define ADSP1_CONTROL_12 0x0D
#define ADSP1_CONTROL_13 0x0F
#define ADSP1_CONTROL_14 0x10
#define ADSP1_CONTROL_15 0x11
#define ADSP1_CONTROL_16 0x12
#define ADSP1_CONTROL_17 0x13
#define ADSP1_CONTROL_18 0x14
#define ADSP1_CONTROL_19 0x16
#define ADSP1_CONTROL_20 0x17
#define ADSP1_CONTROL_21 0x18
#define ADSP1_CONTROL_22 0x1A
#define ADSP1_CONTROL_23 0x1B
#define ADSP1_CONTROL_24 0x1C
#define ADSP1_CONTROL_25 0x1E
#define ADSP1_CONTROL_26 0x20
#define ADSP1_CONTROL_27 0x21
#define ADSP1_CONTROL_28 0x22
#define ADSP1_CONTROL_29 0x23
#define ADSP1_CONTROL_30 0x24
#define ADSP1_CONTROL_31 0x26
/*
* ADSP1 Control 19
*/
#define ADSP1_WDMA_BUFFER_LENGTH_MASK 0x00FF /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
#define ADSP1_WDMA_BUFFER_LENGTH_SHIFT 0 /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
#define ADSP1_WDMA_BUFFER_LENGTH_WIDTH 8 /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
/*
* ADSP1 Control 30
*/
#define ADSP1_DBG_CLK_ENA 0x0008 /* DSP1_DBG_CLK_ENA */
#define ADSP1_DBG_CLK_ENA_MASK 0x0008 /* DSP1_DBG_CLK_ENA */
#define ADSP1_DBG_CLK_ENA_SHIFT 3 /* DSP1_DBG_CLK_ENA */
#define ADSP1_DBG_CLK_ENA_WIDTH 1 /* DSP1_DBG_CLK_ENA */
#define ADSP1_SYS_ENA 0x0004 /* DSP1_SYS_ENA */
#define ADSP1_SYS_ENA_MASK 0x0004 /* DSP1_SYS_ENA */
#define ADSP1_SYS_ENA_SHIFT 2 /* DSP1_SYS_ENA */
#define ADSP1_SYS_ENA_WIDTH 1 /* DSP1_SYS_ENA */
#define ADSP1_CORE_ENA 0x0002 /* DSP1_CORE_ENA */
#define ADSP1_CORE_ENA_MASK 0x0002 /* DSP1_CORE_ENA */
#define ADSP1_CORE_ENA_SHIFT 1 /* DSP1_CORE_ENA */
#define ADSP1_CORE_ENA_WIDTH 1 /* DSP1_CORE_ENA */
#define ADSP1_START 0x0001 /* DSP1_START */
#define ADSP1_START_MASK 0x0001 /* DSP1_START */
#define ADSP1_START_SHIFT 0 /* DSP1_START */
#define ADSP1_START_WIDTH 1 /* DSP1_START */
/*
* ADSP1 Control 31
*/
#define ADSP1_CLK_SEL_MASK 0x0007 /* CLK_SEL_ENA */
#define ADSP1_CLK_SEL_SHIFT 0 /* CLK_SEL_ENA */
#define ADSP1_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
#define ADSP2_CONTROL 0x0
#define ADSP2_CLOCKING 0x1
#define ADSP2V2_CLOCKING 0x2
#define ADSP2_STATUS1 0x4
#define ADSP2_WDMA_CONFIG_1 0x30
#define ADSP2_WDMA_CONFIG_2 0x31
#define ADSP2V2_WDMA_CONFIG_2 0x32
#define ADSP2_RDMA_CONFIG_1 0x34
#define ADSP2_SCRATCH0 0x40
#define ADSP2_SCRATCH1 0x41
#define ADSP2_SCRATCH2 0x42
#define ADSP2_SCRATCH3 0x43
#define ADSP2V2_SCRATCH0_1 0x40
#define ADSP2V2_SCRATCH2_3 0x42
/*
* ADSP2 Control
*/
#define ADSP2_MEM_ENA 0x0010 /* DSP1_MEM_ENA */
#define ADSP2_MEM_ENA_MASK 0x0010 /* DSP1_MEM_ENA */
#define ADSP2_MEM_ENA_SHIFT 4 /* DSP1_MEM_ENA */
#define ADSP2_MEM_ENA_WIDTH 1 /* DSP1_MEM_ENA */
#define ADSP2_SYS_ENA 0x0004 /* DSP1_SYS_ENA */
#define ADSP2_SYS_ENA_MASK 0x0004 /* DSP1_SYS_ENA */
#define ADSP2_SYS_ENA_SHIFT 2 /* DSP1_SYS_ENA */
#define ADSP2_SYS_ENA_WIDTH 1 /* DSP1_SYS_ENA */
#define ADSP2_CORE_ENA 0x0002 /* DSP1_CORE_ENA */
#define ADSP2_CORE_ENA_MASK 0x0002 /* DSP1_CORE_ENA */
#define ADSP2_CORE_ENA_SHIFT 1 /* DSP1_CORE_ENA */
#define ADSP2_CORE_ENA_WIDTH 1 /* DSP1_CORE_ENA */
#define ADSP2_START 0x0001 /* DSP1_START */
#define ADSP2_START_MASK 0x0001 /* DSP1_START */
#define ADSP2_START_SHIFT 0 /* DSP1_START */
#define ADSP2_START_WIDTH 1 /* DSP1_START */
/*
* ADSP2 clocking
*/
#define ADSP2_CLK_SEL_MASK 0x0007 /* CLK_SEL_ENA */
#define ADSP2_CLK_SEL_SHIFT 0 /* CLK_SEL_ENA */
#define ADSP2_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
/*
* ADSP2V2 clocking
*/
#define ADSP2V2_CLK_SEL_MASK 0x70000 /* CLK_SEL_ENA */
#define ADSP2V2_CLK_SEL_SHIFT 16 /* CLK_SEL_ENA */
#define ADSP2V2_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
#define ADSP2V2_RATE_MASK 0x7800 /* DSP_RATE */
#define ADSP2V2_RATE_SHIFT 11 /* DSP_RATE */
#define ADSP2V2_RATE_WIDTH 4 /* DSP_RATE */
/*
* ADSP2 Status 1
*/
#define ADSP2_RAM_RDY 0x0001
#define ADSP2_RAM_RDY_MASK 0x0001
#define ADSP2_RAM_RDY_SHIFT 0
#define ADSP2_RAM_RDY_WIDTH 1
/*
* ADSP2 Lock support
*/
#define ADSP2_LOCK_CODE_0 0x5555
#define ADSP2_LOCK_CODE_1 0xAAAA
#define ADSP2_WATCHDOG 0x0A
#define ADSP2_BUS_ERR_ADDR 0x52
#define ADSP2_REGION_LOCK_STATUS 0x64
#define ADSP2_LOCK_REGION_1_LOCK_REGION_0 0x66
#define ADSP2_LOCK_REGION_3_LOCK_REGION_2 0x68
#define ADSP2_LOCK_REGION_5_LOCK_REGION_4 0x6A
#define ADSP2_LOCK_REGION_7_LOCK_REGION_6 0x6C
#define ADSP2_LOCK_REGION_9_LOCK_REGION_8 0x6E
#define ADSP2_LOCK_REGION_CTRL 0x7A
#define ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR 0x7C
#define ADSP2_REGION_LOCK_ERR_MASK 0x8000
#define ADSP2_ADDR_ERR_MASK 0x4000
#define ADSP2_WDT_TIMEOUT_STS_MASK 0x2000
#define ADSP2_CTRL_ERR_PAUSE_ENA 0x0002
#define ADSP2_CTRL_ERR_EINT 0x0001
#define ADSP2_BUS_ERR_ADDR_MASK 0x00FFFFFF
#define ADSP2_XMEM_ERR_ADDR_MASK 0x0000FFFF
#define ADSP2_PMEM_ERR_ADDR_MASK 0x7FFF0000
#define ADSP2_PMEM_ERR_ADDR_SHIFT 16
#define ADSP2_WDT_ENA_MASK 0xFFFFFFFD
#define ADSP2_LOCK_REGION_SHIFT 16
/*
* Event control messages
*/
#define CS_DSP_FW_EVENT_SHUTDOWN 0x000001
/*
* HALO system info
*/
#define HALO_AHBM_WINDOW_DEBUG_0 0x02040
#define HALO_AHBM_WINDOW_DEBUG_1 0x02044
/*
* HALO core
*/
#define HALO_SCRATCH1 0x005c0
#define HALO_SCRATCH2 0x005c8
#define HALO_SCRATCH3 0x005d0
#define HALO_SCRATCH4 0x005d8
#define HALO_CCM_CORE_CONTROL 0x41000
#define HALO_CORE_SOFT_RESET 0x00010
#define HALO_WDT_CONTROL 0x47000
/*
* HALO MPU banks
*/
#define HALO_MPU_XMEM_ACCESS_0 0x43000
#define HALO_MPU_YMEM_ACCESS_0 0x43004
#define HALO_MPU_WINDOW_ACCESS_0 0x43008
#define HALO_MPU_XREG_ACCESS_0 0x4300C
#define HALO_MPU_YREG_ACCESS_0 0x43014
#define HALO_MPU_XMEM_ACCESS_1 0x43018
#define HALO_MPU_YMEM_ACCESS_1 0x4301C
#define HALO_MPU_WINDOW_ACCESS_1 0x43020
#define HALO_MPU_XREG_ACCESS_1 0x43024
#define HALO_MPU_YREG_ACCESS_1 0x4302C
#define HALO_MPU_XMEM_ACCESS_2 0x43030
#define HALO_MPU_YMEM_ACCESS_2 0x43034
#define HALO_MPU_WINDOW_ACCESS_2 0x43038
#define HALO_MPU_XREG_ACCESS_2 0x4303C
#define HALO_MPU_YREG_ACCESS_2 0x43044
#define HALO_MPU_XMEM_ACCESS_3 0x43048
#define HALO_MPU_YMEM_ACCESS_3 0x4304C
#define HALO_MPU_WINDOW_ACCESS_3 0x43050
#define HALO_MPU_XREG_ACCESS_3 0x43054
#define HALO_MPU_YREG_ACCESS_3 0x4305C
#define HALO_MPU_XM_VIO_ADDR 0x43100
#define HALO_MPU_XM_VIO_STATUS 0x43104
#define HALO_MPU_YM_VIO_ADDR 0x43108
#define HALO_MPU_YM_VIO_STATUS 0x4310C
#define HALO_MPU_PM_VIO_ADDR 0x43110
#define HALO_MPU_PM_VIO_STATUS 0x43114
#define HALO_MPU_LOCK_CONFIG 0x43140
/*
* HALO_AHBM_WINDOW_DEBUG_1
*/
#define HALO_AHBM_CORE_ERR_ADDR_MASK 0x0fffff00
#define HALO_AHBM_CORE_ERR_ADDR_SHIFT 8
#define HALO_AHBM_FLAGS_ERR_MASK 0x000000ff
/*
* HALO_CCM_CORE_CONTROL
*/
#define HALO_CORE_RESET 0x00000200
#define HALO_CORE_EN 0x00000001
/*
* HALO_CORE_SOFT_RESET
*/
#define HALO_CORE_SOFT_RESET_MASK 0x00000001
/*
* HALO_WDT_CONTROL
*/
#define HALO_WDT_EN_MASK 0x00000001
/*
* HALO_MPU_?M_VIO_STATUS
*/
#define HALO_MPU_VIO_STS_MASK 0x007e0000
#define HALO_MPU_VIO_STS_SHIFT 17
#define HALO_MPU_VIO_ERR_WR_MASK 0x00008000
#define HALO_MPU_VIO_ERR_SRC_MASK 0x00007fff
#define HALO_MPU_VIO_ERR_SRC_SHIFT 0
struct cs_dsp_ops {
bool (*validate_version)(struct cs_dsp *dsp, unsigned int version);
unsigned int (*parse_sizes)(struct cs_dsp *dsp,
const char * const file,
unsigned int pos,
const struct firmware *firmware);
int (*setup_algs)(struct cs_dsp *dsp);
unsigned int (*region_to_reg)(struct cs_dsp_region const *mem,
unsigned int offset);
void (*show_fw_status)(struct cs_dsp *dsp);
void (*stop_watchdog)(struct cs_dsp *dsp);
int (*enable_memory)(struct cs_dsp *dsp);
void (*disable_memory)(struct cs_dsp *dsp);
int (*lock_memory)(struct cs_dsp *dsp, unsigned int lock_regions);
int (*enable_core)(struct cs_dsp *dsp);
void (*disable_core)(struct cs_dsp *dsp);
int (*start_core)(struct cs_dsp *dsp);
void (*stop_core)(struct cs_dsp *dsp);
};
static const struct cs_dsp_ops cs_dsp_adsp1_ops;
static const struct cs_dsp_ops cs_dsp_adsp2_ops[];
static const struct cs_dsp_ops cs_dsp_halo_ops;
struct cs_dsp_buf {
struct list_head list;
void *buf;
};
static struct cs_dsp_buf *cs_dsp_buf_alloc(const void *src, size_t len,
struct list_head *list)
{
struct cs_dsp_buf *buf = kzalloc(sizeof(*buf), GFP_KERNEL);
if (buf == NULL)
return NULL;
buf->buf = vmalloc(len);
if (!buf->buf) {
kfree(buf);
return NULL;
}
memcpy(buf->buf, src, len);
if (list)
list_add_tail(&buf->list, list);
return buf;
}
static void cs_dsp_buf_free(struct list_head *list)
{
while (!list_empty(list)) {
struct cs_dsp_buf *buf = list_first_entry(list,
struct cs_dsp_buf,
list);
list_del(&buf->list);
vfree(buf->buf);
kfree(buf);
}
}
/**
* cs_dsp_mem_region_name() - Return a name string for a memory type
* @type: the memory type to match
*
* Return: A const string identifying the memory region.
