linux/drivers/net/usb/r8152.c
Leon Schuermann cb82a54904 r8152: Add Lenovo Powered USB-C Travel Hub
This USB-C Hub (17ef:721e) based on the Realtek RTL8153B chip used to
use the cdc_ether driver. However, using this driver, with the system
suspended the device constantly sends pause-frames as soon as the
receive buffer fills up. This causes issues with other devices, where
some Ethernet switches stop forwarding packets altogether.

Using the Realtek driver (r8152) fixes this issue. Pause frames are no
longer sent while the host system is suspended.

Signed-off-by: Leon Schuermann <leon@is.currently.online>
Tested-by: Leon Schuermann <leon@is.currently.online>
Link: https://lore.kernel.org/r/20210111190312.12589-2-leon@is.currently.online
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-12 20:00:51 -08:00

6910 lines
160 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2014 Realtek Semiconductor Corp. All rights reserved.
*/
#include <linux/signal.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/usb.h>
#include <linux/crc32.h>
#include <linux/if_vlan.h>
#include <linux/uaccess.h>
#include <linux/list.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <net/ip6_checksum.h>
#include <uapi/linux/mdio.h>
#include <linux/mdio.h>
#include <linux/usb/cdc.h>
#include <linux/suspend.h>
#include <linux/atomic.h>
#include <linux/acpi.h>
#include <linux/firmware.h>
#include <crypto/hash.h>
#include <linux/usb/r8152.h>
/* Information for net-next */
#define NETNEXT_VERSION "11"
/* Information for net */
#define NET_VERSION "11"
#define DRIVER_VERSION "v1." NETNEXT_VERSION "." NET_VERSION
#define DRIVER_AUTHOR "Realtek linux nic maintainers <nic_swsd@realtek.com>"
#define DRIVER_DESC "Realtek RTL8152/RTL8153 Based USB Ethernet Adapters"
#define MODULENAME "r8152"
#define R8152_PHY_ID 32
#define PLA_IDR 0xc000
#define PLA_RCR 0xc010
#define PLA_RMS 0xc016
#define PLA_RXFIFO_CTRL0 0xc0a0
#define PLA_RXFIFO_CTRL1 0xc0a4
#define PLA_RXFIFO_CTRL2 0xc0a8
#define PLA_DMY_REG0 0xc0b0
#define PLA_FMC 0xc0b4
#define PLA_CFG_WOL 0xc0b6
#define PLA_TEREDO_CFG 0xc0bc
#define PLA_TEREDO_WAKE_BASE 0xc0c4
#define PLA_MAR 0xcd00
#define PLA_BACKUP 0xd000
#define PLA_BDC_CR 0xd1a0
#define PLA_TEREDO_TIMER 0xd2cc
#define PLA_REALWOW_TIMER 0xd2e8
#define PLA_UPHY_TIMER 0xd388
#define PLA_SUSPEND_FLAG 0xd38a
#define PLA_INDICATE_FALG 0xd38c
#define PLA_MACDBG_PRE 0xd38c /* RTL_VER_04 only */
#define PLA_MACDBG_POST 0xd38e /* RTL_VER_04 only */
#define PLA_EXTRA_STATUS 0xd398
#define PLA_EFUSE_DATA 0xdd00
#define PLA_EFUSE_CMD 0xdd02
#define PLA_LEDSEL 0xdd90
#define PLA_LED_FEATURE 0xdd92
#define PLA_PHYAR 0xde00
#define PLA_BOOT_CTRL 0xe004
#define PLA_LWAKE_CTRL_REG 0xe007
#define PLA_GPHY_INTR_IMR 0xe022
#define PLA_EEE_CR 0xe040
#define PLA_EEEP_CR 0xe080
#define PLA_MAC_PWR_CTRL 0xe0c0
#define PLA_MAC_PWR_CTRL2 0xe0ca
#define PLA_MAC_PWR_CTRL3 0xe0cc
#define PLA_MAC_PWR_CTRL4 0xe0ce
#define PLA_WDT6_CTRL 0xe428
#define PLA_TCR0 0xe610
#define PLA_TCR1 0xe612
#define PLA_MTPS 0xe615
#define PLA_TXFIFO_CTRL 0xe618
#define PLA_RSTTALLY 0xe800
#define PLA_CR 0xe813
#define PLA_CRWECR 0xe81c
#define PLA_CONFIG12 0xe81e /* CONFIG1, CONFIG2 */
#define PLA_CONFIG34 0xe820 /* CONFIG3, CONFIG4 */
#define PLA_CONFIG5 0xe822
#define PLA_PHY_PWR 0xe84c
#define PLA_OOB_CTRL 0xe84f
#define PLA_CPCR 0xe854
#define PLA_MISC_0 0xe858
#define PLA_MISC_1 0xe85a
#define PLA_OCP_GPHY_BASE 0xe86c
#define PLA_TALLYCNT 0xe890
#define PLA_SFF_STS_7 0xe8de
#define PLA_PHYSTATUS 0xe908
#define PLA_CONFIG6 0xe90a /* CONFIG6 */
#define PLA_BP_BA 0xfc26
#define PLA_BP_0 0xfc28
#define PLA_BP_1 0xfc2a
#define PLA_BP_2 0xfc2c
#define PLA_BP_3 0xfc2e
#define PLA_BP_4 0xfc30
#define PLA_BP_5 0xfc32
#define PLA_BP_6 0xfc34
#define PLA_BP_7 0xfc36
#define PLA_BP_EN 0xfc38
#define USB_USB2PHY 0xb41e
#define USB_SSPHYLINK1 0xb426
#define USB_SSPHYLINK2 0xb428
#define USB_U2P3_CTRL 0xb460
#define USB_CSR_DUMMY1 0xb464
#define USB_CSR_DUMMY2 0xb466
#define USB_DEV_STAT 0xb808
#define USB_CONNECT_TIMER 0xcbf8
#define USB_MSC_TIMER 0xcbfc
#define USB_BURST_SIZE 0xcfc0
#define USB_FW_FIX_EN0 0xcfca
#define USB_FW_FIX_EN1 0xcfcc
#define USB_LPM_CONFIG 0xcfd8
#define USB_CSTMR 0xcfef /* RTL8153A */
#define USB_FW_CTRL 0xd334 /* RTL8153B */
#define USB_FC_TIMER 0xd340
#define USB_USB_CTRL 0xd406
#define USB_PHY_CTRL 0xd408
#define USB_TX_AGG 0xd40a
#define USB_RX_BUF_TH 0xd40c
#define USB_USB_TIMER 0xd428
#define USB_RX_EARLY_TIMEOUT 0xd42c
#define USB_RX_EARLY_SIZE 0xd42e
#define USB_PM_CTRL_STATUS 0xd432 /* RTL8153A */
#define USB_RX_EXTRA_AGGR_TMR 0xd432 /* RTL8153B */
#define USB_TX_DMA 0xd434
#define USB_UPT_RXDMA_OWN 0xd437
#define USB_TOLERANCE 0xd490
#define USB_LPM_CTRL 0xd41a
#define USB_BMU_RESET 0xd4b0
#define USB_U1U2_TIMER 0xd4da
#define USB_FW_TASK 0xd4e8 /* RTL8153B */
#define USB_UPS_CTRL 0xd800
#define USB_POWER_CUT 0xd80a
#define USB_MISC_0 0xd81a
#define USB_MISC_1 0xd81f
#define USB_AFE_CTRL2 0xd824
#define USB_UPS_CFG 0xd842
#define USB_UPS_FLAGS 0xd848
#define USB_WDT1_CTRL 0xe404
#define USB_WDT11_CTRL 0xe43c
#define USB_BP_BA PLA_BP_BA
#define USB_BP_0 PLA_BP_0
#define USB_BP_1 PLA_BP_1
#define USB_BP_2 PLA_BP_2
#define USB_BP_3 PLA_BP_3
#define USB_BP_4 PLA_BP_4
#define USB_BP_5 PLA_BP_5
#define USB_BP_6 PLA_BP_6
#define USB_BP_7 PLA_BP_7
#define USB_BP_EN PLA_BP_EN /* RTL8153A */
#define USB_BP_8 0xfc38 /* RTL8153B */
#define USB_BP_9 0xfc3a
#define USB_BP_10 0xfc3c
#define USB_BP_11 0xfc3e
#define USB_BP_12 0xfc40
#define USB_BP_13 0xfc42
#define USB_BP_14 0xfc44
#define USB_BP_15 0xfc46
#define USB_BP2_EN 0xfc48
/* OCP Registers */
#define OCP_ALDPS_CONFIG 0x2010
#define OCP_EEE_CONFIG1 0x2080
#define OCP_EEE_CONFIG2 0x2092
#define OCP_EEE_CONFIG3 0x2094
#define OCP_BASE_MII 0xa400
#define OCP_EEE_AR 0xa41a
#define OCP_EEE_DATA 0xa41c
#define OCP_PHY_STATUS 0xa420
#define OCP_NCTL_CFG 0xa42c
#define OCP_POWER_CFG 0xa430
#define OCP_EEE_CFG 0xa432
#define OCP_SRAM_ADDR 0xa436
#define OCP_SRAM_DATA 0xa438
#define OCP_DOWN_SPEED 0xa442
#define OCP_EEE_ABLE 0xa5c4
#define OCP_EEE_ADV 0xa5d0
#define OCP_EEE_LPABLE 0xa5d2
#define OCP_PHY_STATE 0xa708 /* nway state for 8153 */
#define OCP_PHY_PATCH_STAT 0xb800
