linux/fs/crypto/fname.c
Eric Biggers 50c961de59 fscrypt: calculate NUL-padding length in one place only
Currently, when encrypting a filename (either a real filename or a
symlink target) we calculate the amount of NUL-padding twice: once
before encryption and once during encryption in fname_encrypt().  It is
needed before encryption to allocate the needed buffer size as well as
calculate the size the symlink target will take up on-disk before
creating the symlink inode.  Calculating the size during encryption as
well is redundant.

Remove this redundancy by always calculating the exact size beforehand,
and making fname_encrypt() just add as much NUL padding as is needed to
fill the output buffer.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2018-01-11 23:30:08 -05:00

416 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* This contains functions for filename crypto management
*
* Copyright (C) 2015, Google, Inc.
* Copyright (C) 2015, Motorola Mobility
*
* Written by Uday Savagaonkar, 2014.
* Modified by Jaegeuk Kim, 2015.
*
* This has not yet undergone a rigorous security audit.
*/
#include <linux/scatterlist.h>
#include <linux/ratelimit.h>
#include <crypto/skcipher.h>
#include "fscrypt_private.h"
static inline bool fscrypt_is_dot_dotdot(const struct qstr *str)
{
if (str->len == 1 && str->name[0] == '.')
return true;
if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
return true;
return false;
}
/**
* fname_encrypt() - encrypt a filename
*
* The output buffer must be at least as large as the input buffer.
* Any extra space is filled with NUL padding before encryption.
*
* Return: 0 on success, -errno on failure
*/
int fname_encrypt(struct inode *inode, const struct qstr *iname,
u8 *out, unsigned int olen)
{
struct skcipher_request *req = NULL;
DECLARE_CRYPTO_WAIT(wait);
struct crypto_skcipher *tfm = inode->i_crypt_info->ci_ctfm;
int res = 0;
char iv[FS_CRYPTO_BLOCK_SIZE];
struct scatterlist sg;
/*
* Copy the filename to the output buffer for encrypting in-place and
* pad it with the needed number of NUL bytes.
*/
if (WARN_ON(olen < iname->len))
return -ENOBUFS;
memcpy(out, iname->name, iname->len);
memset(out + iname->len, 0, olen - iname->len);
/* Initialize the IV */
memset(iv, 0, FS_CRYPTO_BLOCK_SIZE);
/* Set up the encryption request */
req = skcipher_request_alloc(tfm, GFP_NOFS);
if (!req) {
printk_ratelimited(KERN_ERR
"%s: skcipher_request_alloc() failed\n", __func__);
return -ENOMEM;
}
skcipher_request_set_callback(req,
CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
crypto_req_done, &wait);
sg_init_one(&sg, out, olen);
skcipher_request_set_crypt(req, &sg, &sg, olen, iv);
/* Do the encryption */
res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
skcipher_request_free(req);
if (res < 0) {
printk_ratelimited(KERN_ERR
"%s: Error (error code %d)\n", __func__, res);
return res;
}
return 0;
}
/**
* fname_decrypt() - decrypt a filename
*
* The caller must have allocated sufficient memory for the @oname string.
*
* Return: 0 on success, -errno on failure
*/
static int fname_decrypt(struct inode *inode,
const struct fscrypt_str *iname,
struct fscrypt_str *oname)
{
struct skcipher_request *req = NULL;
DECLARE_CRYPTO_WAIT(wait);
struct scatterlist src_sg, dst_sg;
struct fscrypt_info *ci = inode->i_crypt_info;
struct crypto_skcipher *tfm = ci->ci_ctfm;
int res = 0;
char iv[FS_CRYPTO_BLOCK_SIZE];
unsigned lim;
lim = inode->i_sb->s_cop->max_namelen(inode);
if (iname->len <= 0 || iname->len > lim)
return -EIO;
/* Allocate request */
req = skcipher_request_alloc(tfm, GFP_NOFS);
if (!req) {
printk_ratelimited(KERN_ERR
"%s: crypto_request_alloc() failed\n", __func__);
return -ENOMEM;
}
skcipher_request_set_callback(req,
CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
crypto_req_done, &wait);
/* Initialize IV */
memset(iv, 0, FS_CRYPTO_BLOCK_SIZE);
/* Create decryption request */
sg_init_one(&src_sg, iname->name, iname->len);
sg_init_one(&dst_sg, oname->name, oname->len);
skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, iv);
res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
skcipher_request_free(req);
if (res < 0) {
printk_ratelimited(KERN_ERR
"%s: Error (error code %d)\n", __func__, res);
return res;
}
oname->len = strnlen(oname->name, iname->len);
return 0;
}
static const char *lookup_table =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,";
#define BASE64_CHARS(nbytes) DIV_ROUND_UP((nbytes) * 4, 3)
/**
* digest_encode() -
*
* Encodes the input digest using characters from the set [a-zA-Z0-9_+].
