linux/drivers/net/ethernet/freescale/fec_main.c
Laurent Badel c730ab423b net: fec: Fix temporary RMII clock reset on link up
fec_restart() does a hard reset of the MAC module when the link status
changes to up. This temporarily resets the R_CNTRL register which controls
the MII mode of the ENET_OUT clock. In the case of RMII, the clock
frequency momentarily drops from 50MHz to 25MHz until the register is
reconfigured. Some link partners do not tolerate this glitch and
invalidate the link causing failure to establish a stable link when using
PHY polling mode. Since as per IEEE802.3 the criteria for link validity
are PHY-specific, what the partner should tolerate cannot be assumed, so
avoid resetting the MII clock by using software reset instead of hardware
reset when the link is up. This is generally relevant only if the SoC
provides the clock to an external PHY and the PHY is configured for RMII.

Signed-off-by: Laurent Badel <laurentbadel@eaton.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-26 18:24:39 -08:00

3930 lines
101 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
* Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
*
* Right now, I am very wasteful with the buffers. I allocate memory
* pages and then divide them into 2K frame buffers. This way I know I
* have buffers large enough to hold one frame within one buffer descriptor.
* Once I get this working, I will use 64 or 128 byte CPM buffers, which
* will be much more memory efficient and will easily handle lots of
* small packets.
*
* Much better multiple PHY support by Magnus Damm.
* Copyright (c) 2000 Ericsson Radio Systems AB.
*
* Support for FEC controller of ColdFire processors.
* Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
*
* Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
* Copyright (c) 2004-2006 Macq Electronique SA.
*
* Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/pm_runtime.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <net/ip.h>
#include <net/tso.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/icmp.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/clk.h>
#include <linux/crc32.h>
#include <linux/platform_device.h>
#include <linux/mdio.h>
#include <linux/phy.h>
#include <linux/fec.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/regulator/consumer.h>
#include <linux/if_vlan.h>
#include <linux/pinctrl/consumer.h>
#include <linux/prefetch.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <soc/imx/cpuidle.h>
#include <asm/cacheflush.h>
#include "fec.h"
static void set_multicast_list(struct net_device *ndev);
static void fec_enet_itr_coal_init(struct net_device *ndev);
#define DRIVER_NAME "fec"
/* Pause frame feild and FIFO threshold */
#define FEC_ENET_FCE (1 << 5)
#define FEC_ENET_RSEM_V 0x84
#define FEC_ENET_RSFL_V 16
#define FEC_ENET_RAEM_V 0x8
#define FEC_ENET_RAFL_V 0x8
#define FEC_ENET_OPD_V 0xFFF0
#define FEC_MDIO_PM_TIMEOUT 100 /* ms */
struct fec_devinfo {
u32 quirks;
};
static const struct fec_devinfo fec_imx25_info = {
.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
FEC_QUIRK_HAS_FRREG,
};
static const struct fec_devinfo fec_imx27_info = {
.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
};
static const struct fec_devinfo fec_imx28_info = {
.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
FEC_QUIRK_NO_HARD_RESET,
};
static const struct fec_devinfo fec_imx6q_info = {
.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII,
};
static const struct fec_devinfo fec_mvf600_info = {
.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
};
static const struct fec_devinfo fec_imx6x_info = {
.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
FEC_QUIRK_CLEAR_SETUP_MII,
};
static const struct fec_devinfo fec_imx6ul_info = {
.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII,
};
static struct platform_device_id fec_devtype[] = {
{
/* keep it for coldfire */
.name = DRIVER_NAME,
.driver_data = 0,
}, {
.name = "imx25-fec",
.driver_data = (kernel_ulong_t)&fec_imx25_info,
}, {
.name = "imx27-fec",
.driver_data = (kernel_ulong_t)&fec_imx27_info,
}, {
.name = "imx28-fec",
.driver_data = (kernel_ulong_t)&fec_imx28_info,
}, {
.name = "imx6q-fec",
.driver_data = (kernel_ulong_t)&fec_imx6q_info,
}, {
.name = "mvf600-fec",
.driver_data = (kernel_ulong_t)&fec_mvf600_info,
}, {
.name = "imx6sx-fec",
.driver_data = (kernel_ulong_t)&fec_imx6x_info,
}, {
.name = "imx6ul-fec",
.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
}, {
/* sentinel */
}
};
MODULE_DEVICE_TABLE(platform, fec_devtype);
enum imx_fec_type {
IMX25_FEC = 1, /* runs on i.mx25/50/53 */
IMX27_FEC, /* runs on i.mx27/35/51 */
IMX28_FEC,
IMX6Q_FEC,
MVF600_FEC,
IMX6SX_FEC,
IMX6UL_FEC,
};
static const struct of_device_id fec_dt_ids[] = {
{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fec_dt_ids);
static unsigned char macaddr[ETH_ALEN];
module_param_array(macaddr, byte, NULL, 0);
MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
#if defined(CONFIG_M5272)
/*
* Some hardware gets it MAC address out of local flash memory.
* if this is non-zero then assume it is the address to get MAC from.
*/
#if defined(CONFIG_NETtel)
#define FEC_FLASHMAC 0xf0006006
#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
#define FEC_FLASHMAC 0xf0006000
#elif defined(CONFIG_CANCam)
#define FEC_FLASHMAC 0xf0020000
#elif defined (CONFIG_M5272C3)
#define FEC_FLASHMAC (0xffe04000 + 4)
#elif defined(CONFIG_MOD5272)
#define FEC_FLASHMAC 0xffc0406b
#else
#define FEC_FLASHMAC 0
#endif
#endif /* CONFIG_M5272 */
/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
*
* 2048 byte skbufs are allocated. However, alignment requirements
* varies between FEC variants. Worst case is 64, so round down by 64.
*/
#define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64))
#define PKT_MINBUF_SIZE 64
/* FEC receive acceleration */
#define FEC_RACC_IPDIS (1 << 1)
#define FEC_RACC_PRODIS (1 << 2)
#define FEC_RACC_SHIFT16 BIT(7)
#define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
/* MIB Control Register */
#define FEC_MIB_CTRLSTAT_DISABLE BIT(31)
/*
* The 5270/5271/5280/5282/532x RX control register also contains maximum frame
* size bits. Other FEC hardware does not, so we need to take that into
* account when setting it.
*/
#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
defined(CONFIG_ARM64)
#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
#else
#define OPT_FRAME_SIZE 0
#endif
/* FEC MII MMFR bits definition */
#define FEC_MMFR_ST (1 << 30)
#define FEC_MMFR_ST_C45 (0)
#define FEC_MMFR_OP_READ (2 << 28)
#define FEC_MMFR_OP_READ_C45 (3 << 28)
#define FEC_MMFR_OP_WRITE (1 << 28)
#define FEC_MMFR_OP_ADDR_WRITE (0)
#define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
#define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
#define FEC_MMFR_TA (2 << 16)
#define FEC_MMFR_DATA(v) (v & 0xffff)
/* FEC ECR bits definition */
#define FEC_ECR_MAGICEN (1 << 2)
#define FEC_ECR_SLEEP (1 << 3)
#define FEC_MII_TIMEOUT 30000 /* us */
/* Transmitter timeout */
#define TX_TIMEOUT (2 * HZ)
#define FEC_PAUSE_FLAG_AUTONEG 0x1
#define FEC_PAUSE_FLAG_ENABLE 0x2
#define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
#define FEC_WOL_FLAG_ENABLE (0x1 << 1)
#define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
#define COPYBREAK_DEFAULT 256
/* Max number of allowed TCP segments for software TSO */
#define FEC_MAX_TSO_SEGS 100
#define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
#define IS_TSO_HEADER(txq, addr) \
((addr >= txq->tso_hdrs_dma) && \
(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
static int mii_cnt;
static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
struct bufdesc_prop *bd)
{
return (bdp >= bd->last) ? bd->base
: (struct bufdesc *)(((void *)bdp) + bd->dsize);
}
static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
struct bufdesc_prop *bd)
{
return (bdp <= bd->base) ? bd->last
: (struct bufdesc *)(((void *)bdp) - bd->dsize);
}
static int fec_enet_get_bd_index(struct bufdesc *bdp,
struct bufdesc_prop *bd)
{
return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
}
static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
{
int entries;
entries = (((const char *)txq->dirty_tx -
(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
return entries >= 0 ? entries : entries + txq->bd.ring_size;
}
static void swap_buffer(void *bufaddr, int len)
{
int i;
unsigned int *buf = bufaddr;
for (i = 0; i < len; i += 4, buf++)
swab32s(buf);
}
static void swap_buffer2(void *dst_buf, void *src_buf, int len)
{
int i;
unsigned int *src = src_buf;
unsigned int *dst = dst_buf;
for (i = 0; i < len; i += 4, src++, dst++)
*dst = swab32p(src);
}
static void fec_dump(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
struct bufdesc *bdp;
struct fec_enet_priv_tx_q *txq;
int index = 0;
netdev_info(ndev, "TX ring dump\n");
pr_info("Nr SC addr len SKB\n");
txq = fep->tx_queue[0];
bdp = txq->bd.base;
do {
pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
index,
bdp == txq->bd.cur ? 'S' : ' ',
bdp == txq->dirty_tx ? 'H' : ' ',
fec16_to_cpu(bdp->cbd_sc),
fec32_to_cpu(bdp->cbd_bufaddr),
fec16_to_cpu(bdp->cbd_datlen),
txq->tx_skbuff[index]);
bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
index++;
} while (bdp != txq->bd.base);
}
static inline bool is_ipv4_pkt(struct sk_buff *skb)
{
return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
}
static int
fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
{
/* Only run for packets requiring a checksum. */
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
if (unlikely(skb_cow_head(skb, 0)))
return -1;
if (is_ipv4_pkt(skb))
ip_hdr(skb)->check = 0;
*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
return 0;
}
static struct bufdesc *
fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
struct sk_buff *skb,
struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
struct bufdesc *bdp = txq->bd.cur;
struct bufdesc_ex *ebdp;
int nr_frags = skb_shinfo(skb)->nr_frags;
int frag, frag_len;
unsigned short status;
unsigned int estatus = 0;
skb_frag_t *this_frag;
unsigned int index;
void *bufaddr;
dma_addr_t addr;
int i;
for (frag = 0; frag < nr_frags; frag++) {
this_frag = &skb_shinfo(skb)->frags[frag];
bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
ebdp = (struct bufdesc_ex *)bdp;
status = fec16_to_cpu(bdp->cbd_sc);
status &= ~BD_ENET_TX_STATS;
status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
/* Handle the last BD specially */
if (frag == nr_frags - 1) {
status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
if (fep->bufdesc_ex) {
estatus |= BD_ENET_TX_INT;
if (unlikely(skb_shinfo(skb)->tx_flags &
SKBTX_HW_TSTAMP && fep->hwts_tx_en))
estatus |= BD_ENET_TX_TS;
}
}
if (fep->bufdesc_ex) {
if (fep->quirks & FEC_QUIRK_HAS_AVB)
estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
if (skb->ip_summed == CHECKSUM_PARTIAL)
estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
ebdp->cbd_bdu = 0;
ebdp->cbd_esc = cpu_to_fec32(estatus);
}
bufaddr = skb_frag_address(this_frag);
index = fec_enet_get_bd_index(bdp, &txq->bd);
if (((unsigned long) bufaddr) & fep->tx_align ||
fep->quirks & FEC_QUIRK_SWAP_FRAME) {
memcpy(txq->tx_bounce[index], bufaddr, frag_len);
bufaddr = txq->tx_bounce[index];
if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
swap_buffer(bufaddr, frag_len);
}
addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
DMA_TO_DEVICE);
if (dma_mapping_error(&fep->pdev->dev, addr)) {
if (net_ratelimit())
netdev_err(ndev, "Tx DMA memory map failed\n");
goto dma_mapping_error;
}
bdp->cbd_bufaddr = cpu_to_fec32(addr);
bdp->cbd_datlen = cpu_to_fec16(frag_len);
/* Make sure the updates to rest of the descriptor are
* performed before transferring ownership.