*/
const char *cs_dsp_mem_region_name(unsigned int type)
{
switch (type) {
case WMFW_ADSP1_PM:
return "PM";
case WMFW_HALO_PM_PACKED:
return "PM_PACKED";
case WMFW_ADSP1_DM:
return "DM";
case WMFW_ADSP2_XM:
return "XM";
case WMFW_HALO_XM_PACKED:
return "XM_PACKED";
case WMFW_ADSP2_YM:
return "YM";
case WMFW_HALO_YM_PACKED:
return "YM_PACKED";
case WMFW_ADSP1_ZM:
return "ZM";
default:
return NULL;
}
}
EXPORT_SYMBOL_GPL(cs_dsp_mem_region_name);
#ifdef CONFIG_DEBUG_FS
static void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp, const char *s)
{
char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
kfree(dsp->wmfw_file_name);
dsp->wmfw_file_name = tmp;
}
static void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp, const char *s)
{
char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
kfree(dsp->bin_file_name);
dsp->bin_file_name = tmp;
}
static void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
{
kfree(dsp->wmfw_file_name);
kfree(dsp->bin_file_name);
dsp->wmfw_file_name = NULL;
dsp->bin_file_name = NULL;
}
static ssize_t cs_dsp_debugfs_wmfw_read(struct file *file,
char __user *user_buf,
size_t count, loff_t *ppos)
{
struct cs_dsp *dsp = file->private_data;
ssize_t ret;
mutex_lock(&dsp->pwr_lock);
if (!dsp->wmfw_file_name || !dsp->booted)
ret = 0;
else
ret = simple_read_from_buffer(user_buf, count, ppos,
dsp->wmfw_file_name,
strlen(dsp->wmfw_file_name));
mutex_unlock(&dsp->pwr_lock);
return ret;
}
static ssize_t cs_dsp_debugfs_bin_read(struct file *file,
char __user *user_buf,
size_t count, loff_t *ppos)
{
struct cs_dsp *dsp = file->private_data;
ssize_t ret;
mutex_lock(&dsp->pwr_lock);
if (!dsp->bin_file_name || !dsp->booted)
ret = 0;
else
ret = simple_read_from_buffer(user_buf, count, ppos,
dsp->bin_file_name,
strlen(dsp->bin_file_name));
mutex_unlock(&dsp->pwr_lock);
return ret;
}
static const struct {
const char *name;
const struct file_operations fops;
} cs_dsp_debugfs_fops[] = {
{
.name = "wmfw_file_name",
.fops = {
.open = simple_open,
.read = cs_dsp_debugfs_wmfw_read,
},
},
{
.name = "bin_file_name",
.fops = {
.open = simple_open,
.read = cs_dsp_debugfs_bin_read,
},
},
};
/**
* cs_dsp_init_debugfs() - Create and populate DSP representation in debugfs
* @dsp: pointer to DSP structure
* @debugfs_root: pointer to debugfs directory in which to create this DSP
* representation
*/
void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
{
struct dentry *root = NULL;
int i;
root = debugfs_create_dir(dsp->name, debugfs_root);
debugfs_create_bool("booted", 0444, root, &dsp->booted);
debugfs_create_bool("running", 0444, root, &dsp->running);
debugfs_create_x32("fw_id", 0444, root, &dsp->fw_id);
debugfs_create_x32("fw_version", 0444, root, &dsp->fw_id_version);
for (i = 0; i < ARRAY_SIZE(cs_dsp_debugfs_fops); ++i)
debugfs_create_file(cs_dsp_debugfs_fops[i].name, 0444, root,
dsp, &cs_dsp_debugfs_fops[i].fops);
dsp->debugfs_root = root;
}
EXPORT_SYMBOL_GPL(cs_dsp_init_debugfs);
/**
* cs_dsp_cleanup_debugfs() - Removes DSP representation from debugfs
* @dsp: pointer to DSP structure
*/
void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
{
cs_dsp_debugfs_clear(dsp);
debugfs_remove_recursive(dsp->debugfs_root);
dsp->debugfs_root = NULL;
}
EXPORT_SYMBOL_GPL(cs_dsp_cleanup_debugfs);
#else
void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
{
}
EXPORT_SYMBOL_GPL(cs_dsp_init_debugfs);
void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
{
}
EXPORT_SYMBOL_GPL(cs_dsp_cleanup_debugfs);
static inline void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp,
const char *s)
{
}
static inline void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp,
const char *s)
{
}
static inline void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
{
}
#endif
static const struct cs_dsp_region *cs_dsp_find_region(struct cs_dsp *dsp,
int type)
{
int i;
for (i = 0; i < dsp->num_mems; i++)
if (dsp->mem[i].type == type)
return &dsp->mem[i];
return NULL;
}
static unsigned int cs_dsp_region_to_reg(struct cs_dsp_region const *mem,
unsigned int offset)
{
switch (mem->type) {
case WMFW_ADSP1_PM:
return mem->base + (offset * 3);
case WMFW_ADSP1_DM:
case WMFW_ADSP2_XM:
case WMFW_ADSP2_YM:
case WMFW_ADSP1_ZM:
return mem->base + (offset * 2);
default:
WARN(1, "Unknown memory region type");
return offset;
}
}
static unsigned int cs_dsp_halo_region_to_reg(struct cs_dsp_region const *mem,
unsigned int offset)
{
switch (mem->type) {
case WMFW_ADSP2_XM:
case WMFW_ADSP2_YM:
return mem->base + (offset * 4);
case WMFW_HALO_XM_PACKED:
case WMFW_HALO_YM_PACKED:
return (mem->base + (offset * 3)) & ~0x3;
case WMFW_HALO_PM_PACKED:
return mem->base + (offset * 5);
default:
WARN(1, "Unknown memory region type");
return offset;
}
}
static void cs_dsp_read_fw_status(struct cs_dsp *dsp,
int noffs, unsigned int *offs)
{
unsigned int i;
int ret;
for (i = 0; i < noffs; ++i) {
ret = regmap_read(dsp->regmap, dsp->base + offs[i], &offs[i]);
if (ret) {
cs_dsp_err(dsp, "Failed to read SCRATCH%u: %d\n", i, ret);
return;
}
}
}
static void cs_dsp_adsp2_show_fw_status(struct cs_dsp *dsp)
{
unsigned int offs[] = {
ADSP2_SCRATCH0, ADSP2_SCRATCH1, ADSP2_SCRATCH2, ADSP2_SCRATCH3,
};
cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
offs[0], offs[1], offs[2], offs[3]);
}
static void cs_dsp_adsp2v2_show_fw_status(struct cs_dsp *dsp)
{
unsigned int offs[] = { ADSP2V2_SCRATCH0_1, ADSP2V2_SCRATCH2_3 };
cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
offs[0] & 0xFFFF, offs[0] >> 16,
offs[1] & 0xFFFF, offs[1] >> 16);
}
static void cs_dsp_halo_show_fw_status(struct cs_dsp *dsp)
{
unsigned int offs[] = {
HALO_SCRATCH1, HALO_SCRATCH2, HALO_SCRATCH3, HALO_SCRATCH4,
};
cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
offs[0], offs[1], offs[2], offs[3]);
}
static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
unsigned int off)
{
const struct cs_dsp_alg_region *alg_region = &ctl->alg_region;
struct cs_dsp *dsp = ctl->dsp;
const struct cs_dsp_region *mem;
mem = cs_dsp_find_region(dsp, alg_region->type);
if (!mem) {
cs_dsp_err(dsp, "No base for region %x\n",
alg_region->type);
return -EINVAL;
}
*reg = dsp->ops->region_to_reg(mem, ctl->alg_region.base + ctl->offset + off);
return 0;
}
/**
* cs_dsp_coeff_write_acked_control() - Sends event_id to the acked control
* @ctl: pointer to acked coefficient control
* @event_id: the value to write to the given acked control
*
* Once the value has been written to the control the function shall block
* until the running firmware acknowledges the write or timeout is exceeded.
*
* Must be called with pwr_lock held.
*
* Return: Zero for success, a negative number on error.
*/
int cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl *ctl, unsigned int event_id)
{
struct cs_dsp *dsp = ctl->dsp;
__be32 val = cpu_to_be32(event_id);
unsigned int reg;
int i, ret;
lockdep_assert_held(&dsp->pwr_lock);
if (!dsp->running)
return -EPERM;
ret = cs_dsp_coeff_base_reg(ctl, &reg, 0);
if (ret)
return ret;
cs_dsp_dbg(dsp, "Sending 0x%x to acked control alg 0x%x %s:0x%x\n",
event_id, ctl->alg_region.alg,
cs_dsp_mem_region_name(ctl->alg_region.type), ctl->offset);
ret = regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
if (ret) {
cs_dsp_err(dsp, "Failed to write %x: %d\n", reg, ret);
return ret;
}
/*
* Poll for ack, we initially poll at ~1ms intervals for firmwares
* that respond quickly, then go to ~10ms polls. A firmware is unlikely
* to ack instantly so we do the first 1ms delay before reading the
* control to avoid a pointless bus transaction
*/
for (i = 0; i < CS_DSP_ACKED_CTL_TIMEOUT_MS;) {
switch (i) {
case 0 ... CS_DSP_ACKED_CTL_N_QUICKPOLLS - 1:
usleep_range(1000, 2000);
i++;
break;
default:
usleep_range(10000, 20000);
i += 10;
break;
}
ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
if (ret) {
cs_dsp_err(dsp, "Failed to read %x: %d\n", reg, ret);
return ret;
}
if (val == 0) {
cs_dsp_dbg(dsp, "Acked control ACKED at poll %u\n", i);
return 0;
}
}
cs_dsp_warn(dsp, "Acked control @0x%x alg:0x%x %s:0x%x timed out\n",
reg, ctl->alg_region.alg,
cs_dsp_mem_region_name(ctl->alg_region.type),
ctl->offset);
return -ETIMEDOUT;
}
EXPORT_SYMBOL_GPL(cs_dsp_coeff_write_acked_control);
static int cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
unsigned int off, const void *buf, size_t len)
{
struct cs_dsp *dsp = ctl->dsp;
void *scratch;
int ret;
unsigned int reg;
ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
if (ret)
return ret;
scratch = kmemdup(buf, len, GFP_KERNEL | GFP_DMA);
if (!scratch)
return -ENOMEM;
ret = regmap_raw_write(dsp->regmap, reg, scratch,
len);
if (ret) {
cs_dsp_err(dsp, "Failed to write %zu bytes to %x: %d\n",
len, reg, ret);
kfree(scratch);
return ret;
}
cs_dsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg);
kfree(scratch);
return 0;
}
/**
* cs_dsp_coeff_write_ctrl() - Writes the given buffer to the given coefficient control
* @ctl: pointer to coefficient control
* @off: word offset at which data should be written
* @buf: the buffer to write to the given control
* @len: the length of the buffer in bytes
*
* Must be called with pwr_lock held.
*
* Return: Zero for success, a negative number on error.
