mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-18 16:44:27 +08:00
91caa5ae24
In function sched_core_update_cookie(), a task will enqueue into the core tree only when it enqueued before, that is, if an uncookied task is cookied, it will not enqueue into the core tree until it enqueue again, which will result in unnecessary force idle. Here follows the scenario: CPU x and CPU y are a pair of SMT siblings. 1. Start task a running on CPU x without sleeping, and task b and task c running on CPU y without sleeping. 2. We create a cookie and share it to task a and task b, and then we create another cookie and share it to task c. 3. Simpling core_forceidle_sum of task a and b from /proc/PID/sched And we will find out that core_forceidle_sum of task a takes 30% time of the sampling period, which shouldn't happen as task a and b have the same cookie. Then we migrate task a to CPU x', migrate task b and c to CPU y', where CPU x' and CPU y' are a pair of SMT siblings, and sampling again, we will found out that core_forceidle_sum of task a and b are almost zero. To solve this problem, we enqueue the task into the core tree if it's on rq. Fixes: 6e33cad0af49("sched: Trivial core scheduling cookie management") Signed-off-by: Cruz Zhao <CruzZhao@linux.alibaba.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/1656403045-100840-2-git-send-email-CruzZhao@linux.alibaba.com
301 lines
6.8 KiB
C
301 lines
6.8 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
|
|
/*
|
|
* A simple wrapper around refcount. An allocated sched_core_cookie's
|
|
* address is used to compute the cookie of the task.
|
|
*/
|
|
struct sched_core_cookie {
|
|
refcount_t refcnt;
|
|
};
|
|
|
|
static unsigned long sched_core_alloc_cookie(void)
|
|
{
|
|
struct sched_core_cookie *ck = kmalloc(sizeof(*ck), GFP_KERNEL);
|
|
if (!ck)
|
|
return 0;
|
|
|
|
refcount_set(&ck->refcnt, 1);
|
|
sched_core_get();
|
|
|
|
return (unsigned long)ck;
|
|
}
|
|
|
|
static void sched_core_put_cookie(unsigned long cookie)
|
|
{
|
|
struct sched_core_cookie *ptr = (void *)cookie;
|
|
|
|
if (ptr && refcount_dec_and_test(&ptr->refcnt)) {
|
|
kfree(ptr);
|
|
sched_core_put();
|
|
}
|
|
}
|
|
|
|
static unsigned long sched_core_get_cookie(unsigned long cookie)
|
|
{
|
|
struct sched_core_cookie *ptr = (void *)cookie;
|
|
|
|
if (ptr)
|
|
refcount_inc(&ptr->refcnt);
|
|
|
|
return cookie;
|
|
}
|
|
|
|
/*
|
|
* sched_core_update_cookie - replace the cookie on a task
|
|
* @p: the task to update
|
|
* @cookie: the new cookie
|
|
*
|
|
* Effectively exchange the task cookie; caller is responsible for lifetimes on
|
|
* both ends.
|
|
*
|
|
* Returns: the old cookie
|
|
*/
|
|
static unsigned long sched_core_update_cookie(struct task_struct *p,
|
|
unsigned long cookie)
|
|
{
|
|
unsigned long old_cookie;
|
|
struct rq_flags rf;
|
|
struct rq *rq;
|
|
|
|
rq = task_rq_lock(p, &rf);
|
|
|
|
/*
|
|
* Since creating a cookie implies sched_core_get(), and we cannot set
|
|
* a cookie until after we've created it, similarly, we cannot destroy
|
|
* a cookie until after we've removed it, we must have core scheduling
|
|
* enabled here.
|
|
*/
|
|
SCHED_WARN_ON((p->core_cookie || cookie) && !sched_core_enabled(rq));
|
|
|
|
if (sched_core_enqueued(p))
|
|
sched_core_dequeue(rq, p, DEQUEUE_SAVE);
|
|
|
|
old_cookie = p->core_cookie;
|
|
p->core_cookie = cookie;
|
|
|
|
/*
|
|
* Consider the cases: !prev_cookie and !cookie.
