linux/drivers/net/ipa/ipa_cmd.c
Alex Elder 51c48ce264 net: ipa: signal when tag transfer completes
There are times, such as when the modem crashes, when we issue
commands to clear the IPA hardware pipeline.  These commands include
a data transfer command that delivers a small packet directly to the
default (AP<-LAN RX) endpoint.

The places that do this wait for the transactions that contain these
commands to complete, but the pipeline can't be assumed clear until
the sent packet has been *received*.

The small transfer will be delivered with a status structure, and
that status will indicate its tag is valid.  This is the only place
we send a tagged packet, so we use the tag to determine when the
pipeline clear packet has arrived.

Add a completion to the IPA structure to to be used to signal
the receipt of a pipeline clear packet.  Create a new function
ipa_cmd_pipeline_clear_wait() that will wait for that completion.

Reinitialize the completion whenever pipeline clear commands are
added to a transaction.  Extend ipa_endpoint_status_tag() to check
whether a packet whose status contains a valid tag was sent from the
AP->command TX endpoint, and if so, signal the new IPA completion.

Have all callers of ipa_cmd_pipeline_clear_add() wait for the
pipeline clear indication after the transaction that clears the
pipeline has completed.

Signed-off-by: Alex Elder <elder@linaro.org>
Acked-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-28 20:23:26 -08:00

648 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
* Copyright (C) 2019-2020 Linaro Ltd.
*/
#include <linux/types.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/bitfield.h>
#include <linux/dma-direction.h>
#include "gsi.h"
#include "gsi_trans.h"
#include "ipa.h"
#include "ipa_endpoint.h"
#include "ipa_table.h"
#include "ipa_cmd.h"
#include "ipa_mem.h"
/**
* DOC: IPA Immediate Commands
*
* The AP command TX endpoint is used to issue immediate commands to the IPA.
* An immediate command is generally used to request the IPA do something
* other than data transfer to another endpoint.
*
* Immediate commands are represented by GSI transactions just like other
* transfer requests, represented by a single GSI TRE. Each immediate
* command has a well-defined format, having a payload of a known length.
* This allows the transfer element's length field to be used to hold an
* immediate command's opcode. The payload for a command resides in DRAM
* and is described by a single scatterlist entry in its transaction.
* Commands do not require a transaction completion callback. To commit
* an immediate command transaction, either gsi_trans_commit_wait() or
* gsi_trans_commit_wait_timeout() is used.
*/
/* Some commands can wait until indicated pipeline stages are clear */
enum pipeline_clear_options {
pipeline_clear_hps = 0x0,
pipeline_clear_src_grp = 0x1,
pipeline_clear_full = 0x2,
};
/* IPA_CMD_IP_V{4,6}_{FILTER,ROUTING}_INIT */
struct ipa_cmd_hw_ip_fltrt_init {
__le64 hash_rules_addr;
__le64 flags;
__le64 nhash_rules_addr;
};
/* Field masks for ipa_cmd_hw_ip_fltrt_init structure fields */
#define IP_FLTRT_FLAGS_HASH_SIZE_FMASK GENMASK_ULL(11, 0)
#define IP_FLTRT_FLAGS_HASH_ADDR_FMASK GENMASK_ULL(27, 12)
