linux/drivers/net/ethernet/intel/ice/ice_devlink.c
Jacob Keller 50db1bca55 ice: add support for flash update overwrite mask
Support the recently added DEVLINK_ATTR_FLASH_UPDATE_OVERWRITE_MASK
parameter in the ice flash update handler. Convert the overwrite mask
bitfield into the appropriate preservation level used by the firmware
when updating.

Because there is no equivalent preservation level for overwriting only
identifiers, this combination is rejected by the driver as not supported
with an appropriate extended ACK message.

Signed-off-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-09-25 17:20:57 -07:00

571 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2020, Intel Corporation. */
#include "ice.h"
#include "ice_lib.h"
#include "ice_devlink.h"
#include "ice_fw_update.h"
static int ice_info_get_dsn(struct ice_pf *pf, char *buf, size_t len)
{
u8 dsn[8];
/* Copy the DSN into an array in Big Endian format */
put_unaligned_be64(pci_get_dsn(pf->pdev), dsn);
snprintf(buf, len, "%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x",
dsn[0], dsn[1], dsn[2], dsn[3],
dsn[4], dsn[5], dsn[6], dsn[7]);
return 0;
}
static int ice_info_pba(struct ice_pf *pf, char *buf, size_t len)
{
struct ice_hw *hw = &pf->hw;
enum ice_status status;
status = ice_read_pba_string(hw, (u8 *)buf, len);
if (status)
return -EIO;
return 0;
}
static int ice_info_fw_mgmt(struct ice_pf *pf, char *buf, size_t len)
{
struct ice_hw *hw = &pf->hw;
snprintf(buf, len, "%u.%u.%u", hw->fw_maj_ver, hw->fw_min_ver,
hw->fw_patch);
return 0;
}
static int ice_info_fw_api(struct ice_pf *pf, char *buf, size_t len)
{
struct ice_hw *hw = &pf->hw;
snprintf(buf, len, "%u.%u", hw->api_maj_ver, hw->api_min_ver);
return 0;
}
static int ice_info_fw_build(struct ice_pf *pf, char *buf, size_t len)
{
struct ice_hw *hw = &pf->hw;
snprintf(buf, len, "0x%08x", hw->fw_build);
return 0;
}
static int ice_info_orom_ver(struct ice_pf *pf, char *buf, size_t len)
{
struct ice_orom_info *orom = &pf->hw.nvm.orom;
snprintf(buf, len, "%u.%u.%u", orom->major, orom->build, orom->patch);
return 0;
}
static int ice_info_nvm_ver(struct ice_pf *pf, char *buf, size_t len)
{
struct ice_nvm_info *nvm = &pf->hw.nvm;
snprintf(buf, len, "%x.%02x", nvm->major_ver, nvm->minor_ver);
return 0;
}
static int ice_info_eetrack(struct ice_pf *pf, char *buf, size_t len)
{
struct ice_nvm_info *nvm = &pf->hw.nvm;
snprintf(buf, len, "0x%08x", nvm->eetrack);
return 0;
}
static int ice_info_ddp_pkg_name(struct ice_pf *pf, char *buf, size_t len)
{
struct ice_hw *hw = &pf->hw;
snprintf(buf, len, "%s", hw->active_pkg_name);
return 0;
}
static int ice_info_ddp_pkg_version(struct ice_pf *pf, char *buf, size_t len)
{
struct ice_pkg_ver *pkg = &pf->hw.active_pkg_ver;
snprintf(buf, len, "%u.%u.%u.%u", pkg->major, pkg->minor, pkg->update,
pkg->draft);
return 0;
}
static int ice_info_netlist_ver(struct ice_pf *pf, char *buf, size_t len)
{
struct ice_netlist_ver_info *netlist = &pf->hw.netlist_ver;
/* The netlist version fields are BCD formatted */
snprintf(buf, len, "%x.%x.%x-%x.%x.%x", netlist->major, netlist->minor,
netlist->type >> 16, netlist->type & 0xFFFF, netlist->rev,
netlist->cust_ver);
return 0;
}
static int ice_info_netlist_build(struct ice_pf *pf, char *buf, size_t len)
{
struct ice_netlist_ver_info *netlist = &pf->hw.netlist_ver;
snprintf(buf, len, "0x%08x", netlist->hash);
return 0;
}
#define fixed(key, getter) { ICE_VERSION_FIXED, key, getter }
#define running(key, getter) { ICE_VERSION_RUNNING, key, getter }
enum ice_version_type {
ICE_VERSION_FIXED,
ICE_VERSION_RUNNING,
ICE_VERSION_STORED,
};
static const struct ice_devlink_version {
enum ice_version_type type;
const char *key;
int (*getter)(struct ice_pf *pf, char *buf, size_t len);
} ice_devlink_versions[] = {
fixed(DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, ice_info_pba),
running(DEVLINK_INFO_VERSION_GENERIC_FW_MGMT, ice_info_fw_mgmt),
running("fw.mgmt.api", ice_info_fw_api),
running("fw.mgmt.build", ice_info_fw_build),
running(DEVLINK_INFO_VERSION_GENERIC_FW_UNDI, ice_info_orom_ver),
running("fw.psid.api", ice_info_nvm_ver),
running(DEVLINK_INFO_VERSION_GENERIC_FW_BUNDLE_ID, ice_info_eetrack),
running("fw.app.name", ice_info_ddp_pkg_name),
running(DEVLINK_INFO_VERSION_GENERIC_FW_APP, ice_info_ddp_pkg_version),
running("fw.netlist", ice_info_netlist_ver),
running("fw.netlist.build", ice_info_netlist_build),
};
/**
* ice_devlink_info_get - .info_get devlink handler
* @devlink: devlink instance structure
* @req: the devlink info request
* @extack: extended netdev ack structure
*
* Callback for the devlink .info_get operation. Reports information about the
* device.