*/
int cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
unsigned int off, const void *buf, size_t len)
{
int ret = 0;
if (!ctl)
return -ENOENT;
lockdep_assert_held(&ctl->dsp->pwr_lock);
if (len + off * sizeof(u32) > ctl->len)
return -EINVAL;
if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
ret = -EPERM;
else if (buf != ctl->cache)
memcpy(ctl->cache + off * sizeof(u32), buf, len);
ctl->set = 1;
if (ctl->enabled && ctl->dsp->running)
ret = cs_dsp_coeff_write_ctrl_raw(ctl, off, buf, len);
return ret;
}
EXPORT_SYMBOL_GPL(cs_dsp_coeff_write_ctrl);
static int cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
unsigned int off, void *buf, size_t len)
{
struct cs_dsp *dsp = ctl->dsp;
void *scratch;
int ret;
unsigned int reg;
ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
if (ret)
return ret;
scratch = kmalloc(len, GFP_KERNEL | GFP_DMA);
if (!scratch)
return -ENOMEM;
ret = regmap_raw_read(dsp->regmap, reg, scratch, len);
if (ret) {
cs_dsp_err(dsp, "Failed to read %zu bytes from %x: %d\n",
len, reg, ret);
kfree(scratch);
return ret;
}
cs_dsp_dbg(dsp, "Read %zu bytes from %x\n", len, reg);
memcpy(buf, scratch, len);
kfree(scratch);
return 0;
}
/**
* cs_dsp_coeff_read_ctrl() - Reads the given coefficient control into the given buffer
* @ctl: pointer to coefficient control
* @off: word offset at which data should be read
* @buf: the buffer to store to the given control
* @len: the length of the buffer in bytes
*
* Must be called with pwr_lock held.
*
* Return: Zero for success, a negative number on error.
*/
int cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
unsigned int off, void *buf, size_t len)
{
int ret = 0;
if (!ctl)
return -ENOENT;
lockdep_assert_held(&ctl->dsp->pwr_lock);
if (len + off * sizeof(u32) > ctl->len)
return -EINVAL;
if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
if (ctl->enabled && ctl->dsp->running)
return cs_dsp_coeff_read_ctrl_raw(ctl, off, buf, len);
else
return -EPERM;
} else {
if (!ctl->flags && ctl->enabled && ctl->dsp->running)
ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
if (buf != ctl->cache)
memcpy(buf, ctl->cache + off * sizeof(u32), len);
}
return ret;
}
EXPORT_SYMBOL_GPL(cs_dsp_coeff_read_ctrl);
static int cs_dsp_coeff_init_control_caches(struct cs_dsp *dsp)
{
struct cs_dsp_coeff_ctl *ctl;
int ret;
list_for_each_entry(ctl, &dsp->ctl_list, list) {
if (!ctl->enabled || ctl->set)
continue;
if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
continue;
/*
* For readable controls populate the cache from the DSP memory.
* For non-readable controls the cache was zero-filled when
* created so we don't need to do anything.
*/
if (!ctl->flags || (ctl->flags & WMFW_CTL_FLAG_READABLE)) {
ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
if (ret < 0)
return ret;
}
}
return 0;
}
static int cs_dsp_coeff_sync_controls(struct cs_dsp *dsp)
{
struct cs_dsp_coeff_ctl *ctl;
int ret;
list_for_each_entry(ctl, &dsp->ctl_list, list) {
if (!ctl->enabled)
continue;
if (ctl->set && !(ctl->flags & WMFW_CTL_FLAG_VOLATILE)) {
ret = cs_dsp_coeff_write_ctrl_raw(ctl, 0, ctl->cache,
ctl->len);
if (ret < 0)
return ret;
}
}
return 0;
}
static void cs_dsp_signal_event_controls(struct cs_dsp *dsp,
unsigned int event)
{
struct cs_dsp_coeff_ctl *ctl;
int ret;
list_for_each_entry(ctl, &dsp->ctl_list, list) {
if (ctl->type != WMFW_CTL_TYPE_HOSTEVENT)
continue;
if (!ctl->enabled)
continue;
ret = cs_dsp_coeff_write_acked_control(ctl, event);
if (ret)
cs_dsp_warn(dsp,
"Failed to send 0x%x event to alg 0x%x (%d)\n",
event, ctl->alg_region.alg, ret);
}
}
static void cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl *ctl)
{
kfree(ctl->cache);
kfree(ctl->subname);
kfree(ctl);
}
static int cs_dsp_create_control(struct cs_dsp *dsp,
const struct cs_dsp_alg_region *alg_region,
unsigned int offset, unsigned int len,
const char *subname, unsigned int subname_len,
unsigned int flags, unsigned int type)
{
struct cs_dsp_coeff_ctl *ctl;
int ret;
list_for_each_entry(ctl, &dsp->ctl_list, list) {
if (ctl->fw_name == dsp->fw_name &&
ctl->alg_region.alg == alg_region->alg &&
ctl->alg_region.type == alg_region->type) {
if ((!subname && !ctl->subname) ||
(subname && !strncmp(ctl->subname, subname, ctl->subname_len))) {
if (!ctl->enabled)
ctl->enabled = 1;
return 0;
}
}
}
ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
if (!ctl)
return -ENOMEM;
ctl->fw_name = dsp->fw_name;
ctl->alg_region = *alg_region;
if (subname && dsp->fw_ver >= 2) {
ctl->subname_len = subname_len;
ctl->subname = kasprintf(GFP_KERNEL, "%.*s", subname_len, subname);
if (!ctl->subname) {
ret = -ENOMEM;
goto err_ctl;
}
}
ctl->enabled = 1;
ctl->set = 0;
ctl->dsp = dsp;
ctl->flags = flags;
ctl->type = type;
ctl->offset = offset;
ctl->len = len;
ctl->cache = kzalloc(ctl->len, GFP_KERNEL);
if (!ctl->cache) {
ret = -ENOMEM;
goto err_ctl_subname;
}
list_add(&ctl->list, &dsp->ctl_list);
if (dsp->client_ops->control_add) {
ret = dsp->client_ops->control_add(ctl);
if (ret)
goto err_list_del;
}
return 0;
err_list_del:
list_del(&ctl->list);
kfree(ctl->cache);
err_ctl_subname:
kfree(ctl->subname);
err_ctl:
kfree(ctl);
return ret;
}
struct cs_dsp_coeff_parsed_alg {
int id;
const u8 *name;
int name_len;
int ncoeff;
};
struct cs_dsp_coeff_parsed_coeff {
int offset;
int mem_type;
const u8 *name;
int name_len;
unsigned int ctl_type;
int flags;
int len;
};
static int cs_dsp_coeff_parse_string(int bytes, const u8 **pos, const u8 **str)
{
int length;
switch (bytes) {
case 1:
length = **pos;
break;
case 2:
length = le16_to_cpu(*((__le16 *)*pos));
break;
default:
return 0;
}
if (str)
*str = *pos + bytes;
*pos += ((length + bytes) + 3) & ~0x03;
return length;
}
static int cs_dsp_coeff_parse_int(int bytes, const u8 **pos)
{
int val = 0;
switch (bytes) {
case 2:
val = le16_to_cpu(*((__le16 *)*pos));
break;
case 4:
val = le32_to_cpu(*((__le32 *)*pos));
break;
default:
break;
}
*pos += bytes;
return val;
}
static inline void cs_dsp_coeff_parse_alg(struct cs_dsp *dsp, const u8 **data,
struct cs_dsp_coeff_parsed_alg *blk)
{
const struct wmfw_adsp_alg_data *raw;
switch (dsp->fw_ver) {
case 0:
case 1:
raw = (const struct wmfw_adsp_alg_data *)*data;
*data = raw->data;
blk->id = le32_to_cpu(raw->id);
blk->name = raw->name;
blk->name_len = strlen(raw->name);
blk->ncoeff = le32_to_cpu(raw->ncoeff);
break;
default:
blk->id = cs_dsp_coeff_parse_int(sizeof(raw->id), data);
blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), data,
&blk->name);
cs_dsp_coeff_parse_string(sizeof(u16), data, NULL);
blk->ncoeff = cs_dsp_coeff_parse_int(sizeof(raw->ncoeff), data);
break;
}
cs_dsp_dbg(dsp, "Algorithm ID: %#x\n", blk->id);
cs_dsp_dbg(dsp, "Algorithm name: %.*s\n", blk->name_len, blk->name);
cs_dsp_dbg(dsp, "# of coefficient descriptors: %#x\n", blk->ncoeff);
}
static inline void cs_dsp_coeff_parse_coeff(struct cs_dsp *dsp, const u8 **data,
struct cs_dsp_coeff_parsed_coeff *blk)
{
const struct wmfw_adsp_coeff_data *raw;
const u8 *tmp;
int length;
switch (dsp->fw_ver) {
case 0:
case 1:
raw = (const struct wmfw_adsp_coeff_data *)*data;
*data = *data + sizeof(raw->hdr) + le32_to_cpu(raw->hdr.size);
blk->offset = le16_to_cpu(raw->hdr.offset);
blk->mem_type = le16_to_cpu(raw->hdr.type);
blk->name = raw->name;
blk->name_len = strlen(raw->name);
blk->ctl_type = le16_to_cpu(raw->ctl_type);
blk->flags = le16_to_cpu(raw->flags);
blk->len = le32_to_cpu(raw->len);
break;
default:
tmp = *data;
blk->offset = cs_dsp_coeff_parse_int(sizeof(raw->hdr.offset), &tmp);
blk->mem_type = cs_dsp_coeff_parse_int(sizeof(raw->hdr.type), &tmp);
length = cs_dsp_coeff_parse_int(sizeof(raw->hdr.size), &tmp);
blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp,
&blk->name);
cs_dsp_coeff_parse_string(sizeof(u8), &tmp, NULL);
cs_dsp_coeff_parse_string(sizeof(u16), &tmp, NULL);
blk->ctl_type = cs_dsp_coeff_parse_int(sizeof(raw->ctl_type), &tmp);
blk->flags = cs_dsp_coeff_parse_int(sizeof(raw->flags), &tmp);
blk->len = cs_dsp_coeff_parse_int(sizeof(raw->len), &tmp);
*data = *data + sizeof(raw->hdr) + length;
break;
}
cs_dsp_dbg(dsp, "\tCoefficient type: %#x\n", blk->mem_type);
cs_dsp_dbg(dsp, "\tCoefficient offset: %#x\n", blk->offset);
cs_dsp_dbg(dsp, "\tCoefficient name: %.*s\n", blk->name_len, blk->name);
cs_dsp_dbg(dsp, "\tCoefficient flags: %#x\n", blk->flags);
cs_dsp_dbg(dsp, "\tALSA control type: %#x\n", blk->ctl_type);
cs_dsp_dbg(dsp, "\tALSA control len: %#x\n", blk->len);
}
static int cs_dsp_check_coeff_flags(struct cs_dsp *dsp,
const struct cs_dsp_coeff_parsed_coeff *coeff_blk,
unsigned int f_required,
unsigned int f_illegal)
{
if ((coeff_blk->flags & f_illegal) ||
((coeff_blk->flags & f_required) != f_required)) {
cs_dsp_err(dsp, "Illegal flags 0x%x for control type 0x%x\n",
coeff_blk->flags, coeff_blk->ctl_type);
return -EINVAL;
}
return 0;
}
static int cs_dsp_parse_coeff(struct cs_dsp *dsp,
const struct wmfw_region *region)
{
struct cs_dsp_alg_region alg_region = {};
struct cs_dsp_coeff_parsed_alg alg_blk;
struct cs_dsp_coeff_parsed_coeff coeff_blk;
const u8 *data = region->data;
int i, ret;
cs_dsp_coeff_parse_alg(dsp, &data, &alg_blk);
for (i = 0; i < alg_blk.ncoeff; i++) {
cs_dsp_coeff_parse_coeff(dsp, &data, &coeff_blk);