#define IP_FLTRT_FLAGS_NHASH_SIZE_FMASK GENMASK_ULL(39, 28)
#define IP_FLTRT_FLAGS_NHASH_ADDR_FMASK GENMASK_ULL(55, 40)
/* IPA_CMD_HDR_INIT_LOCAL */
struct ipa_cmd_hw_hdr_init_local {
__le64 hdr_table_addr;
__le32 flags;
__le32 reserved;
};
/* Field masks for ipa_cmd_hw_hdr_init_local structure fields */
#define HDR_INIT_LOCAL_FLAGS_TABLE_SIZE_FMASK GENMASK(11, 0)
#define HDR_INIT_LOCAL_FLAGS_HDR_ADDR_FMASK GENMASK(27, 12)
/* IPA_CMD_REGISTER_WRITE */
/* For IPA v4.0+, this opcode gets modified with pipeline clear options */
#define REGISTER_WRITE_OPCODE_SKIP_CLEAR_FMASK GENMASK(8, 8)
#define REGISTER_WRITE_OPCODE_CLEAR_OPTION_FMASK GENMASK(10, 9)
struct ipa_cmd_register_write {
__le16 flags; /* Unused/reserved for IPA v3.5.1 */
__le16 offset;
__le32 value;
__le32 value_mask;
__le32 clear_options; /* Unused/reserved for IPA v4.0+ */
};
/* Field masks for ipa_cmd_register_write structure fields */
/* The next field is present for IPA v4.0 and above */
#define REGISTER_WRITE_FLAGS_OFFSET_HIGH_FMASK GENMASK(14, 11)
/* The next field is present for IPA v3.5.1 only */
#define REGISTER_WRITE_FLAGS_SKIP_CLEAR_FMASK GENMASK(15, 15)
/* The next field and its values are present for IPA v3.5.1 only */
#define REGISTER_WRITE_CLEAR_OPTIONS_FMASK GENMASK(1, 0)
/* IPA_CMD_IP_PACKET_INIT */
struct ipa_cmd_ip_packet_init {
u8 dest_endpoint;
u8 reserved[7];
};
/* Field masks for ipa_cmd_ip_packet_init dest_endpoint field */
#define IPA_PACKET_INIT_DEST_ENDPOINT_FMASK GENMASK(4, 0)
/* IPA_CMD_DMA_SHARED_MEM */
/* For IPA v4.0+, this opcode gets modified with pipeline clear options */
#define DMA_SHARED_MEM_OPCODE_SKIP_CLEAR_FMASK GENMASK(8, 8)
#define DMA_SHARED_MEM_OPCODE_CLEAR_OPTION_FMASK GENMASK(10, 9)
struct ipa_cmd_hw_dma_mem_mem {
__le16 clear_after_read; /* 0 or DMA_SHARED_MEM_CLEAR_AFTER_READ */
__le16 size;
__le16 local_addr;
__le16 flags;
__le64 system_addr;
};
/* Flag allowing atomic clear of target region after reading data (v4.0+)*/
#define DMA_SHARED_MEM_CLEAR_AFTER_READ GENMASK(15, 15)
/* Field masks for ipa_cmd_hw_dma_mem_mem structure fields */
#define DMA_SHARED_MEM_FLAGS_DIRECTION_FMASK GENMASK(0, 0)
/* The next two fields are present for IPA v3.5.1 only. */
#define DMA_SHARED_MEM_FLAGS_SKIP_CLEAR_FMASK GENMASK(1, 1)
#define DMA_SHARED_MEM_FLAGS_CLEAR_OPTIONS_FMASK GENMASK(3, 2)
/* IPA_CMD_IP_PACKET_TAG_STATUS */
struct ipa_cmd_ip_packet_tag_status {
__le64 tag;
};
#define IP_PACKET_TAG_STATUS_TAG_FMASK GENMASK_ULL(63, 16)
/* Immediate command payload */
union ipa_cmd_payload {
struct ipa_cmd_hw_ip_fltrt_init table_init;
struct ipa_cmd_hw_hdr_init_local hdr_init_local;
struct ipa_cmd_register_write register_write;
struct ipa_cmd_ip_packet_init ip_packet_init;
struct ipa_cmd_hw_dma_mem_mem dma_shared_mem;
struct ipa_cmd_ip_packet_tag_status ip_packet_tag_status;
};
static void ipa_cmd_validate_build(void)
{
/* The sizes of a filter and route tables need to fit into fields
* in the ipa_cmd_hw_ip_fltrt_init structure. Although hashed tables
* might not be used, non-hashed and hashed tables have the same
* maximum size. IPv4 and IPv6 filter tables have the same number
* of entries, as and IPv4 and IPv6 route tables have the same number
* of entries.