*
* Return: zero on success or an error code on failure.
*/
static int ice_devlink_info_get(struct devlink *devlink,
struct devlink_info_req *req,
struct netlink_ext_ack *extack)
{
struct ice_pf *pf = devlink_priv(devlink);
char buf[100];
size_t i;
int err;
err = devlink_info_driver_name_put(req, KBUILD_MODNAME);
if (err) {
NL_SET_ERR_MSG_MOD(extack, "Unable to set driver name");
return err;
}
err = ice_info_get_dsn(pf, buf, sizeof(buf));
if (err) {
NL_SET_ERR_MSG_MOD(extack, "Unable to obtain serial number");
return err;
}
err = devlink_info_serial_number_put(req, buf);
if (err) {
NL_SET_ERR_MSG_MOD(extack, "Unable to set serial number");
return err;
}
for (i = 0; i < ARRAY_SIZE(ice_devlink_versions); i++) {
enum ice_version_type type = ice_devlink_versions[i].type;
const char *key = ice_devlink_versions[i].key;
err = ice_devlink_versions[i].getter(pf, buf, sizeof(buf));
if (err) {
NL_SET_ERR_MSG_MOD(extack, "Unable to obtain version info");
return err;
}
switch (type) {
case ICE_VERSION_FIXED:
err = devlink_info_version_fixed_put(req, key, buf);
if (err) {
NL_SET_ERR_MSG_MOD(extack, "Unable to set fixed version");
return err;
}
break;
case ICE_VERSION_RUNNING:
err = devlink_info_version_running_put(req, key, buf);
if (err) {
NL_SET_ERR_MSG_MOD(extack, "Unable to set running version");
return err;
}
break;
case ICE_VERSION_STORED:
err = devlink_info_version_stored_put(req, key, buf);
if (err) {
NL_SET_ERR_MSG_MOD(extack, "Unable to set stored version");
return err;
}
break;
}
}
return 0;
}
/**
* ice_devlink_flash_update - Update firmware stored in flash on the device
* @devlink: pointer to devlink associated with device to update
* @params: flash update parameters
* @extack: netlink extended ACK structure
*
* Perform a device flash update. The bulk of the update logic is contained
* within the ice_flash_pldm_image function.
*
* Returns: zero on success, or an error code on failure.
