linux/drivers/dma-buf/heaps/system_heap.c
John Stultz 2eebbdbaab dma-buf: heaps: Fix the name used when exporting dmabufs to be the actual heap name
By default dma_buf_export() sets the exporter name to be
KBUILD_MODNAME. Unfortunately this may not be identical to the
string used as the heap name (ie: "system" vs "system_heap").

This can cause some minor confusion with tooling, and there is
the future potential where multiple heap types may be exported
by the same module (but would all have the same name).

So to avoid all this, set the exporter exp_name to the heap name.

Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Liam Mark <lmark@codeaurora.org>
Cc: Chris Goldsworthy <cgoldswo@codeaurora.org>
Cc: Laura Abbott <labbott@kernel.org>
Cc: Brian Starkey <Brian.Starkey@arm.com>
Cc: Hridya Valsaraju <hridya@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Sandeep Patil <sspatil@google.com>
Cc: Daniel Mentz <danielmentz@google.com>
Cc: Ørjan Eide <orjan.eide@arm.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Ezequiel Garcia <ezequiel@collabora.com>
Cc: Simon Ser <contact@emersion.fr>
Cc: James Jones <jajones@nvidia.com>
Cc: linux-media@vger.kernel.org
Cc: dri-devel@lists.freedesktop.org
Signed-off-by: John Stultz <john.stultz@linaro.org>
Acked-by: Daniel Vetter <daniel@ffwll.ch>
Signed-off-by: Sumit Semwal <sumit.semwal@linaro.org>
Link: https://patchwork.freedesktop.org/patch/msgid/20210209194818.2459062-2-john.stultz@linaro.org
2021-02-25 18:28:24 +05:30

440 lines
10 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* DMABUF System heap exporter
*
* Copyright (C) 2011 Google, Inc.
* Copyright (C) 2019, 2020 Linaro Ltd.
*
* Portions based off of Andrew Davis' SRAM heap:
* Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/
* Andrew F. Davis <afd@ti.com>
*/
#include <linux/dma-buf.h>
#include <linux/dma-mapping.h>
#include <linux/dma-heap.h>
#include <linux/err.h>
#include <linux/highmem.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
static struct dma_heap *sys_heap;
struct system_heap_buffer {
struct dma_heap *heap;
struct list_head attachments;
struct mutex lock;
unsigned long len;
struct sg_table sg_table;
int vmap_cnt;
void *vaddr;
};
struct dma_heap_attachment {
struct device *dev;
struct sg_table *table;
struct list_head list;
bool mapped;
};
#define HIGH_ORDER_GFP (((GFP_HIGHUSER | __GFP_ZERO | __GFP_NOWARN \
| __GFP_NORETRY) & ~__GFP_RECLAIM) \
| __GFP_COMP)
#define LOW_ORDER_GFP (GFP_HIGHUSER | __GFP_ZERO | __GFP_COMP)
static gfp_t order_flags[] = {HIGH_ORDER_GFP, LOW_ORDER_GFP, LOW_ORDER_GFP};
/*
* The selection of the orders used for allocation (1MB, 64K, 4K) is designed
* to match with the sizes often found in IOMMUs. Using order 4 pages instead
* of order 0 pages can significantly improve the performance of many IOMMUs
* by reducing TLB pressure and time spent updating page tables.