switch (coeff_blk.ctl_type) {
case WMFW_CTL_TYPE_BYTES:
break;
case WMFW_CTL_TYPE_ACKED:
if (coeff_blk.flags & WMFW_CTL_FLAG_SYS)
continue; /* ignore */
ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
WMFW_CTL_FLAG_VOLATILE |
WMFW_CTL_FLAG_WRITEABLE |
WMFW_CTL_FLAG_READABLE,
0);
if (ret)
return -EINVAL;
break;
case WMFW_CTL_TYPE_HOSTEVENT:
case WMFW_CTL_TYPE_FWEVENT:
ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
WMFW_CTL_FLAG_SYS |
WMFW_CTL_FLAG_VOLATILE |
WMFW_CTL_FLAG_WRITEABLE |
WMFW_CTL_FLAG_READABLE,
0);
if (ret)
return -EINVAL;
break;
case WMFW_CTL_TYPE_HOST_BUFFER:
ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
WMFW_CTL_FLAG_SYS |
WMFW_CTL_FLAG_VOLATILE |
WMFW_CTL_FLAG_READABLE,
0);
if (ret)
return -EINVAL;
break;
default:
cs_dsp_err(dsp, "Unknown control type: %d\n",
coeff_blk.ctl_type);
return -EINVAL;
}
alg_region.type = coeff_blk.mem_type;
alg_region.alg = alg_blk.id;
ret = cs_dsp_create_control(dsp, &alg_region,
coeff_blk.offset,
coeff_blk.len,
coeff_blk.name,
coeff_blk.name_len,
coeff_blk.flags,
coeff_blk.ctl_type);
if (ret < 0)
cs_dsp_err(dsp, "Failed to create control: %.*s, %d\n",
coeff_blk.name_len, coeff_blk.name, ret);
}
return 0;
}
static unsigned int cs_dsp_adsp1_parse_sizes(struct cs_dsp *dsp,
const char * const file,
unsigned int pos,
const struct firmware *firmware)
{
const struct wmfw_adsp1_sizes *adsp1_sizes;
adsp1_sizes = (void *)&firmware->data[pos];
cs_dsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n", file,
le32_to_cpu(adsp1_sizes->dm), le32_to_cpu(adsp1_sizes->pm),
le32_to_cpu(adsp1_sizes->zm));
return pos + sizeof(*adsp1_sizes);
}
static unsigned int cs_dsp_adsp2_parse_sizes(struct cs_dsp *dsp,
const char * const file,
unsigned int pos,
const struct firmware *firmware)
{
const struct wmfw_adsp2_sizes *adsp2_sizes;
adsp2_sizes = (void *)&firmware->data[pos];
cs_dsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n", file,
le32_to_cpu(adsp2_sizes->xm), le32_to_cpu(adsp2_sizes->ym),
le32_to_cpu(adsp2_sizes->pm), le32_to_cpu(adsp2_sizes->zm));
return pos + sizeof(*adsp2_sizes);
}
static bool cs_dsp_validate_version(struct cs_dsp *dsp, unsigned int version)
{
switch (version) {
case 0:
cs_dsp_warn(dsp, "Deprecated file format %d\n", version);
return true;
case 1:
case 2:
return true;
default:
return false;
}
}
static bool cs_dsp_halo_validate_version(struct cs_dsp *dsp, unsigned int version)
{
switch (version) {
case 3:
return true;
default:
return false;
}
}
static int cs_dsp_load(struct cs_dsp *dsp, const struct firmware *firmware,
const char *file)
{
LIST_HEAD(buf_list);
struct regmap *regmap = dsp->regmap;
unsigned int pos = 0;
const struct wmfw_header *header;
const struct wmfw_adsp1_sizes *adsp1_sizes;
const struct wmfw_footer *footer;
const struct wmfw_region *region;
const struct cs_dsp_region *mem;
const char *region_name;
char *text = NULL;
struct cs_dsp_buf *buf;
unsigned int reg;
int regions = 0;
int ret, offset, type;
ret = -EINVAL;
pos = sizeof(*header) + sizeof(*adsp1_sizes) + sizeof(*footer);
if (pos >= firmware->size) {
cs_dsp_err(dsp, "%s: file too short, %zu bytes\n",
file, firmware->size);
goto out_fw;
}
header = (void *)&firmware->data[0];
if (memcmp(&header->magic[0], "WMFW", 4) != 0) {
cs_dsp_err(dsp, "%s: invalid magic\n", file);
goto out_fw;
}
if (!dsp->ops->validate_version(dsp, header->ver)) {
cs_dsp_err(dsp, "%s: unknown file format %d\n",
file, header->ver);
goto out_fw;
}
cs_dsp_info(dsp, "Firmware version: %d\n", header->ver);
dsp->fw_ver = header->ver;
if (header->core != dsp->type) {
cs_dsp_err(dsp, "%s: invalid core %d != %d\n",
file, header->core, dsp->type);
goto out_fw;
}
pos = sizeof(*header);
pos = dsp->ops->parse_sizes(dsp, file, pos, firmware);
footer = (void *)&firmware->data[pos];
pos += sizeof(*footer);
if (le32_to_cpu(header->len) != pos) {
cs_dsp_err(dsp, "%s: unexpected header length %d\n",
file, le32_to_cpu(header->len));
goto out_fw;
}
cs_dsp_dbg(dsp, "%s: timestamp %llu\n", file,
le64_to_cpu(footer->timestamp));
while (pos < firmware->size &&
sizeof(*region) < firmware->size - pos) {
region = (void *)&(firmware->data[pos]);
region_name = "Unknown";
reg = 0;
text = NULL;
offset = le32_to_cpu(region->offset) & 0xffffff;
type = be32_to_cpu(region->type) & 0xff;
switch (type) {
case WMFW_NAME_TEXT:
region_name = "Firmware name";
text = kzalloc(le32_to_cpu(region->len) + 1,
GFP_KERNEL);
break;
case WMFW_ALGORITHM_DATA:
region_name = "Algorithm";
ret = cs_dsp_parse_coeff(dsp, region);
if (ret != 0)
goto out_fw;
break;
case WMFW_INFO_TEXT:
region_name = "Information";
text = kzalloc(le32_to_cpu(region->len) + 1,
GFP_KERNEL);
break;
case WMFW_ABSOLUTE:
region_name = "Absolute";
reg = offset;
break;
case WMFW_ADSP1_PM:
case WMFW_ADSP1_DM:
case WMFW_ADSP2_XM:
case WMFW_ADSP2_YM:
case WMFW_ADSP1_ZM:
case WMFW_HALO_PM_PACKED:
case WMFW_HALO_XM_PACKED:
case WMFW_HALO_YM_PACKED:
mem = cs_dsp_find_region(dsp, type);
if (!mem) {
cs_dsp_err(dsp, "No region of type: %x\n", type);
ret = -EINVAL;
goto out_fw;
}
region_name = cs_dsp_mem_region_name(type);
reg = dsp->ops->region_to_reg(mem, offset);
break;
default:
cs_dsp_warn(dsp,
"%s.%d: Unknown region type %x at %d(%x)\n",
file, regions, type, pos, pos);
break;
}
cs_dsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file,
regions, le32_to_cpu(region->len), offset,
region_name);
if (le32_to_cpu(region->len) >
firmware->size - pos - sizeof(*region)) {
cs_dsp_err(dsp,
"%s.%d: %s region len %d bytes exceeds file length %zu\n",
file, regions, region_name,
le32_to_cpu(region->len), firmware->size);
ret = -EINVAL;
goto out_fw;
}
if (text) {
memcpy(text, region->data, le32_to_cpu(region->len));
cs_dsp_info(dsp, "%s: %s\n", file, text);
kfree(text);
text = NULL;
}
if (reg) {
buf = cs_dsp_buf_alloc(region->data,
le32_to_cpu(region->len),
&buf_list);
if (!buf) {
cs_dsp_err(dsp, "Out of memory\n");
ret = -ENOMEM;
goto out_fw;
}
ret = regmap_raw_write_async(regmap, reg, buf->buf,
le32_to_cpu(region->len));
if (ret != 0) {
cs_dsp_err(dsp,
"%s.%d: Failed to write %d bytes at %d in %s: %d\n",
file, regions,
le32_to_cpu(region->len), offset,
region_name, ret);
goto out_fw;
}
}
pos += le32_to_cpu(region->len) + sizeof(*region);
regions++;
}
ret = regmap_async_complete(regmap);
if (ret != 0) {
cs_dsp_err(dsp, "Failed to complete async write: %d\n", ret);
goto out_fw;
}
if (pos > firmware->size)
cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
file, regions, pos - firmware->size);
cs_dsp_debugfs_save_wmfwname(dsp, file);
out_fw:
regmap_async_complete(regmap);
cs_dsp_buf_free(&buf_list);
kfree(text);
return ret;
}
/**
* cs_dsp_get_ctl() - Finds a matching coefficient control
* @dsp: pointer to DSP structure
* @name: pointer to string to match with a control's subname
* @type: the algorithm type to match
* @alg: the algorithm id to match
*
* Find cs_dsp_coeff_ctl with input name as its subname
*
* Return: pointer to the control on success, NULL if not found
*/
struct cs_dsp_coeff_ctl *cs_dsp_get_ctl(struct cs_dsp *dsp, const char *name, int type,
unsigned int alg)
{
struct cs_dsp_coeff_ctl *pos, *rslt = NULL;
lockdep_assert_held(&dsp->pwr_lock);
list_for_each_entry(pos, &dsp->ctl_list, list) {
if (!pos->subname)
continue;
if (strncmp(pos->subname, name, pos->subname_len) == 0 &&
pos->fw_name == dsp->fw_name &&
pos->alg_region.alg == alg &&
pos->alg_region.type == type) {
rslt = pos;
break;
}
}
return rslt;
}
EXPORT_SYMBOL_GPL(cs_dsp_get_ctl);
static void cs_dsp_ctl_fixup_base(struct cs_dsp *dsp,
const struct cs_dsp_alg_region *alg_region)
{
struct cs_dsp_coeff_ctl *ctl;
list_for_each_entry(ctl, &dsp->ctl_list, list) {
if (ctl->fw_name == dsp->fw_name &&
alg_region->alg == ctl->alg_region.alg &&
alg_region->type == ctl->alg_region.type) {
ctl->alg_region.base = alg_region->base;
}
}
}
static void *cs_dsp_read_algs(struct cs_dsp *dsp, size_t n_algs,
const struct cs_dsp_region *mem,
unsigned int pos, unsigned int len)
{
void *alg;
unsigned int reg;
int ret;
__be32 val;
if (n_algs == 0) {
cs_dsp_err(dsp, "No algorithms\n");
return ERR_PTR(-EINVAL);
}
if (n_algs > 1024) {
cs_dsp_err(dsp, "Algorithm count %zx excessive\n", n_algs);
return ERR_PTR(-EINVAL);
}
/* Read the terminator first to validate the length */
reg = dsp->ops->region_to_reg(mem, pos + len);
ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
if (ret != 0) {
cs_dsp_err(dsp, "Failed to read algorithm list end: %d\n",
ret);
return ERR_PTR(ret);
}
if (be32_to_cpu(val) != 0xbedead)
cs_dsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbedead\n",
reg, be32_to_cpu(val));
/* Convert length from DSP words to bytes */
len *= sizeof(u32);
alg = kzalloc(len, GFP_KERNEL | GFP_DMA);
if (!alg)
return ERR_PTR(-ENOMEM);
reg = dsp->ops->region_to_reg(mem, pos);
ret = regmap_raw_read(dsp->regmap, reg, alg, len);
if (ret != 0) {
cs_dsp_err(dsp, "Failed to read algorithm list: %d\n", ret);
kfree(alg);
return ERR_PTR(ret);
}
return alg;
}
/**
* cs_dsp_find_alg_region() - Finds a matching algorithm region
* @dsp: pointer to DSP structure
* @type: the algorithm type to match
* @id: the algorithm id to match
*
* Return: Pointer to matching algorithm region, or NULL if not found.