*/
#define TABLE_SIZE (TABLE_COUNT_MAX * IPA_TABLE_ENTRY_SIZE)
#define TABLE_COUNT_MAX max_t(u32, IPA_ROUTE_COUNT_MAX, IPA_FILTER_COUNT_MAX)
BUILD_BUG_ON(TABLE_SIZE > field_max(IP_FLTRT_FLAGS_HASH_SIZE_FMASK));
BUILD_BUG_ON(TABLE_SIZE > field_max(IP_FLTRT_FLAGS_NHASH_SIZE_FMASK));
#undef TABLE_COUNT_MAX
#undef TABLE_SIZE
}
#ifdef IPA_VALIDATE
/* Validate a memory region holding a table */
bool ipa_cmd_table_valid(struct ipa *ipa, const struct ipa_mem *mem,
bool route, bool ipv6, bool hashed)
{
struct device *dev = &ipa->pdev->dev;
u32 offset_max;
offset_max = hashed ? field_max(IP_FLTRT_FLAGS_HASH_ADDR_FMASK)
: field_max(IP_FLTRT_FLAGS_NHASH_ADDR_FMASK);
if (mem->offset > offset_max ||
ipa->mem_offset > offset_max - mem->offset) {
dev_err(dev, "IPv%c %s%s table region offset too large "
"(0x%04x + 0x%04x > 0x%04x)\n",
ipv6 ? '6' : '4', hashed ? "hashed " : "",
route ? "route" : "filter",
ipa->mem_offset, mem->offset, offset_max);
return false;
}
if (mem->offset > ipa->mem_size ||
mem->size > ipa->mem_size - mem->offset) {
dev_err(dev, "IPv%c %s%s table region out of range "
"(0x%04x + 0x%04x > 0x%04x)\n",
ipv6 ? '6' : '4', hashed ? "hashed " : "",
route ? "route" : "filter",
mem->offset, mem->size, ipa->mem_size);
return false;
}
return true;
}
/* Validate the memory region that holds headers */
static bool ipa_cmd_header_valid(struct ipa *ipa)
{
const struct ipa_mem *mem = &ipa->mem[IPA_MEM_MODEM_HEADER];
struct device *dev = &ipa->pdev->dev;
u32 offset_max;
u32 size_max;
u32 size;
offset_max = field_max(HDR_INIT_LOCAL_FLAGS_HDR_ADDR_FMASK);
if (mem->offset > offset_max ||
ipa->mem_offset > offset_max - mem->offset) {
dev_err(dev, "header table region offset too large "
"(0x%04x + 0x%04x > 0x%04x)\n",
ipa->mem_offset + mem->offset, offset_max);
return false;
}
size_max = field_max(HDR_INIT_LOCAL_FLAGS_TABLE_SIZE_FMASK);
size = ipa->mem[IPA_MEM_MODEM_HEADER].size;
size += ipa->mem[IPA_MEM_AP_HEADER].size;
if (mem->offset > ipa->mem_size || size > ipa->mem_size - mem->offset) {
dev_err(dev, "header table region out of range "
"(0x%04x + 0x%04x > 0x%04x)\n",
mem->offset, size, ipa->mem_size);
return false;
}
return true;
}
/* Indicate whether an offset can be used with a register_write command */
static bool ipa_cmd_register_write_offset_valid(struct ipa *ipa,
const char *name, u32 offset)
{
struct ipa_cmd_register_write *payload;
struct device *dev = &ipa->pdev->dev;
u32 offset_max;
u32 bit_count;
/* The maximum offset in a register_write immediate command depends
* on the version of IPA. IPA v3.5.1 supports a 16 bit offset, but
* newer versions allow some additional high-order bits.
*/
bit_count = BITS_PER_BYTE * sizeof(payload->offset);
if (ipa->version != IPA_VERSION_3_5_1)
bit_count += hweight32(REGISTER_WRITE_FLAGS_OFFSET_HIGH_FMASK);
BUILD_BUG_ON(bit_count > 32);
offset_max = ~0 >> (32 - bit_count);
if (offset > offset_max || ipa->mem_offset > offset_max - offset) {
dev_err(dev, "%s offset too large 0x%04x + 0x%04x > 0x%04x)\n",
ipa->mem_offset + offset, offset_max);
return false;
}
return true;
}
/* Check whether offsets passed to register_write are valid */
static bool ipa_cmd_register_write_valid(struct ipa *ipa)
{
const char *name;
u32 offset;
offset = ipa_reg_filt_rout_hash_flush_offset(ipa->version);
name = "filter/route hash flush";
if (!ipa_cmd_register_write_offset_valid(ipa, name, offset))
return false;
offset = IPA_REG_ENDP_STATUS_N_OFFSET(IPA_ENDPOINT_COUNT);
name = "maximal endpoint status";
if (!ipa_cmd_register_write_offset_valid(ipa, name, offset))
return false;
return true;
}
bool ipa_cmd_data_valid(struct ipa *ipa)
{
if (!ipa_cmd_header_valid(ipa))
return false;
if (!ipa_cmd_register_write_valid(ipa))
return false;
return true;
}
#endif /* IPA_VALIDATE */
int ipa_cmd_pool_init(struct gsi_channel *channel, u32 tre_max)
{
struct gsi_trans_info *trans_info = &channel->trans_info;
struct device *dev = channel->gsi->dev;
int ret;
/* This is as good a place as any to validate build constants */
ipa_cmd_validate_build();
/* Even though command payloads are allocated one at a time,
* a single transaction can require up to tlv_count of them,
* so we treat them as if that many can be allocated at once.