*/
wmb();
bdp->cbd_sc = cpu_to_fec16(status);
}
return bdp;
dma_mapping_error:
bdp = txq->bd.cur;
for (i = 0; i < frag; i++) {
bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
}
return ERR_PTR(-ENOMEM);
}
static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
struct sk_buff *skb, struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
int nr_frags = skb_shinfo(skb)->nr_frags;
struct bufdesc *bdp, *last_bdp;
void *bufaddr;
dma_addr_t addr;
unsigned short status;
unsigned short buflen;
unsigned int estatus = 0;
unsigned int index;
int entries_free;
entries_free = fec_enet_get_free_txdesc_num(txq);
if (entries_free < MAX_SKB_FRAGS + 1) {
dev_kfree_skb_any(skb);
if (net_ratelimit())
netdev_err(ndev, "NOT enough BD for SG!\n");
return NETDEV_TX_OK;
}
/* Protocol checksum off-load for TCP and UDP. */
if (fec_enet_clear_csum(skb, ndev)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
/* Fill in a Tx ring entry */
bdp = txq->bd.cur;
last_bdp = bdp;
status = fec16_to_cpu(bdp->cbd_sc);
status &= ~BD_ENET_TX_STATS;
/* Set buffer length and buffer pointer */
bufaddr = skb->data;
buflen = skb_headlen(skb);
index = fec_enet_get_bd_index(bdp, &txq->bd);
if (((unsigned long) bufaddr) & fep->tx_align ||
fep->quirks & FEC_QUIRK_SWAP_FRAME) {
memcpy(txq->tx_bounce[index], skb->data, buflen);
bufaddr = txq->tx_bounce[index];
if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
swap_buffer(bufaddr, buflen);
}
/* Push the data cache so the CPM does not get stale memory data. */
addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
if (dma_mapping_error(&fep->pdev->dev, addr)) {
dev_kfree_skb_any(skb);
if (net_ratelimit())
netdev_err(ndev, "Tx DMA memory map failed\n");
return NETDEV_TX_OK;
}
if (nr_frags) {
last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
if (IS_ERR(last_bdp)) {
dma_unmap_single(&fep->pdev->dev, addr,
buflen, DMA_TO_DEVICE);
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
} else {
status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
if (fep->bufdesc_ex) {
estatus = BD_ENET_TX_INT;
if (unlikely(skb_shinfo(skb)->tx_flags &
SKBTX_HW_TSTAMP && fep->hwts_tx_en))
estatus |= BD_ENET_TX_TS;
}
}
bdp->cbd_bufaddr = cpu_to_fec32(addr);
bdp->cbd_datlen = cpu_to_fec16(buflen);
if (fep->bufdesc_ex) {
struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
fep->hwts_tx_en))
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
if (fep->quirks & FEC_QUIRK_HAS_AVB)
estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
if (skb->ip_summed == CHECKSUM_PARTIAL)
estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
ebdp->cbd_bdu = 0;
ebdp->cbd_esc = cpu_to_fec32(estatus);
}
index = fec_enet_get_bd_index(last_bdp, &txq->bd);
/* Save skb pointer */
txq->tx_skbuff[index] = skb;
/* Make sure the updates to rest of the descriptor are performed before
* transferring ownership.
*/
wmb();
/* Send it on its way. Tell FEC it's ready, interrupt when done,
* it's the last BD of the frame, and to put the CRC on the end.
*/
status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
bdp->cbd_sc = cpu_to_fec16(status);
/* If this was the last BD in the ring, start at the beginning again. */
bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
skb_tx_timestamp(skb);
/* Make sure the update to bdp and tx_skbuff are performed before
* txq->bd.cur.
*/
wmb();
txq->bd.cur = bdp;
/* Trigger transmission start */
writel(0, txq->bd.reg_desc_active);
return 0;
}
static int
fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
struct net_device *ndev,
struct bufdesc *bdp, int index, char *data,
int size, bool last_tcp, bool is_last)
{
struct fec_enet_private *fep = netdev_priv(ndev);
struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
unsigned short status;
unsigned int estatus = 0;
dma_addr_t addr;
status = fec16_to_cpu(bdp->cbd_sc);
status &= ~BD_ENET_TX_STATS;
status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
if (((unsigned long) data) & fep->tx_align ||
fep->quirks & FEC_QUIRK_SWAP_FRAME) {
memcpy(txq->tx_bounce[index], data, size);
data = txq->tx_bounce[index];
if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
swap_buffer(data, size);
}
addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
if (dma_mapping_error(&fep->pdev->dev, addr)) {
dev_kfree_skb_any(skb);
if (net_ratelimit())
netdev_err(ndev, "Tx DMA memory map failed\n");
return NETDEV_TX_BUSY;
}
bdp->cbd_datlen = cpu_to_fec16(size);
bdp->cbd_bufaddr = cpu_to_fec32(addr);
if (fep->bufdesc_ex) {
if (fep->quirks & FEC_QUIRK_HAS_AVB)
estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
if (skb->ip_summed == CHECKSUM_PARTIAL)
estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
ebdp->cbd_bdu = 0;
ebdp->cbd_esc = cpu_to_fec32(estatus);
}
/* Handle the last BD specially */
if (last_tcp)
status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
if (is_last) {
status |= BD_ENET_TX_INTR;
if (fep->bufdesc_ex)
ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
}
bdp->cbd_sc = cpu_to_fec16(status);
return 0;
}
static int
fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
struct sk_buff *skb, struct net_device *ndev,
struct bufdesc *bdp, int index)
{
struct fec_enet_private *fep = netdev_priv(ndev);
int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
void *bufaddr;
unsigned long dmabuf;
unsigned short status;
unsigned int estatus = 0;
status = fec16_to_cpu(bdp->cbd_sc);
status &= ~BD_ENET_TX_STATS;
status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
if (((unsigned long)bufaddr) & fep->tx_align ||
fep->quirks & FEC_QUIRK_SWAP_FRAME) {
memcpy(txq->tx_bounce[index], skb->data, hdr_len);
bufaddr = txq->tx_bounce[index];
if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
swap_buffer(bufaddr, hdr_len);
dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
hdr_len, DMA_TO_DEVICE);
if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
dev_kfree_skb_any(skb);
if (net_ratelimit())
netdev_err(ndev, "Tx DMA memory map failed\n");
return NETDEV_TX_BUSY;
}
}
bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
bdp->cbd_datlen = cpu_to_fec16(hdr_len);
if (fep->bufdesc_ex) {
if (fep->quirks & FEC_QUIRK_HAS_AVB)
estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
if (skb->ip_summed == CHECKSUM_PARTIAL)
estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
ebdp->cbd_bdu = 0;
ebdp->cbd_esc = cpu_to_fec32(estatus);
}
bdp->cbd_sc = cpu_to_fec16(status);
return 0;
}
static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
struct sk_buff *skb,
struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
int hdr_len, total_len, data_left;
struct bufdesc *bdp = txq->bd.cur;
struct tso_t tso;
unsigned int index = 0;
int ret;
if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
dev_kfree_skb_any(skb);
if (net_ratelimit())
netdev_err(ndev, "NOT enough BD for TSO!\n");
return NETDEV_TX_OK;
}
/* Protocol checksum off-load for TCP and UDP. */
if (fec_enet_clear_csum(skb, ndev)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
/* Initialize the TSO handler, and prepare the first payload */
hdr_len = tso_start(skb, &tso);
total_len = skb->len - hdr_len;
while (total_len > 0) {
char *hdr;
index = fec_enet_get_bd_index(bdp, &txq->bd);
data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
total_len -= data_left;
/* prepare packet headers: MAC + IP + TCP */
hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
if (ret)
goto err_release;
while (data_left > 0) {
int size;
size = min_t(int, tso.size, data_left);
bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
index = fec_enet_get_bd_index(bdp, &txq->bd);
ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
bdp, index,
tso.data, size,
size == data_left,
total_len == 0);
if (ret)
goto err_release;
data_left -= size;
tso_build_data(skb, &tso, size);
}
bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
}
/* Save skb pointer */
txq->tx_skbuff[index] = skb;
skb_tx_timestamp(skb);
txq->bd.cur = bdp;
/* Trigger transmission start */
if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
!readl(txq->bd.reg_desc_active) ||
!readl(txq->bd.reg_desc_active) ||
!readl(txq->bd.reg_desc_active) ||
!readl(txq->bd.reg_desc_active))
writel(0, txq->bd.reg_desc_active);
return 0;
err_release:
/* TODO: Release all used data descriptors for TSO */
return ret;
}
static netdev_tx_t
fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
int entries_free;
unsigned short queue;
struct fec_enet_priv_tx_q *txq;
struct netdev_queue *nq;
int ret;
queue = skb_get_queue_mapping(skb);
txq = fep->tx_queue[queue];
nq = netdev_get_tx_queue(ndev, queue);
if (skb_is_gso(skb))
ret = fec_enet_txq_submit_tso(txq, skb, ndev);
else
ret = fec_enet_txq_submit_skb(txq, skb, ndev);
if (ret)
return ret;
entries_free = fec_enet_get_free_txdesc_num(txq);
if (entries_free <= txq->tx_stop_threshold)
netif_tx_stop_queue(nq);
return NETDEV_TX_OK;
}
/* Init RX & TX buffer descriptors
*/
static void fec_enet_bd_init(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
struct fec_enet_priv_tx_q *txq;
struct fec_enet_priv_rx_q *rxq;
struct bufdesc *bdp;
unsigned int i;
unsigned int q;
for (q = 0; q < fep->num_rx_queues; q++) {
/* Initialize the receive buffer descriptors. */
rxq = fep->rx_queue[q];
bdp = rxq->bd.base;
for (i = 0; i < rxq->bd.ring_size; i++) {
/* Initialize the BD for every fragment in the page. */
if (bdp->cbd_bufaddr)
bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
else
bdp->cbd_sc = cpu_to_fec16(0);
bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
}
/* Set the last buffer to wrap */
bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
rxq->bd.cur = rxq->bd.base;
}
for (q = 0; q < fep->num_tx_queues; q++) {
/* ...and the same for transmit */
txq = fep->tx_queue[q];
bdp = txq->bd.base;
txq->bd.cur = bdp;
for (i = 0; i < txq->bd.ring_size; i++) {
/* Initialize the BD for every fragment in the page. */
bdp->cbd_sc = cpu_to_fec16(0);
if (bdp->cbd_bufaddr &&
!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
dma_unmap_single(&fep->pdev->dev,
fec32_to_cpu(bdp->cbd_bufaddr),
fec16_to_cpu(bdp->cbd_datlen),
DMA_TO_DEVICE);
if (txq->tx_skbuff[i]) {
dev_kfree_skb_any(txq->tx_skbuff[i]);
txq->tx_skbuff[i] = NULL;
}
bdp->cbd_bufaddr = cpu_to_fec32(0);
bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
}
/* Set the last buffer to wrap */
bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
txq->dirty_tx = bdp;
}
}
static void fec_enet_active_rxring(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
int i;
for (i = 0; i < fep->num_rx_queues; i++)
writel(0, fep->rx_queue[i]->bd.reg_desc_active);
}
static void fec_enet_enable_ring(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
struct fec_enet_priv_tx_q *txq;
struct fec_enet_priv_rx_q *rxq;
int i;
for (i = 0; i < fep->num_rx_queues; i++) {
rxq = fep->rx_queue[i];
writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
/* enable DMA1/2 */
if (i)
writel(RCMR_MATCHEN | RCMR_CMP(i),
fep->hwp + FEC_RCMR(i));
}
for (i = 0; i < fep->num_tx_queues; i++) {
txq = fep->tx_queue[i];
writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
/* enable DMA1/2 */
if (i)
writel(DMA_CLASS_EN | IDLE_SLOPE(i),
fep->hwp + FEC_DMA_CFG(i));
}
}
static void fec_enet_reset_skb(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
struct fec_enet_priv_tx_q *txq;
int i, j;
for (i = 0; i < fep->num_tx_queues; i++) {
txq = fep->tx_queue[i];
for (j = 0; j < txq->bd.ring_size; j++) {
if (txq->tx_skbuff[j]) {
dev_kfree_skb_any(txq->tx_skbuff[j]);
txq->tx_skbuff[j] = NULL;
}
}
}
}
/*
* This function is called to start or restart the FEC during a link
* change, transmit timeout, or to reconfigure the FEC. The network
* packet processing for this device must be stopped before this call.