*/
struct cs_dsp_alg_region *cs_dsp_find_alg_region(struct cs_dsp *dsp,
int type, unsigned int id)
{
struct cs_dsp_alg_region *alg_region;
lockdep_assert_held(&dsp->pwr_lock);
list_for_each_entry(alg_region, &dsp->alg_regions, list) {
if (id == alg_region->alg && type == alg_region->type)
return alg_region;
}
return NULL;
}
EXPORT_SYMBOL_GPL(cs_dsp_find_alg_region);
static struct cs_dsp_alg_region *cs_dsp_create_region(struct cs_dsp *dsp,
int type, __be32 id,
__be32 ver, __be32 base)
{
struct cs_dsp_alg_region *alg_region;
alg_region = kzalloc(sizeof(*alg_region), GFP_KERNEL);
if (!alg_region)
return ERR_PTR(-ENOMEM);
alg_region->type = type;
alg_region->alg = be32_to_cpu(id);
alg_region->ver = be32_to_cpu(ver);
alg_region->base = be32_to_cpu(base);
list_add_tail(&alg_region->list, &dsp->alg_regions);
if (dsp->fw_ver > 0)
cs_dsp_ctl_fixup_base(dsp, alg_region);
return alg_region;
}
static void cs_dsp_free_alg_regions(struct cs_dsp *dsp)
{
struct cs_dsp_alg_region *alg_region;
while (!list_empty(&dsp->alg_regions)) {
alg_region = list_first_entry(&dsp->alg_regions,
struct cs_dsp_alg_region,
list);
list_del(&alg_region->list);
kfree(alg_region);
}
}
static void cs_dsp_parse_wmfw_id_header(struct cs_dsp *dsp,
struct wmfw_id_hdr *fw, int nalgs)
{
dsp->fw_id = be32_to_cpu(fw->id);
dsp->fw_id_version = be32_to_cpu(fw->ver);
cs_dsp_info(dsp, "Firmware: %x v%d.%d.%d, %d algorithms\n",
dsp->fw_id, (dsp->fw_id_version & 0xff0000) >> 16,
(dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
nalgs);
}
static void cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp *dsp,
struct wmfw_v3_id_hdr *fw, int nalgs)
{
dsp->fw_id = be32_to_cpu(fw->id);
dsp->fw_id_version = be32_to_cpu(fw->ver);
dsp->fw_vendor_id = be32_to_cpu(fw->vendor_id);
cs_dsp_info(dsp, "Firmware: %x vendor: 0x%x v%d.%d.%d, %d algorithms\n",
dsp->fw_id, dsp->fw_vendor_id,
(dsp->fw_id_version & 0xff0000) >> 16,
(dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
nalgs);
}
static int cs_dsp_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
int nregions, const int *type, __be32 *base)
{
struct cs_dsp_alg_region *alg_region;
int i;
for (i = 0; i < nregions; i++) {
alg_region = cs_dsp_create_region(dsp, type[i], id, ver, base[i]);
if (IS_ERR(alg_region))
return PTR_ERR(alg_region);
}
return 0;
}
static int cs_dsp_adsp1_setup_algs(struct cs_dsp *dsp)
{
struct wmfw_adsp1_id_hdr adsp1_id;
struct wmfw_adsp1_alg_hdr *adsp1_alg;
struct cs_dsp_alg_region *alg_region;
const struct cs_dsp_region *mem;
unsigned int pos, len;
size_t n_algs;
int i, ret;
mem = cs_dsp_find_region(dsp, WMFW_ADSP1_DM);
if (WARN_ON(!mem))
return -EINVAL;
ret = regmap_raw_read(dsp->regmap, mem->base, &adsp1_id,
sizeof(adsp1_id));
if (ret != 0) {
cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
ret);
return ret;
}
n_algs = be32_to_cpu(adsp1_id.n_algs);
cs_dsp_parse_wmfw_id_header(dsp, &adsp1_id.fw, n_algs);
alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
adsp1_id.fw.id, adsp1_id.fw.ver,
adsp1_id.zm);
if (IS_ERR(alg_region))
return PTR_ERR(alg_region);
alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
adsp1_id.fw.id, adsp1_id.fw.ver,
adsp1_id.dm);
if (IS_ERR(alg_region))
return PTR_ERR(alg_region);
/* Calculate offset and length in DSP words */
pos = sizeof(adsp1_id) / sizeof(u32);
len = (sizeof(*adsp1_alg) * n_algs) / sizeof(u32);
adsp1_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
if (IS_ERR(adsp1_alg))
return PTR_ERR(adsp1_alg);
for (i = 0; i < n_algs; i++) {
cs_dsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n",
i, be32_to_cpu(adsp1_alg[i].alg.id),
(be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16,
(be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8,
be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff,
be32_to_cpu(adsp1_alg[i].dm),
be32_to_cpu(adsp1_alg[i].zm));
alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
adsp1_alg[i].alg.id,
adsp1_alg[i].alg.ver,
adsp1_alg[i].dm);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out;
}
if (dsp->fw_ver == 0) {
if (i + 1 < n_algs) {
len = be32_to_cpu(adsp1_alg[i + 1].dm);
len -= be32_to_cpu(adsp1_alg[i].dm);
len *= 4;
cs_dsp_create_control(dsp, alg_region, 0,
len, NULL, 0, 0,
WMFW_CTL_TYPE_BYTES);
} else {
cs_dsp_warn(dsp, "Missing length info for region DM with ID %x\n",
be32_to_cpu(adsp1_alg[i].alg.id));
}
}
alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
adsp1_alg[i].alg.id,
adsp1_alg[i].alg.ver,
adsp1_alg[i].zm);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out;
}
if (dsp->fw_ver == 0) {
if (i + 1 < n_algs) {
len = be32_to_cpu(adsp1_alg[i + 1].zm);
len -= be32_to_cpu(adsp1_alg[i].zm);
len *= 4;
cs_dsp_create_control(dsp, alg_region, 0,
len, NULL, 0, 0,
WMFW_CTL_TYPE_BYTES);
} else {
cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
be32_to_cpu(adsp1_alg[i].alg.id));
}
}
}
out:
kfree(adsp1_alg);
return ret;
}
static int cs_dsp_adsp2_setup_algs(struct cs_dsp *dsp)
{
struct wmfw_adsp2_id_hdr adsp2_id;
struct wmfw_adsp2_alg_hdr *adsp2_alg;
struct cs_dsp_alg_region *alg_region;
const struct cs_dsp_region *mem;
unsigned int pos, len;
size_t n_algs;
int i, ret;
mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
if (WARN_ON(!mem))
return -EINVAL;
ret = regmap_raw_read(dsp->regmap, mem->base, &adsp2_id,
sizeof(adsp2_id));
if (ret != 0) {
cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
ret);
return ret;
}
n_algs = be32_to_cpu(adsp2_id.n_algs);
cs_dsp_parse_wmfw_id_header(dsp, &adsp2_id.fw, n_algs);
alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
adsp2_id.fw.id, adsp2_id.fw.ver,
adsp2_id.xm);
if (IS_ERR(alg_region))
return PTR_ERR(alg_region);
alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
adsp2_id.fw.id, adsp2_id.fw.ver,
adsp2_id.ym);
if (IS_ERR(alg_region))
return PTR_ERR(alg_region);
alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
adsp2_id.fw.id, adsp2_id.fw.ver,
adsp2_id.zm);
if (IS_ERR(alg_region))
return PTR_ERR(alg_region);
/* Calculate offset and length in DSP words */
pos = sizeof(adsp2_id) / sizeof(u32);
len = (sizeof(*adsp2_alg) * n_algs) / sizeof(u32);
adsp2_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
if (IS_ERR(adsp2_alg))
return PTR_ERR(adsp2_alg);
for (i = 0; i < n_algs; i++) {
cs_dsp_info(dsp,
"%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n",
i, be32_to_cpu(adsp2_alg[i].alg.id),
(be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16,
(be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8,
be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff,
be32_to_cpu(adsp2_alg[i].xm),
be32_to_cpu(adsp2_alg[i].ym),
be32_to_cpu(adsp2_alg[i].zm));
alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
adsp2_alg[i].alg.id,
adsp2_alg[i].alg.ver,
adsp2_alg[i].xm);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out;
}
if (dsp->fw_ver == 0) {
if (i + 1 < n_algs) {
len = be32_to_cpu(adsp2_alg[i + 1].xm);
len -= be32_to_cpu(adsp2_alg[i].xm);
len *= 4;
cs_dsp_create_control(dsp, alg_region, 0,
len, NULL, 0, 0,
WMFW_CTL_TYPE_BYTES);
} else {
cs_dsp_warn(dsp, "Missing length info for region XM with ID %x\n",
be32_to_cpu(adsp2_alg[i].alg.id));
}
}
alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
adsp2_alg[i].alg.id,
adsp2_alg[i].alg.ver,
adsp2_alg[i].ym);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out;
}
if (dsp->fw_ver == 0) {
if (i + 1 < n_algs) {
len = be32_to_cpu(adsp2_alg[i + 1].ym);
len -= be32_to_cpu(adsp2_alg[i].ym);
len *= 4;
cs_dsp_create_control(dsp, alg_region, 0,
len, NULL, 0, 0,
WMFW_CTL_TYPE_BYTES);
} else {
cs_dsp_warn(dsp, "Missing length info for region YM with ID %x\n",
be32_to_cpu(adsp2_alg[i].alg.id));
}
}
alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
adsp2_alg[i].alg.id,
adsp2_alg[i].alg.ver,
adsp2_alg[i].zm);
if (IS_ERR(alg_region)) {
ret = PTR_ERR(alg_region);
goto out;
}
if (dsp->fw_ver == 0) {
if (i + 1 < n_algs) {
len = be32_to_cpu(adsp2_alg[i + 1].zm);
len -= be32_to_cpu(adsp2_alg[i].zm);
len *= 4;
cs_dsp_create_control(dsp, alg_region, 0,
len, NULL, 0, 0,
WMFW_CTL_TYPE_BYTES);
} else {
cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
be32_to_cpu(adsp2_alg[i].alg.id));
}
}
}
out:
kfree(adsp2_alg);
return ret;
}
static int cs_dsp_halo_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
__be32 xm_base, __be32 ym_base)
{
static const int types[] = {
WMFW_ADSP2_XM, WMFW_HALO_XM_PACKED,
WMFW_ADSP2_YM, WMFW_HALO_YM_PACKED
};
__be32 bases[] = { xm_base, xm_base, ym_base, ym_base };
return cs_dsp_create_regions(dsp, id, ver, ARRAY_SIZE(types), types, bases);
}
static int cs_dsp_halo_setup_algs(struct cs_dsp *dsp)
{
struct wmfw_halo_id_hdr halo_id;
struct wmfw_halo_alg_hdr *halo_alg;
const struct cs_dsp_region *mem;
unsigned int pos, len;
size_t n_algs;
int i, ret;
mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
if (WARN_ON(!mem))
return -EINVAL;
ret = regmap_raw_read(dsp->regmap, mem->base, &halo_id,
sizeof(halo_id));
if (ret != 0) {
cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
ret);
return ret;
}
n_algs = be32_to_cpu(halo_id.n_algs);
cs_dsp_parse_wmfw_v3_id_header(dsp, &halo_id.fw, n_algs);
ret = cs_dsp_halo_create_regions(dsp, halo_id.fw.id, halo_id.fw.ver,
halo_id.xm_base, halo_id.ym_base);
if (ret)
return ret;
/* Calculate offset and length in DSP words */
pos = sizeof(halo_id) / sizeof(u32);
len = (sizeof(*halo_alg) * n_algs) / sizeof(u32);
halo_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
if (IS_ERR(halo_alg))
return PTR_ERR(halo_alg);
for (i = 0; i < n_algs; i++) {
cs_dsp_info(dsp,
"%d: ID %x v%d.%d.%d XM@%x YM@%x\n",
i, be32_to_cpu(halo_alg[i].alg.id),
(be32_to_cpu(halo_alg[i].alg.ver) & 0xff0000) >> 16,
(be32_to_cpu(halo_alg[i].alg.ver) & 0xff00) >> 8,
be32_to_cpu(halo_alg[i].alg.ver) & 0xff,
be32_to_cpu(halo_alg[i].xm_base),
be32_to_cpu(halo_alg[i].ym_base));
ret = cs_dsp_halo_create_regions(dsp, halo_alg[i].alg.id,
halo_alg[i].alg.ver,
halo_alg[i].xm_base,
halo_alg[i].ym_base);
if (ret)
goto out;
}
out:
kfree(halo_alg);
return ret;
}
static int cs_dsp_load_coeff(struct cs_dsp *dsp, const struct firmware *firmware,
const char *file)
{
LIST_HEAD(buf_list);
struct regmap *regmap = dsp->regmap;
struct wmfw_coeff_hdr *hdr;
struct wmfw_coeff_item *blk;
const struct cs_dsp_region *mem;
struct cs_dsp_alg_region *alg_region;
const char *region_name;
int ret, pos, blocks, type, offset, reg, version;
char *text = NULL;
struct cs_dsp_buf *buf;
if (!firmware)
return 0;
ret = -EINVAL;
if (sizeof(*hdr) >= firmware->size) {
cs_dsp_err(dsp, "%s: coefficient file too short, %zu bytes\n",
file, firmware->size);
goto out_fw;
}
hdr = (void *)&firmware->data[0];
if (memcmp(hdr->magic, "WMDR", 4) != 0) {
cs_dsp_err(dsp, "%s: invalid coefficient magic\n", file);
goto out_fw;
}
switch (be32_to_cpu(hdr->rev) & 0xff) {
case 1:
case 2:
break;
default:
cs_dsp_err(dsp, "%s: Unsupported coefficient file format %d\n",
file, be32_to_cpu(hdr->rev) & 0xff);
ret = -EINVAL;
goto out_fw;
}
cs_dsp_dbg(dsp, "%s: v%d.%d.%d\n", file,
(le32_to_cpu(hdr->ver) >> 16) & 0xff,
(le32_to_cpu(hdr->ver) >> 8) & 0xff,
le32_to_cpu(hdr->ver) & 0xff);
pos = le32_to_cpu(hdr->len);
blocks = 0;
while (pos < firmware->size &&
sizeof(*blk) < firmware->size - pos) {
blk = (void *)(&firmware->data[pos]);
type = le16_to_cpu(blk->type);
offset = le16_to_cpu(blk->offset);
version = le32_to_cpu(blk->ver) >> 8;
cs_dsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n",
file, blocks, le32_to_cpu(blk->id),
(le32_to_cpu(blk->ver) >> 16) & 0xff,
(le32_to_cpu(blk->ver) >> 8) & 0xff,
le32_to_cpu(blk->ver) & 0xff);
cs_dsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n",
file, blocks, le32_to_cpu(blk->len), offset, type);
reg = 0;
region_name = "Unknown";
switch (type) {
case (WMFW_NAME_TEXT << 8):
text = kzalloc(le32_to_cpu(blk->len) + 1, GFP_KERNEL);
break;
case (WMFW_INFO_TEXT << 8):
case (WMFW_METADATA << 8):
break;
case (WMFW_ABSOLUTE << 8):
/*
* Old files may use this for global
* coefficients.