*/
ret = gsi_trans_pool_init_dma(dev, &trans_info->cmd_pool,
sizeof(union ipa_cmd_payload),
tre_max, channel->tlv_count);
if (ret)
return ret;
/* Each TRE needs a command info structure */
ret = gsi_trans_pool_init(&trans_info->info_pool,
sizeof(struct ipa_cmd_info),
tre_max, channel->tlv_count);
if (ret)
gsi_trans_pool_exit_dma(dev, &trans_info->cmd_pool);
return ret;
}
void ipa_cmd_pool_exit(struct gsi_channel *channel)
{
struct gsi_trans_info *trans_info = &channel->trans_info;
struct device *dev = channel->gsi->dev;
gsi_trans_pool_exit(&trans_info->info_pool);
gsi_trans_pool_exit_dma(dev, &trans_info->cmd_pool);
}
static union ipa_cmd_payload *
ipa_cmd_payload_alloc(struct ipa *ipa, dma_addr_t *addr)
{
struct gsi_trans_info *trans_info;
struct ipa_endpoint *endpoint;
endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
trans_info = &ipa->gsi.channel[endpoint->channel_id].trans_info;
return gsi_trans_pool_alloc_dma(&trans_info->cmd_pool, addr);
}
/* If hash_size is 0, hash_offset and hash_addr ignored. */
void ipa_cmd_table_init_add(struct gsi_trans *trans,
enum ipa_cmd_opcode opcode, u16 size, u32 offset,
dma_addr_t addr, u16 hash_size, u32 hash_offset,
dma_addr_t hash_addr)
{
struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi);
enum dma_data_direction direction = DMA_TO_DEVICE;
struct ipa_cmd_hw_ip_fltrt_init *payload;
union ipa_cmd_payload *cmd_payload;
dma_addr_t payload_addr;
u64 val;
/* Record the non-hash table offset and size */
offset += ipa->mem_offset;
val = u64_encode_bits(offset, IP_FLTRT_FLAGS_NHASH_ADDR_FMASK);
val |= u64_encode_bits(size, IP_FLTRT_FLAGS_NHASH_SIZE_FMASK);
/* The hash table offset and address are zero if its size is 0 */
if (hash_size) {
/* Record the hash table offset and size */
hash_offset += ipa->mem_offset;
val |= u64_encode_bits(hash_offset,
IP_FLTRT_FLAGS_HASH_ADDR_FMASK);
val |= u64_encode_bits(hash_size,
IP_FLTRT_FLAGS_HASH_SIZE_FMASK);
}
cmd_payload = ipa_cmd_payload_alloc(ipa, &payload_addr);
payload = &cmd_payload->table_init;
/* Fill in all offsets and sizes and the non-hash table address */
if (hash_size)
payload->hash_rules_addr = cpu_to_le64(hash_addr);
payload->flags = cpu_to_le64(val);
payload->nhash_rules_addr = cpu_to_le64(addr);
gsi_trans_cmd_add(trans, payload, sizeof(*payload), payload_addr,
direction, opcode);
}
/* Initialize header space in IPA-local memory */
void ipa_cmd_hdr_init_local_add(struct gsi_trans *trans, u32 offset, u16 size,
dma_addr_t addr)
{
struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi);
enum ipa_cmd_opcode opcode = IPA_CMD_HDR_INIT_LOCAL;
enum dma_data_direction direction = DMA_TO_DEVICE;
struct ipa_cmd_hw_hdr_init_local *payload;
union ipa_cmd_payload *cmd_payload;
dma_addr_t payload_addr;
u32 flags;
offset += ipa->mem_offset;
/* With this command we tell the IPA where in its local memory the
* header tables reside. The content of the buffer provided is
* also written via DMA into that space. The IPA hardware owns
* the table, but the AP must initialize it.