*/
static void
fec_restart(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
u32 val;
u32 temp_mac[2];
u32 rcntl = OPT_FRAME_SIZE | 0x04;
u32 ecntl = 0x2; /* ETHEREN */
/* Whack a reset. We should wait for this.
* For i.MX6SX SOC, enet use AXI bus, we use disable MAC
* instead of reset MAC itself.
*/
if (fep->quirks & FEC_QUIRK_HAS_AVB ||
((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
writel(0, fep->hwp + FEC_ECNTRL);
} else {
writel(1, fep->hwp + FEC_ECNTRL);
udelay(10);
}
/*
* enet-mac reset will reset mac address registers too,
* so need to reconfigure it.
*/
memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
writel((__force u32)cpu_to_be32(temp_mac[0]),
fep->hwp + FEC_ADDR_LOW);
writel((__force u32)cpu_to_be32(temp_mac[1]),
fep->hwp + FEC_ADDR_HIGH);
/* Clear any outstanding interrupt, except MDIO. */
writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
fec_enet_bd_init(ndev);
fec_enet_enable_ring(ndev);
/* Reset tx SKB buffers. */
fec_enet_reset_skb(ndev);
/* Enable MII mode */
if (fep->full_duplex == DUPLEX_FULL) {
/* FD enable */
writel(0x04, fep->hwp + FEC_X_CNTRL);
} else {
/* No Rcv on Xmit */
rcntl |= 0x02;
writel(0x0, fep->hwp + FEC_X_CNTRL);
}
/* Set MII speed */
writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
#if !defined(CONFIG_M5272)
if (fep->quirks & FEC_QUIRK_HAS_RACC) {
val = readl(fep->hwp + FEC_RACC);
/* align IP header */
val |= FEC_RACC_SHIFT16;
if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
/* set RX checksum */
val |= FEC_RACC_OPTIONS;
else
val &= ~FEC_RACC_OPTIONS;
writel(val, fep->hwp + FEC_RACC);
writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
}
#endif
/*
* The phy interface and speed need to get configured
* differently on enet-mac.
*/
if (fep->quirks & FEC_QUIRK_ENET_MAC) {
/* Enable flow control and length check */
rcntl |= 0x40000000 | 0x00000020;
/* RGMII, RMII or MII */
if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
rcntl |= (1 << 6);
else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
rcntl |= (1 << 8);
else
rcntl &= ~(1 << 8);
/* 1G, 100M or 10M */
if (ndev->phydev) {
if (ndev->phydev->speed == SPEED_1000)
ecntl |= (1 << 5);
else if (ndev->phydev->speed == SPEED_100)
rcntl &= ~(1 << 9);
else
rcntl |= (1 << 9);
}
} else {
#ifdef FEC_MIIGSK_ENR
if (fep->quirks & FEC_QUIRK_USE_GASKET) {
u32 cfgr;
/* disable the gasket and wait */
writel(0, fep->hwp + FEC_MIIGSK_ENR);
while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
udelay(1);
/*
* configure the gasket:
* RMII, 50 MHz, no loopback, no echo
* MII, 25 MHz, no loopback, no echo
*/
cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
if (ndev->phydev && ndev->phydev->speed == SPEED_10)
cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
/* re-enable the gasket */
writel(2, fep->hwp + FEC_MIIGSK_ENR);
}
#endif
}
#if !defined(CONFIG_M5272)
/* enable pause frame*/
if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
ndev->phydev && ndev->phydev->pause)) {
rcntl |= FEC_ENET_FCE;
/* set FIFO threshold parameter to reduce overrun */
writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
/* OPD */
writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
} else {
rcntl &= ~FEC_ENET_FCE;
}
#endif /* !defined(CONFIG_M5272) */
writel(rcntl, fep->hwp + FEC_R_CNTRL);
/* Setup multicast filter. */
set_multicast_list(ndev);
#ifndef CONFIG_M5272
writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
#endif
if (fep->quirks & FEC_QUIRK_ENET_MAC) {
/* enable ENET endian swap */
ecntl |= (1 << 8);
/* enable ENET store and forward mode */
writel(1 << 8, fep->hwp + FEC_X_WMRK);
}
if (fep->bufdesc_ex)
ecntl |= (1 << 4);
#ifndef CONFIG_M5272
/* Enable the MIB statistic event counters */
writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
#endif
/* And last, enable the transmit and receive processing */
writel(ecntl, fep->hwp + FEC_ECNTRL);
fec_enet_active_rxring(ndev);
if (fep->bufdesc_ex)
fec_ptp_start_cyclecounter(ndev);
/* Enable interrupts we wish to service */
if (fep->link)
writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
else
writel(0, fep->hwp + FEC_IMASK);
/* Init the interrupt coalescing */
fec_enet_itr_coal_init(ndev);
}
static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
{
struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
if (stop_gpr->gpr) {
if (enabled)
regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
BIT(stop_gpr->bit),
BIT(stop_gpr->bit));
else
regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
BIT(stop_gpr->bit), 0);
} else if (pdata && pdata->sleep_mode_enable) {
pdata->sleep_mode_enable(enabled);
}
}
static void
fec_stop(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
u32 val;
/* We cannot expect a graceful transmit stop without link !!! */
if (fep->link) {
writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
udelay(10);
if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
netdev_err(ndev, "Graceful transmit stop did not complete!\n");
}
/* Whack a reset. We should wait for this.
* For i.MX6SX SOC, enet use AXI bus, we use disable MAC
* instead of reset MAC itself.
*/
if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
if (fep->quirks & FEC_QUIRK_HAS_AVB) {
writel(0, fep->hwp + FEC_ECNTRL);
} else {
writel(1, fep->hwp + FEC_ECNTRL);
udelay(10);
}
writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
} else {
writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
val = readl(fep->hwp + FEC_ECNTRL);
val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
writel(val, fep->hwp + FEC_ECNTRL);
fec_enet_stop_mode(fep, true);
}
writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
/* We have to keep ENET enabled to have MII interrupt stay working */
if (fep->quirks & FEC_QUIRK_ENET_MAC &&
!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
writel(2, fep->hwp + FEC_ECNTRL);
writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
}
}
static void
fec_timeout(struct net_device *ndev, unsigned int txqueue)
{
struct fec_enet_private *fep = netdev_priv(ndev);
fec_dump(ndev);
ndev->stats.tx_errors++;
schedule_work(&fep->tx_timeout_work);
}
static void fec_enet_timeout_work(struct work_struct *work)
{
struct fec_enet_private *fep =
container_of(work, struct fec_enet_private, tx_timeout_work);
struct net_device *ndev = fep->netdev;
rtnl_lock();
if (netif_device_present(ndev) || netif_running(ndev)) {
napi_disable(&fep->napi);
netif_tx_lock_bh(ndev);
fec_restart(ndev);
netif_tx_wake_all_queues(ndev);
netif_tx_unlock_bh(ndev);
napi_enable(&fep->napi);
}
rtnl_unlock();
}
static void
fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
struct skb_shared_hwtstamps *hwtstamps)
{
unsigned long flags;
u64 ns;
spin_lock_irqsave(&fep->tmreg_lock, flags);
ns = timecounter_cyc2time(&fep->tc, ts);
spin_unlock_irqrestore(&fep->tmreg_lock, flags);
memset(hwtstamps, 0, sizeof(*hwtstamps));
hwtstamps->hwtstamp = ns_to_ktime(ns);
}
static void
fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
{
struct fec_enet_private *fep;
struct bufdesc *bdp;
unsigned short status;
struct sk_buff *skb;
struct fec_enet_priv_tx_q *txq;
struct netdev_queue *nq;
int index = 0;
int entries_free;
fep = netdev_priv(ndev);
txq = fep->tx_queue[queue_id];
/* get next bdp of dirty_tx */
nq = netdev_get_tx_queue(ndev, queue_id);
bdp = txq->dirty_tx;
/* get next bdp of dirty_tx */
bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
while (bdp != READ_ONCE(txq->bd.cur)) {
/* Order the load of bd.cur and cbd_sc */
rmb();
status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
if (status & BD_ENET_TX_READY)
break;
index = fec_enet_get_bd_index(bdp, &txq->bd);
skb = txq->tx_skbuff[index];
txq->tx_skbuff[index] = NULL;
if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
dma_unmap_single(&fep->pdev->dev,
fec32_to_cpu(bdp->cbd_bufaddr),
fec16_to_cpu(bdp->cbd_datlen),
DMA_TO_DEVICE);
bdp->cbd_bufaddr = cpu_to_fec32(0);
if (!skb)
goto skb_done;
/* Check for errors. */
if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
BD_ENET_TX_RL | BD_ENET_TX_UN |
BD_ENET_TX_CSL)) {
ndev->stats.tx_errors++;
if (status & BD_ENET_TX_HB) /* No heartbeat */
ndev->stats.tx_heartbeat_errors++;
if (status & BD_ENET_TX_LC) /* Late collision */
ndev->stats.tx_window_errors++;
if (status & BD_ENET_TX_RL) /* Retrans limit */
ndev->stats.tx_aborted_errors++;
if (status & BD_ENET_TX_UN) /* Underrun */
ndev->stats.tx_fifo_errors++;
if (status & BD_ENET_TX_CSL) /* Carrier lost */
ndev->stats.tx_carrier_errors++;
} else {
ndev->stats.tx_packets++;
ndev->stats.tx_bytes += skb->len;
}
/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
* are to time stamp the packet, so we still need to check time
* stamping enabled flag.
*/
if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
fep->hwts_tx_en) &&
fep->bufdesc_ex) {
struct skb_shared_hwtstamps shhwtstamps;
struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
skb_tstamp_tx(skb, &shhwtstamps);
}
/* Deferred means some collisions occurred during transmit,
* but we eventually sent the packet OK.
*/
if (status & BD_ENET_TX_DEF)
ndev->stats.collisions++;
/* Free the sk buffer associated with this last transmit */
dev_kfree_skb_any(skb);
skb_done:
/* Make sure the update to bdp and tx_skbuff are performed
* before dirty_tx
*/
wmb();
txq->dirty_tx = bdp;
/* Update pointer to next buffer descriptor to be transmitted */
bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
/* Since we have freed up a buffer, the ring is no longer full
*/
if (netif_tx_queue_stopped(nq)) {
entries_free = fec_enet_get_free_txdesc_num(txq);
if (entries_free >= txq->tx_wake_threshold)
netif_tx_wake_queue(nq);
}
}
/* ERR006358: Keep the transmitter going */
if (bdp != txq->bd.cur &&
readl(txq->bd.reg_desc_active) == 0)
writel(0, txq->bd.reg_desc_active);
}
static void fec_enet_tx(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
int i;
/* Make sure that AVB queues are processed first. */
for (i = fep->num_tx_queues - 1; i >= 0; i--)
fec_enet_tx_queue(ndev, i);
}
static int
fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
{
struct fec_enet_private *fep = netdev_priv(ndev);
int off;
off = ((unsigned long)skb->data) & fep->rx_align;
if (off)
skb_reserve(skb, fep->rx_align + 1 - off);
bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
if (net_ratelimit())
netdev_err(ndev, "Rx DMA memory map failed\n");
return -ENOMEM;
}
return 0;
}
static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
struct bufdesc *bdp, u32 length, bool swap)
{
struct fec_enet_private *fep = netdev_priv(ndev);
struct sk_buff *new_skb;
if (length > fep->rx_copybreak)
return false;
new_skb = netdev_alloc_skb(ndev, length);
if (!new_skb)
return false;
dma_sync_single_for_cpu(&fep->pdev->dev,
fec32_to_cpu(bdp->cbd_bufaddr),
FEC_ENET_RX_FRSIZE - fep->rx_align,
DMA_FROM_DEVICE);
if (!swap)
memcpy(new_skb->data, (*skb)->data, length);
else
swap_buffer2(new_skb->data, (*skb)->data, length);
*skb = new_skb;
return true;
}
/* During a receive, the bd_rx.cur points to the current incoming buffer.