#define OCP_PHY_PATCH_CMD 0xb820
#define OCP_PHY_LOCK 0xb82e
#define OCP_ADC_IOFFSET 0xbcfc
#define OCP_ADC_CFG 0xbc06
#define OCP_SYSCLK_CFG 0xc416
/* SRAM Register */
#define SRAM_GREEN_CFG 0x8011
#define SRAM_LPF_CFG 0x8012
#define SRAM_10M_AMP1 0x8080
#define SRAM_10M_AMP2 0x8082
#define SRAM_IMPEDANCE 0x8084
#define SRAM_PHY_LOCK 0xb82e
/* PLA_RCR */
#define RCR_AAP 0x00000001
#define RCR_APM 0x00000002
#define RCR_AM 0x00000004
#define RCR_AB 0x00000008
#define RCR_ACPT_ALL (RCR_AAP | RCR_APM | RCR_AM | RCR_AB)
/* PLA_RXFIFO_CTRL0 */
#define RXFIFO_THR1_NORMAL 0x00080002
#define RXFIFO_THR1_OOB 0x01800003
/* PLA_RXFIFO_CTRL1 */
#define RXFIFO_THR2_FULL 0x00000060
#define RXFIFO_THR2_HIGH 0x00000038
#define RXFIFO_THR2_OOB 0x0000004a
#define RXFIFO_THR2_NORMAL 0x00a0
/* PLA_RXFIFO_CTRL2 */
#define RXFIFO_THR3_FULL 0x00000078
#define RXFIFO_THR3_HIGH 0x00000048
#define RXFIFO_THR3_OOB 0x0000005a
#define RXFIFO_THR3_NORMAL 0x0110
/* PLA_TXFIFO_CTRL */
#define TXFIFO_THR_NORMAL 0x00400008
#define TXFIFO_THR_NORMAL2 0x01000008
/* PLA_DMY_REG0 */
#define ECM_ALDPS 0x0002
/* PLA_FMC */
#define FMC_FCR_MCU_EN 0x0001
/* PLA_EEEP_CR */
#define EEEP_CR_EEEP_TX 0x0002
/* PLA_WDT6_CTRL */
#define WDT6_SET_MODE 0x0010
/* PLA_TCR0 */
#define TCR0_TX_EMPTY 0x0800
#define TCR0_AUTO_FIFO 0x0080
/* PLA_TCR1 */
#define VERSION_MASK 0x7cf0
/* PLA_MTPS */
#define MTPS_JUMBO (12 * 1024 / 64)
#define MTPS_DEFAULT (6 * 1024 / 64)
/* PLA_RSTTALLY */
#define TALLY_RESET 0x0001
/* PLA_CR */
#define CR_RST 0x10
#define CR_RE 0x08
#define CR_TE 0x04
/* PLA_CRWECR */
#define CRWECR_NORAML 0x00
#define CRWECR_CONFIG 0xc0
/* PLA_OOB_CTRL */
#define NOW_IS_OOB 0x80
#define TXFIFO_EMPTY 0x20
#define RXFIFO_EMPTY 0x10
#define LINK_LIST_READY 0x02
#define DIS_MCU_CLROOB 0x01
#define FIFO_EMPTY (TXFIFO_EMPTY | RXFIFO_EMPTY)
/* PLA_MISC_1 */
#define RXDY_GATED_EN 0x0008
/* PLA_SFF_STS_7 */
#define RE_INIT_LL 0x8000
#define MCU_BORW_EN 0x4000
/* PLA_CPCR */
#define CPCR_RX_VLAN 0x0040
/* PLA_CFG_WOL */
#define MAGIC_EN 0x0001
/* PLA_TEREDO_CFG */
#define TEREDO_SEL 0x8000
#define TEREDO_WAKE_MASK 0x7f00
#define TEREDO_RS_EVENT_MASK 0x00fe
#define OOB_TEREDO_EN 0x0001
/* PLA_BDC_CR */
#define ALDPS_PROXY_MODE 0x0001
/* PLA_EFUSE_CMD */
#define EFUSE_READ_CMD BIT(15)
#define EFUSE_DATA_BIT16 BIT(7)
/* PLA_CONFIG34 */
#define LINK_ON_WAKE_EN 0x0010
#define LINK_OFF_WAKE_EN 0x0008
/* PLA_CONFIG6 */
#define LANWAKE_CLR_EN BIT(0)
/* PLA_CONFIG5 */
#define BWF_EN 0x0040
#define MWF_EN 0x0020
#define UWF_EN 0x0010
#define LAN_WAKE_EN 0x0002
/* PLA_LED_FEATURE */
#define LED_MODE_MASK 0x0700
/* PLA_PHY_PWR */
#define TX_10M_IDLE_EN 0x0080
#define PFM_PWM_SWITCH 0x0040
#define TEST_IO_OFF BIT(4)
/* PLA_MAC_PWR_CTRL */
#define D3_CLK_GATED_EN 0x00004000
#define MCU_CLK_RATIO 0x07010f07
#define MCU_CLK_RATIO_MASK 0x0f0f0f0f
#define ALDPS_SPDWN_RATIO 0x0f87
/* PLA_MAC_PWR_CTRL2 */
#define EEE_SPDWN_RATIO 0x8007
#define MAC_CLK_SPDWN_EN BIT(15)
/* PLA_MAC_PWR_CTRL3 */
#define PLA_MCU_SPDWN_EN BIT(14)
#define PKT_AVAIL_SPDWN_EN 0x0100
#define SUSPEND_SPDWN_EN 0x0004
#define U1U2_SPDWN_EN 0x0002
#define L1_SPDWN_EN 0x0001
/* PLA_MAC_PWR_CTRL4 */
#define PWRSAVE_SPDWN_EN 0x1000
#define RXDV_SPDWN_EN 0x0800
#define TX10MIDLE_EN 0x0100
#define TP100_SPDWN_EN 0x0020
#define TP500_SPDWN_EN 0x0010
#define TP1000_SPDWN_EN 0x0008
#define EEE_SPDWN_EN 0x0001
/* PLA_GPHY_INTR_IMR */
#define GPHY_STS_MSK 0x0001
#define SPEED_DOWN_MSK 0x0002
#define SPDWN_RXDV_MSK 0x0004
#define SPDWN_LINKCHG_MSK 0x0008
/* PLA_PHYAR */
#define PHYAR_FLAG 0x80000000
/* PLA_EEE_CR */
#define EEE_RX_EN 0x0001
#define EEE_TX_EN 0x0002
/* PLA_BOOT_CTRL */
#define AUTOLOAD_DONE 0x0002
/* PLA_LWAKE_CTRL_REG */
#define LANWAKE_PIN BIT(7)
/* PLA_SUSPEND_FLAG */
#define LINK_CHG_EVENT BIT(0)
/* PLA_INDICATE_FALG */
#define UPCOMING_RUNTIME_D3 BIT(0)
/* PLA_MACDBG_PRE and PLA_MACDBG_POST */
#define DEBUG_OE BIT(0)
#define DEBUG_LTSSM 0x0082
/* PLA_EXTRA_STATUS */
#define CUR_LINK_OK BIT(15)
#define U3P3_CHECK_EN BIT(7) /* RTL_VER_05 only */
#define LINK_CHANGE_FLAG BIT(8)
#define POLL_LINK_CHG BIT(0)
/* USB_USB2PHY */
#define USB2PHY_SUSPEND 0x0001
#define USB2PHY_L1 0x0002
/* USB_SSPHYLINK1 */
#define DELAY_PHY_PWR_CHG BIT(1)
/* USB_SSPHYLINK2 */
#define pwd_dn_scale_mask 0x3ffe
#define pwd_dn_scale(x) ((x) << 1)
/* USB_CSR_DUMMY1 */
#define DYNAMIC_BURST 0x0001
/* USB_CSR_DUMMY2 */
#define EP4_FULL_FC 0x0001
/* USB_DEV_STAT */
#define STAT_SPEED_MASK 0x0006
#define STAT_SPEED_HIGH 0x0000
#define STAT_SPEED_FULL 0x0002
/* USB_FW_FIX_EN0 */
#define FW_FIX_SUSPEND BIT(14)
/* USB_FW_FIX_EN1 */
#define FW_IP_RESET_EN BIT(9)
/* USB_LPM_CONFIG */
#define LPM_U1U2_EN BIT(0)
/* USB_TX_AGG */
#define TX_AGG_MAX_THRESHOLD 0x03
/* USB_RX_BUF_TH */
#define RX_THR_SUPPER 0x0c350180
#define RX_THR_HIGH 0x7a120180
#define RX_THR_SLOW 0xffff0180
#define RX_THR_B 0x00010001
/* USB_TX_DMA */
#define TEST_MODE_DISABLE 0x00000001
#define TX_SIZE_ADJUST1 0x00000100
/* USB_BMU_RESET */
#define BMU_RESET_EP_IN 0x01
#define BMU_RESET_EP_OUT 0x02
/* USB_UPT_RXDMA_OWN */
#define OWN_UPDATE BIT(0)
#define OWN_CLEAR BIT(1)
/* USB_FW_TASK */
#define FC_PATCH_TASK BIT(1)
/* USB_UPS_CTRL */
#define POWER_CUT 0x0100
/* USB_PM_CTRL_STATUS */
#define RESUME_INDICATE 0x0001
/* USB_CSTMR */
#define FORCE_SUPER BIT(0)
/* USB_FW_CTRL */
#define FLOW_CTRL_PATCH_OPT BIT(1)
/* USB_FC_TIMER */
#define CTRL_TIMER_EN BIT(15)
/* USB_USB_CTRL */
#define RX_AGG_DISABLE 0x0010
#define RX_ZERO_EN 0x0080
/* USB_U2P3_CTRL */
#define U2P3_ENABLE 0x0001
/* USB_POWER_CUT */
#define PWR_EN 0x0001
#define PHASE2_EN 0x0008
#define UPS_EN BIT(4)
#define USP_PREWAKE BIT(5)
/* USB_MISC_0 */
#define PCUT_STATUS 0x0001
/* USB_RX_EARLY_TIMEOUT */
#define COALESCE_SUPER 85000U
#define COALESCE_HIGH 250000U
#define COALESCE_SLOW 524280U
/* USB_WDT1_CTRL */
#define WTD1_EN BIT(0)
/* USB_WDT11_CTRL */
#define TIMER11_EN 0x0001
/* USB_LPM_CTRL */
/* bit 4 ~ 5: fifo empty boundary */
#define FIFO_EMPTY_1FB 0x30 /* 0x1fb * 64 = 32448 bytes */
/* bit 2 ~ 3: LMP timer */
#define LPM_TIMER_MASK 0x0c
#define LPM_TIMER_500MS 0x04 /* 500 ms */
#define LPM_TIMER_500US 0x0c /* 500 us */
#define ROK_EXIT_LPM 0x02
/* USB_AFE_CTRL2 */