* The encoded string is roughly 4/3 times the size of the input string.
*/
static int digest_encode(const char *src, int len, char *dst)
{
int i = 0, bits = 0, ac = 0;
char *cp = dst;
while (i < len) {
ac += (((unsigned char) src[i]) << bits);
bits += 8;
do {
*cp++ = lookup_table[ac & 0x3f];
ac >>= 6;
bits -= 6;
} while (bits >= 6);
i++;
}
if (bits)
*cp++ = lookup_table[ac & 0x3f];
return cp - dst;
}
static int digest_decode(const char *src, int len, char *dst)
{
int i = 0, bits = 0, ac = 0;
const char *p;
char *cp = dst;
while (i < len) {
p = strchr(lookup_table, src[i]);
if (p == NULL || src[i] == 0)
return -2;
ac += (p - lookup_table) << bits;
bits += 6;
if (bits >= 8) {
*cp++ = ac & 0xff;
ac >>= 8;
bits -= 8;
}
i++;
}
if (ac)
return -1;
return cp - dst;
}
u32 fscrypt_fname_encrypted_size(const struct inode *inode, u32 ilen)
{
int padding = 32;
struct fscrypt_info *ci = inode->i_crypt_info;
if (ci)
padding = 4 << (ci->ci_flags & FS_POLICY_FLAGS_PAD_MASK);
ilen = max(ilen, (u32)FS_CRYPTO_BLOCK_SIZE);
return round_up(ilen, padding);
}
EXPORT_SYMBOL(fscrypt_fname_encrypted_size);
/**
* fscrypt_fname_crypto_alloc_obuff() -
*
* Allocates an output buffer that is sufficient for the crypto operation
* specified by the context and the direction.
*/
int fscrypt_fname_alloc_buffer(const struct inode *inode,
u32 ilen, struct fscrypt_str *crypto_str)
{
u32 olen = fscrypt_fname_encrypted_size(inode, ilen);
const u32 max_encoded_len =
max_t(u32, BASE64_CHARS(FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE),
1 + BASE64_CHARS(sizeof(struct fscrypt_digested_name)));
crypto_str->len = olen;
olen = max(olen, max_encoded_len);
/*
* Allocated buffer can hold one more character to null-terminate the
* string
*/
crypto_str->name = kmalloc(olen + 1, GFP_NOFS);
if (!(crypto_str->name))
return -ENOMEM;
return 0;
}
EXPORT_SYMBOL(fscrypt_fname_alloc_buffer);
/**
* fscrypt_fname_crypto_free_buffer() -
*
* Frees the buffer allocated for crypto operation.
*/
void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
{
if (!crypto_str)
return;
kfree(crypto_str->name);
crypto_str->name = NULL;
}
EXPORT_SYMBOL(fscrypt_fname_free_buffer);
/**
* fscrypt_fname_disk_to_usr() - converts a filename from disk space to user
* space
*
* The caller must have allocated sufficient memory for the @oname string.
*
* If the key is available, we'll decrypt the disk name; otherwise, we'll encode
* it for presentation. Short names are directly base64-encoded, while long
* names are encoded in fscrypt_digested_name format.