* When we update through the ring, if the next incoming buffer has
* not been given to the system, we just set the empty indicator,
* effectively tossing the packet.
*/
static int
fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
{
struct fec_enet_private *fep = netdev_priv(ndev);
struct fec_enet_priv_rx_q *rxq;
struct bufdesc *bdp;
unsigned short status;
struct sk_buff *skb_new = NULL;
struct sk_buff *skb;
ushort pkt_len;
__u8 *data;
int pkt_received = 0;
struct bufdesc_ex *ebdp = NULL;
bool vlan_packet_rcvd = false;
u16 vlan_tag;
int index = 0;
bool is_copybreak;
bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
#ifdef CONFIG_M532x
flush_cache_all();
#endif
rxq = fep->rx_queue[queue_id];
/* First, grab all of the stats for the incoming packet.
* These get messed up if we get called due to a busy condition.
*/
bdp = rxq->bd.cur;
while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
if (pkt_received >= budget)
break;
pkt_received++;
writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
/* Check for errors. */
status ^= BD_ENET_RX_LAST;
if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
BD_ENET_RX_CL)) {
ndev->stats.rx_errors++;
if (status & BD_ENET_RX_OV) {
/* FIFO overrun */
ndev->stats.rx_fifo_errors++;
goto rx_processing_done;
}
if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
| BD_ENET_RX_LAST)) {
/* Frame too long or too short. */
ndev->stats.rx_length_errors++;
if (status & BD_ENET_RX_LAST)
netdev_err(ndev, "rcv is not +last\n");
}
if (status & BD_ENET_RX_CR) /* CRC Error */
ndev->stats.rx_crc_errors++;
/* Report late collisions as a frame error. */
if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
ndev->stats.rx_frame_errors++;
goto rx_processing_done;
}
/* Process the incoming frame. */
ndev->stats.rx_packets++;
pkt_len = fec16_to_cpu(bdp->cbd_datlen);
ndev->stats.rx_bytes += pkt_len;
index = fec_enet_get_bd_index(bdp, &rxq->bd);
skb = rxq->rx_skbuff[index];
/* The packet length includes FCS, but we don't want to
* include that when passing upstream as it messes up
* bridging applications.
*/
is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
need_swap);
if (!is_copybreak) {
skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
if (unlikely(!skb_new)) {
ndev->stats.rx_dropped++;
goto rx_processing_done;
}
dma_unmap_single(&fep->pdev->dev,
fec32_to_cpu(bdp->cbd_bufaddr),
FEC_ENET_RX_FRSIZE - fep->rx_align,
DMA_FROM_DEVICE);
}
prefetch(skb->data - NET_IP_ALIGN);
skb_put(skb, pkt_len - 4);
data = skb->data;
if (!is_copybreak && need_swap)
swap_buffer(data, pkt_len);
#if !defined(CONFIG_M5272)
if (fep->quirks & FEC_QUIRK_HAS_RACC)
data = skb_pull_inline(skb, 2);
#endif
/* Extract the enhanced buffer descriptor */
ebdp = NULL;
if (fep->bufdesc_ex)
ebdp = (struct bufdesc_ex *)bdp;
/* If this is a VLAN packet remove the VLAN Tag */
vlan_packet_rcvd = false;
if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
fep->bufdesc_ex &&
(ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
/* Push and remove the vlan tag */
struct vlan_hdr *vlan_header =
(struct vlan_hdr *) (data + ETH_HLEN);
vlan_tag = ntohs(vlan_header->h_vlan_TCI);
vlan_packet_rcvd = true;
memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
skb_pull(skb, VLAN_HLEN);
}
skb->protocol = eth_type_trans(skb, ndev);
/* Get receive timestamp from the skb */
if (fep->hwts_rx_en && fep->bufdesc_ex)
fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
skb_hwtstamps(skb));
if (fep->bufdesc_ex &&
(fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
/* don't check it */
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else {
skb_checksum_none_assert(skb);
}
}
/* Handle received VLAN packets */
if (vlan_packet_rcvd)
__vlan_hwaccel_put_tag(skb,
htons(ETH_P_8021Q),
vlan_tag);
skb_record_rx_queue(skb, queue_id);
napi_gro_receive(&fep->napi, skb);
if (is_copybreak) {
dma_sync_single_for_device(&fep->pdev->dev,
fec32_to_cpu(bdp->cbd_bufaddr),
FEC_ENET_RX_FRSIZE - fep->rx_align,
DMA_FROM_DEVICE);
} else {
rxq->rx_skbuff[index] = skb_new;
fec_enet_new_rxbdp(ndev, bdp, skb_new);
}
rx_processing_done:
/* Clear the status flags for this buffer */
status &= ~BD_ENET_RX_STATS;
/* Mark the buffer empty */
status |= BD_ENET_RX_EMPTY;
if (fep->bufdesc_ex) {
struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
ebdp->cbd_prot = 0;
ebdp->cbd_bdu = 0;
}
/* Make sure the updates to rest of the descriptor are
* performed before transferring ownership.
*/
wmb();
bdp->cbd_sc = cpu_to_fec16(status);
/* Update BD pointer to next entry */
bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
/* Doing this here will keep the FEC running while we process
* incoming frames. On a heavily loaded network, we should be
* able to keep up at the expense of system resources.
*/
writel(0, rxq->bd.reg_desc_active);
}
rxq->bd.cur = bdp;
return pkt_received;
}
static int fec_enet_rx(struct net_device *ndev, int budget)
{
struct fec_enet_private *fep = netdev_priv(ndev);
int i, done = 0;
/* Make sure that AVB queues are processed first. */
for (i = fep->num_rx_queues - 1; i >= 0; i--)
done += fec_enet_rx_queue(ndev, budget - done, i);
return done;
}
static bool fec_enet_collect_events(struct fec_enet_private *fep)
{
uint int_events;
int_events = readl(fep->hwp + FEC_IEVENT);
/* Don't clear MDIO events, we poll for those */
int_events &= ~FEC_ENET_MII;
writel(int_events, fep->hwp + FEC_IEVENT);
return int_events != 0;
}
static irqreturn_t
fec_enet_interrupt(int irq, void *dev_id)
{
struct net_device *ndev = dev_id;
struct fec_enet_private *fep = netdev_priv(ndev);
irqreturn_t ret = IRQ_NONE;
if (fec_enet_collect_events(fep) && fep->link) {
ret = IRQ_HANDLED;
if (napi_schedule_prep(&fep->napi)) {
/* Disable interrupts */
writel(0, fep->hwp + FEC_IMASK);
__napi_schedule(&fep->napi);
}
}
return ret;
}
static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
{
struct net_device *ndev = napi->dev;
struct fec_enet_private *fep = netdev_priv(ndev);
int done = 0;
do {
done += fec_enet_rx(ndev, budget - done);
fec_enet_tx(ndev);
} while ((done < budget) && fec_enet_collect_events(fep));
if (done < budget) {
napi_complete_done(napi, done);
writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
}
return done;
}
/* ------------------------------------------------------------------------- */
static void fec_get_mac(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
unsigned char *iap, tmpaddr[ETH_ALEN];
/*
* try to get mac address in following order:
*
* 1) module parameter via kernel command line in form
* fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
*/
iap = macaddr;
/*
* 2) from device tree data
*/
if (!is_valid_ether_addr(iap)) {
struct device_node *np = fep->pdev->dev.of_node;
if (np) {
const char *mac = of_get_mac_address(np);
if (!IS_ERR(mac))
iap = (unsigned char *) mac;
}
}
/*
* 3) from flash or fuse (via platform data)
*/
if (!is_valid_ether_addr(iap)) {
#ifdef CONFIG_M5272
if (FEC_FLASHMAC)
iap = (unsigned char *)FEC_FLASHMAC;
#else
if (pdata)
iap = (unsigned char *)&pdata->mac;
#endif
}
/*
* 4) FEC mac registers set by bootloader
*/
if (!is_valid_ether_addr(iap)) {
*((__be32 *) &tmpaddr[0]) =
cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
*((__be16 *) &tmpaddr[4]) =
cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
iap = &tmpaddr[0];
}
/*
* 5) random mac address
*/
if (!is_valid_ether_addr(iap)) {
/* Report it and use a random ethernet address instead */
dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
eth_hw_addr_random(ndev);
dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
ndev->dev_addr);
return;
}
memcpy(ndev->dev_addr, iap, ETH_ALEN);
/* Adjust MAC if using macaddr */
if (iap == macaddr)
ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
}
/* ------------------------------------------------------------------------- */
/*
* Phy section
*/
static void fec_enet_adjust_link(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
struct phy_device *phy_dev = ndev->phydev;
int status_change = 0;
/*
* If the netdev is down, or is going down, we're not interested
* in link state events, so just mark our idea of the link as down
* and ignore the event.
*/
if (!netif_running(ndev) || !netif_device_present(ndev)) {
fep->link = 0;
} else if (phy_dev->link) {
if (!fep->link) {
fep->link = phy_dev->link;
status_change = 1;
}
if (fep->full_duplex != phy_dev->duplex) {
fep->full_duplex = phy_dev->duplex;
status_change = 1;
}
if (phy_dev->speed != fep->speed) {
fep->speed = phy_dev->speed;
status_change = 1;
}
/* if any of the above changed restart the FEC */
if (status_change) {
napi_disable(&fep->napi);
netif_tx_lock_bh(ndev);
fec_restart(ndev);
netif_tx_wake_all_queues(ndev);
netif_tx_unlock_bh(ndev);
napi_enable(&fep->napi);
}
} else {
if (fep->link) {
napi_disable(&fep->napi);
netif_tx_lock_bh(ndev);
fec_stop(ndev);
netif_tx_unlock_bh(ndev);
napi_enable(&fep->napi);
fep->link = phy_dev->link;
status_change = 1;
}
}
if (status_change)
phy_print_status(phy_dev);
}
static int fec_enet_mdio_wait(struct fec_enet_private *fep)
{
uint ievent;
int ret;
ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
ievent & FEC_ENET_MII, 2, 30000);
if (!ret)
writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
return ret;
}
static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
{
struct fec_enet_private *fep = bus->priv;
struct device *dev = &fep->pdev->dev;
int ret = 0, frame_start, frame_addr, frame_op;
bool is_c45 = !!(regnum & MII_ADDR_C45);
ret = pm_runtime_resume_and_get(dev);
if (ret < 0)
return ret;
if (is_c45) {
frame_start = FEC_MMFR_ST_C45;
/* write address */
frame_addr = (regnum >> 16);
writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
FEC_MMFR_TA | (regnum & 0xFFFF),
fep->hwp + FEC_MII_DATA);
/* wait for end of transfer */
ret = fec_enet_mdio_wait(fep);
if (ret) {
netdev_err(fep->netdev, "MDIO address write timeout\n");
goto out;
}
frame_op = FEC_MMFR_OP_READ_C45;
} else {
/* C22 read */
frame_op = FEC_MMFR_OP_READ;
frame_start = FEC_MMFR_ST;
frame_addr = regnum;
}
/* start a read op */
writel(frame_start | frame_op |
FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
/* wait for end of transfer */
ret = fec_enet_mdio_wait(fep);
if (ret) {
netdev_err(fep->netdev, "MDIO read timeout\n");
goto out;
}
ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
out:
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return ret;
}
static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
u16 value)
{
struct fec_enet_private *fep = bus->priv;
struct device *dev = &fep->pdev->dev;
int ret, frame_start, frame_addr;
bool is_c45 = !!(regnum & MII_ADDR_C45);
ret = pm_runtime_resume_and_get(dev);
if (ret < 0)
return ret;
if (is_c45) {
frame_start = FEC_MMFR_ST_C45;
/* write address */
frame_addr = (regnum >> 16);
writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
FEC_MMFR_TA | (regnum & 0xFFFF),
fep->hwp + FEC_MII_DATA);
/* wait for end of transfer */
ret = fec_enet_mdio_wait(fep);
if (ret) {
netdev_err(fep->netdev, "MDIO address write timeout\n");
goto out;
}
} else {
/* C22 write */
frame_start = FEC_MMFR_ST;
frame_addr = regnum;
}
/* start a write op */
writel(frame_start | FEC_MMFR_OP_WRITE |
FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
FEC_MMFR_TA | FEC_MMFR_DATA(value),
fep->hwp + FEC_MII_DATA);
/* wait for end of transfer */
ret = fec_enet_mdio_wait(fep);
if (ret)
netdev_err(fep->netdev, "MDIO write timeout\n");
out:
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return ret;
}
static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
struct phy_device *phy_dev = ndev->phydev;
if (phy_dev) {
phy_reset_after_clk_enable(phy_dev);
} else if (fep->phy_node) {
/*
* If the PHY still is not bound to the MAC, but there is
* OF PHY node and a matching PHY device instance already,
* use the OF PHY node to obtain the PHY device instance,
* and then use that PHY device instance when triggering
* the PHY reset.