#define SEN_VAL_MASK 0xf800
#define SEN_VAL_NORMAL 0xa000
#define SEL_RXIDLE 0x0100
/* USB_UPS_CFG */
#define SAW_CNT_1MS_MASK 0x0fff
/* USB_UPS_FLAGS */
#define UPS_FLAGS_R_TUNE BIT(0)
#define UPS_FLAGS_EN_10M_CKDIV BIT(1)
#define UPS_FLAGS_250M_CKDIV BIT(2)
#define UPS_FLAGS_EN_ALDPS BIT(3)
#define UPS_FLAGS_CTAP_SHORT_DIS BIT(4)
#define ups_flags_speed(x) ((x) << 16)
#define UPS_FLAGS_EN_EEE BIT(20)
#define UPS_FLAGS_EN_500M_EEE BIT(21)
#define UPS_FLAGS_EN_EEE_CKDIV BIT(22)
#define UPS_FLAGS_EEE_PLLOFF_100 BIT(23)
#define UPS_FLAGS_EEE_PLLOFF_GIGA BIT(24)
#define UPS_FLAGS_EEE_CMOD_LV_EN BIT(25)
#define UPS_FLAGS_EN_GREEN BIT(26)
#define UPS_FLAGS_EN_FLOW_CTR BIT(27)
enum spd_duplex {
NWAY_10M_HALF,
NWAY_10M_FULL,
NWAY_100M_HALF,
NWAY_100M_FULL,
NWAY_1000M_FULL,
FORCE_10M_HALF,
FORCE_10M_FULL,
FORCE_100M_HALF,
FORCE_100M_FULL,
};
/* OCP_ALDPS_CONFIG */
#define ENPWRSAVE 0x8000
#define ENPDNPS 0x0200
#define LINKENA 0x0100
#define DIS_SDSAVE 0x0010
/* OCP_PHY_STATUS */
#define PHY_STAT_MASK 0x0007
#define PHY_STAT_EXT_INIT 2
#define PHY_STAT_LAN_ON 3
#define PHY_STAT_PWRDN 5
/* OCP_NCTL_CFG */
#define PGA_RETURN_EN BIT(1)
/* OCP_POWER_CFG */
#define EEE_CLKDIV_EN 0x8000
#define EN_ALDPS 0x0004
#define EN_10M_PLLOFF 0x0001
/* OCP_EEE_CONFIG1 */
#define RG_TXLPI_MSK_HFDUP 0x8000
#define RG_MATCLR_EN 0x4000
#define EEE_10_CAP 0x2000
#define EEE_NWAY_EN 0x1000
#define TX_QUIET_EN 0x0200
#define RX_QUIET_EN 0x0100
#define sd_rise_time_mask 0x0070
#define sd_rise_time(x) (min(x, 7) << 4) /* bit 4 ~ 6 */
#define RG_RXLPI_MSK_HFDUP 0x0008
#define SDFALLTIME 0x0007 /* bit 0 ~ 2 */
/* OCP_EEE_CONFIG2 */
#define RG_LPIHYS_NUM 0x7000 /* bit 12 ~ 15 */
#define RG_DACQUIET_EN 0x0400
#define RG_LDVQUIET_EN 0x0200
#define RG_CKRSEL 0x0020
#define RG_EEEPRG_EN 0x0010
/* OCP_EEE_CONFIG3 */
#define fast_snr_mask 0xff80
#define fast_snr(x) (min(x, 0x1ff) << 7) /* bit 7 ~ 15 */
#define RG_LFS_SEL 0x0060 /* bit 6 ~ 5 */
#define MSK_PH 0x0006 /* bit 0 ~ 3 */
/* OCP_EEE_AR */
/* bit[15:14] function */
#define FUN_ADDR 0x0000
#define FUN_DATA 0x4000
/* bit[4:0] device addr */
/* OCP_EEE_CFG */
#define CTAP_SHORT_EN 0x0040
#define EEE10_EN 0x0010
/* OCP_DOWN_SPEED */
#define EN_EEE_CMODE BIT(14)
#define EN_EEE_1000 BIT(13)
#define EN_EEE_100 BIT(12)
#define EN_10M_CLKDIV BIT(11)
#define EN_10M_BGOFF 0x0080
/* OCP_PHY_STATE */
#define TXDIS_STATE 0x01
#define ABD_STATE 0x02
/* OCP_PHY_PATCH_STAT */
#define PATCH_READY BIT(6)
/* OCP_PHY_PATCH_CMD */
#define PATCH_REQUEST BIT(4)
/* OCP_PHY_LOCK */
#define PATCH_LOCK BIT(0)
/* OCP_ADC_CFG */
#define CKADSEL_L 0x0100
#define ADC_EN 0x0080
#define EN_EMI_L 0x0040
/* OCP_SYSCLK_CFG */
#define clk_div_expo(x) (min(x, 5) << 8)
/* SRAM_GREEN_CFG */
#define GREEN_ETH_EN BIT(15)
#define R_TUNE_EN BIT(11)
/* SRAM_LPF_CFG */
#define LPF_AUTO_TUNE 0x8000
/* SRAM_10M_AMP1 */
#define GDAC_IB_UPALL 0x0008
/* SRAM_10M_AMP2 */
#define AMP_DN 0x0200
/* SRAM_IMPEDANCE */
#define RX_DRIVING_MASK 0x6000
/* SRAM_PHY_LOCK */
#define PHY_PATCH_LOCK 0x0001
/* MAC PASSTHRU */
#define AD_MASK 0xfee0
#define BND_MASK 0x0004
#define BD_MASK 0x0001
#define EFUSE 0xcfdb
#define PASS_THRU_MASK 0x1
#define BP4_SUPER_ONLY 0x1578 /* RTL_VER_04 only */
enum rtl_register_content {
_1000bps = 0x10,
_100bps = 0x08,
_10bps = 0x04,
LINK_STATUS = 0x02,
FULL_DUP = 0x01,
};
#define RTL8152_MAX_TX 4
#define RTL8152_MAX_RX 10
#define INTBUFSIZE 2
#define TX_ALIGN 4
#define RX_ALIGN 8
#define RTL8152_RX_MAX_PENDING 4096
#define RTL8152_RXFG_HEADSZ 256
#define INTR_LINK 0x0004
#define RTL8153_MAX_PACKET 9216 /* 9K */
#define RTL8153_MAX_MTU (RTL8153_MAX_PACKET - VLAN_ETH_HLEN - \
ETH_FCS_LEN)
#define RTL8152_RMS (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
#define RTL8153_RMS RTL8153_MAX_PACKET
#define RTL8152_TX_TIMEOUT (5 * HZ)
#define RTL8152_NAPI_WEIGHT 64
#define rx_reserved_size(x) ((x) + VLAN_ETH_HLEN + ETH_FCS_LEN + \
sizeof(struct rx_desc) + RX_ALIGN)
/* rtl8152 flags */
enum rtl8152_flags {
RTL8152_UNPLUG = 0,
RTL8152_SET_RX_MODE,
WORK_ENABLE,
RTL8152_LINK_CHG,
SELECTIVE_SUSPEND,
PHY_RESET,
SCHEDULE_TASKLET,
GREEN_ETHERNET,
DELL_TB_RX_AGG_BUG,
LENOVO_MACPASSTHRU,
};
#define DEVICE_ID_THINKPAD_THUNDERBOLT3_DOCK_GEN2 0x3082
#define DEVICE_ID_THINKPAD_USB_C_DOCK_GEN2 0xa387
struct tally_counter {
__le64 tx_packets;
__le64 rx_packets;
__le64 tx_errors;
__le32 rx_errors;
__le16 rx_missed;
__le16 align_errors;
__le32 tx_one_collision;
__le32 tx_multi_collision;
__le64 rx_unicast;
__le64 rx_broadcast;
__le32 rx_multicast;
__le16 tx_aborted;
__le16 tx_underrun;
};
struct rx_desc {
__le32 opts1;
#define RX_LEN_MASK 0x7fff
__le32 opts2;
#define RD_UDP_CS BIT(23)
#define RD_TCP_CS BIT(22)
#define RD_IPV6_CS BIT(20)
#define RD_IPV4_CS BIT(19)
__le32 opts3;
#define IPF BIT(23) /* IP checksum fail */
#define UDPF BIT(22) /* UDP checksum fail */
#define TCPF BIT(21) /* TCP checksum fail */
#define RX_VLAN_TAG BIT(16)
__le32 opts4;
__le32 opts5;
__le32 opts6;
};
struct tx_desc {
__le32 opts1;
#define TX_FS BIT(31) /* First segment of a packet */
#define TX_LS BIT(30) /* Final segment of a packet */
#define GTSENDV4 BIT(28)
#define GTSENDV6 BIT(27)
#define GTTCPHO_SHIFT 18
#define GTTCPHO_MAX 0x7fU
#define TX_LEN_MAX 0x3ffffU
__le32 opts2;
#define UDP_CS BIT(31) /* Calculate UDP/IP checksum */
#define TCP_CS BIT(30) /* Calculate TCP/IP checksum */
#define IPV4_CS BIT(29) /* Calculate IPv4 checksum */
#define IPV6_CS BIT(28) /* Calculate IPv6 checksum */
#define MSS_SHIFT 17
#define MSS_MAX 0x7ffU
#define TCPHO_SHIFT 17
#define TCPHO_MAX 0x7ffU
#define TX_VLAN_TAG BIT(16)
};
struct r8152;
struct rx_agg {
struct list_head list, info_list;
struct urb *urb;
struct r8152 *context;
struct page *page;
void *buffer;
};
struct tx_agg {
struct list_head list;
struct urb *urb;
struct r8152 *context;
void *buffer;
void *head;
u32 skb_num;
u32 skb_len;
};
struct r8152 {
unsigned long flags;
struct usb_device *udev;
struct napi_struct napi;
struct usb_interface *intf;
struct net_device *netdev;
struct urb *intr_urb;
struct tx_agg tx_info[RTL8152_MAX_TX];
struct list_head rx_info, rx_used;
struct list_head rx_done, tx_free;
struct sk_buff_head tx_queue, rx_queue;
spinlock_t rx_lock, tx_lock;