*/
static int
ice_devlink_flash_update(struct devlink *devlink,
struct devlink_flash_update_params *params,
struct netlink_ext_ack *extack)
{
struct ice_pf *pf = devlink_priv(devlink);
struct device *dev = &pf->pdev->dev;
struct ice_hw *hw = &pf->hw;
const struct firmware *fw;
u8 preservation;
int err;
if (!params->overwrite_mask) {
/* preserve all settings and identifiers */
preservation = ICE_AQC_NVM_PRESERVE_ALL;
} else if (params->overwrite_mask == DEVLINK_FLASH_OVERWRITE_SETTINGS) {
/* overwrite settings, but preserve the vital device identifiers */
preservation = ICE_AQC_NVM_PRESERVE_SELECTED;
} else if (params->overwrite_mask == (DEVLINK_FLASH_OVERWRITE_SETTINGS |
DEVLINK_FLASH_OVERWRITE_IDENTIFIERS)) {
/* overwrite both settings and identifiers, preserve nothing */
preservation = ICE_AQC_NVM_NO_PRESERVATION;
} else {
NL_SET_ERR_MSG_MOD(extack, "Requested overwrite mask is not supported");
return -EOPNOTSUPP;
}
if (!hw->dev_caps.common_cap.nvm_unified_update) {
NL_SET_ERR_MSG_MOD(extack, "Current firmware does not support unified update");
return -EOPNOTSUPP;
}
err = ice_check_for_pending_update(pf, NULL, extack);
if (err)
return err;
err = request_firmware(&fw, params->file_name, dev);
if (err) {
NL_SET_ERR_MSG_MOD(extack, "Unable to read file from disk");
return err;
}
devlink_flash_update_begin_notify(devlink);
devlink_flash_update_status_notify(devlink, "Preparing to flash", NULL, 0, 0);
err = ice_flash_pldm_image(pf, fw, preservation, extack);
devlink_flash_update_end_notify(devlink);
release_firmware(fw);
return err;
}
static const struct devlink_ops ice_devlink_ops = {
.supported_flash_update_params = DEVLINK_SUPPORT_FLASH_UPDATE_OVERWRITE_MASK,
.info_get = ice_devlink_info_get,
.flash_update = ice_devlink_flash_update,
};
static void ice_devlink_free(void *devlink_ptr)
{
devlink_free((struct devlink *)devlink_ptr);
}
/**
* ice_allocate_pf - Allocate devlink and return PF structure pointer
* @dev: the device to allocate for
*
* Allocate a devlink instance for this device and return the private area as
* the PF structure. The devlink memory is kept track of through devres by
* adding an action to remove it when unwinding.
*/
struct ice_pf *ice_allocate_pf(struct device *dev)
{
struct devlink *devlink;
devlink = devlink_alloc(&ice_devlink_ops, sizeof(struct ice_pf));
if (!devlink)
return NULL;
/* Add an action to teardown the devlink when unwinding the driver */
if (devm_add_action(dev, ice_devlink_free, devlink)) {
devlink_free(devlink);
return NULL;
}
return devlink_priv(devlink);
}
/**
* ice_devlink_register - Register devlink interface for this PF
* @pf: the PF to register the devlink for.
*
* Register the devlink instance associated with this physical function.
*
* Return: zero on success or an error code on failure.
*/
int ice_devlink_register(struct ice_pf *pf)
{
struct devlink *devlink = priv_to_devlink(pf);
struct device *dev = ice_pf_to_dev(pf);
int err;
err = devlink_register(devlink, dev);
if (err) {
dev_err(dev, "devlink registration failed: %d\n", err);
return err;
}
return 0;
}
/**
* ice_devlink_unregister - Unregister devlink resources for this PF.
* @pf: the PF structure to cleanup
*
* Releases resources used by devlink and cleans up associated memory.
*/
void ice_devlink_unregister(struct ice_pf *pf)
{
devlink_unregister(priv_to_devlink(pf));
}
/**
* ice_devlink_create_port - Create a devlink port for this PF
* @pf: the PF to create a port for
*
* Create and register a devlink_port for this PF. Note that although each
* physical function is connected to a separate devlink instance, the port
* will still be numbered according to the physical function ID.
*
* Return: zero on success or an error code on failure.
*/
int ice_devlink_create_port(struct ice_pf *pf)
{
struct devlink *devlink = priv_to_devlink(pf);
struct ice_vsi *vsi = ice_get_main_vsi(pf);
struct device *dev = ice_pf_to_dev(pf);
struct devlink_port_attrs attrs = {};
int err;
if (!vsi) {
dev_err(dev, "%s: unable to find main VSI\n", __func__);
return -EIO;
}
attrs.flavour = DEVLINK_PORT_FLAVOUR_PHYSICAL;
attrs.phys.port_number = pf->hw.pf_id;
devlink_port_attrs_set(&pf->devlink_port, &attrs);
err = devlink_port_register(devlink, &pf->devlink_port, pf->hw.pf_id);
if (err) {
dev_err(dev, "devlink_port_register failed: %d\n", err);
return err;
}
return 0;
}
/**
* ice_devlink_destroy_port - Destroy the devlink_port for this PF
* @pf: the PF to cleanup
*
* Unregisters the devlink_port structure associated with this PF.
*/
void ice_devlink_destroy_port(struct ice_pf *pf)
{
devlink_port_type_clear(&pf->devlink_port);
devlink_port_unregister(&pf->devlink_port);
}
/**
* ice_devlink_nvm_snapshot - Capture a snapshot of the Shadow RAM contents
* @devlink: the devlink instance
* @ops: the devlink region being snapshotted
* @extack: extended ACK response structure
* @data: on exit points to snapshot data buffer
*
* This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for
* the shadow-ram devlink region. It captures a snapshot of the shadow ram
* contents. This snapshot can later be viewed via the devlink-region
* interface.