*/
phy_dev = of_phy_find_device(fep->phy_node);
phy_reset_after_clk_enable(phy_dev);
put_device(&phy_dev->mdio.dev);
}
}
static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
{
struct fec_enet_private *fep = netdev_priv(ndev);
int ret;
if (enable) {
ret = clk_prepare_enable(fep->clk_enet_out);
if (ret)
return ret;
if (fep->clk_ptp) {
mutex_lock(&fep->ptp_clk_mutex);
ret = clk_prepare_enable(fep->clk_ptp);
if (ret) {
mutex_unlock(&fep->ptp_clk_mutex);
goto failed_clk_ptp;
} else {
fep->ptp_clk_on = true;
}
mutex_unlock(&fep->ptp_clk_mutex);
}
ret = clk_prepare_enable(fep->clk_ref);
if (ret)
goto failed_clk_ref;
fec_enet_phy_reset_after_clk_enable(ndev);
} else {
clk_disable_unprepare(fep->clk_enet_out);
if (fep->clk_ptp) {
mutex_lock(&fep->ptp_clk_mutex);
clk_disable_unprepare(fep->clk_ptp);
fep->ptp_clk_on = false;
mutex_unlock(&fep->ptp_clk_mutex);
}
clk_disable_unprepare(fep->clk_ref);
}
return 0;
failed_clk_ref:
if (fep->clk_ptp) {
mutex_lock(&fep->ptp_clk_mutex);
clk_disable_unprepare(fep->clk_ptp);
fep->ptp_clk_on = false;
mutex_unlock(&fep->ptp_clk_mutex);
}
failed_clk_ptp:
clk_disable_unprepare(fep->clk_enet_out);
return ret;
}
static int fec_enet_mii_probe(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
struct phy_device *phy_dev = NULL;
char mdio_bus_id[MII_BUS_ID_SIZE];
char phy_name[MII_BUS_ID_SIZE + 3];
int phy_id;
int dev_id = fep->dev_id;
if (fep->phy_node) {
phy_dev = of_phy_connect(ndev, fep->phy_node,
&fec_enet_adjust_link, 0,
fep->phy_interface);
if (!phy_dev) {
netdev_err(ndev, "Unable to connect to phy\n");
return -ENODEV;
}
} else {
/* check for attached phy */
for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
continue;
if (dev_id--)
continue;
strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
break;
}
if (phy_id >= PHY_MAX_ADDR) {
netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
phy_id = 0;
}
snprintf(phy_name, sizeof(phy_name),
PHY_ID_FMT, mdio_bus_id, phy_id);
phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
fep->phy_interface);
}
if (IS_ERR(phy_dev)) {
netdev_err(ndev, "could not attach to PHY\n");
return PTR_ERR(phy_dev);
}
/* mask with MAC supported features */
if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
phy_set_max_speed(phy_dev, 1000);
phy_remove_link_mode(phy_dev,
ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
#if !defined(CONFIG_M5272)
phy_support_sym_pause(phy_dev);
#endif
}
else
phy_set_max_speed(phy_dev, 100);
fep->link = 0;
fep->full_duplex = 0;
phy_attached_info(phy_dev);
return 0;
}
static int fec_enet_mii_init(struct platform_device *pdev)
{
static struct mii_bus *fec0_mii_bus;
struct net_device *ndev = platform_get_drvdata(pdev);
struct fec_enet_private *fep = netdev_priv(ndev);
bool suppress_preamble = false;
struct device_node *node;
int err = -ENXIO;
u32 mii_speed, holdtime;
u32 bus_freq;
/*
* The i.MX28 dual fec interfaces are not equal.
* Here are the differences:
*
* - fec0 supports MII & RMII modes while fec1 only supports RMII
* - fec0 acts as the 1588 time master while fec1 is slave
* - external phys can only be configured by fec0
*
* That is to say fec1 can not work independently. It only works
* when fec0 is working. The reason behind this design is that the
* second interface is added primarily for Switch mode.
*
* Because of the last point above, both phys are attached on fec0
* mdio interface in board design, and need to be configured by
* fec0 mii_bus.
*/
if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
/* fec1 uses fec0 mii_bus */
if (mii_cnt && fec0_mii_bus) {
fep->mii_bus = fec0_mii_bus;
mii_cnt++;
return 0;
}
return -ENOENT;
}
bus_freq = 2500000; /* 2.5MHz by default */
node = of_get_child_by_name(pdev->dev.of_node, "mdio");
if (node) {
of_property_read_u32(node, "clock-frequency", &bus_freq);
suppress_preamble = of_property_read_bool(node,
"suppress-preamble");
}
/*
* Set MII speed (= clk_get_rate() / 2 * phy_speed)
*
* The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
* for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
* Reference Manual has an error on this, and gets fixed on i.MX6Q
* document.
*/
mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
if (fep->quirks & FEC_QUIRK_ENET_MAC)
mii_speed--;
if (mii_speed > 63) {
dev_err(&pdev->dev,
"fec clock (%lu) too fast to get right mii speed\n",
clk_get_rate(fep->clk_ipg));
err = -EINVAL;
goto err_out;
}
/*
* The i.MX28 and i.MX6 types have another filed in the MSCR (aka
* MII_SPEED) register that defines the MDIO output hold time. Earlier
* versions are RAZ there, so just ignore the difference and write the
* register always.
* The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
* HOLDTIME + 1 is the number of clk cycles the fec is holding the
* output.
* The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
* Given that ceil(clkrate / 5000000) <= 64, the calculation for
* holdtime cannot result in a value greater than 3.
*/
holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
fep->phy_speed = mii_speed << 1 | holdtime << 8;
if (suppress_preamble)
fep->phy_speed |= BIT(7);
if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
/* Clear MMFR to avoid to generate MII event by writing MSCR.
* MII event generation condition:
* - writing MSCR:
* - mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
* mscr_reg_data_in[7:0] != 0
* - writing MMFR:
* - mscr[7:0]_not_zero
*/
writel(0, fep->hwp + FEC_MII_DATA);
}
writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
/* Clear any pending transaction complete indication */
writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
fep->mii_bus = mdiobus_alloc();
if (fep->mii_bus == NULL) {
err = -ENOMEM;
goto err_out;
}
fep->mii_bus->name = "fec_enet_mii_bus";
fep->mii_bus->read = fec_enet_mdio_read;
fep->mii_bus->write = fec_enet_mdio_write;
snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
pdev->name, fep->dev_id + 1);
fep->mii_bus->priv = fep;
fep->mii_bus->parent = &pdev->dev;
err = of_mdiobus_register(fep->mii_bus, node);
if (err)
goto err_out_free_mdiobus;
of_node_put(node);
mii_cnt++;
/* save fec0 mii_bus */
if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
fec0_mii_bus = fep->mii_bus;
return 0;
err_out_free_mdiobus:
mdiobus_free(fep->mii_bus);
err_out:
of_node_put(node);
return err;
}
static void fec_enet_mii_remove(struct fec_enet_private *fep)
{
if (--mii_cnt == 0) {
mdiobus_unregister(fep->mii_bus);
mdiobus_free(fep->mii_bus);
}
}
static void fec_enet_get_drvinfo(struct net_device *ndev,
struct ethtool_drvinfo *info)
{
struct fec_enet_private *fep = netdev_priv(ndev);
strlcpy(info->driver, fep->pdev->dev.driver->name,
sizeof(info->driver));
strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
}
static int fec_enet_get_regs_len(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
struct resource *r;
int s = 0;
r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
if (r)
s = resource_size(r);
return s;
}
/* List of registers that can be safety be read to dump them with ethtool */
#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
static __u32 fec_enet_register_version = 2;
static u32 fec_enet_register_offset[] = {
FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
RMON_T_P_GTE2048, RMON_T_OCTETS,
IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
RMON_R_P_GTE2048, RMON_R_OCTETS,
IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
IEEE_R_FDXFC, IEEE_R_OCTETS_OK
};
#else
static __u32 fec_enet_register_version = 1;
static u32 fec_enet_register_offset[] = {
FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
};
#endif
static void fec_enet_get_regs(struct net_device *ndev,
struct ethtool_regs *regs, void *regbuf)
{
struct fec_enet_private *fep = netdev_priv(ndev);
u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
struct device *dev = &fep->pdev->dev;
u32 *buf = (u32 *)regbuf;
u32 i, off;
int ret;
ret = pm_runtime_resume_and_get(dev);
if (ret < 0)
return;
regs->version = fec_enet_register_version;
memset(buf, 0, regs->len);
for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
off = fec_enet_register_offset[i];
if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
!(fep->quirks & FEC_QUIRK_HAS_FRREG))
continue;
off >>= 2;
buf[off] = readl(&theregs[off]);
}
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
}
static int fec_enet_get_ts_info(struct net_device *ndev,
struct ethtool_ts_info *info)
{
struct fec_enet_private *fep = netdev_priv(ndev);
if (fep->bufdesc_ex) {
info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
SOF_TIMESTAMPING_RX_SOFTWARE |
SOF_TIMESTAMPING_SOFTWARE |
SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE;
if (fep->ptp_clock)
info->phc_index = ptp_clock_index(fep->ptp_clock);
else
info->phc_index = -1;
info->tx_types = (1 << HWTSTAMP_TX_OFF) |
(1 << HWTSTAMP_TX_ON);
info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
(1 << HWTSTAMP_FILTER_ALL);
return 0;
} else {
return ethtool_op_get_ts_info(ndev, info);
}
}
#if !defined(CONFIG_M5272)
static void fec_enet_get_pauseparam(struct net_device *ndev,
struct ethtool_pauseparam *pause)
{
struct fec_enet_private *fep = netdev_priv(ndev);
pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
pause->rx_pause = pause->tx_pause;
}
static int fec_enet_set_pauseparam(struct net_device *ndev,
struct ethtool_pauseparam *pause)
{
struct fec_enet_private *fep = netdev_priv(ndev);
if (!ndev->phydev)
return -ENODEV;
if (pause->tx_pause != pause->rx_pause) {
netdev_info(ndev,
"hardware only support enable/disable both tx and rx");
return -EINVAL;
}
fep->pause_flag = 0;
/* tx pause must be same as rx pause */
fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
pause->autoneg);
if (pause->autoneg) {
if (netif_running(ndev))
fec_stop(ndev);
phy_start_aneg(ndev->phydev);
}
if (netif_running(ndev)) {
napi_disable(&fep->napi);
netif_tx_lock_bh(ndev);
fec_restart(ndev);
netif_tx_wake_all_queues(ndev);
netif_tx_unlock_bh(ndev);
napi_enable(&fep->napi);
}
return 0;
}
static const struct fec_stat {
char name[ETH_GSTRING_LEN];
u16 offset;
} fec_stats[] = {
/* RMON TX */
{ "tx_dropped", RMON_T_DROP },
{ "tx_packets", RMON_T_PACKETS },
{ "tx_broadcast", RMON_T_BC_PKT },
{ "tx_multicast", RMON_T_MC_PKT },
{ "tx_crc_errors", RMON_T_CRC_ALIGN },
{ "tx_undersize", RMON_T_UNDERSIZE },
{ "tx_oversize", RMON_T_OVERSIZE },
{ "tx_fragment", RMON_T_FRAG },
{ "tx_jabber", RMON_T_JAB },
{ "tx_collision", RMON_T_COL },
{ "tx_64byte", RMON_T_P64 },
{ "tx_65to127byte", RMON_T_P65TO127 },
{ "tx_128to255byte", RMON_T_P128TO255 },
{ "tx_256to511byte", RMON_T_P256TO511 },
{ "tx_512to1023byte", RMON_T_P512TO1023 },
{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
{ "tx_octets", RMON_T_OCTETS },
/* IEEE TX */
{ "IEEE_tx_drop", IEEE_T_DROP },
{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
{ "IEEE_tx_1col", IEEE_T_1COL },
{ "IEEE_tx_mcol", IEEE_T_MCOL },
{ "IEEE_tx_def", IEEE_T_DEF },
{ "IEEE_tx_lcol", IEEE_T_LCOL },
{ "IEEE_tx_excol", IEEE_T_EXCOL },
{ "IEEE_tx_macerr", IEEE_T_MACERR },
{ "IEEE_tx_cserr", IEEE_T_CSERR },
{ "IEEE_tx_sqe", IEEE_T_SQE },
{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
/* RMON RX */
{ "rx_packets", RMON_R_PACKETS },
{ "rx_broadcast", RMON_R_BC_PKT },
{ "rx_multicast", RMON_R_MC_PKT },
{ "rx_crc_errors", RMON_R_CRC_ALIGN },
{ "rx_undersize", RMON_R_UNDERSIZE },
{ "rx_oversize", RMON_R_OVERSIZE },
{ "rx_fragment", RMON_R_FRAG },
{ "rx_jabber", RMON_R_JAB },
{ "rx_64byte", RMON_R_P64 },
{ "rx_65to127byte", RMON_R_P65TO127 },
{ "rx_128to255byte", RMON_R_P128TO255 },
{ "rx_256to511byte", RMON_R_P256TO511 },
{ "rx_512to1023byte", RMON_R_P512TO1023 },
{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
{ "rx_octets", RMON_R_OCTETS },
/* IEEE RX */
{ "IEEE_rx_drop", IEEE_R_DROP },
{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
{ "IEEE_rx_crc", IEEE_R_CRC },
{ "IEEE_rx_align", IEEE_R_ALIGN },
{ "IEEE_rx_macerr", IEEE_R_MACERR },
{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
};
#define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64))
static void fec_enet_update_ethtool_stats(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
int i;
for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
}
static void fec_enet_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct fec_enet_private *fep = netdev_priv(dev);
if (netif_running(dev))
fec_enet_update_ethtool_stats(dev);
memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
}
static void fec_enet_get_strings(struct net_device *netdev,
u32 stringset, u8 *data)
{
int i;
switch (stringset) {
case ETH_SS_STATS:
for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
memcpy(data + i * ETH_GSTRING_LEN,
fec_stats[i].name, ETH_GSTRING_LEN);
break;
}
}
static int fec_enet_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return ARRAY_SIZE(fec_stats);
default:
return -EOPNOTSUPP;
}
}
static void fec_enet_clear_ethtool_stats(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
int i;
/* Disable MIB statistics counters */
writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
writel(0, fep->hwp + fec_stats[i].offset);
/* Don't disable MIB statistics counters */
writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
}
#else /* !defined(CONFIG_M5272) */
#define FEC_STATS_SIZE 0
static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
{
}
static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
{
}
#endif /* !defined(CONFIG_M5272) */
/* ITR clock source is enet system clock (clk_ahb).