struct delayed_work schedule, hw_phy_work;
struct mii_if_info mii;
struct mutex control; /* use for hw setting */
#ifdef CONFIG_PM_SLEEP
struct notifier_block pm_notifier;
#endif
struct tasklet_struct tx_tl;
struct rtl_ops {
void (*init)(struct r8152 *tp);
int (*enable)(struct r8152 *tp);
void (*disable)(struct r8152 *tp);
void (*up)(struct r8152 *tp);
void (*down)(struct r8152 *tp);
void (*unload)(struct r8152 *tp);
int (*eee_get)(struct r8152 *tp, struct ethtool_eee *eee);
int (*eee_set)(struct r8152 *tp, struct ethtool_eee *eee);
bool (*in_nway)(struct r8152 *tp);
void (*hw_phy_cfg)(struct r8152 *tp);
void (*autosuspend_en)(struct r8152 *tp, bool enable);
} rtl_ops;
struct ups_info {
u32 _10m_ckdiv:1;
u32 _250m_ckdiv:1;
u32 aldps:1;
u32 lite_mode:2;
u32 speed_duplex:4;
u32 eee:1;
u32 eee_lite:1;
u32 eee_ckdiv:1;
u32 eee_plloff_100:1;
u32 eee_plloff_giga:1;
u32 eee_cmod_lv:1;
u32 green:1;
u32 flow_control:1;
u32 ctap_short_off:1;
} ups_info;
#define RTL_VER_SIZE 32
struct rtl_fw {
const char *fw_name;
const struct firmware *fw;
char version[RTL_VER_SIZE];
int (*pre_fw)(struct r8152 *tp);
int (*post_fw)(struct r8152 *tp);
bool retry;
} rtl_fw;
atomic_t rx_count;
bool eee_en;
int intr_interval;
u32 saved_wolopts;
u32 msg_enable;
u32 tx_qlen;
u32 coalesce;
u32 advertising;
u32 rx_buf_sz;
u32 rx_copybreak;
u32 rx_pending;
u16 ocp_base;
u16 speed;
u16 eee_adv;
u8 *intr_buff;
u8 version;
u8 duplex;
u8 autoneg;
};
/**
* struct fw_block - block type and total length
* @type: type of the current block, such as RTL_FW_END, RTL_FW_PLA,
* RTL_FW_USB and so on.
* @length: total length of the current block.
*/
struct fw_block {
__le32 type;
__le32 length;
} __packed;
/**
* struct fw_header - header of the firmware file
* @checksum: checksum of sha256 which is calculated from the whole file
* except the checksum field of the file. That is, calculate sha256
* from the version field to the end of the file.
* @version: version of this firmware.
* @blocks: the first firmware block of the file
*/
struct fw_header {
u8 checksum[32];
char version[RTL_VER_SIZE];
struct fw_block blocks[];
} __packed;
/**
* struct fw_mac - a firmware block used by RTL_FW_PLA and RTL_FW_USB.
* The layout of the firmware block is:
* <struct fw_mac> + <info> + <firmware data>.
* @blk_hdr: firmware descriptor (type, length)
* @fw_offset: offset of the firmware binary data. The start address of
* the data would be the address of struct fw_mac + @fw_offset.
* @fw_reg: the register to load the firmware. Depends on chip.
* @bp_ba_addr: the register to write break point base address. Depends on
* chip.
* @bp_ba_value: break point base address. Depends on chip.
* @bp_en_addr: the register to write break point enabled mask. Depends
* on chip.
* @bp_en_value: break point enabled mask. Depends on the firmware.
* @bp_start: the start register of break points. Depends on chip.
* @bp_num: the break point number which needs to be set for this firmware.
* Depends on the firmware.
* @bp: break points. Depends on firmware.
* @reserved: reserved space (unused)
* @fw_ver_reg: the register to store the fw version.
* @fw_ver_data: the firmware version of the current type.
* @info: additional information for debugging, and is followed by the
* binary data of firmware.
*/
struct fw_mac {
struct fw_block blk_hdr;
__le16 fw_offset;
__le16 fw_reg;
__le16 bp_ba_addr;
__le16 bp_ba_value;
__le16 bp_en_addr;
__le16 bp_en_value;
__le16 bp_start;
__le16 bp_num;
__le16 bp[16]; /* any value determined by firmware */
__le32 reserved;
__le16 fw_ver_reg;
u8 fw_ver_data;
char info[];
} __packed;
/**
* struct fw_phy_patch_key - a firmware block used by RTL_FW_PHY_START.
* This is used to set patch key when loading the firmware of PHY.
* @blk_hdr: firmware descriptor (type, length)
* @key_reg: the register to write the patch key.
* @key_data: patch key.
* @reserved: reserved space (unused)
*/
struct fw_phy_patch_key {
struct fw_block blk_hdr;
__le16 key_reg;
__le16 key_data;
__le32 reserved;
} __packed;
/**
* struct fw_phy_nc - a firmware block used by RTL_FW_PHY_NC.
* The layout of the firmware block is:
* <struct fw_phy_nc> + <info> + <firmware data>.
* @blk_hdr: firmware descriptor (type, length)
* @fw_offset: offset of the firmware binary data. The start address of
* the data would be the address of struct fw_phy_nc + @fw_offset.
* @fw_reg: the register to load the firmware. Depends on chip.
* @ba_reg: the register to write the base address. Depends on chip.
* @ba_data: base address. Depends on chip.
* @patch_en_addr: the register of enabling patch mode. Depends on chip.
* @patch_en_value: patch mode enabled mask. Depends on the firmware.
* @mode_reg: the regitster of switching the mode.
* @mode_pre: the mode needing to be set before loading the firmware.
* @mode_post: the mode to be set when finishing to load the firmware.
* @reserved: reserved space (unused)
* @bp_start: the start register of break points. Depends on chip.
* @bp_num: the break point number which needs to be set for this firmware.
* Depends on the firmware.
* @bp: break points. Depends on firmware.
* @info: additional information for debugging, and is followed by the
* binary data of firmware.
*/
struct fw_phy_nc {
struct fw_block blk_hdr;
__le16 fw_offset;
__le16 fw_reg;
__le16 ba_reg;
__le16 ba_data;
__le16 patch_en_addr;
__le16 patch_en_value;
__le16 mode_reg;
__le16 mode_pre;
__le16 mode_post;
__le16 reserved;
__le16 bp_start;
__le16 bp_num;
__le16 bp[4];
char info[];
} __packed;
enum rtl_fw_type {
RTL_FW_END = 0,
RTL_FW_PLA,
RTL_FW_USB,
RTL_FW_PHY_START,
RTL_FW_PHY_STOP,
RTL_FW_PHY_NC,
};
enum rtl_version {
RTL_VER_UNKNOWN = 0,
RTL_VER_01,
RTL_VER_02,
RTL_VER_03,
RTL_VER_04,
RTL_VER_05,
RTL_VER_06,
RTL_VER_07,
RTL_VER_08,
RTL_VER_09,
RTL_VER_MAX
};
enum tx_csum_stat {
TX_CSUM_SUCCESS = 0,
TX_CSUM_TSO,
TX_CSUM_NONE
};
#define RTL_ADVERTISED_10_HALF BIT(0)
#define RTL_ADVERTISED_10_FULL BIT(1)
#define RTL_ADVERTISED_100_HALF BIT(2)
#define RTL_ADVERTISED_100_FULL BIT(3)
#define RTL_ADVERTISED_1000_HALF BIT(4)
#define RTL_ADVERTISED_1000_FULL BIT(5)
/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
* The RTL chips use a 64 element hash table based on the Ethernet CRC.