*/
if (le32_to_cpu(blk->id) == dsp->fw_id &&
offset == 0) {
region_name = "global coefficients";
mem = cs_dsp_find_region(dsp, type);
if (!mem) {
cs_dsp_err(dsp, "No ZM\n");
break;
}
reg = dsp->ops->region_to_reg(mem, 0);
} else {
region_name = "register";
reg = offset;
}
break;
case WMFW_ADSP1_DM:
case WMFW_ADSP1_ZM:
case WMFW_ADSP2_XM:
case WMFW_ADSP2_YM:
case WMFW_HALO_XM_PACKED:
case WMFW_HALO_YM_PACKED:
case WMFW_HALO_PM_PACKED:
cs_dsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n",
file, blocks, le32_to_cpu(blk->len),
type, le32_to_cpu(blk->id));
mem = cs_dsp_find_region(dsp, type);
if (!mem) {
cs_dsp_err(dsp, "No base for region %x\n", type);
break;
}
alg_region = cs_dsp_find_alg_region(dsp, type,
le32_to_cpu(blk->id));
if (alg_region) {
if (version != alg_region->ver)
cs_dsp_warn(dsp,
"Algorithm coefficient version %d.%d.%d but expected %d.%d.%d\n",
(version >> 16) & 0xFF,
(version >> 8) & 0xFF,
version & 0xFF,
(alg_region->ver >> 16) & 0xFF,
(alg_region->ver >> 8) & 0xFF,
alg_region->ver & 0xFF);
reg = alg_region->base;
reg = dsp->ops->region_to_reg(mem, reg);
reg += offset;
} else {
cs_dsp_err(dsp, "No %x for algorithm %x\n",
type, le32_to_cpu(blk->id));
}
break;
default:
cs_dsp_err(dsp, "%s.%d: Unknown region type %x at %d\n",
file, blocks, type, pos);
break;
}
if (text) {
memcpy(text, blk->data, le32_to_cpu(blk->len));
cs_dsp_info(dsp, "%s: %s\n", dsp->fw_name, text);
kfree(text);
text = NULL;
}
if (reg) {
if (le32_to_cpu(blk->len) >
firmware->size - pos - sizeof(*blk)) {
cs_dsp_err(dsp,
"%s.%d: %s region len %d bytes exceeds file length %zu\n",
file, blocks, region_name,
le32_to_cpu(blk->len),
firmware->size);
ret = -EINVAL;
goto out_fw;
}
buf = cs_dsp_buf_alloc(blk->data,
le32_to_cpu(blk->len),
&buf_list);
if (!buf) {
cs_dsp_err(dsp, "Out of memory\n");
ret = -ENOMEM;
goto out_fw;
}
cs_dsp_dbg(dsp, "%s.%d: Writing %d bytes at %x\n",
file, blocks, le32_to_cpu(blk->len),
reg);
ret = regmap_raw_write_async(regmap, reg, buf->buf,
le32_to_cpu(blk->len));
if (ret != 0) {
cs_dsp_err(dsp,
"%s.%d: Failed to write to %x in %s: %d\n",
file, blocks, reg, region_name, ret);
}
}
pos += (le32_to_cpu(blk->len) + sizeof(*blk) + 3) & ~0x03;
blocks++;
}
ret = regmap_async_complete(regmap);
if (ret != 0)
cs_dsp_err(dsp, "Failed to complete async write: %d\n", ret);
if (pos > firmware->size)
cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
file, blocks, pos - firmware->size);
cs_dsp_debugfs_save_binname(dsp, file);
out_fw:
regmap_async_complete(regmap);
cs_dsp_buf_free(&buf_list);
kfree(text);
return ret;
}
static int cs_dsp_create_name(struct cs_dsp *dsp)
{
if (!dsp->name) {
dsp->name = devm_kasprintf(dsp->dev, GFP_KERNEL, "DSP%d",
dsp->num);
if (!dsp->name)
return -ENOMEM;
}
return 0;
}
static int cs_dsp_common_init(struct cs_dsp *dsp)
{
int ret;
ret = cs_dsp_create_name(dsp);
if (ret)
return ret;
INIT_LIST_HEAD(&dsp->alg_regions);
INIT_LIST_HEAD(&dsp->ctl_list);
mutex_init(&dsp->pwr_lock);
return 0;
}
/**
* cs_dsp_adsp1_init() - Initialise a cs_dsp structure representing a ADSP1 device
* @dsp: pointer to DSP structure
*
* Return: Zero for success, a negative number on error.
*/
int cs_dsp_adsp1_init(struct cs_dsp *dsp)
{
dsp->ops = &cs_dsp_adsp1_ops;
return cs_dsp_common_init(dsp);
}
EXPORT_SYMBOL_GPL(cs_dsp_adsp1_init);
/**
* cs_dsp_adsp1_power_up() - Load and start the named firmware
* @dsp: pointer to DSP structure
* @wmfw_firmware: the firmware to be sent
* @wmfw_filename: file name of firmware to be sent
* @coeff_firmware: the coefficient data to be sent
* @coeff_filename: file name of coefficient to data be sent
* @fw_name: the user-friendly firmware name
*
* Return: Zero for success, a negative number on error.
*/
int cs_dsp_adsp1_power_up(struct cs_dsp *dsp,
const struct firmware *wmfw_firmware, char *wmfw_filename,
const struct firmware *coeff_firmware, char *coeff_filename,
const char *fw_name)
{
unsigned int val;
int ret;
mutex_lock(&dsp->pwr_lock);
dsp->fw_name = fw_name;
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
ADSP1_SYS_ENA, ADSP1_SYS_ENA);
/*
* For simplicity set the DSP clock rate to be the
* SYSCLK rate rather than making it configurable.
*/
if (dsp->sysclk_reg) {
ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val);
if (ret != 0) {
cs_dsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret);
goto err_mutex;
}
val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift;
ret = regmap_update_bits(dsp->regmap,
dsp->base + ADSP1_CONTROL_31,
ADSP1_CLK_SEL_MASK, val);
if (ret != 0) {
cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
goto err_mutex;
}
}
ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
if (ret != 0)
goto err_ena;
ret = cs_dsp_adsp1_setup_algs(dsp);
if (ret != 0)
goto err_ena;
ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
if (ret != 0)
goto err_ena;
/* Initialize caches for enabled and unset controls */
ret = cs_dsp_coeff_init_control_caches(dsp);
if (ret != 0)
goto err_ena;
/* Sync set controls */
ret = cs_dsp_coeff_sync_controls(dsp);
if (ret != 0)
goto err_ena;
dsp->booted = true;
/* Start the core running */
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
ADSP1_CORE_ENA | ADSP1_START,
ADSP1_CORE_ENA | ADSP1_START);
dsp->running = true;
mutex_unlock(&dsp->pwr_lock);
return 0;
err_ena:
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
ADSP1_SYS_ENA, 0);
err_mutex:
mutex_unlock(&dsp->pwr_lock);
return ret;
}
EXPORT_SYMBOL_GPL(cs_dsp_adsp1_power_up);
/**
* cs_dsp_adsp1_power_down() - Halts the DSP
* @dsp: pointer to DSP structure
*/
void cs_dsp_adsp1_power_down(struct cs_dsp *dsp)
{
struct cs_dsp_coeff_ctl *ctl;
mutex_lock(&dsp->pwr_lock);
dsp->running = false;
dsp->booted = false;
/* Halt the core */
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
ADSP1_CORE_ENA | ADSP1_START, 0);
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19,
ADSP1_WDMA_BUFFER_LENGTH_MASK, 0);
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
ADSP1_SYS_ENA, 0);
list_for_each_entry(ctl, &dsp->ctl_list, list)
ctl->enabled = 0;
cs_dsp_free_alg_regions(dsp);
mutex_unlock(&dsp->pwr_lock);
}
EXPORT_SYMBOL_GPL(cs_dsp_adsp1_power_down);
static int cs_dsp_adsp2v2_enable_core(struct cs_dsp *dsp)
{
unsigned int val;
int ret, count;
/* Wait for the RAM to start, should be near instantaneous */
for (count = 0; count < 10; ++count) {
ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val);
if (ret != 0)
return ret;
if (val & ADSP2_RAM_RDY)
break;
usleep_range(250, 500);
}
if (!(val & ADSP2_RAM_RDY)) {
cs_dsp_err(dsp, "Failed to start DSP RAM\n");
return -EBUSY;
}
cs_dsp_dbg(dsp, "RAM ready after %d polls\n", count);
return 0;
}
static int cs_dsp_adsp2_enable_core(struct cs_dsp *dsp)
{
int ret;
ret = regmap_update_bits_async(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_SYS_ENA, ADSP2_SYS_ENA);
if (ret != 0)
return ret;
return cs_dsp_adsp2v2_enable_core(dsp);
}
static int cs_dsp_adsp2_lock(struct cs_dsp *dsp, unsigned int lock_regions)
{
struct regmap *regmap = dsp->regmap;
unsigned int code0, code1, lock_reg;
if (!(lock_regions & CS_ADSP2_REGION_ALL))
return 0;
lock_regions &= CS_ADSP2_REGION_ALL;
lock_reg = dsp->base + ADSP2_LOCK_REGION_1_LOCK_REGION_0;
while (lock_regions) {
code0 = code1 = 0;
if (lock_regions & BIT(0)) {
code0 = ADSP2_LOCK_CODE_0;
code1 = ADSP2_LOCK_CODE_1;
}
if (lock_regions & BIT(1)) {
code0 |= ADSP2_LOCK_CODE_0 << ADSP2_LOCK_REGION_SHIFT;
code1 |= ADSP2_LOCK_CODE_1 << ADSP2_LOCK_REGION_SHIFT;
}
regmap_write(regmap, lock_reg, code0);
regmap_write(regmap, lock_reg, code1);
lock_regions >>= 2;
lock_reg += 2;
}
return 0;
}
static int cs_dsp_adsp2_enable_memory(struct cs_dsp *dsp)
{
return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_MEM_ENA, ADSP2_MEM_ENA);
}
static void cs_dsp_adsp2_disable_memory(struct cs_dsp *dsp)
{
regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_MEM_ENA, 0);
}
static void cs_dsp_adsp2_disable_core(struct cs_dsp *dsp)
{
regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_2, 0);
regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_SYS_ENA, 0);
}
static void cs_dsp_adsp2v2_disable_core(struct cs_dsp *dsp)
{
regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
regmap_write(dsp->regmap, dsp->base + ADSP2V2_WDMA_CONFIG_2, 0);
}
static int cs_dsp_halo_configure_mpu(struct cs_dsp *dsp, unsigned int lock_regions)
{
struct reg_sequence config[] = {
{ dsp->base + HALO_MPU_LOCK_CONFIG, 0x5555 },
{ dsp->base + HALO_MPU_LOCK_CONFIG, 0xAAAA },
{ dsp->base + HALO_MPU_XMEM_ACCESS_0, 0xFFFFFFFF },
{ dsp->base + HALO_MPU_YMEM_ACCESS_0, 0xFFFFFFFF },
{ dsp->base + HALO_MPU_WINDOW_ACCESS_0, lock_regions },
{ dsp->base + HALO_MPU_XREG_ACCESS_0, lock_regions },
{ dsp->base + HALO_MPU_YREG_ACCESS_0, lock_regions },
{ dsp->base + HALO_MPU_XMEM_ACCESS_1, 0xFFFFFFFF },
{ dsp->base + HALO_MPU_YMEM_ACCESS_1, 0xFFFFFFFF },
{ dsp->base + HALO_MPU_WINDOW_ACCESS_1, lock_regions },
{ dsp->base + HALO_MPU_XREG_ACCESS_1, lock_regions },
{ dsp->base + HALO_MPU_YREG_ACCESS_1, lock_regions },
{ dsp->base + HALO_MPU_XMEM_ACCESS_2, 0xFFFFFFFF },
{ dsp->base + HALO_MPU_YMEM_ACCESS_2, 0xFFFFFFFF },
{ dsp->base + HALO_MPU_WINDOW_ACCESS_2, lock_regions },
{ dsp->base + HALO_MPU_XREG_ACCESS_2, lock_regions },
{ dsp->base + HALO_MPU_YREG_ACCESS_2, lock_regions },
{ dsp->base + HALO_MPU_XMEM_ACCESS_3, 0xFFFFFFFF },
{ dsp->base + HALO_MPU_YMEM_ACCESS_3, 0xFFFFFFFF },
{ dsp->base + HALO_MPU_WINDOW_ACCESS_3, lock_regions },
{ dsp->base + HALO_MPU_XREG_ACCESS_3, lock_regions },
{ dsp->base + HALO_MPU_YREG_ACCESS_3, lock_regions },
{ dsp->base + HALO_MPU_LOCK_CONFIG, 0 },
};
return regmap_multi_reg_write(dsp->regmap, config, ARRAY_SIZE(config));
}
/**
* cs_dsp_set_dspclk() - Applies the given frequency to the given cs_dsp
* @dsp: pointer to DSP structure
* @freq: clock rate to set
*
* This is only for use on ADSP2 cores.