* TCTT unit is cycle_ns * 64 cycle
* So, the ICTT value = X us / (cycle_ns * 64)
*/
static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
{
struct fec_enet_private *fep = netdev_priv(ndev);
return us * (fep->itr_clk_rate / 64000) / 1000;
}
/* Set threshold for interrupt coalescing */
static void fec_enet_itr_coal_set(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
int rx_itr, tx_itr;
/* Must be greater than zero to avoid unpredictable behavior */
if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
!fep->tx_time_itr || !fep->tx_pkts_itr)
return;
/* Select enet system clock as Interrupt Coalescing
* timer Clock Source
*/
rx_itr = FEC_ITR_CLK_SEL;
tx_itr = FEC_ITR_CLK_SEL;
/* set ICFT and ICTT */
rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
rx_itr |= FEC_ITR_EN;
tx_itr |= FEC_ITR_EN;
writel(tx_itr, fep->hwp + FEC_TXIC0);
writel(rx_itr, fep->hwp + FEC_RXIC0);
if (fep->quirks & FEC_QUIRK_HAS_AVB) {
writel(tx_itr, fep->hwp + FEC_TXIC1);
writel(rx_itr, fep->hwp + FEC_RXIC1);
writel(tx_itr, fep->hwp + FEC_TXIC2);
writel(rx_itr, fep->hwp + FEC_RXIC2);
}
}
static int
fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
{
struct fec_enet_private *fep = netdev_priv(ndev);
if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
return -EOPNOTSUPP;
ec->rx_coalesce_usecs = fep->rx_time_itr;
ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
ec->tx_coalesce_usecs = fep->tx_time_itr;
ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
return 0;
}
static int
fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
{
struct fec_enet_private *fep = netdev_priv(ndev);
struct device *dev = &fep->pdev->dev;
unsigned int cycle;
if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
return -EOPNOTSUPP;
if (ec->rx_max_coalesced_frames > 255) {
dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
return -EINVAL;
}
if (ec->tx_max_coalesced_frames > 255) {
dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
return -EINVAL;
}
cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
if (cycle > 0xFFFF) {
dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
return -EINVAL;
}
cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
if (cycle > 0xFFFF) {
dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
return -EINVAL;
}
fep->rx_time_itr = ec->rx_coalesce_usecs;
fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
fep->tx_time_itr = ec->tx_coalesce_usecs;
fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
fec_enet_itr_coal_set(ndev);
return 0;
}
static void fec_enet_itr_coal_init(struct net_device *ndev)
{
struct ethtool_coalesce ec;
ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
fec_enet_set_coalesce(ndev, &ec);
}
static int fec_enet_get_tunable(struct net_device *netdev,
const struct ethtool_tunable *tuna,
void *data)
{
struct fec_enet_private *fep = netdev_priv(netdev);
int ret = 0;
switch (tuna->id) {
case ETHTOOL_RX_COPYBREAK:
*(u32 *)data = fep->rx_copybreak;
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int fec_enet_set_tunable(struct net_device *netdev,
const struct ethtool_tunable *tuna,
const void *data)
{
struct fec_enet_private *fep = netdev_priv(netdev);
int ret = 0;
switch (tuna->id) {
case ETHTOOL_RX_COPYBREAK:
fep->rx_copybreak = *(u32 *)data;
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static void
fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
struct fec_enet_private *fep = netdev_priv(ndev);
if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
wol->supported = WAKE_MAGIC;
wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
} else {
wol->supported = wol->wolopts = 0;
}
}
static int
fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
struct fec_enet_private *fep = netdev_priv(ndev);
if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
return -EINVAL;
if (wol->wolopts & ~WAKE_MAGIC)
return -EINVAL;
device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
if (device_may_wakeup(&ndev->dev)) {
fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
if (fep->irq[0] > 0)
enable_irq_wake(fep->irq[0]);
} else {
fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
if (fep->irq[0] > 0)
disable_irq_wake(fep->irq[0]);
}
return 0;
}
static const struct ethtool_ops fec_enet_ethtool_ops = {
.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
ETHTOOL_COALESCE_MAX_FRAMES,
.get_drvinfo = fec_enet_get_drvinfo,
.get_regs_len = fec_enet_get_regs_len,
.get_regs = fec_enet_get_regs,
.nway_reset = phy_ethtool_nway_reset,
.get_link = ethtool_op_get_link,
.get_coalesce = fec_enet_get_coalesce,
.set_coalesce = fec_enet_set_coalesce,
#ifndef CONFIG_M5272
.get_pauseparam = fec_enet_get_pauseparam,
.set_pauseparam = fec_enet_set_pauseparam,
.get_strings = fec_enet_get_strings,
.get_ethtool_stats = fec_enet_get_ethtool_stats,
.get_sset_count = fec_enet_get_sset_count,
#endif
.get_ts_info = fec_enet_get_ts_info,
.get_tunable = fec_enet_get_tunable,
.set_tunable = fec_enet_set_tunable,
.get_wol = fec_enet_get_wol,
.set_wol = fec_enet_set_wol,
.get_link_ksettings = phy_ethtool_get_link_ksettings,
.set_link_ksettings = phy_ethtool_set_link_ksettings,
};
static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
{
struct fec_enet_private *fep = netdev_priv(ndev);
struct phy_device *phydev = ndev->phydev;
if (!netif_running(ndev))
return -EINVAL;
if (!phydev)
return -ENODEV;
if (fep->bufdesc_ex) {
bool use_fec_hwts = !phy_has_hwtstamp(phydev);
if (cmd == SIOCSHWTSTAMP) {
if (use_fec_hwts)
return fec_ptp_set(ndev, rq);
fec_ptp_disable_hwts(ndev);
} else if (cmd == SIOCGHWTSTAMP) {
if (use_fec_hwts)
return fec_ptp_get(ndev, rq);
}
}
return phy_mii_ioctl(phydev, rq, cmd);
}
static void fec_enet_free_buffers(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
unsigned int i;
struct sk_buff *skb;
struct bufdesc *bdp;
struct fec_enet_priv_tx_q *txq;
struct fec_enet_priv_rx_q *rxq;
unsigned int q;
for (q = 0; q < fep->num_rx_queues; q++) {
rxq = fep->rx_queue[q];
bdp = rxq->bd.base;
for (i = 0; i < rxq->bd.ring_size; i++) {
skb = rxq->rx_skbuff[i];
rxq->rx_skbuff[i] = NULL;
if (skb) {
dma_unmap_single(&fep->pdev->dev,
fec32_to_cpu(bdp->cbd_bufaddr),
FEC_ENET_RX_FRSIZE - fep->rx_align,
DMA_FROM_DEVICE);
dev_kfree_skb(skb);
}
bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
}
}
for (q = 0; q < fep->num_tx_queues; q++) {
txq = fep->tx_queue[q];
for (i = 0; i < txq->bd.ring_size; i++) {
kfree(txq->tx_bounce[i]);
txq->tx_bounce[i] = NULL;
skb = txq->tx_skbuff[i];
txq->tx_skbuff[i] = NULL;
dev_kfree_skb(skb);
}
}
}
static void fec_enet_free_queue(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
int i;
struct fec_enet_priv_tx_q *txq;
for (i = 0; i < fep->num_tx_queues; i++)
if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
txq = fep->tx_queue[i];
dma_free_coherent(&fep->pdev->dev,
txq->bd.ring_size * TSO_HEADER_SIZE,
txq->tso_hdrs,
txq->tso_hdrs_dma);
}
for (i = 0; i < fep->num_rx_queues; i++)
kfree(fep->rx_queue[i]);
for (i = 0; i < fep->num_tx_queues; i++)
kfree(fep->tx_queue[i]);
}
static int fec_enet_alloc_queue(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
int i;
int ret = 0;
struct fec_enet_priv_tx_q *txq;
for (i = 0; i < fep->num_tx_queues; i++) {
txq = kzalloc(sizeof(*txq), GFP_KERNEL);
if (!txq) {
ret = -ENOMEM;
goto alloc_failed;
}
fep->tx_queue[i] = txq;
txq->bd.ring_size = TX_RING_SIZE;
fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
txq->tx_wake_threshold =
(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
txq->bd.ring_size * TSO_HEADER_SIZE,
&txq->tso_hdrs_dma,
GFP_KERNEL);
if (!txq->tso_hdrs) {
ret = -ENOMEM;
goto alloc_failed;
}
}
for (i = 0; i < fep->num_rx_queues; i++) {
fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
GFP_KERNEL);
if (!fep->rx_queue[i]) {
ret = -ENOMEM;
goto alloc_failed;
}
fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
}
return ret;
alloc_failed:
fec_enet_free_queue(ndev);
return ret;
}
static int
fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
{
struct fec_enet_private *fep = netdev_priv(ndev);
unsigned int i;
struct sk_buff *skb;
struct bufdesc *bdp;
struct fec_enet_priv_rx_q *rxq;
rxq = fep->rx_queue[queue];
bdp = rxq->bd.base;
for (i = 0; i < rxq->bd.ring_size; i++) {
skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
if (!skb)
goto err_alloc;
if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
dev_kfree_skb(skb);
goto err_alloc;
}
rxq->rx_skbuff[i] = skb;
bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
if (fep->bufdesc_ex) {
struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
}
bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
}
/* Set the last buffer to wrap. */
bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
return 0;
err_alloc:
fec_enet_free_buffers(ndev);
return -ENOMEM;
}
static int
fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
{
struct fec_enet_private *fep = netdev_priv(ndev);
unsigned int i;
struct bufdesc *bdp;
struct fec_enet_priv_tx_q *txq;
txq = fep->tx_queue[queue];
bdp = txq->bd.base;
for (i = 0; i < txq->bd.ring_size; i++) {
txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
if (!txq->tx_bounce[i])
goto err_alloc;
bdp->cbd_sc = cpu_to_fec16(0);
bdp->cbd_bufaddr = cpu_to_fec32(0);
if (fep->bufdesc_ex) {
struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
}
bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
}
/* Set the last buffer to wrap. */
bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
return 0;
err_alloc:
fec_enet_free_buffers(ndev);
return -ENOMEM;
}
static int fec_enet_alloc_buffers(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
unsigned int i;
for (i = 0; i < fep->num_rx_queues; i++)
if (fec_enet_alloc_rxq_buffers(ndev, i))
return -ENOMEM;
for (i = 0; i < fep->num_tx_queues; i++)
if (fec_enet_alloc_txq_buffers(ndev, i))
return -ENOMEM;
return 0;
}
static int
fec_enet_open(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
int ret;
bool reset_again;
ret = pm_runtime_resume_and_get(&fep->pdev->dev);
if (ret < 0)
return ret;
pinctrl_pm_select_default_state(&fep->pdev->dev);
ret = fec_enet_clk_enable(ndev, true);
if (ret)
goto clk_enable;
/* During the first fec_enet_open call the PHY isn't probed at this
* point. Therefore the phy_reset_after_clk_enable() call within
* fec_enet_clk_enable() fails. As we need this reset in order to be
* sure the PHY is working correctly we check if we need to reset again
* later when the PHY is probed
*/
if (ndev->phydev && ndev->phydev->drv)
reset_again = false;
else
reset_again = true;
/* I should reset the ring buffers here, but I don't yet know
* a simple way to do that.