*/
static const unsigned int orders[] = {8, 4, 0};
#define NUM_ORDERS ARRAY_SIZE(orders)
static struct sg_table *dup_sg_table(struct sg_table *table)
{
struct sg_table *new_table;
int ret, i;
struct scatterlist *sg, *new_sg;
new_table = kzalloc(sizeof(*new_table), GFP_KERNEL);
if (!new_table)
return ERR_PTR(-ENOMEM);
ret = sg_alloc_table(new_table, table->orig_nents, GFP_KERNEL);
if (ret) {
kfree(new_table);
return ERR_PTR(-ENOMEM);
}
new_sg = new_table->sgl;
for_each_sgtable_sg(table, sg, i) {
sg_set_page(new_sg, sg_page(sg), sg->length, sg->offset);
new_sg = sg_next(new_sg);
}
return new_table;
}
static int system_heap_attach(struct dma_buf *dmabuf,
struct dma_buf_attachment *attachment)
{
struct system_heap_buffer *buffer = dmabuf->priv;
struct dma_heap_attachment *a;
struct sg_table *table;
a = kzalloc(sizeof(*a), GFP_KERNEL);
if (!a)
return -ENOMEM;
table = dup_sg_table(&buffer->sg_table);
if (IS_ERR(table)) {
kfree(a);
return -ENOMEM;
}
a->table = table;
a->dev = attachment->dev;
INIT_LIST_HEAD(&a->list);
a->mapped = false;
attachment->priv = a;
mutex_lock(&buffer->lock);
list_add(&a->list, &buffer->attachments);
mutex_unlock(&buffer->lock);
return 0;
}
static void system_heap_detach(struct dma_buf *dmabuf,
struct dma_buf_attachment *attachment)
{
struct system_heap_buffer *buffer = dmabuf->priv;
struct dma_heap_attachment *a = attachment->priv;
mutex_lock(&buffer->lock);
list_del(&a->list);
mutex_unlock(&buffer->lock);
sg_free_table(a->table);
kfree(a->table);
kfree(a);
}
static struct sg_table *system_heap_map_dma_buf(struct dma_buf_attachment *attachment,
enum dma_data_direction direction)
{
struct dma_heap_attachment *a = attachment->priv;
struct sg_table *table = a->table;
int ret;
ret = dma_map_sgtable(attachment->dev, table, direction, 0);
if (ret)
return ERR_PTR(ret);
a->mapped = true;
return table;
}
static void system_heap_unmap_dma_buf(struct dma_buf_attachment *attachment,
struct sg_table *table,
enum dma_data_direction direction)
{
struct dma_heap_attachment *a = attachment->priv;
a->mapped = false;
dma_unmap_sgtable(attachment->dev, table, direction, 0);
}
static int system_heap_dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
enum dma_data_direction direction)
{
struct system_heap_buffer *buffer = dmabuf->priv;
struct dma_heap_attachment *a;
mutex_lock(&buffer->lock);
if (buffer->vmap_cnt)
invalidate_kernel_vmap_range(buffer->vaddr, buffer->len);
list_for_each_entry(a, &buffer->attachments, list) {
if (!a->mapped)
continue;
dma_sync_sgtable_for_cpu(a->dev, a->table, direction);
}
mutex_unlock(&buffer->lock);
return 0;
}
static int system_heap_dma_buf_end_cpu_access(struct dma_buf *dmabuf,
enum dma_data_direction direction)
{
struct system_heap_buffer *buffer = dmabuf->priv;
struct dma_heap_attachment *a;
mutex_lock(&buffer->lock);
if (buffer->vmap_cnt)
flush_kernel_vmap_range(buffer->vaddr, buffer->len);
list_for_each_entry(a, &buffer->attachments, list) {
if (!a->mapped)
continue;
dma_sync_sgtable_for_device(a->dev, a->table, direction);
}
mutex_unlock(&buffer->lock);
return 0;
}
static int system_heap_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma)
{
struct system_heap_buffer *buffer = dmabuf->priv;
struct sg_table *table = &buffer->sg_table;
unsigned long addr = vma->vm_start;
struct sg_page_iter piter;
int ret;
for_each_sgtable_page(table, &piter, vma->vm_pgoff) {
struct page *page = sg_page_iter_page(&piter);
ret = remap_pfn_range(vma, addr, page_to_pfn(page), PAGE_SIZE,
vma->vm_page_prot);
if (ret)
return ret;
addr += PAGE_SIZE;
if (addr >= vma->vm_end)
return 0;
}
return 0;
}
static void *system_heap_do_vmap(struct system_heap_buffer *buffer)
{
struct sg_table *table = &buffer->sg_table;
int npages = PAGE_ALIGN(buffer->len) / PAGE_SIZE;
struct page **pages = vmalloc(sizeof(struct page *) * npages);
struct page **tmp = pages;
struct sg_page_iter piter;
void *vaddr;
if (!pages)
return ERR_PTR(-ENOMEM);
for_each_sgtable_page(table, &piter, 0) {
WARN_ON(tmp - pages >= npages);
*tmp++ = sg_page_iter_page(&piter);
}
vaddr = vmap(pages, npages, VM_MAP, PAGE_KERNEL);
vfree(pages);
if (!vaddr)
return ERR_PTR(-ENOMEM);
return vaddr;
}
static int system_heap_vmap(struct dma_buf *dmabuf, struct dma_buf_map *map)