*
* Return: Zero for success, a negative number on error.
*/
int cs_dsp_set_dspclk(struct cs_dsp *dsp, unsigned int freq)
{
int ret;
ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CLOCKING,
ADSP2_CLK_SEL_MASK,
freq << ADSP2_CLK_SEL_SHIFT);
if (ret)
cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
return ret;
}
EXPORT_SYMBOL_GPL(cs_dsp_set_dspclk);
static void cs_dsp_stop_watchdog(struct cs_dsp *dsp)
{
regmap_update_bits(dsp->regmap, dsp->base + ADSP2_WATCHDOG,
ADSP2_WDT_ENA_MASK, 0);
}
static void cs_dsp_halo_stop_watchdog(struct cs_dsp *dsp)
{
regmap_update_bits(dsp->regmap, dsp->base + HALO_WDT_CONTROL,
HALO_WDT_EN_MASK, 0);
}
/**
* cs_dsp_power_up() - Downloads firmware to the DSP
* @dsp: pointer to DSP structure
* @wmfw_firmware: the firmware to be sent
* @wmfw_filename: file name of firmware to be sent
* @coeff_firmware: the coefficient data to be sent
* @coeff_filename: file name of coefficient to data be sent
* @fw_name: the user-friendly firmware name
*
* This function is used on ADSP2 and Halo DSP cores, it powers-up the DSP core
* and downloads the firmware but does not start the firmware running. The
* cs_dsp booted flag will be set once completed and if the core has a low-power
* memory retention mode it will be put into this state after the firmware is
* downloaded.
*
* Return: Zero for success, a negative number on error.
*/
int cs_dsp_power_up(struct cs_dsp *dsp,
const struct firmware *wmfw_firmware, char *wmfw_filename,
const struct firmware *coeff_firmware, char *coeff_filename,
const char *fw_name)
{
int ret;
mutex_lock(&dsp->pwr_lock);
dsp->fw_name = fw_name;
if (dsp->ops->enable_memory) {
ret = dsp->ops->enable_memory(dsp);
if (ret != 0)
goto err_mutex;
}
if (dsp->ops->enable_core) {
ret = dsp->ops->enable_core(dsp);
if (ret != 0)
goto err_mem;
}
ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
if (ret != 0)
goto err_ena;
ret = dsp->ops->setup_algs(dsp);
if (ret != 0)
goto err_ena;
ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
if (ret != 0)
goto err_ena;
/* Initialize caches for enabled and unset controls */
ret = cs_dsp_coeff_init_control_caches(dsp);
if (ret != 0)
goto err_ena;
if (dsp->ops->disable_core)
dsp->ops->disable_core(dsp);
dsp->booted = true;
mutex_unlock(&dsp->pwr_lock);
return 0;
err_ena:
if (dsp->ops->disable_core)
dsp->ops->disable_core(dsp);
err_mem:
if (dsp->ops->disable_memory)
dsp->ops->disable_memory(dsp);
err_mutex:
mutex_unlock(&dsp->pwr_lock);
return ret;
}
EXPORT_SYMBOL_GPL(cs_dsp_power_up);
/**
* cs_dsp_power_down() - Powers-down the DSP
* @dsp: pointer to DSP structure
*
* cs_dsp_stop() must have been called before this function. The core will be
* fully powered down and so the memory will not be retained.
*/
void cs_dsp_power_down(struct cs_dsp *dsp)
{
struct cs_dsp_coeff_ctl *ctl;
mutex_lock(&dsp->pwr_lock);
cs_dsp_debugfs_clear(dsp);
dsp->fw_id = 0;
dsp->fw_id_version = 0;
dsp->booted = false;
if (dsp->ops->disable_memory)
dsp->ops->disable_memory(dsp);
list_for_each_entry(ctl, &dsp->ctl_list, list)
ctl->enabled = 0;
cs_dsp_free_alg_regions(dsp);
mutex_unlock(&dsp->pwr_lock);
cs_dsp_dbg(dsp, "Shutdown complete\n");
}
EXPORT_SYMBOL_GPL(cs_dsp_power_down);
static int cs_dsp_adsp2_start_core(struct cs_dsp *dsp)
{
return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_CORE_ENA | ADSP2_START,
ADSP2_CORE_ENA | ADSP2_START);
}
static void cs_dsp_adsp2_stop_core(struct cs_dsp *dsp)
{
regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_CORE_ENA | ADSP2_START, 0);
}
/**
* cs_dsp_run() - Starts the firmware running
* @dsp: pointer to DSP structure
*
* cs_dsp_power_up() must have previously been called successfully.
*
* Return: Zero for success, a negative number on error.
*/
int cs_dsp_run(struct cs_dsp *dsp)
{
int ret;
mutex_lock(&dsp->pwr_lock);
if (!dsp->booted) {
ret = -EIO;
goto err;
}
if (dsp->ops->enable_core) {
ret = dsp->ops->enable_core(dsp);
if (ret != 0)
goto err;
}
if (dsp->client_ops->pre_run) {
ret = dsp->client_ops->pre_run(dsp);
if (ret)
goto err;
}
/* Sync set controls */
ret = cs_dsp_coeff_sync_controls(dsp);
if (ret != 0)
goto err;
if (dsp->ops->lock_memory) {
ret = dsp->ops->lock_memory(dsp, dsp->lock_regions);
if (ret != 0) {
cs_dsp_err(dsp, "Error configuring MPU: %d\n", ret);
goto err;
}
}
if (dsp->ops->start_core) {
ret = dsp->ops->start_core(dsp);
if (ret != 0)
goto err;
}
dsp->running = true;
if (dsp->client_ops->post_run) {
ret = dsp->client_ops->post_run(dsp);
if (ret)
goto err;
}
mutex_unlock(&dsp->pwr_lock);
return 0;
err:
if (dsp->ops->stop_core)
dsp->ops->stop_core(dsp);
if (dsp->ops->disable_core)
dsp->ops->disable_core(dsp);
mutex_unlock(&dsp->pwr_lock);
return ret;
}
EXPORT_SYMBOL_GPL(cs_dsp_run);
/**
* cs_dsp_stop() - Stops the firmware
* @dsp: pointer to DSP structure
*
* Memory will not be disabled so firmware will remain loaded.
*/
void cs_dsp_stop(struct cs_dsp *dsp)
{
/* Tell the firmware to cleanup */
cs_dsp_signal_event_controls(dsp, CS_DSP_FW_EVENT_SHUTDOWN);
if (dsp->ops->stop_watchdog)
dsp->ops->stop_watchdog(dsp);
/* Log firmware state, it can be useful for analysis */
if (dsp->ops->show_fw_status)
dsp->ops->show_fw_status(dsp);
mutex_lock(&dsp->pwr_lock);
if (dsp->client_ops->pre_stop)
dsp->client_ops->pre_stop(dsp);
dsp->running = false;
if (dsp->ops->stop_core)
dsp->ops->stop_core(dsp);
if (dsp->ops->disable_core)
dsp->ops->disable_core(dsp);
if (dsp->client_ops->post_stop)
dsp->client_ops->post_stop(dsp);
mutex_unlock(&dsp->pwr_lock);
cs_dsp_dbg(dsp, "Execution stopped\n");
}
EXPORT_SYMBOL_GPL(cs_dsp_stop);
static int cs_dsp_halo_start_core(struct cs_dsp *dsp)
{
int ret;
ret = regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
HALO_CORE_RESET | HALO_CORE_EN,
HALO_CORE_RESET | HALO_CORE_EN);
if (ret)
return ret;
return regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
HALO_CORE_RESET, 0);
}
static void cs_dsp_halo_stop_core(struct cs_dsp *dsp)
{
regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
HALO_CORE_EN, 0);
/* reset halo core with CORE_SOFT_RESET */
regmap_update_bits(dsp->regmap, dsp->base + HALO_CORE_SOFT_RESET,
HALO_CORE_SOFT_RESET_MASK, 1);
}
/**
* cs_dsp_adsp2_init() - Initialise a cs_dsp structure representing a ADSP2 core
* @dsp: pointer to DSP structure
*
* Return: Zero for success, a negative number on error.
*/
int cs_dsp_adsp2_init(struct cs_dsp *dsp)
{
int ret;
switch (dsp->rev) {
case 0:
/*
* Disable the DSP memory by default when in reset for a small
* power saving.
*/
ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_MEM_ENA, 0);
if (ret) {
cs_dsp_err(dsp,
"Failed to clear memory retention: %d\n", ret);
return ret;
}
dsp->ops = &cs_dsp_adsp2_ops[0];
break;
case 1:
dsp->ops = &cs_dsp_adsp2_ops[1];
break;
default:
dsp->ops = &cs_dsp_adsp2_ops[2];
break;
}
return cs_dsp_common_init(dsp);
}
EXPORT_SYMBOL_GPL(cs_dsp_adsp2_init);
/**
* cs_dsp_halo_init() - Initialise a cs_dsp structure representing a HALO Core DSP
* @dsp: pointer to DSP structure
*
* Return: Zero for success, a negative number on error.
*/
int cs_dsp_halo_init(struct cs_dsp *dsp)
{
dsp->ops = &cs_dsp_halo_ops;
return cs_dsp_common_init(dsp);
}
EXPORT_SYMBOL_GPL(cs_dsp_halo_init);
/**
* cs_dsp_remove() - Clean a cs_dsp before deletion
* @dsp: pointer to DSP structure
*/
void cs_dsp_remove(struct cs_dsp *dsp)
{
struct cs_dsp_coeff_ctl *ctl;
while (!list_empty(&dsp->ctl_list)) {
ctl = list_first_entry(&dsp->ctl_list, struct cs_dsp_coeff_ctl, list);
if (dsp->client_ops->control_remove)
dsp->client_ops->control_remove(ctl);
list_del(&ctl->list);
cs_dsp_free_ctl_blk(ctl);
}
}
EXPORT_SYMBOL_GPL(cs_dsp_remove);
/**
* cs_dsp_read_raw_data_block() - Reads a block of data from DSP memory
* @dsp: pointer to DSP structure
* @mem_type: the type of DSP memory containing the data to be read
* @mem_addr: the address of the data within the memory region
* @num_words: the length of the data to read
* @data: a buffer to store the fetched data
*
* If this is used to read unpacked 24-bit memory, each 24-bit DSP word will
* occupy 32-bits in data (MSbyte will be 0). This padding can be removed using
* cs_dsp_remove_padding()
*
* Return: Zero for success, a negative number on error.
*/
int cs_dsp_read_raw_data_block(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr,
unsigned int num_words, __be32 *data)
{
struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
unsigned int reg;
int ret;
lockdep_assert_held(&dsp->pwr_lock);
if (!mem)
return -EINVAL;
reg = dsp->ops->region_to_reg(mem, mem_addr);
ret = regmap_raw_read(dsp->regmap, reg, data,
sizeof(*data) * num_words);
if (ret < 0)
return ret;
return 0;
}
EXPORT_SYMBOL_GPL(cs_dsp_read_raw_data_block);
/**
* cs_dsp_read_data_word() - Reads a word from DSP memory
* @dsp: pointer to DSP structure
* @mem_type: the type of DSP memory containing the data to be read
* @mem_addr: the address of the data within the memory region
* @data: a buffer to store the fetched data
*
* Return: Zero for success, a negative number on error.
*/
int cs_dsp_read_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 *data)
{
__be32 raw;
int ret;
ret = cs_dsp_read_raw_data_block(dsp, mem_type, mem_addr, 1, &raw);
if (ret < 0)
return ret;
*data = be32_to_cpu(raw) & 0x00ffffffu;
return 0;
}
EXPORT_SYMBOL_GPL(cs_dsp_read_data_word);
/**
* cs_dsp_write_data_word() - Writes a word to DSP memory
* @dsp: pointer to DSP structure
* @mem_type: the type of DSP memory containing the data to be written
* @mem_addr: the address of the data within the memory region
* @data: the data to be written
*
* Return: Zero for success, a negative number on error.
*/
int cs_dsp_write_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 data)
{
struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
__be32 val = cpu_to_be32(data & 0x00ffffffu);
unsigned int reg;
lockdep_assert_held(&dsp->pwr_lock);
if (!mem)
return -EINVAL;
reg = dsp->ops->region_to_reg(mem, mem_addr);
return regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
}
EXPORT_SYMBOL_GPL(cs_dsp_write_data_word);
/**
* cs_dsp_remove_padding() - Convert unpacked words to packed bytes
* @buf: buffer containing DSP words read from DSP memory
* @nwords: number of words to convert
*
* DSP words from the register map have pad bytes and the data bytes
* are in swapped order. This swaps to the native endian order and
* strips the pad bytes.