*/
cmd_payload = ipa_cmd_payload_alloc(ipa, &payload_addr);
payload = &cmd_payload->hdr_init_local;
payload->hdr_table_addr = cpu_to_le64(addr);
flags = u32_encode_bits(size, HDR_INIT_LOCAL_FLAGS_TABLE_SIZE_FMASK);
flags |= u32_encode_bits(offset, HDR_INIT_LOCAL_FLAGS_HDR_ADDR_FMASK);
payload->flags = cpu_to_le32(flags);
gsi_trans_cmd_add(trans, payload, sizeof(*payload), payload_addr,
direction, opcode);
}
void ipa_cmd_register_write_add(struct gsi_trans *trans, u32 offset, u32 value,
u32 mask, bool clear_full)
{
struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi);
struct ipa_cmd_register_write *payload;
union ipa_cmd_payload *cmd_payload;
u32 opcode = IPA_CMD_REGISTER_WRITE;
dma_addr_t payload_addr;
u32 clear_option;
u32 options;
u16 flags;
/* pipeline_clear_src_grp is not used */
clear_option = clear_full ? pipeline_clear_full : pipeline_clear_hps;
if (ipa->version != IPA_VERSION_3_5_1) {
u16 offset_high;
u32 val;
/* Opcode encodes pipeline clear options */
/* SKIP_CLEAR is always 0 (don't skip pipeline clear) */
val = u16_encode_bits(clear_option,
REGISTER_WRITE_OPCODE_CLEAR_OPTION_FMASK);
opcode |= val;
/* Extract the high 4 bits from the offset */
offset_high = (u16)u32_get_bits(offset, GENMASK(19, 16));
offset &= (1 << 16) - 1;
/* Extract the top 4 bits and encode it into the flags field */
flags = u16_encode_bits(offset_high,
REGISTER_WRITE_FLAGS_OFFSET_HIGH_FMASK);
options = 0; /* reserved */
} else {
flags = 0; /* SKIP_CLEAR flag is always 0 */
options = u16_encode_bits(clear_option,
REGISTER_WRITE_CLEAR_OPTIONS_FMASK);
}
cmd_payload = ipa_cmd_payload_alloc(ipa, &payload_addr);
payload = &cmd_payload->register_write;
payload->flags = cpu_to_le16(flags);
payload->offset = cpu_to_le16((u16)offset);
payload->value = cpu_to_le32(value);
payload->value_mask = cpu_to_le32(mask);
payload->clear_options = cpu_to_le32(options);
gsi_trans_cmd_add(trans, payload, sizeof(*payload), payload_addr,
DMA_NONE, opcode);
}
/* Skip IP packet processing on the next data transfer on a TX channel */
static void ipa_cmd_ip_packet_init_add(struct gsi_trans *trans, u8 endpoint_id)
{
struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi);
enum ipa_cmd_opcode opcode = IPA_CMD_IP_PACKET_INIT;
enum dma_data_direction direction = DMA_TO_DEVICE;
struct ipa_cmd_ip_packet_init *payload;
union ipa_cmd_payload *cmd_payload;
dma_addr_t payload_addr;
/* assert(endpoint_id <
field_max(IPA_PACKET_INIT_DEST_ENDPOINT_FMASK)); */
cmd_payload = ipa_cmd_payload_alloc(ipa, &payload_addr);
payload = &cmd_payload->ip_packet_init;
payload->dest_endpoint = u8_encode_bits(endpoint_id,
IPA_PACKET_INIT_DEST_ENDPOINT_FMASK);
gsi_trans_cmd_add(trans, payload, sizeof(*payload), payload_addr,
direction, opcode);
}
/* Use a DMA command to read or write a block of IPA-resident memory */
void ipa_cmd_dma_shared_mem_add(struct gsi_trans *trans, u32 offset, u16 size,
dma_addr_t addr, bool toward_ipa)
{
struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi);
enum ipa_cmd_opcode opcode = IPA_CMD_DMA_SHARED_MEM;
struct ipa_cmd_hw_dma_mem_mem *payload;
union ipa_cmd_payload *cmd_payload;
enum dma_data_direction direction;
dma_addr_t payload_addr;
u16 flags;
/* size and offset must fit in 16 bit fields */
/* assert(size > 0 && size <= U16_MAX); */
/* assert(offset <= U16_MAX && ipa->mem_offset <= U16_MAX - offset); */
offset += ipa->mem_offset;
cmd_payload = ipa_cmd_payload_alloc(ipa, &payload_addr);
payload = &cmd_payload->dma_shared_mem;
/* payload->clear_after_read was reserved prior to IPA v4.0. It's
* never needed for current code, so it's 0 regardless of version.
*/
payload->size = cpu_to_le16(size);
payload->local_addr = cpu_to_le16(offset);
/* payload->flags:
* direction: 0 = write to IPA, 1 read from IPA
* Starting at v4.0 these are reserved; either way, all zero:
* pipeline clear: 0 = wait for pipeline clear (don't skip)
* clear_options: 0 = pipeline_clear_hps
* Instead, for v4.0+ these are encoded in the opcode. But again
* since both values are 0 we won't bother OR'ing them in.