{
struct system_heap_buffer *buffer = dmabuf->priv;
void *vaddr;
int ret = 0;
mutex_lock(&buffer->lock);
if (buffer->vmap_cnt) {
buffer->vmap_cnt++;
dma_buf_map_set_vaddr(map, buffer->vaddr);
goto out;
}
vaddr = system_heap_do_vmap(buffer);
if (IS_ERR(vaddr)) {
ret = PTR_ERR(vaddr);
goto out;
}
buffer->vaddr = vaddr;
buffer->vmap_cnt++;
dma_buf_map_set_vaddr(map, buffer->vaddr);
out:
mutex_unlock(&buffer->lock);
return ret;
}
static void system_heap_vunmap(struct dma_buf *dmabuf, struct dma_buf_map *map)
{
struct system_heap_buffer *buffer = dmabuf->priv;
mutex_lock(&buffer->lock);
if (!--buffer->vmap_cnt) {
vunmap(buffer->vaddr);
buffer->vaddr = NULL;
}
mutex_unlock(&buffer->lock);
dma_buf_map_clear(map);
}
static void system_heap_dma_buf_release(struct dma_buf *dmabuf)
{
struct system_heap_buffer *buffer = dmabuf->priv;
struct sg_table *table;
struct scatterlist *sg;
int i;
table = &buffer->sg_table;
for_each_sg(table->sgl, sg, table->nents, i) {
struct page *page = sg_page(sg);
__free_pages(page, compound_order(page));
}
sg_free_table(table);
kfree(buffer);
}
static const struct dma_buf_ops system_heap_buf_ops = {
.attach = system_heap_attach,
.detach = system_heap_detach,
.map_dma_buf = system_heap_map_dma_buf,
.unmap_dma_buf = system_heap_unmap_dma_buf,
.begin_cpu_access = system_heap_dma_buf_begin_cpu_access,
.end_cpu_access = system_heap_dma_buf_end_cpu_access,
.mmap = system_heap_mmap,
.vmap = system_heap_vmap,
.vunmap = system_heap_vunmap,
.release = system_heap_dma_buf_release,
};
static struct page *alloc_largest_available(unsigned long size,
unsigned int max_order)
{
struct page *page;
int i;
for (i = 0; i < NUM_ORDERS; i++) {
if (size < (PAGE_SIZE << orders[i]))
continue;
if (max_order < orders[i])
continue;
page = alloc_pages(order_flags[i], orders[i]);
if (!page)
continue;
return page;
}
return NULL;
}
static struct dma_buf *system_heap_allocate(struct dma_heap *heap,
unsigned long len,
unsigned long fd_flags,
unsigned long heap_flags)
{
struct system_heap_buffer *buffer;
DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
unsigned long size_remaining = len;
unsigned int max_order = orders[0];
struct dma_buf *dmabuf;
struct sg_table *table;
struct scatterlist *sg;
struct list_head pages;
struct page *page, *tmp_page;
int i, ret = -ENOMEM;
buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
if (!buffer)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&buffer->attachments);
mutex_init(&buffer->lock);
buffer->heap = heap;
buffer->len = len;
INIT_LIST_HEAD(&pages);
i = 0;
while (size_remaining > 0) {
/*
* Avoid trying to allocate memory if the process
* has been killed by SIGKILL
*/
if (fatal_signal_pending(current)) {
ret = -EINTR;
goto free_buffer;
}
page = alloc_largest_available(size_remaining, max_order);
if (!page)
goto free_buffer;
list_add_tail(&page->lru, &pages);
size_remaining -= page_size(page);
max_order = compound_order(page);
i++;
}
table = &buffer->sg_table;
if (sg_alloc_table(table, i, GFP_KERNEL))
goto free_buffer;
sg = table->sgl;
list_for_each_entry_safe(page, tmp_page, &pages, lru) {
sg_set_page(sg, page, page_size(page), 0);
sg = sg_next(sg);
list_del(&page->lru);
}
/* create the dmabuf */
exp_info.exp_name = dma_heap_get_name(heap);
exp_info.ops = &system_heap_buf_ops;
exp_info.size = buffer->len;
exp_info.flags = fd_flags;
exp_info.priv = buffer;
dmabuf = dma_buf_export(&exp_info);
if (IS_ERR(dmabuf)) {
ret = PTR_ERR(dmabuf);
goto free_pages;
}
return dmabuf;
free_pages:
for_each_sgtable_sg(table, sg, i) {
struct page *p = sg_page(sg);
__free_pages(p, compound_order(p));
}
sg_free_table(table);
free_buffer:
list_for_each_entry_safe(page, tmp_page, &pages, lru)
__free_pages(page, compound_order(page));
kfree(buffer);
return ERR_PTR(ret);
}
static const struct dma_heap_ops system_heap_ops = {
.allocate = system_heap_allocate,
};
static int system_heap_create(void)
{
struct dma_heap_export_info exp_info;
exp_info.name = "system";
exp_info.ops = &system_heap_ops;
exp_info.priv = NULL;
sys_heap = dma_heap_add(&exp_info);
if (IS_ERR(sys_heap))
return PTR_ERR(sys_heap);
return 0;
}
module_init(system_heap_create);
MODULE_LICENSE("GPL v2");