*/
ret = fec_enet_alloc_buffers(ndev);
if (ret)
goto err_enet_alloc;
/* Init MAC prior to mii bus probe */
fec_restart(ndev);
/* Call phy_reset_after_clk_enable() again if it failed during
* phy_reset_after_clk_enable() before because the PHY wasn't probed.
*/
if (reset_again)
fec_enet_phy_reset_after_clk_enable(ndev);
/* Probe and connect to PHY when open the interface */
ret = fec_enet_mii_probe(ndev);
if (ret)
goto err_enet_mii_probe;
if (fep->quirks & FEC_QUIRK_ERR006687)
imx6q_cpuidle_fec_irqs_used();
napi_enable(&fep->napi);
phy_start(ndev->phydev);
netif_tx_start_all_queues(ndev);
device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
FEC_WOL_FLAG_ENABLE);
return 0;
err_enet_mii_probe:
fec_enet_free_buffers(ndev);
err_enet_alloc:
fec_enet_clk_enable(ndev, false);
clk_enable:
pm_runtime_mark_last_busy(&fep->pdev->dev);
pm_runtime_put_autosuspend(&fep->pdev->dev);
pinctrl_pm_select_sleep_state(&fep->pdev->dev);
return ret;
}
static int
fec_enet_close(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
phy_stop(ndev->phydev);
if (netif_device_present(ndev)) {
napi_disable(&fep->napi);
netif_tx_disable(ndev);
fec_stop(ndev);
}
phy_disconnect(ndev->phydev);
if (fep->quirks & FEC_QUIRK_ERR006687)
imx6q_cpuidle_fec_irqs_unused();
fec_enet_update_ethtool_stats(ndev);
fec_enet_clk_enable(ndev, false);
pinctrl_pm_select_sleep_state(&fep->pdev->dev);
pm_runtime_mark_last_busy(&fep->pdev->dev);
pm_runtime_put_autosuspend(&fep->pdev->dev);
fec_enet_free_buffers(ndev);
return 0;
}
/* Set or clear the multicast filter for this adaptor.
* Skeleton taken from sunlance driver.
* The CPM Ethernet implementation allows Multicast as well as individual
* MAC address filtering. Some of the drivers check to make sure it is
* a group multicast address, and discard those that are not. I guess I
* will do the same for now, but just remove the test if you want
* individual filtering as well (do the upper net layers want or support
* this kind of feature?).
*/
#define FEC_HASH_BITS 6 /* #bits in hash */
static void set_multicast_list(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
struct netdev_hw_addr *ha;
unsigned int crc, tmp;
unsigned char hash;
unsigned int hash_high = 0, hash_low = 0;
if (ndev->flags & IFF_PROMISC) {
tmp = readl(fep->hwp + FEC_R_CNTRL);
tmp |= 0x8;
writel(tmp, fep->hwp + FEC_R_CNTRL);
return;
}
tmp = readl(fep->hwp + FEC_R_CNTRL);
tmp &= ~0x8;
writel(tmp, fep->hwp + FEC_R_CNTRL);
if (ndev->flags & IFF_ALLMULTI) {
/* Catch all multicast addresses, so set the
* filter to all 1's
*/
writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
return;
}
/* Add the addresses in hash register */
netdev_for_each_mc_addr(ha, ndev) {
/* calculate crc32 value of mac address */
crc = ether_crc_le(ndev->addr_len, ha->addr);
/* only upper 6 bits (FEC_HASH_BITS) are used
* which point to specific bit in the hash registers
*/
hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
if (hash > 31)
hash_high |= 1 << (hash - 32);
else
hash_low |= 1 << hash;
}
writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
}
/* Set a MAC change in hardware. */
static int
fec_set_mac_address(struct net_device *ndev, void *p)
{
struct fec_enet_private *fep = netdev_priv(ndev);
struct sockaddr *addr = p;
if (addr) {
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
}
/* Add netif status check here to avoid system hang in below case:
* ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
* After ethx down, fec all clocks are gated off and then register
* access causes system hang.
*/
if (!netif_running(ndev))
return 0;
writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
fep->hwp + FEC_ADDR_LOW);
writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
fep->hwp + FEC_ADDR_HIGH);
return 0;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/**
* fec_poll_controller - FEC Poll controller function
* @dev: The FEC network adapter
*
* Polled functionality used by netconsole and others in non interrupt mode
*
*/
static void fec_poll_controller(struct net_device *dev)
{
int i;
struct fec_enet_private *fep = netdev_priv(dev);
for (i = 0; i < FEC_IRQ_NUM; i++) {
if (fep->irq[i] > 0) {
disable_irq(fep->irq[i]);
fec_enet_interrupt(fep->irq[i], dev);
enable_irq(fep->irq[i]);
}
}
}
#endif
static inline void fec_enet_set_netdev_features(struct net_device *netdev,
netdev_features_t features)
{
struct fec_enet_private *fep = netdev_priv(netdev);
netdev_features_t changed = features ^ netdev->features;
netdev->features = features;
/* Receive checksum has been changed */
if (changed & NETIF_F_RXCSUM) {
if (features & NETIF_F_RXCSUM)
fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
else
fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
}
}
static int fec_set_features(struct net_device *netdev,
netdev_features_t features)
{
struct fec_enet_private *fep = netdev_priv(netdev);
netdev_features_t changed = features ^ netdev->features;
if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
napi_disable(&fep->napi);
netif_tx_lock_bh(netdev);
fec_stop(netdev);
fec_enet_set_netdev_features(netdev, features);
fec_restart(netdev);
netif_tx_wake_all_queues(netdev);
netif_tx_unlock_bh(netdev);
napi_enable(&fep->napi);
} else {
fec_enet_set_netdev_features(netdev, features);
}
return 0;
}
static const struct net_device_ops fec_netdev_ops = {
.ndo_open = fec_enet_open,
.ndo_stop = fec_enet_close,
.ndo_start_xmit = fec_enet_start_xmit,
.ndo_set_rx_mode = set_multicast_list,
.ndo_validate_addr = eth_validate_addr,
.ndo_tx_timeout = fec_timeout,
.ndo_set_mac_address = fec_set_mac_address,
.ndo_do_ioctl = fec_enet_ioctl,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = fec_poll_controller,
#endif
.ndo_set_features = fec_set_features,
};
static const unsigned short offset_des_active_rxq[] = {
FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
};
static const unsigned short offset_des_active_txq[] = {
FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
};
/*
* XXX: We need to clean up on failure exits here.
*
*/
static int fec_enet_init(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
struct bufdesc *cbd_base;
dma_addr_t bd_dma;
int bd_size;
unsigned int i;
unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
sizeof(struct bufdesc);
unsigned dsize_log2 = __fls(dsize);
int ret;
WARN_ON(dsize != (1 << dsize_log2));
#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
fep->rx_align = 0xf;
fep->tx_align = 0xf;
#else
fep->rx_align = 0x3;
fep->tx_align = 0x3;
#endif
/* Check mask of the streaming and coherent API */
ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
if (ret < 0) {
dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
return ret;
}
fec_enet_alloc_queue(ndev);
bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
/* Allocate memory for buffer descriptors. */
cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
GFP_KERNEL);
if (!cbd_base) {
return -ENOMEM;
}
/* Get the Ethernet address */
fec_get_mac(ndev);
/* make sure MAC we just acquired is programmed into the hw */
fec_set_mac_address(ndev, NULL);
/* Set receive and transmit descriptor base. */
for (i = 0; i < fep->num_rx_queues; i++) {
struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
unsigned size = dsize * rxq->bd.ring_size;
rxq->bd.qid = i;
rxq->bd.base = cbd_base;
rxq->bd.cur = cbd_base;
rxq->bd.dma = bd_dma;
rxq->bd.dsize = dsize;
rxq->bd.dsize_log2 = dsize_log2;
rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
bd_dma += size;
cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
}
for (i = 0; i < fep->num_tx_queues; i++) {
struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
unsigned size = dsize * txq->bd.ring_size;
txq->bd.qid = i;
txq->bd.base = cbd_base;
txq->bd.cur = cbd_base;
txq->bd.dma = bd_dma;
txq->bd.dsize = dsize;
txq->bd.dsize_log2 = dsize_log2;
txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
bd_dma += size;
cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
}
/* The FEC Ethernet specific entries in the device structure */
ndev->watchdog_timeo = TX_TIMEOUT;
ndev->netdev_ops = &fec_netdev_ops;
ndev->ethtool_ops = &fec_enet_ethtool_ops;
writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
if (fep->quirks & FEC_QUIRK_HAS_VLAN)
/* enable hw VLAN support */
ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
/* enable hw accelerator */
ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
}
if (fep->quirks & FEC_QUIRK_HAS_AVB) {
fep->tx_align = 0;
fep->rx_align = 0x3f;
}
ndev->hw_features = ndev->features;
fec_restart(ndev);
if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
fec_enet_clear_ethtool_stats(ndev);
else
fec_enet_update_ethtool_stats(ndev);
return 0;
}
#ifdef CONFIG_OF
static int fec_reset_phy(struct platform_device *pdev)
{
int err, phy_reset;
bool active_high = false;
int msec = 1, phy_post_delay = 0;
struct device_node *np = pdev->dev.of_node;
if (!np)
return 0;
err = of_property_read_u32(np, "phy-reset-duration", &msec);
/* A sane reset duration should not be longer than 1s */
if (!err && msec > 1000)
msec = 1;
phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
if (phy_reset == -EPROBE_DEFER)
return phy_reset;
else if (!gpio_is_valid(phy_reset))
return 0;
err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
/* valid reset duration should be less than 1s */
if (!err && phy_post_delay > 1000)
return -EINVAL;
active_high = of_property_read_bool(np, "phy-reset-active-high");
err = devm_gpio_request_one(&pdev->dev, phy_reset,
active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
"phy-reset");
if (err) {
dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
return err;
}
if (msec > 20)
msleep(msec);
else
usleep_range(msec * 1000, msec * 1000 + 1000);
gpio_set_value_cansleep(phy_reset, !active_high);
if (!phy_post_delay)
return 0;
if (phy_post_delay > 20)
msleep(phy_post_delay);
else
usleep_range(phy_post_delay * 1000,
phy_post_delay * 1000 + 1000);
return 0;
}
#else /* CONFIG_OF */
static int fec_reset_phy(struct platform_device *pdev)
{
/*
* In case of platform probe, the reset has been done
* by machine code.