|
|
*/
|
|
if (cookie && task_on_rq_queued(p))
|
|
sched_core_enqueue(rq, p);
|
|
|
|
/*
|
|
* If task is currently running, it may not be compatible anymore after
|
|
* the cookie change, so enter the scheduler on its CPU to schedule it
|
|
* away.
|
|
*
|
|
* Note that it is possible that as a result of this cookie change, the
|
|
* core has now entered/left forced idle state. Defer accounting to the
|
|
* next scheduling edge, rather than always forcing a reschedule here.
|
|
*/
|
|
if (task_running(rq, p))
|
|
resched_curr(rq);
|
|
|
|
task_rq_unlock(rq, p, &rf);
|
|
|
|
return old_cookie;
|
|
}
|
|
|
|
static unsigned long sched_core_clone_cookie(struct task_struct *p)
|
|
{
|
|
unsigned long cookie, flags;
|
|
|
|
raw_spin_lock_irqsave(&p->pi_lock, flags);
|
|
cookie = sched_core_get_cookie(p->core_cookie);
|
|
raw_spin_unlock_irqrestore(&p->pi_lock, flags);
|
|
|
|
return cookie;
|
|
}
|
|
|
|
void sched_core_fork(struct task_struct *p)
|
|
{
|
|
RB_CLEAR_NODE(&p->core_node);
|
|
p->core_cookie = sched_core_clone_cookie(current);
|
|
}
|
|
|
|
void sched_core_free(struct task_struct *p)
|
|
{
|
|
sched_core_put_cookie(p->core_cookie);
|
|
}
|
|
|
|
static void __sched_core_set(struct task_struct *p, unsigned long cookie)
|
|
{
|
|
cookie = sched_core_get_cookie(cookie);
|
|
cookie = sched_core_update_cookie(p, cookie);
|
|
sched_core_put_cookie(cookie);
|
|
}
|
|
|
|
/* Called from prctl interface: PR_SCHED_CORE */
|
|
int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
|
|
unsigned long uaddr)
|
|
{
|
|
unsigned long cookie = 0, id = 0;
|
|
struct task_struct *task, *p;
|
|
struct pid *grp;
|
|
int err = 0;
|
|
|
|
if (!static_branch_likely(&sched_smt_present))
|
|
return -ENODEV;
|
|
|
|
BUILD_BUG_ON(PR_SCHED_CORE_SCOPE_THREAD != PIDTYPE_PID);
|
|
BUILD_BUG_ON(PR_SCHED_CORE_SCOPE_THREAD_GROUP != PIDTYPE_TGID);
|
|
BUILD_BUG_ON(PR_SCHED_CORE_SCOPE_PROCESS_GROUP != PIDTYPE_PGID);
|
|
|
|
if (type > PIDTYPE_PGID || cmd >= PR_SCHED_CORE_MAX || pid < 0 ||
|
|
(cmd != PR_SCHED_CORE_GET && uaddr))
|
|
return -EINVAL;
|
|
|
|
rcu_read_lock();
|
|
if (pid == 0) {
|
|
task = current;
|
|
} else {
|
|
task = find_task_by_vpid(pid);
|
|
if (!task) {
|
|
rcu_read_unlock();
|
|
return -ESRCH;
|
|
}
|
|
}
|
|
get_task_struct(task);
|
|
rcu_read_unlock();
|
|
|
|
/*
|
|
* Check if this process has the right to modify the specified
|
|
* process. Use the regular "ptrace_may_access()" checks.