*/
void cs_dsp_remove_padding(u32 *buf, int nwords)
{
const __be32 *pack_in = (__be32 *)buf;
u8 *pack_out = (u8 *)buf;
int i;
for (i = 0; i < nwords; i++) {
u32 word = be32_to_cpu(*pack_in++);
*pack_out++ = (u8)word;
*pack_out++ = (u8)(word >> 8);
*pack_out++ = (u8)(word >> 16);
}
}
EXPORT_SYMBOL_GPL(cs_dsp_remove_padding);
/**
* cs_dsp_adsp2_bus_error() - Handle a DSP bus error interrupt
* @dsp: pointer to DSP structure
*
* The firmware and DSP state will be logged for future analysis.
*/
void cs_dsp_adsp2_bus_error(struct cs_dsp *dsp)
{
unsigned int val;
struct regmap *regmap = dsp->regmap;
int ret = 0;
mutex_lock(&dsp->pwr_lock);
ret = regmap_read(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL, &val);
if (ret) {
cs_dsp_err(dsp,
"Failed to read Region Lock Ctrl register: %d\n", ret);
goto error;
}
if (val & ADSP2_WDT_TIMEOUT_STS_MASK) {
cs_dsp_err(dsp, "watchdog timeout error\n");
dsp->ops->stop_watchdog(dsp);
if (dsp->client_ops->watchdog_expired)
dsp->client_ops->watchdog_expired(dsp);
}
if (val & (ADSP2_ADDR_ERR_MASK | ADSP2_REGION_LOCK_ERR_MASK)) {
if (val & ADSP2_ADDR_ERR_MASK)
cs_dsp_err(dsp, "bus error: address error\n");
else
cs_dsp_err(dsp, "bus error: region lock error\n");
ret = regmap_read(regmap, dsp->base + ADSP2_BUS_ERR_ADDR, &val);
if (ret) {
cs_dsp_err(dsp,
"Failed to read Bus Err Addr register: %d\n",
ret);
goto error;
}
cs_dsp_err(dsp, "bus error address = 0x%x\n",
val & ADSP2_BUS_ERR_ADDR_MASK);
ret = regmap_read(regmap,
dsp->base + ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR,
&val);
if (ret) {
cs_dsp_err(dsp,
"Failed to read Pmem Xmem Err Addr register: %d\n",
ret);
goto error;
}
cs_dsp_err(dsp, "xmem error address = 0x%x\n",
val & ADSP2_XMEM_ERR_ADDR_MASK);
cs_dsp_err(dsp, "pmem error address = 0x%x\n",
(val & ADSP2_PMEM_ERR_ADDR_MASK) >>
ADSP2_PMEM_ERR_ADDR_SHIFT);
}
regmap_update_bits(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL,
ADSP2_CTRL_ERR_EINT, ADSP2_CTRL_ERR_EINT);
error:
mutex_unlock(&dsp->pwr_lock);
}
EXPORT_SYMBOL_GPL(cs_dsp_adsp2_bus_error);
/**
* cs_dsp_halo_bus_error() - Handle a DSP bus error interrupt
* @dsp: pointer to DSP structure
*
* The firmware and DSP state will be logged for future analysis.
*/
void cs_dsp_halo_bus_error(struct cs_dsp *dsp)
{
struct regmap *regmap = dsp->regmap;
unsigned int fault[6];
struct reg_sequence clear[] = {
{ dsp->base + HALO_MPU_XM_VIO_STATUS, 0x0 },
{ dsp->base + HALO_MPU_YM_VIO_STATUS, 0x0 },
{ dsp->base + HALO_MPU_PM_VIO_STATUS, 0x0 },
};
int ret;
mutex_lock(&dsp->pwr_lock);
ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_1,
fault);
if (ret) {
cs_dsp_warn(dsp, "Failed to read AHB DEBUG_1: %d\n", ret);
goto exit_unlock;
}
cs_dsp_warn(dsp, "AHB: STATUS: 0x%x ADDR: 0x%x\n",
*fault & HALO_AHBM_FLAGS_ERR_MASK,
(*fault & HALO_AHBM_CORE_ERR_ADDR_MASK) >>
HALO_AHBM_CORE_ERR_ADDR_SHIFT);
ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_0,
fault);
if (ret) {
cs_dsp_warn(dsp, "Failed to read AHB DEBUG_0: %d\n", ret);
goto exit_unlock;
}
cs_dsp_warn(dsp, "AHB: SYS_ADDR: 0x%x\n", *fault);
ret = regmap_bulk_read(regmap, dsp->base + HALO_MPU_XM_VIO_ADDR,
fault, ARRAY_SIZE(fault));
if (ret) {
cs_dsp_warn(dsp, "Failed to read MPU fault info: %d\n", ret);
goto exit_unlock;
}
cs_dsp_warn(dsp, "XM: STATUS:0x%x ADDR:0x%x\n", fault[1], fault[0]);
cs_dsp_warn(dsp, "YM: STATUS:0x%x ADDR:0x%x\n", fault[3], fault[2]);
cs_dsp_warn(dsp, "PM: STATUS:0x%x ADDR:0x%x\n", fault[5], fault[4]);
ret = regmap_multi_reg_write(dsp->regmap, clear, ARRAY_SIZE(clear));
if (ret)
cs_dsp_warn(dsp, "Failed to clear MPU status: %d\n", ret);
exit_unlock:
mutex_unlock(&dsp->pwr_lock);
}
EXPORT_SYMBOL_GPL(cs_dsp_halo_bus_error);
/**
* cs_dsp_halo_wdt_expire() - Handle DSP watchdog expiry
* @dsp: pointer to DSP structure
*
* This is logged for future analysis.
*/
void cs_dsp_halo_wdt_expire(struct cs_dsp *dsp)
{
mutex_lock(&dsp->pwr_lock);
cs_dsp_warn(dsp, "WDT Expiry Fault\n");
dsp->ops->stop_watchdog(dsp);
if (dsp->client_ops->watchdog_expired)
dsp->client_ops->watchdog_expired(dsp);
mutex_unlock(&dsp->pwr_lock);
}
EXPORT_SYMBOL_GPL(cs_dsp_halo_wdt_expire);
static const struct cs_dsp_ops cs_dsp_adsp1_ops = {
.validate_version = cs_dsp_validate_version,
.parse_sizes = cs_dsp_adsp1_parse_sizes,
.region_to_reg = cs_dsp_region_to_reg,
};
static const struct cs_dsp_ops cs_dsp_adsp2_ops[] = {
{
.parse_sizes = cs_dsp_adsp2_parse_sizes,
.validate_version = cs_dsp_validate_version,
.setup_algs = cs_dsp_adsp2_setup_algs,
.region_to_reg = cs_dsp_region_to_reg,
.show_fw_status = cs_dsp_adsp2_show_fw_status,
.enable_memory = cs_dsp_adsp2_enable_memory,
.disable_memory = cs_dsp_adsp2_disable_memory,
.enable_core = cs_dsp_adsp2_enable_core,
.disable_core = cs_dsp_adsp2_disable_core,
.start_core = cs_dsp_adsp2_start_core,
.stop_core = cs_dsp_adsp2_stop_core,
},
{
.parse_sizes = cs_dsp_adsp2_parse_sizes,
.validate_version = cs_dsp_validate_version,
.setup_algs = cs_dsp_adsp2_setup_algs,
.region_to_reg = cs_dsp_region_to_reg,
.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
.enable_memory = cs_dsp_adsp2_enable_memory,
.disable_memory = cs_dsp_adsp2_disable_memory,
.lock_memory = cs_dsp_adsp2_lock,
.enable_core = cs_dsp_adsp2v2_enable_core,
.disable_core = cs_dsp_adsp2v2_disable_core,
.start_core = cs_dsp_adsp2_start_core,
.stop_core = cs_dsp_adsp2_stop_core,
},
{
.parse_sizes = cs_dsp_adsp2_parse_sizes,
.validate_version = cs_dsp_validate_version,
.setup_algs = cs_dsp_adsp2_setup_algs,
.region_to_reg = cs_dsp_region_to_reg,
.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
.stop_watchdog = cs_dsp_stop_watchdog,
.enable_memory = cs_dsp_adsp2_enable_memory,
.disable_memory = cs_dsp_adsp2_disable_memory,
.lock_memory = cs_dsp_adsp2_lock,
.enable_core = cs_dsp_adsp2v2_enable_core,
.disable_core = cs_dsp_adsp2v2_disable_core,
.start_core = cs_dsp_adsp2_start_core,
.stop_core = cs_dsp_adsp2_stop_core,
},
};
static const struct cs_dsp_ops cs_dsp_halo_ops = {
.parse_sizes = cs_dsp_adsp2_parse_sizes,
.validate_version = cs_dsp_halo_validate_version,
.setup_algs = cs_dsp_halo_setup_algs,
.region_to_reg = cs_dsp_halo_region_to_reg,
.show_fw_status = cs_dsp_halo_show_fw_status,
.stop_watchdog = cs_dsp_halo_stop_watchdog,
.lock_memory = cs_dsp_halo_configure_mpu,
.start_core = cs_dsp_halo_start_core,
.stop_core = cs_dsp_halo_stop_core,
};
/**
* cs_dsp_chunk_write() - Format data to a DSP memory chunk
* @ch: Pointer to the chunk structure
* @nbits: Number of bits to write
* @val: Value to write
*
* This function sequentially writes values into the format required for DSP
* memory, it handles both inserting of the padding bytes and converting to
* big endian. Note that data is only committed to the chunk when a whole DSP
* words worth of data is available.
*
* Return: Zero for success, a negative number on error.
*/
int cs_dsp_chunk_write(struct cs_dsp_chunk *ch, int nbits, u32 val)
{
int nwrite, i;
nwrite = min(CS_DSP_DATA_WORD_BITS - ch->cachebits, nbits);
ch->cache <<= nwrite;
ch->cache |= val >> (nbits - nwrite);
ch->cachebits += nwrite;
nbits -= nwrite;
if (ch->cachebits == CS_DSP_DATA_WORD_BITS) {
if (cs_dsp_chunk_end(ch))
return -ENOSPC;
ch->cache &= 0xFFFFFF;
for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
*ch->data++ = (ch->cache & 0xFF000000) >> CS_DSP_DATA_WORD_BITS;
ch->bytes += sizeof(ch->cache);
ch->cachebits = 0;
}
if (nbits)
return cs_dsp_chunk_write(ch, nbits, val);
return 0;
}
EXPORT_SYMBOL_GPL(cs_dsp_chunk_write);
/**
* cs_dsp_chunk_flush() - Pad remaining data with zero and commit to chunk
* @ch: Pointer to the chunk structure
*
* As cs_dsp_chunk_write only writes data when a whole DSP word is ready to
* be written out it is possible that some data will remain in the cache, this
* function will pad that data with zeros upto a whole DSP word and write out.
*
* Return: Zero for success, a negative number on error.
*/
int cs_dsp_chunk_flush(struct cs_dsp_chunk *ch)
{
if (!ch->cachebits)
return 0;
return cs_dsp_chunk_write(ch, CS_DSP_DATA_WORD_BITS - ch->cachebits, 0);
}
EXPORT_SYMBOL_GPL(cs_dsp_chunk_flush);
/**
* cs_dsp_chunk_read() - Parse data from a DSP memory chunk
* @ch: Pointer to the chunk structure
* @nbits: Number of bits to read
*
* This function sequentially reads values from a DSP memory formatted buffer,
* it handles both removing of the padding bytes and converting from big endian.
*
* Return: A negative number is returned on error, otherwise the read value.
*/
int cs_dsp_chunk_read(struct cs_dsp_chunk *ch, int nbits)
{
int nread, i;
u32 result;
if (!ch->cachebits) {
if (cs_dsp_chunk_end(ch))
return -ENOSPC;
ch->cache = 0;
ch->cachebits = CS_DSP_DATA_WORD_BITS;
for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
ch->cache |= *ch->data++;
ch->bytes += sizeof(ch->cache);
}
nread = min(ch->cachebits, nbits);
nbits -= nread;
result = ch->cache >> ((sizeof(ch->cache) * BITS_PER_BYTE) - nread);
ch->cache <<= nread;
ch->cachebits -= nread;
if (nbits)
result = (result << nbits) | cs_dsp_chunk_read(ch, nbits);
return result;
}
EXPORT_SYMBOL_GPL(cs_dsp_chunk_read);
MODULE_DESCRIPTION("Cirrus Logic DSP Support");
MODULE_AUTHOR("Simon Trimmer <simont@opensource.cirrus.com>");
MODULE_LICENSE("GPL v2");