*/
return 0;
}
#endif /* CONFIG_OF */
static void
fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
{
struct device_node *np = pdev->dev.of_node;
*num_tx = *num_rx = 1;
if (!np || !of_device_is_available(np))
return;
/* parse the num of tx and rx queues */
of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
*num_tx);
*num_tx = 1;
return;
}
if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
*num_rx);
*num_rx = 1;
return;
}
}
static int fec_enet_get_irq_cnt(struct platform_device *pdev)
{
int irq_cnt = platform_irq_count(pdev);
if (irq_cnt > FEC_IRQ_NUM)
irq_cnt = FEC_IRQ_NUM; /* last for pps */
else if (irq_cnt == 2)
irq_cnt = 1; /* last for pps */
else if (irq_cnt <= 0)
irq_cnt = 1; /* At least 1 irq is needed */
return irq_cnt;
}
static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
struct device_node *np)
{
struct device_node *gpr_np;
u32 out_val[3];
int ret = 0;
gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
if (!gpr_np)
return 0;
ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
ARRAY_SIZE(out_val));
if (ret) {
dev_dbg(&fep->pdev->dev, "no stop mode property\n");
return ret;
}
fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
if (IS_ERR(fep->stop_gpr.gpr)) {
dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
ret = PTR_ERR(fep->stop_gpr.gpr);
fep->stop_gpr.gpr = NULL;
goto out;
}
fep->stop_gpr.reg = out_val[1];
fep->stop_gpr.bit = out_val[2];
out:
of_node_put(gpr_np);
return ret;
}
static int
fec_probe(struct platform_device *pdev)
{
struct fec_enet_private *fep;
struct fec_platform_data *pdata;
phy_interface_t interface;
struct net_device *ndev;
int i, irq, ret = 0;
const struct of_device_id *of_id;
static int dev_id;
struct device_node *np = pdev->dev.of_node, *phy_node;
int num_tx_qs;
int num_rx_qs;
char irq_name[8];
int irq_cnt;
struct fec_devinfo *dev_info;
fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
/* Init network device */
ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
if (!ndev)
return -ENOMEM;
SET_NETDEV_DEV(ndev, &pdev->dev);
/* setup board info structure */
fep = netdev_priv(ndev);
of_id = of_match_device(fec_dt_ids, &pdev->dev);
if (of_id)
pdev->id_entry = of_id->data;
dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
if (dev_info)
fep->quirks = dev_info->quirks;
fep->netdev = ndev;
fep->num_rx_queues = num_rx_qs;
fep->num_tx_queues = num_tx_qs;
#if !defined(CONFIG_M5272)
/* default enable pause frame auto negotiation */
if (fep->quirks & FEC_QUIRK_HAS_GBIT)
fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
#endif
/* Select default pin state */
pinctrl_pm_select_default_state(&pdev->dev);
fep->hwp = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(fep->hwp)) {
ret = PTR_ERR(fep->hwp);
goto failed_ioremap;
}
fep->pdev = pdev;
fep->dev_id = dev_id++;
platform_set_drvdata(pdev, ndev);
if ((of_machine_is_compatible("fsl,imx6q") ||
of_machine_is_compatible("fsl,imx6dl")) &&
!of_property_read_bool(np, "fsl,err006687-workaround-present"))
fep->quirks |= FEC_QUIRK_ERR006687;
if (of_get_property(np, "fsl,magic-packet", NULL))
fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
ret = fec_enet_init_stop_mode(fep, np);
if (ret)
goto failed_stop_mode;
phy_node = of_parse_phandle(np, "phy-handle", 0);
if (!phy_node && of_phy_is_fixed_link(np)) {
ret = of_phy_register_fixed_link(np);
if (ret < 0) {
dev_err(&pdev->dev,
"broken fixed-link specification\n");
goto failed_phy;
}
phy_node = of_node_get(np);
}
fep->phy_node = phy_node;
ret = of_get_phy_mode(pdev->dev.of_node, &interface);
if (ret) {
pdata = dev_get_platdata(&pdev->dev);
if (pdata)
fep->phy_interface = pdata->phy;
else
fep->phy_interface = PHY_INTERFACE_MODE_MII;
} else {
fep->phy_interface = interface;
}
fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
if (IS_ERR(fep->clk_ipg)) {
ret = PTR_ERR(fep->clk_ipg);
goto failed_clk;
}
fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
if (IS_ERR(fep->clk_ahb)) {
ret = PTR_ERR(fep->clk_ahb);
goto failed_clk;
}
fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
/* enet_out is optional, depends on board */
fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
if (IS_ERR(fep->clk_enet_out))
fep->clk_enet_out = NULL;
fep->ptp_clk_on = false;
mutex_init(&fep->ptp_clk_mutex);
/* clk_ref is optional, depends on board */
fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
if (IS_ERR(fep->clk_ref))
fep->clk_ref = NULL;
fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
if (IS_ERR(fep->clk_ptp)) {
fep->clk_ptp = NULL;
fep->bufdesc_ex = false;
}
ret = fec_enet_clk_enable(ndev, true);
if (ret)
goto failed_clk;
ret = clk_prepare_enable(fep->clk_ipg);
if (ret)
goto failed_clk_ipg;
ret = clk_prepare_enable(fep->clk_ahb);
if (ret)
goto failed_clk_ahb;
fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
if (!IS_ERR(fep->reg_phy)) {
ret = regulator_enable(fep->reg_phy);
if (ret) {
dev_err(&pdev->dev,
"Failed to enable phy regulator: %d\n", ret);
goto failed_regulator;
}
} else {
if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
ret = -EPROBE_DEFER;
goto failed_regulator;
}
fep->reg_phy = NULL;
}
pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
ret = fec_reset_phy(pdev);
if (ret)
goto failed_reset;
irq_cnt = fec_enet_get_irq_cnt(pdev);
if (fep->bufdesc_ex)
fec_ptp_init(pdev, irq_cnt);
ret = fec_enet_init(ndev);
if (ret)
goto failed_init;
for (i = 0; i < irq_cnt; i++) {
snprintf(irq_name, sizeof(irq_name), "int%d", i);
irq = platform_get_irq_byname_optional(pdev, irq_name);
if (irq < 0)
irq = platform_get_irq(pdev, i);
if (irq < 0) {
ret = irq;
goto failed_irq;
}
ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
0, pdev->name, ndev);
if (ret)
goto failed_irq;
fep->irq[i] = irq;
}
ret = fec_enet_mii_init(pdev);
if (ret)
goto failed_mii_init;
/* Carrier starts down, phylib will bring it up */
netif_carrier_off(ndev);
fec_enet_clk_enable(ndev, false);
pinctrl_pm_select_sleep_state(&pdev->dev);
ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
ret = register_netdev(ndev);
if (ret)
goto failed_register;
device_init_wakeup(&ndev->dev, fep->wol_flag &
FEC_WOL_HAS_MAGIC_PACKET);
if (fep->bufdesc_ex && fep->ptp_clock)
netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
fep->rx_copybreak = COPYBREAK_DEFAULT;
INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
pm_runtime_mark_last_busy(&pdev->dev);
pm_runtime_put_autosuspend(&pdev->dev);
return 0;
failed_register:
fec_enet_mii_remove(fep);
failed_mii_init:
failed_irq:
failed_init:
fec_ptp_stop(pdev);
failed_reset:
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
if (fep->reg_phy)
regulator_disable(fep->reg_phy);
failed_regulator:
clk_disable_unprepare(fep->clk_ahb);
failed_clk_ahb:
clk_disable_unprepare(fep->clk_ipg);
failed_clk_ipg:
fec_enet_clk_enable(ndev, false);
failed_clk:
if (of_phy_is_fixed_link(np))
of_phy_deregister_fixed_link(np);
of_node_put(phy_node);
failed_stop_mode:
failed_phy:
dev_id--;
failed_ioremap:
free_netdev(ndev);
return ret;
}
static int
fec_drv_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct fec_enet_private *fep = netdev_priv(ndev);
struct device_node *np = pdev->dev.of_node;
int ret;
ret = pm_runtime_resume_and_get(&pdev->dev);
if (ret < 0)
return ret;
cancel_work_sync(&fep->tx_timeout_work);
fec_ptp_stop(pdev);
unregister_netdev(ndev);
fec_enet_mii_remove(fep);
if (fep->reg_phy)
regulator_disable(fep->reg_phy);
if (of_phy_is_fixed_link(np))
of_phy_deregister_fixed_link(np);
of_node_put(fep->phy_node);
free_netdev(ndev);
clk_disable_unprepare(fep->clk_ahb);
clk_disable_unprepare(fep->clk_ipg);
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
static int __maybe_unused fec_suspend(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct fec_enet_private *fep = netdev_priv(ndev);
rtnl_lock();
if (netif_running(ndev)) {
if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
phy_stop(ndev->phydev);
napi_disable(&fep->napi);
netif_tx_lock_bh(ndev);
netif_device_detach(ndev);
netif_tx_unlock_bh(ndev);
fec_stop(ndev);
fec_enet_clk_enable(ndev, false);
if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
pinctrl_pm_select_sleep_state(&fep->pdev->dev);
}
rtnl_unlock();
if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
regulator_disable(fep->reg_phy);
/* SOC supply clock to phy, when clock is disabled, phy link down
* SOC control phy regulator, when regulator is disabled, phy link down
*/
if (fep->clk_enet_out || fep->reg_phy)
fep->link = 0;
return 0;
}
static int __maybe_unused fec_resume(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct fec_enet_private *fep = netdev_priv(ndev);
int ret;
int val;
if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
ret = regulator_enable(fep->reg_phy);
if (ret)
return ret;
}
rtnl_lock();
if (netif_running(ndev)) {
ret = fec_enet_clk_enable(ndev, true);
if (ret) {
rtnl_unlock();
goto failed_clk;
}
if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
fec_enet_stop_mode(fep, false);
val = readl(fep->hwp + FEC_ECNTRL);
val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
writel(val, fep->hwp + FEC_ECNTRL);
fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
} else {
pinctrl_pm_select_default_state(&fep->pdev->dev);
}
fec_restart(ndev);
netif_tx_lock_bh(ndev);
netif_device_attach(ndev);
netif_tx_unlock_bh(ndev);
napi_enable(&fep->napi);
phy_start(ndev->phydev);
}
rtnl_unlock();
return 0;
failed_clk:
if (fep->reg_phy)
regulator_disable(fep->reg_phy);
return ret;
}
static int __maybe_unused fec_runtime_suspend(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct fec_enet_private *fep = netdev_priv(ndev);
clk_disable_unprepare(fep->clk_ahb);
clk_disable_unprepare(fep->clk_ipg);
return 0;
}
static int __maybe_unused fec_runtime_resume(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct fec_enet_private *fep = netdev_priv(ndev);
int ret;
ret = clk_prepare_enable(fep->clk_ahb);
if (ret)
return ret;
ret = clk_prepare_enable(fep->clk_ipg);
if (ret)
goto failed_clk_ipg;
return 0;
failed_clk_ipg:
clk_disable_unprepare(fep->clk_ahb);
return ret;
}
static const struct dev_pm_ops fec_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
};
static struct platform_driver fec_driver = {
.driver = {
.name = DRIVER_NAME,
.pm = &fec_pm_ops,
.of_match_table = fec_dt_ids,
.suppress_bind_attrs = true,
},
.id_table = fec_devtype,
.probe = fec_probe,
.remove = fec_drv_remove,
};
module_platform_driver(fec_driver);
MODULE_ALIAS("platform:"DRIVER_NAME);
MODULE_LICENSE("GPL");