*
* Return: 0 on success, -errno on failure
*/
int fscrypt_fname_disk_to_usr(struct inode *inode,
u32 hash, u32 minor_hash,
const struct fscrypt_str *iname,
struct fscrypt_str *oname)
{
const struct qstr qname = FSTR_TO_QSTR(iname);
struct fscrypt_digested_name digested_name;
if (fscrypt_is_dot_dotdot(&qname)) {
oname->name[0] = '.';
oname->name[iname->len - 1] = '.';
oname->len = iname->len;
return 0;
}
if (iname->len < FS_CRYPTO_BLOCK_SIZE)
return -EUCLEAN;
if (inode->i_crypt_info)
return fname_decrypt(inode, iname, oname);
if (iname->len <= FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE) {
oname->len = digest_encode(iname->name, iname->len,
oname->name);
return 0;
}
if (hash) {
digested_name.hash = hash;
digested_name.minor_hash = minor_hash;
} else {
digested_name.hash = 0;
digested_name.minor_hash = 0;
}
memcpy(digested_name.digest,
FSCRYPT_FNAME_DIGEST(iname->name, iname->len),
FSCRYPT_FNAME_DIGEST_SIZE);
oname->name[0] = '_';
oname->len = 1 + digest_encode((const char *)&digested_name,
sizeof(digested_name), oname->name + 1);
return 0;
}
EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
/**
* fscrypt_setup_filename() - prepare to search a possibly encrypted directory
* @dir: the directory that will be searched
* @iname: the user-provided filename being searched for
* @lookup: 1 if we're allowed to proceed without the key because it's
* ->lookup() or we're finding the dir_entry for deletion; 0 if we cannot
* proceed without the key because we're going to create the dir_entry.
* @fname: the filename information to be filled in
*
* Given a user-provided filename @iname, this function sets @fname->disk_name
* to the name that would be stored in the on-disk directory entry, if possible.
* If the directory is unencrypted this is simply @iname. Else, if we have the
* directory's encryption key, then @iname is the plaintext, so we encrypt it to
* get the disk_name.
*
* Else, for keyless @lookup operations, @iname is the presented ciphertext, so
* we decode it to get either the ciphertext disk_name (for short names) or the
* fscrypt_digested_name (for long names). Non-@lookup operations will be
* impossible in this case, so we fail them with ENOKEY.
*
* If successful, fscrypt_free_filename() must be called later to clean up.
*
* Return: 0 on success, -errno on failure
*/
int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
int lookup, struct fscrypt_name *fname)
{
int ret;
int digested;
memset(fname, 0, sizeof(struct fscrypt_name));
fname->usr_fname = iname;
if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) {
fname->disk_name.name = (unsigned char *)iname->name;
fname->disk_name.len = iname->len;
return 0;
}
ret = fscrypt_get_encryption_info(dir);
if (ret && ret != -EOPNOTSUPP)
return ret;
if (dir->i_crypt_info) {
unsigned int max_len = dir->i_sb->s_cop->max_namelen(dir);
if (iname->len > max_len)
return -ENAMETOOLONG;
fname->crypto_buf.len =
min(fscrypt_fname_encrypted_size(dir, iname->len),
max_len);
fname->crypto_buf.name = kmalloc(fname->crypto_buf.len,
GFP_NOFS);
if (!fname->crypto_buf.name)
return -ENOMEM;
ret = fname_encrypt(dir, iname, fname->crypto_buf.name,
fname->crypto_buf.len);
if (ret)
goto errout;
fname->disk_name.name = fname->crypto_buf.name;
fname->disk_name.len = fname->crypto_buf.len;
return 0;
}
if (!lookup)
return -ENOKEY;
/*
* We don't have the key and we are doing a lookup; decode the
* user-supplied name
*/
if (iname->name[0] == '_') {
if (iname->len !=
1 + BASE64_CHARS(sizeof(struct fscrypt_digested_name)))
return -ENOENT;
digested = 1;
} else {
if (iname->len >
BASE64_CHARS(FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE))
return -ENOENT;
digested = 0;
}
fname->crypto_buf.name =
kmalloc(max_t(size_t, FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE,
sizeof(struct fscrypt_digested_name)),
GFP_KERNEL);
if (fname->crypto_buf.name == NULL)
return -ENOMEM;
ret = digest_decode(iname->name + digested, iname->len - digested,
fname->crypto_buf.name);
if (ret < 0) {
ret = -ENOENT;
goto errout;
}
fname->crypto_buf.len = ret;
if (digested) {
const struct fscrypt_digested_name *n =
(const void *)fname->crypto_buf.name;
fname->hash = n->hash;
fname->minor_hash = n->minor_hash;
} else {
fname->disk_name.name = fname->crypto_buf.name;
fname->disk_name.len = fname->crypto_buf.len;
}
return 0;
errout:
kfree(fname->crypto_buf.name);
return ret;
}
EXPORT_SYMBOL(fscrypt_setup_filename);