|
|
*/
|
|
if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
|
|
err = -EPERM;
|
|
goto out;
|
|
}
|
|
|
|
switch (cmd) {
|
|
case PR_SCHED_CORE_GET:
|
|
if (type != PIDTYPE_PID || uaddr & 7) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
cookie = sched_core_clone_cookie(task);
|
|
if (cookie) {
|
|
/* XXX improve ? */
|
|
ptr_to_hashval((void *)cookie, &id);
|
|
}
|
|
err = put_user(id, (u64 __user *)uaddr);
|
|
goto out;
|
|
|
|
case PR_SCHED_CORE_CREATE:
|
|
cookie = sched_core_alloc_cookie();
|
|
if (!cookie) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
break;
|
|
|
|
case PR_SCHED_CORE_SHARE_TO:
|
|
cookie = sched_core_clone_cookie(current);
|
|
break;
|
|
|
|
case PR_SCHED_CORE_SHARE_FROM:
|
|
if (type != PIDTYPE_PID) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
cookie = sched_core_clone_cookie(task);
|
|
__sched_core_set(current, cookie);
|
|
goto out;
|
|
|
|
default:
|
|
err = -EINVAL;
|
|
goto out;
|
|
};
|
|
|
|
if (type == PIDTYPE_PID) {
|
|
__sched_core_set(task, cookie);
|
|
goto out;
|
|
}
|
|
|
|
read_lock(&tasklist_lock);
|
|
grp = task_pid_type(task, type);
|
|
|
|
do_each_pid_thread(grp, type, p) {
|
|
if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS)) {
|
|
err = -EPERM;
|
|
goto out_tasklist;
|
|
}
|
|
} while_each_pid_thread(grp, type, p);
|
|
|
|
do_each_pid_thread(grp, type, p) {
|
|
__sched_core_set(p, cookie);
|
|
} while_each_pid_thread(grp, type, p);
|
|
out_tasklist:
|
|
read_unlock(&tasklist_lock);
|
|
|
|
out:
|
|
sched_core_put_cookie(cookie);
|
|
put_task_struct(task);
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_SCHEDSTATS
|
|
|
|
/* REQUIRES: rq->core's clock recently updated. */
|
|
void __sched_core_account_forceidle(struct rq *rq)
|
|
{
|
|
const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq));
|
|
u64 delta, now = rq_clock(rq->core);
|
|
struct rq *rq_i;
|
|
struct task_struct *p;
|
|
int i;
|
|
|
|
lockdep_assert_rq_held(rq);
|
|
|
|
WARN_ON_ONCE(!rq->core->core_forceidle_count);
|
|
|
|
if (rq->core->core_forceidle_start == 0)
|
|
return;
|
|
|
|
delta = now - rq->core->core_forceidle_start;
|
|
if (unlikely((s64)delta <= 0))
|
|
return;
|
|
|
|
rq->core->core_forceidle_start = now;
|
|
|
|
if (WARN_ON_ONCE(!rq->core->core_forceidle_occupation)) {
|
|
/* can't be forced idle without a running task */
|
|
} else if (rq->core->core_forceidle_count > 1 ||
|
|
rq->core->core_forceidle_occupation > 1) {
|
|
/*
|
|
* For larger SMT configurations, we need to scale the charged
|
|
* forced idle amount since there can be more than one forced
|
|
* idle sibling and more than one running cookied task.
|
|
*/
|
|
delta *= rq->core->core_forceidle_count;
|
|
delta = div_u64(delta, rq->core->core_forceidle_occupation);
|
|
}
|
|
|
|
for_each_cpu(i, smt_mask) {
|
|
rq_i = cpu_rq(i);
|
|
p = rq_i->core_pick ?: rq_i->curr;
|
|
|
|
if (p == rq_i->idle)
|
|
continue;
|
|
|
|
/*
|
|
* Note: this will account forceidle to the current cpu, even
|
|
* if it comes from our SMT sibling.
|
|
*/
|
|
__account_forceidle_time(p, delta);
|
|
}
|
|
}
|
|
|
|
void __sched_core_tick(struct rq *rq)
|
|
{
|
|
if (!rq->core->core_forceidle_count)
|
|
return;
|
|
|
|
if (rq != rq->core)
|
|
update_rq_clock(rq->core);
|
|
|
|
__sched_core_account_forceidle(rq);
|
|
}
|
|
|
|
#endif /* CONFIG_SCHEDSTATS */
|