*/
static const int multicast_filter_limit = 32;
static unsigned int agg_buf_sz = 16384;
#define RTL_LIMITED_TSO_SIZE (agg_buf_sz - sizeof(struct tx_desc) - \
VLAN_ETH_HLEN - ETH_FCS_LEN)
static
int get_registers(struct r8152 *tp, u16 value, u16 index, u16 size, void *data)
{
int ret;
void *tmp;
tmp = kmalloc(size, GFP_KERNEL);
if (!tmp)
return -ENOMEM;
ret = usb_control_msg(tp->udev, usb_rcvctrlpipe(tp->udev, 0),
RTL8152_REQ_GET_REGS, RTL8152_REQT_READ,
value, index, tmp, size, 500);
if (ret < 0)
memset(data, 0xff, size);
else
memcpy(data, tmp, size);
kfree(tmp);
return ret;
}
static
int set_registers(struct r8152 *tp, u16 value, u16 index, u16 size, void *data)
{
int ret;
void *tmp;
tmp = kmemdup(data, size, GFP_KERNEL);
if (!tmp)
return -ENOMEM;
ret = usb_control_msg(tp->udev, usb_sndctrlpipe(tp->udev, 0),
RTL8152_REQ_SET_REGS, RTL8152_REQT_WRITE,
value, index, tmp, size, 500);
kfree(tmp);
return ret;
}
static void rtl_set_unplug(struct r8152 *tp)
{
if (tp->udev->state == USB_STATE_NOTATTACHED) {
set_bit(RTL8152_UNPLUG, &tp->flags);
smp_mb__after_atomic();
}
}
static int generic_ocp_read(struct r8152 *tp, u16 index, u16 size,
void *data, u16 type)
{
u16 limit = 64;
int ret = 0;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;
/* both size and indix must be 4 bytes align */
if ((size & 3) || !size || (index & 3) || !data)
return -EPERM;
if ((u32)index + (u32)size > 0xffff)
return -EPERM;
while (size) {
if (size > limit) {
ret = get_registers(tp, index, type, limit, data);
if (ret < 0)
break;
index += limit;
data += limit;
size -= limit;
} else {
ret = get_registers(tp, index, type, size, data);
if (ret < 0)
break;
index += size;
data += size;
size = 0;
break;
}
}
if (ret == -ENODEV)
rtl_set_unplug(tp);
return ret;
}
static int generic_ocp_write(struct r8152 *tp, u16 index, u16 byteen,
u16 size, void *data, u16 type)
{
int ret;
u16 byteen_start, byteen_end, byen;
u16 limit = 512;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;
/* both size and indix must be 4 bytes align */
if ((size & 3) || !size || (index & 3) || !data)
return -EPERM;
if ((u32)index + (u32)size > 0xffff)
return -EPERM;
byteen_start = byteen & BYTE_EN_START_MASK;
byteen_end = byteen & BYTE_EN_END_MASK;
byen = byteen_start | (byteen_start << 4);
ret = set_registers(tp, index, type | byen, 4, data);
if (ret < 0)
goto error1;
index += 4;
data += 4;
size -= 4;
if (size) {
size -= 4;
while (size) {
if (size > limit) {
ret = set_registers(tp, index,
type | BYTE_EN_DWORD,
limit, data);
if (ret < 0)
goto error1;
index += limit;
data += limit;
size -= limit;
} else {
ret = set_registers(tp, index,
type | BYTE_EN_DWORD,
size, data);
if (ret < 0)
goto error1;
index += size;
data += size;
size = 0;
break;
}
}
byen = byteen_end | (byteen_end >> 4);
ret = set_registers(tp, index, type | byen, 4, data);
if (ret < 0)
goto error1;
}
error1:
if (ret == -ENODEV)
rtl_set_unplug(tp);
return ret;
}
static inline
int pla_ocp_read(struct r8152 *tp, u16 index, u16 size, void *data)
{
return generic_ocp_read(tp, index, size, data, MCU_TYPE_PLA);
}
static inline
int pla_ocp_write(struct r8152 *tp, u16 index, u16 byteen, u16 size, void *data)
{
return generic_ocp_write(tp, index, byteen, size, data, MCU_TYPE_PLA);
}
static inline
int usb_ocp_write(struct r8152 *tp, u16 index, u16 byteen, u16 size, void *data)
{
return generic_ocp_write(tp, index, byteen, size, data, MCU_TYPE_USB);
}
static u32 ocp_read_dword(struct r8152 *tp, u16 type, u16 index)
{
__le32 data;
generic_ocp_read(tp, index, sizeof(data), &data, type);
return __le32_to_cpu(data);
}
static void ocp_write_dword(struct r8152 *tp, u16 type, u16 index, u32 data)
{
__le32 tmp = __cpu_to_le32(data);
generic_ocp_write(tp, index, BYTE_EN_DWORD, sizeof(tmp), &tmp, type);
}
static u16 ocp_read_word(struct r8152 *tp, u16 type, u16 index)
{
u32 data;
__le32 tmp;
u16 byen = BYTE_EN_WORD;
u8 shift = index & 2;
index &= ~3;
byen <<= shift;
generic_ocp_read(tp, index, sizeof(tmp), &tmp, type | byen);
data = __le32_to_cpu(tmp);
data >>= (shift * 8);
data &= 0xffff;
return (u16)data;
}
static void ocp_write_word(struct r8152 *tp, u16 type, u16 index, u32 data)
{
u32 mask = 0xffff;
__le32 tmp;
u16 byen = BYTE_EN_WORD;
u8 shift = index & 2;
data &= mask;
if (index & 2) {
byen <<= shift;
mask <<= (shift * 8);
data <<= (shift * 8);
index &= ~3;
}
tmp = __cpu_to_le32(data);
generic_ocp_write(tp, index, byen, sizeof(tmp), &tmp, type);
}
static u8 ocp_read_byte(struct r8152 *tp, u16 type, u16 index)
{
u32 data;
__le32 tmp;
u8 shift = index & 3;
index &= ~3;
generic_ocp_read(tp, index, sizeof(tmp), &tmp, type);
data = __le32_to_cpu(tmp);
data >>= (shift * 8);
data &= 0xff;
return (u8)data;
}
static void ocp_write_byte(struct r8152 *tp, u16 type, u16 index, u32 data)
{
u32 mask = 0xff;
__le32 tmp;
u16 byen = BYTE_EN_BYTE;
u8 shift = index & 3;
data &= mask;
if (index & 3) {
byen <<= shift;
mask <<= (shift * 8);
data <<= (shift * 8);
index &= ~3;
}
tmp = __cpu_to_le32(data);
generic_ocp_write(tp, index, byen, sizeof(tmp), &tmp, type);
}
static u16 ocp_reg_read(struct r8152 *tp, u16 addr)
{
u16 ocp_base, ocp_index;
ocp_base = addr & 0xf000;
if (ocp_base != tp->ocp_base) {
ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, ocp_base);
tp->ocp_base = ocp_base;
}
ocp_index = (addr & 0x0fff) | 0xb000;
return ocp_read_word(tp, MCU_TYPE_PLA, ocp_index);
}
static void ocp_reg_write(struct r8152 *tp, u16 addr, u16 data)
{
u16 ocp_base, ocp_index;
ocp_base = addr & 0xf000;
if (ocp_base != tp->ocp_base) {
ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, ocp_base);
tp->ocp_base = ocp_base;
}
ocp_index = (addr & 0x0fff) | 0xb000;
ocp_write_word(tp, MCU_TYPE_PLA, ocp_index, data);
}
static inline void r8152_mdio_write(struct r8152 *tp, u32 reg_addr, u32 value)
{
ocp_reg_write(tp, OCP_BASE_MII + reg_addr * 2, value);
}
static inline int r8152_mdio_read(struct r8152 *tp, u32 reg_addr)
{
return ocp_reg_read(tp, OCP_BASE_MII + reg_addr * 2);
}
static void sram_write(struct r8152 *tp, u16 addr, u16 data)
{
ocp_reg_write(tp, OCP_SRAM_ADDR, addr);
ocp_reg_write(tp, OCP_SRAM_DATA, data);
}
static u16 sram_read(struct r8152 *tp, u16 addr)
{
ocp_reg_write(tp, OCP_SRAM_ADDR, addr);
return ocp_reg_read(tp, OCP_SRAM_DATA);
}
static int read_mii_word(struct net_device *netdev, int phy_id, int reg)
{
struct r8152 *tp = netdev_priv(netdev);
int ret;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;
if (phy_id != R8152_PHY_ID)
return -EINVAL;
ret = r8152_mdio_read(tp, reg);
return ret;
}
static
void write_mii_word(struct net_device *netdev, int phy_id, int reg, int val)
{
struct r8152 *tp = netdev_priv(netdev);
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
if (phy_id != R8152_PHY_ID)
return;
r8152_mdio_write(tp, reg, val);
}
static int
r8152_submit_rx(struct r8152 *tp, struct rx_agg *agg, gfp_t mem_flags);
static int rtl8152_set_mac_address(struct net_device *netdev, void *p)
{
struct r8152 *tp = netdev_priv(netdev);
struct sockaddr *addr = p;
int ret = -EADDRNOTAVAIL;
if (!is_valid_ether_addr(addr->sa_data))
goto out1;
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out1;
mutex_lock(&tp->control);
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG);
pla_ocp_write(tp, PLA_IDR, BYTE_EN_SIX_BYTES, 8, addr->sa_data);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML);
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
out1:
return ret;
}
/* Devices containing proper chips can support a persistent
* host system provided MAC address.