*
* @returns zero on success, and updates the data pointer. Returns a non-zero
* error code on failure.
*/
static int ice_devlink_nvm_snapshot(struct devlink *devlink,
const struct devlink_region_ops *ops,
struct netlink_ext_ack *extack, u8 **data)
{
struct ice_pf *pf = devlink_priv(devlink);
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
enum ice_status status;
void *nvm_data;
u32 nvm_size;
nvm_size = hw->nvm.flash_size;
nvm_data = vzalloc(nvm_size);
if (!nvm_data)
return -ENOMEM;
status = ice_acquire_nvm(hw, ICE_RES_READ);
if (status) {
dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
status, hw->adminq.sq_last_status);
NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
vfree(nvm_data);
return -EIO;
}
status = ice_read_flat_nvm(hw, 0, &nvm_size, nvm_data, false);
if (status) {
dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
nvm_size, status, hw->adminq.sq_last_status);
NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
ice_release_nvm(hw);
vfree(nvm_data);
return -EIO;
}
ice_release_nvm(hw);
*data = nvm_data;
return 0;
}
/**
* ice_devlink_devcaps_snapshot - Capture snapshot of device capabilities
* @devlink: the devlink instance
* @ops: the devlink region being snapshotted
* @extack: extended ACK response structure
* @data: on exit points to snapshot data buffer
*
* This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for
* the device-caps devlink region. It captures a snapshot of the device
* capabilities reported by firmware.
*
* @returns zero on success, and updates the data pointer. Returns a non-zero
* error code on failure.
*/
static int
ice_devlink_devcaps_snapshot(struct devlink *devlink,
const struct devlink_region_ops *ops,
struct netlink_ext_ack *extack, u8 **data)
{
struct ice_pf *pf = devlink_priv(devlink);
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
enum ice_status status;
void *devcaps;
devcaps = vzalloc(ICE_AQ_MAX_BUF_LEN);
if (!devcaps)
return -ENOMEM;
status = ice_aq_list_caps(hw, devcaps, ICE_AQ_MAX_BUF_LEN, NULL,
ice_aqc_opc_list_dev_caps, NULL);
if (status) {
dev_dbg(dev, "ice_aq_list_caps: failed to read device capabilities, err %d aq_err %d\n",
status, hw->adminq.sq_last_status);
NL_SET_ERR_MSG_MOD(extack, "Failed to read device capabilities");
vfree(devcaps);
return -EIO;
}
*data = (u8 *)devcaps;
return 0;
}
static const struct devlink_region_ops ice_nvm_region_ops = {
.name = "nvm-flash",
.destructor = vfree,
.snapshot = ice_devlink_nvm_snapshot,
};
static const struct devlink_region_ops ice_devcaps_region_ops = {
.name = "device-caps",
.destructor = vfree,
.snapshot = ice_devlink_devcaps_snapshot,
};
/**
* ice_devlink_init_regions - Initialize devlink regions
* @pf: the PF device structure
*
* Create devlink regions used to enable access to dump the contents of the
* flash memory on the device.
*/
void ice_devlink_init_regions(struct ice_pf *pf)
{
struct devlink *devlink = priv_to_devlink(pf);
struct device *dev = ice_pf_to_dev(pf);
u64 nvm_size;
nvm_size = pf->hw.nvm.flash_size;
pf->nvm_region = devlink_region_create(devlink, &ice_nvm_region_ops, 1,
nvm_size);
if (IS_ERR(pf->nvm_region)) {
dev_err(dev, "failed to create NVM devlink region, err %ld\n",
PTR_ERR(pf->nvm_region));
pf->nvm_region = NULL;
}
pf->devcaps_region = devlink_region_create(devlink,
&ice_devcaps_region_ops, 10,
ICE_AQ_MAX_BUF_LEN);
if (IS_ERR(pf->devcaps_region)) {
dev_err(dev, "failed to create device-caps devlink region, err %ld\n",
PTR_ERR(pf->devcaps_region));
pf->devcaps_region = NULL;
}
}
/**
* ice_devlink_destroy_regions - Destroy devlink regions
* @pf: the PF device structure
*
* Remove previously created regions for this PF.
*/
void ice_devlink_destroy_regions(struct ice_pf *pf)
{
if (pf->nvm_region)
devlink_region_destroy(pf->nvm_region);
if (pf->devcaps_region)
devlink_region_destroy(pf->devcaps_region);
}