*/
flags = toward_ipa ? 0 : DMA_SHARED_MEM_FLAGS_DIRECTION_FMASK;
payload->flags = cpu_to_le16(flags);
payload->system_addr = cpu_to_le64(addr);
direction = toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
gsi_trans_cmd_add(trans, payload, sizeof(*payload), payload_addr,
direction, opcode);
}
static void ipa_cmd_ip_tag_status_add(struct gsi_trans *trans, u64 tag)
{
struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi);
enum ipa_cmd_opcode opcode = IPA_CMD_IP_PACKET_TAG_STATUS;
enum dma_data_direction direction = DMA_TO_DEVICE;
struct ipa_cmd_ip_packet_tag_status *payload;
union ipa_cmd_payload *cmd_payload;
dma_addr_t payload_addr;
/* assert(tag <= field_max(IP_PACKET_TAG_STATUS_TAG_FMASK)); */
cmd_payload = ipa_cmd_payload_alloc(ipa, &payload_addr);
payload = &cmd_payload->ip_packet_tag_status;
payload->tag = u64_encode_bits(tag, IP_PACKET_TAG_STATUS_TAG_FMASK);
gsi_trans_cmd_add(trans, payload, sizeof(*payload), payload_addr,
direction, opcode);
}
/* Issue a small command TX data transfer */
static void ipa_cmd_transfer_add(struct gsi_trans *trans, u16 size)
{
struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi);
enum dma_data_direction direction = DMA_TO_DEVICE;
enum ipa_cmd_opcode opcode = IPA_CMD_NONE;
union ipa_cmd_payload *payload;
dma_addr_t payload_addr;
/* assert(size <= sizeof(*payload)); */
/* Just transfer a zero-filled payload structure */
payload = ipa_cmd_payload_alloc(ipa, &payload_addr);
gsi_trans_cmd_add(trans, payload, sizeof(*payload), payload_addr,
direction, opcode);
}
/* Add immediate commands to a transaction to clear the hardware pipeline */
void ipa_cmd_pipeline_clear_add(struct gsi_trans *trans)
{
struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi);
struct ipa_endpoint *endpoint;
/* This will complete when the transfer is received */
reinit_completion(&ipa->completion);
/* Issue a no-op register write command (mask 0 means no write) */
ipa_cmd_register_write_add(trans, 0, 0, 0, true);
/* Send a data packet through the IPA pipeline. The packet_init
* command says to send the next packet directly to the exception
* endpoint without any other IPA processing. The tag_status
* command requests that status be generated on completion of
* that transfer, and that it will contain the given tag value.
* Finally, the transfer command sends a small packet of data
* (instead of a command) using the command endpoint.
*/
endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
ipa_cmd_ip_packet_init_add(trans, endpoint->endpoint_id);
ipa_cmd_ip_tag_status_add(trans, 0xcba987654321);
ipa_cmd_transfer_add(trans, 4);
}
/* Returns the number of commands required to clear the pipeline */
u32 ipa_cmd_pipeline_clear_count(void)
{
return 4;
}
void ipa_cmd_pipeline_clear_wait(struct ipa *ipa)
{
wait_for_completion(&ipa->completion);
}
void ipa_cmd_pipeline_clear(struct ipa *ipa)
{
u32 count = ipa_cmd_pipeline_clear_count();
struct gsi_trans *trans;
trans = ipa_cmd_trans_alloc(ipa, count);
if (trans) {
ipa_cmd_pipeline_clear_add(trans);
gsi_trans_commit_wait(trans);
ipa_cmd_pipeline_clear_wait(ipa);
} else {
dev_err(&ipa->pdev->dev,
"error allocating %u entry tag transaction\n", count);
}
}
static struct ipa_cmd_info *
ipa_cmd_info_alloc(struct ipa_endpoint *endpoint, u32 tre_count)
{
struct gsi_channel *channel;
channel = &endpoint->ipa->gsi.channel[endpoint->channel_id];
return gsi_trans_pool_alloc(&channel->trans_info.info_pool, tre_count);
}
/* Allocate a transaction for the command TX endpoint */
struct gsi_trans *ipa_cmd_trans_alloc(struct ipa *ipa, u32 tre_count)
{
struct ipa_endpoint *endpoint;
struct gsi_trans *trans;
endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
trans = gsi_channel_trans_alloc(&ipa->gsi, endpoint->channel_id,
tre_count, DMA_NONE);
if (trans)
trans->info = ipa_cmd_info_alloc(endpoint, tre_count);
return trans;
}