* Examples of this are Dell TB15 and Dell WD15 docks
*/
static int vendor_mac_passthru_addr_read(struct r8152 *tp, struct sockaddr *sa)
{
acpi_status status;
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *obj;
int ret = -EINVAL;
u32 ocp_data;
unsigned char buf[6];
char *mac_obj_name;
acpi_object_type mac_obj_type;
int mac_strlen;
if (test_bit(LENOVO_MACPASSTHRU, &tp->flags)) {
mac_obj_name = "\\MACA";
mac_obj_type = ACPI_TYPE_STRING;
mac_strlen = 0x16;
} else {
/* test for -AD variant of RTL8153 */
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0);
if ((ocp_data & AD_MASK) == 0x1000) {
/* test for MAC address pass-through bit */
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, EFUSE);
if ((ocp_data & PASS_THRU_MASK) != 1) {
netif_dbg(tp, probe, tp->netdev,
"No efuse for RTL8153-AD MAC pass through\n");
return -ENODEV;
}
} else {
/* test for RTL8153-BND and RTL8153-BD */
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_MISC_1);
if ((ocp_data & BND_MASK) == 0 && (ocp_data & BD_MASK) == 0) {
netif_dbg(tp, probe, tp->netdev,
"Invalid variant for MAC pass through\n");
return -ENODEV;
}
}
mac_obj_name = "\\_SB.AMAC";
mac_obj_type = ACPI_TYPE_BUFFER;
mac_strlen = 0x17;
}
/* returns _AUXMAC_#AABBCCDDEEFF# */
status = acpi_evaluate_object(NULL, mac_obj_name, NULL, &buffer);
obj = (union acpi_object *)buffer.pointer;
if (!ACPI_SUCCESS(status))
return -ENODEV;
if (obj->type != mac_obj_type || obj->string.length != mac_strlen) {
netif_warn(tp, probe, tp->netdev,
"Invalid buffer for pass-thru MAC addr: (%d, %d)\n",
obj->type, obj->string.length);
goto amacout;
}
if (strncmp(obj->string.pointer, "_AUXMAC_#", 9) != 0 ||
strncmp(obj->string.pointer + 0x15, "#", 1) != 0) {
netif_warn(tp, probe, tp->netdev,
"Invalid header when reading pass-thru MAC addr\n");
goto amacout;
}
ret = hex2bin(buf, obj->string.pointer + 9, 6);
if (!(ret == 0 && is_valid_ether_addr(buf))) {
netif_warn(tp, probe, tp->netdev,
"Invalid MAC for pass-thru MAC addr: %d, %pM\n",
ret, buf);
ret = -EINVAL;
goto amacout;
}
memcpy(sa->sa_data, buf, 6);
netif_info(tp, probe, tp->netdev,
"Using pass-thru MAC addr %pM\n", sa->sa_data);
amacout:
kfree(obj);
return ret;
}
static int determine_ethernet_addr(struct r8152 *tp, struct sockaddr *sa)
{
struct net_device *dev = tp->netdev;
int ret;
sa->sa_family = dev->type;
ret = eth_platform_get_mac_address(&tp->udev->dev, sa->sa_data);
if (ret < 0) {
if (tp->version == RTL_VER_01) {
ret = pla_ocp_read(tp, PLA_IDR, 8, sa->sa_data);
} else {
/* if device doesn't support MAC pass through this will
* be expected to be non-zero
*/
ret = vendor_mac_passthru_addr_read(tp, sa);
if (ret < 0)
ret = pla_ocp_read(tp, PLA_BACKUP, 8,
sa->sa_data);
}
}
if (ret < 0) {
netif_err(tp, probe, dev, "Get ether addr fail\n");
} else if (!is_valid_ether_addr(sa->sa_data)) {
netif_err(tp, probe, dev, "Invalid ether addr %pM\n",
sa->sa_data);
eth_hw_addr_random(dev);
ether_addr_copy(sa->sa_data, dev->dev_addr);
netif_info(tp, probe, dev, "Random ether addr %pM\n",
sa->sa_data);
return 0;
}
return ret;
}
static int set_ethernet_addr(struct r8152 *tp)
{
struct net_device *dev = tp->netdev;
struct sockaddr sa;
int ret;
ret = determine_ethernet_addr(tp, &sa);
if (ret < 0)
return ret;
if (tp->version == RTL_VER_01)
ether_addr_copy(dev->dev_addr, sa.sa_data);
else
ret = rtl8152_set_mac_address(dev, &sa);
return ret;
}
static void read_bulk_callback(struct urb *urb)
{
struct net_device *netdev;
int status = urb->status;
struct rx_agg *agg;
struct r8152 *tp;
unsigned long flags;
agg = urb->context;
if (!agg)
return;
tp = agg->context;
if (!tp)
return;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
if (!test_bit(WORK_ENABLE, &tp->flags))
return;
netdev = tp->netdev;
/* When link down, the driver would cancel all bulks. */
/* This avoid the re-submitting bulk */
if (!netif_carrier_ok(netdev))
return;
usb_mark_last_busy(tp->udev);
switch (status) {
case 0:
if (urb->actual_length < ETH_ZLEN)
break;
spin_lock_irqsave(&tp->rx_lock, flags);
list_add_tail(&agg->list, &tp->rx_done);
spin_unlock_irqrestore(&tp->rx_lock, flags);
napi_schedule(&tp->napi);
return;
case -ESHUTDOWN:
rtl_set_unplug(tp);
netif_device_detach(tp->netdev);
return;
case -ENOENT:
return; /* the urb is in unlink state */
case -ETIME:
if (net_ratelimit())
netdev_warn(netdev, "maybe reset is needed?\n");
break;
default:
if (net_ratelimit())
netdev_warn(netdev, "Rx status %d\n", status);
break;
}
r8152_submit_rx(tp, agg, GFP_ATOMIC);
}
static void write_bulk_callback(struct urb *urb)
{
struct net_device_stats *stats;
struct net_device *netdev;
struct tx_agg *agg;
struct r8152 *tp;
unsigned long flags;
int status = urb->status;
agg = urb->context;
if (!agg)
return;
tp = agg->context;
if (!tp)
return;
netdev = tp->netdev;
stats = &netdev->stats;
if (status) {
if (net_ratelimit())
netdev_warn(netdev, "Tx status %d\n", status);
stats->tx_errors += agg->skb_num;
} else {
stats->tx_packets += agg->skb_num;
stats->tx_bytes += agg->skb_len;
}
spin_lock_irqsave(&tp->tx_lock, flags);
list_add_tail(&agg->list, &tp->tx_free);
spin_unlock_irqrestore(&tp->tx_lock, flags);
usb_autopm_put_interface_async(tp->intf);
if (!netif_carrier_ok(netdev))
return;
if (!test_bit(WORK_ENABLE, &tp->flags))
return;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
if (!skb_queue_empty(&tp->tx_queue))
tasklet_schedule(&tp->tx_tl);
}
static void intr_callback(struct urb *urb)
{
struct r8152 *tp;
__le16 *d;
int status = urb->status;
int res;
tp = urb->context;
if (!tp)
return;
if (!test_bit(WORK_ENABLE, &tp->flags))
return;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
switch (status) {
case 0: /* success */
break;
case -ECONNRESET: /* unlink */
case -ESHUTDOWN:
netif_device_detach(tp->netdev);
fallthrough;
case -ENOENT:
case -EPROTO:
netif_info(tp, intr, tp->netdev,
"Stop submitting intr, status %d\n", status);
return;
case -EOVERFLOW:
netif_info(tp, intr, tp->netdev, "intr status -EOVERFLOW\n");
goto resubmit;
/* -EPIPE: should clear the halt */
default:
netif_info(tp, intr, tp->netdev, "intr status %d\n", status);
goto resubmit;
}
d = urb->transfer_buffer;
if (INTR_LINK & __le16_to_cpu(d[0])) {
if (!netif_carrier_ok(tp->netdev)) {
set_bit(RTL8152_LINK_CHG, &tp->flags);
schedule_delayed_work(&tp->schedule, 0);
}
} else {
if (netif_carrier_ok(tp->netdev)) {
netif_stop_queue(tp->netdev);
set_bit(RTL8152_LINK_CHG, &tp->flags);
schedule_delayed_work(&tp->schedule, 0);
}
}
resubmit:
res = usb_submit_urb(urb, GFP_ATOMIC);
if (res == -ENODEV) {
rtl_set_unplug(tp);
netif_device_detach(tp->netdev);
} else if (res) {
netif_err(tp, intr, tp->netdev,
"can't resubmit intr, status %d\n", res);
}
}
static inline void *rx_agg_align(void *data)
{
return (void *)ALIGN((uintptr_t)data, RX_ALIGN);
}
static inline void *tx_agg_align(void *data)
{
return (void *)ALIGN((uintptr_t)data, TX_ALIGN);
}
static void free_rx_agg(struct r8152 *tp, struct rx_agg *agg)
{
list_del(&agg->info_list);
usb_free_urb(agg->urb);
put_page(agg->page);
kfree(agg);
atomic_dec(&tp->rx_count);
}
static struct rx_agg *alloc_rx_agg(struct r8152 *tp, gfp_t mflags)
{
struct net_device *netdev = tp->netdev;
int node = netdev->dev.parent ? dev_to_node(netdev->dev.parent) : -1;
unsigned int order = get_order(tp->rx_buf_sz);
struct rx_agg *rx_agg;
unsigned long flags;
rx_agg = kmalloc_node(sizeof(*rx_agg), mflags, node);
if (!rx_agg)
return NULL;
rx_agg->page = alloc_pages(mflags | __GFP_COMP, order);
if (!rx_agg->page)
goto free_rx;
rx_agg->buffer = page_address(rx_agg->page);
rx_agg->urb = usb_alloc_urb(0, mflags);
if (!rx_agg->urb)
goto free_buf;
rx_agg->context = tp;
INIT_LIST_HEAD(&rx_agg->list);
INIT_LIST_HEAD(&rx_agg->info_list);
spin_lock_irqsave(&tp->rx_lock, flags);
list_add_tail(&rx_agg->info_list, &tp->rx_info);
spin_unlock_irqrestore(&tp->rx_lock, flags);
atomic_inc(&tp->rx_count);
return rx_agg;
free_buf:
__free_pages(rx_agg->page, order);
free_rx:
kfree(rx_agg);
return NULL;
}
static void free_all_mem(struct r8152 *tp)
{
struct rx_agg *agg, *agg_next;
unsigned long flags;
int i;
spin_lock_irqsave(&tp->rx_lock, flags);
list_for_each_entry_safe(agg, agg_next, &tp->rx_info, info_list)
free_rx_agg(tp, agg);
spin_unlock_irqrestore(&tp->rx_lock, flags);
WARN_ON(atomic_read(&tp->rx_count));
for (i = 0; i < RTL8152_MAX_TX; i++) {
usb_free_urb(tp->tx_info[i].urb);
tp->tx_info[i].urb = NULL;
kfree(tp->tx_info[i].buffer);
tp->tx_info[i].buffer = NULL;
tp->tx_info[i].head = NULL;
}
usb_free_urb(tp->intr_urb);
tp->intr_urb = NULL;
kfree(tp->intr_buff);
tp->intr_buff = NULL;
}
static int alloc_all_mem(struct r8152 *tp)
{
struct net_device *netdev = tp->netdev;
struct usb_interface *intf = tp->intf;
struct usb_host_interface *alt = intf->cur_altsetting;
struct usb_host_endpoint *ep_intr = alt->endpoint + 2;
int node, i;
node = netdev->dev.parent ? dev_to_node(netdev->dev.parent) : -1;
spin_lock_init(&tp->rx_lock);
spin_lock_init(&tp->tx_lock);
INIT_LIST_HEAD(&tp->rx_info);
INIT_LIST_HEAD(&tp->tx_free);
INIT_LIST_HEAD(&tp->rx_done);
skb_queue_head_init(&tp->tx_queue);
skb_queue_head_init(&tp->rx_queue);
atomic_set(&tp->rx_count, 0);
for (i = 0; i < RTL8152_MAX_RX; i++) {
if (!alloc_rx_agg(tp, GFP_KERNEL))
goto err1;
}
for (i = 0; i < RTL8152_MAX_TX; i++) {
struct urb *urb;
u8 *buf;
buf = kmalloc_node(agg_buf_sz, GFP_KERNEL, node);
if (!buf)
goto err1;
if (buf != tx_agg_align(buf)) {
kfree(buf);
buf = kmalloc_node(agg_buf_sz + TX_ALIGN, GFP_KERNEL,
node);
if (!buf)
goto err1;
}
urb = usb_alloc_urb(0, GFP_KERNEL);
if (!urb) {
kfree(buf);
goto err1;
}
INIT_LIST_HEAD(&tp->tx_info[i].list);
tp->tx_info[i].context = tp;
tp->tx_info[i].urb = urb;
tp->tx_info[i].buffer = buf;
tp->tx_info[i].head = tx_agg_align(buf);
list_add_tail(&tp->tx_info[i].list, &tp->tx_free);
}
tp->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
if (!tp->intr_urb)
goto err1;
tp->intr_buff = kmalloc(INTBUFSIZE, GFP_KERNEL);
if (!tp->intr_buff)
goto err1;
tp->intr_interval = (int)ep_intr->desc.bInterval;
usb_fill_int_urb(tp->intr_urb, tp->udev, usb_rcvintpipe(tp->udev, 3),
tp->intr_buff, INTBUFSIZE, intr_callback,
tp, tp->intr_interval);
return 0;
err1:
free_all_mem(tp);
return -ENOMEM;
}
static struct tx_agg *r8152_get_tx_agg(struct r8152 *tp)
{
struct tx_agg *agg = NULL;
unsigned long flags;
if (list_empty(&tp->tx_free))
return NULL;
spin_lock_irqsave(&tp->tx_lock, flags);
if (!list_empty(&tp->tx_free)) {
struct list_head *cursor;
cursor = tp->tx_free.next;
list_del_init(cursor);
agg = list_entry(cursor, struct tx_agg, list);
}
spin_unlock_irqrestore(&tp->tx_lock, flags);
return agg;
}
/* r8152_csum_workaround()
* The hw limits the value of the transport offset. When the offset is out of
* range, calculate the checksum by sw.
*/
static void r8152_csum_workaround(struct r8152 *tp, struct sk_buff *skb,
struct sk_buff_head *list)
{
if (skb_shinfo(skb)->gso_size) {
netdev_features_t features = tp->netdev->features;
struct sk_buff *segs, *seg, *next;
struct sk_buff_head seg_list;
features &= ~(NETIF_F_SG | NETIF_F_IPV6_CSUM | NETIF_F_TSO6);
segs = skb_gso_segment(skb, features);
if (IS_ERR(segs) || !segs)
goto drop;
__skb_queue_head_init(&seg_list);
skb_list_walk_safe(segs, seg, next) {
skb_mark_not_on_list(seg);
__skb_queue_tail(&seg_list, seg);
}
skb_queue_splice(&seg_list, list);
dev_kfree_skb(skb);
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
if (skb_checksum_help(skb) < 0)
goto drop;
__skb_queue_head(list, skb);
} else {
struct net_device_stats *stats;
drop:
stats = &tp->netdev->stats;
stats->tx_dropped++;
dev_kfree_skb(skb);
}
}
static inline void rtl_tx_vlan_tag(struct tx_desc *desc, struct sk_buff *skb)
{
if (skb_vlan_tag_present(skb)) {
u32 opts2;
opts2 = TX_VLAN_TAG | swab16(skb_vlan_tag_get(skb));
desc->opts2 |= cpu_to_le32(opts2);
}
}
static inline void rtl_rx_vlan_tag(struct rx_desc *desc, struct sk_buff *skb)
{
u32 opts2 = le32_to_cpu(desc->opts2);
if (opts2 & RX_VLAN_TAG)
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
swab16(opts2 & 0xffff));
}
static int r8152_tx_csum(struct r8152 *tp, struct tx_desc *desc,
struct sk_buff *skb, u32 len, u32 transport_offset)
{
u32 mss = skb_shinfo(skb)->gso_size;
u32 opts1, opts2 = 0;
int ret = TX_CSUM_SUCCESS;
WARN_ON_ONCE(len > TX_LEN_MAX);
opts1 = len | TX_FS | TX_LS;
if (mss) {
if (transport_offset > GTTCPHO_MAX) {
netif_warn(tp, tx_err, tp->netdev,
"Invalid transport offset 0x%x for TSO\n",
transport_offset);
ret = TX_CSUM_TSO;
goto unavailable;
}
switch (vlan_get_protocol(skb)) {
case htons(ETH_P_IP):
opts1 |= GTSENDV4;
break;
case htons(ETH_P_IPV6):
if (skb_cow_head(skb, 0)) {
ret = TX_CSUM_TSO;
goto unavailable;
}
tcp_v6_gso_csum_prep(skb);
opts1 |= GTSENDV6;
break;
default:
WARN_ON_ONCE(1);
break;
}
opts1 |= transport_offset << GTTCPHO_SHIFT;
opts2 |= min(mss, MSS_MAX) << MSS_SHIFT;
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
u8 ip_protocol;
if (transport_offset > TCPHO_MAX) {
netif_warn(tp, tx_err, tp->netdev,
"Invalid transport offset 0x%x\n",
transport_offset);
ret = TX_CSUM_NONE;
goto unavailable;
}
switch (vlan_get_protocol(skb)) {
case htons(ETH_P_IP):
opts2 |= IPV4_CS;
ip_protocol = ip_hdr(skb)->protocol;
break;
case htons(ETH_P_IPV6):
opts2 |= IPV6_CS;
ip_protocol = ipv6_hdr(skb)->nexthdr;
break;
default:
ip_protocol = IPPROTO_RAW;
break;
}
if (ip_protocol == IPPROTO_TCP)
opts2 |= TCP_CS;
else if (ip_protocol == IPPROTO_UDP)
opts2 |= UDP_CS;
else
WARN_ON_ONCE(1);
opts2 |= transport_offset << TCPHO_SHIFT;
}
desc->opts2 = cpu_to_le32(opts2);
desc->opts1 = cpu_to_le32(opts1);
unavailable:
return ret;
}
static int r8152_tx_agg_fill(struct r8152 *tp, struct tx_agg *agg)
{
struct sk_buff_head skb_head, *tx_queue = &tp->tx_queue;
int remain, ret;
u8 *tx_data;
__skb_queue_head_init(&skb_head);
spin_lock(&tx_queue->lock);
skb_queue_splice_init(tx_queue, &skb_head);
spin_unlock(&tx_queue->lock);
tx_data = agg->head;
agg->skb_num = 0;
agg->skb_len = 0;
remain = agg_buf_sz;
while (remain >= ETH_ZLEN + sizeof(struct tx_desc)) {
struct tx_desc *tx_desc;
struct sk_buff *skb;
unsigned int len;
u32 offset;
skb = __skb_dequeue(&skb_head);
if (!skb)
break;
len = skb->len + sizeof(*tx_desc);
if (len > remain) {
__skb_queue_head(&skb_head, skb);
break;
}
tx_data = tx_agg_align(tx_data);
tx_desc = (struct tx_desc *)tx_data;
offset = (u32)skb_transport_offset(skb);
if (r8152_tx_csum(tp, tx_desc, skb, skb->len, offset)) {
r8152_csum_workaround(tp, skb, &skb_head);
continue;
}
rtl_tx_vlan_tag(tx_desc, skb);
tx_data += sizeof(*tx_desc);
len = skb->len;
if (skb_copy_bits(skb, 0, tx_data, len) < 0) {
struct net_device_stats *stats = &tp->netdev->stats;
stats->tx_dropped++;
dev_kfree_skb_any(skb);
tx_data -= sizeof(*tx_desc);
continue;
}
tx_data += len;
agg->skb_len += len;
agg->skb_num += skb_shinfo(skb)->gso_segs ?: 1;
dev_kfree_skb_any(skb);
remain = agg_buf_sz - (int)(tx_agg_align(tx_data) - agg->head);
if (test_bit(DELL_TB_RX_AGG_BUG, &tp->flags))
break;
}
if (!skb_queue_empty(&skb_head)) {
spin_lock(&tx_queue->lock);
skb_queue_splice(&skb_head, tx_queue);
spin_unlock(&tx_queue->lock);
}
netif_tx_lock(tp->netdev);
if (netif_queue_stopped(tp->netdev) &&
skb_queue_len(&tp->tx_queue) < tp->tx_qlen)
netif_wake_queue(tp->netdev);
netif_tx_unlock(tp->netdev);
ret = usb_autopm_get_interface_async(tp->intf);
if (ret < 0)
goto out_tx_fill;
usb_fill_bulk_urb(agg->urb, tp->udev, usb_sndbulkpipe(tp->udev, 2),
agg->head, (int)(tx_data - (u8 *)agg->head),
(usb_complete_t)write_bulk_callback, agg);
ret = usb_submit_urb(agg->urb, GFP_ATOMIC);
if (ret < 0)
usb_autopm_put_interface_async(tp->intf);
out_tx_fill:
return ret;
}
static u8 r8152_rx_csum(struct r8152 *tp, struct rx_desc *rx_desc)
{
u8 checksum = CHECKSUM_NONE;
u32 opts2, opts3;
if (!(tp->netdev->features & NETIF_F_RXCSUM))
goto return_result;
opts2 = le32_to_cpu(rx_desc->opts2);
opts3 = le32_to_cpu(rx_desc->opts3);
if (opts2 & RD_IPV4_CS) {
if (opts3 & IPF)
checksum = CHECKSUM_NONE;
else if ((opts2 & RD_UDP_CS) && !(opts3 & UDPF))
checksum = CHECKSUM_UNNECESSARY;
else if ((opts2 & RD_TCP_CS) && !(opts3 & TCPF))
checksum = CHECKSUM_UNNECESSARY;
} else if (opts2 & RD_IPV6_CS) {
if ((opts2 & RD_UDP_CS) && !(opts3 & UDPF))
checksum = CHECKSUM_UNNECESSARY;
else if ((opts2 & RD_TCP_CS) && !(opts3 & TCPF))
checksum = CHECKSUM_UNNECESSARY;
}
return_result:
return checksum;
}
static inline bool rx_count_exceed(struct r8152 *tp)
{
return atomic_read(&tp->rx_count) > RTL8152_MAX_RX;
}
static inline int agg_offset(struct rx_agg *agg, void *addr)
{
return (int)(addr - agg->buffer);
}
static struct rx_agg *rtl_get_free_rx(struct r8152 *tp, gfp_t mflags)
{
struct rx_agg *agg, *agg_next, *agg_free = NULL;
unsigned long flags;
spin_lock_irqsave(&tp->rx_lock, flags);
list_for_each_entry_safe(agg, agg_next, &tp->rx_used, list) {
if (page_count(agg->page) == 1) {
if (!agg_free) {
list_del_init(&agg->list);
agg_free = agg;
continue;
}
if (rx_count_exceed(tp)) {
list_del_init(&agg->list);
free_rx_agg(tp, agg);
}
break;
}
}
spin_unlock_irqrestore(&tp->rx_lock, flags);
if (!agg_free && atomic_read(&tp->rx_count) < tp->rx_pending)
agg_free = alloc_rx_agg(tp, mflags);
return agg_free;
}
static int rx_bottom(struct r8152 *tp, int budget)
{
unsigned long flags;
struct list_head *cursor, *next, rx_queue;
int ret = 0, work_done = 0;
struct napi_struct *napi = &tp->napi;
if (!skb_queue_empty(&tp->rx_queue)) {
while (work_done < budget) {
struct sk_buff *skb = __skb_dequeue(&tp->rx_queue);
struct net_device *netdev = tp->netdev;
struct net_device_stats *stats = &netdev->stats;
unsigned int pkt_len;
if (!skb)
break;
pkt_len = skb->len;
napi_gro_receive(napi, skb);
work_done++;
stats->rx_packets++;
stats->rx_bytes += pkt_len;
}
}
if (list_empty(&tp->rx_done))
goto out1;
INIT_LIST_HEAD(&rx_queue);
spin_lock_irqsave(&tp->rx_lock, flags);
list_splice_init(&tp->rx_done, &rx_queue);
spin_unlock_irqrestore(&tp->rx_lock, flags);
list_for_each_safe(cursor, next, &rx_queue) {
struct rx_desc *rx_desc;
struct rx_agg *agg, *agg_free;
int len_used = 0;
struct urb *urb;
u8 *rx_data;
list_del_init(cursor);
agg = list_entry(cursor, struct rx_agg, list);
urb = agg->urb;
if (urb->actual_length < ETH_ZLEN)
goto submit;
agg_free = rtl_get_free_rx(tp, GFP_ATOMIC);
rx_desc = agg->buffer;
rx_data = agg->buffer;
len_used += sizeof(struct rx_desc);
while (urb->actual_length > len_used) {
struct net_device *netdev = tp->netdev;
struct net_device_stats *stats = &netdev->stats;
unsigned int pkt_len, rx_frag_head_sz;
struct sk_buff *skb;
/* limite the skb numbers for rx_queue */
if (unlikely(skb_queue_len(&tp->rx_queue) >= 1000))
break;
pkt_len = le32_to_cpu(rx_desc->opts1) & RX_LEN_MASK;
if (pkt_len < ETH_ZLEN)
break;
len_used += pkt_len;
if (urb->actual_length < len_used)
break;
pkt_len -= ETH_FCS_LEN;
rx_data += sizeof(struct rx_desc);
if (!agg_free || tp->rx_copybreak > pkt_len)
rx_frag_head_sz = pkt_len;
else
rx_frag_head_sz = tp->rx_copybreak;
skb = napi_alloc_skb(napi, rx_frag_head_sz);
if (!skb) {
stats->rx_dropped++;
goto find_next_rx;
}
skb->ip_summed = r8152_rx_csum(tp, rx_desc);
memcpy(skb->data, rx_data, rx_frag_head_sz);
skb_put(skb, rx_frag_head_sz);
pkt_len -= rx_frag_head_sz;
rx_data += rx_frag_head_sz;
if (pkt_len) {
skb_add_rx_frag(skb, 0, agg->page,
agg_offset(agg, rx_data),
pkt_len,
SKB_DATA_ALIGN(pkt_len));
get_page(agg->page);
}
skb->protocol = eth_type_trans(skb, netdev);
rtl_rx_vlan_tag(rx_desc, skb);
if (work_done < budget) {
work_done++;
stats->rx_packets++;
stats->rx_bytes += skb->len;
napi_gro_receive(napi, skb);
} else {
__skb_queue_tail(&tp->rx_queue, skb);
}
find_next_rx:
rx_data = rx_agg_align(rx_data + pkt_len + ETH_FCS_LEN);
rx_desc = (struct rx_desc *)rx_data;
len_used = agg_offset(agg, rx_data);
len_used += sizeof(struct rx_desc);
}
WARN_ON(!agg_free && page_count(agg->page) > 1);
if (agg_free) {
spin_lock_irqsave(&tp->rx_lock, flags);
if (page_count(agg->page) == 1) {
list_add(&agg_free->list, &tp->rx_used);
} else {
list_add_tail(&agg->list, &tp->rx_used);
agg = agg_free;
urb = agg->urb;
}
spin_unlock_irqrestore(&tp->rx_lock, flags);
}
submit:
if (!ret) {
ret = r8152_submit_rx(tp, agg, GFP_ATOMIC);
} else {
urb->actual_length = 0;
list_add_tail(&agg->list, next);
}
}
if (!list_empty(&rx_queue)) {
spin_lock_irqsave(&tp->rx_lock, flags);
list_splice_tail(&rx_queue, &tp->rx_done);
spin_unlock_irqrestore(&tp->rx_lock, flags);
}
out1:
return work_done;
}
static void tx_bottom(struct r8152 *tp)
{
int res;
do {
struct net_device *netdev = tp->netdev;
struct tx_agg *agg;
if (skb_queue_empty(&tp->tx_queue))
break;
agg = r8152_get_tx_agg(tp);
if (!agg)
break;
res = r8152_tx_agg_fill(tp, agg);
if (!res)
continue;
if (res == -ENODEV) {
rtl_set_unplug(tp);
netif_device_detach(netdev);
} else {
struct net_device_stats *stats = &netdev->stats;
unsigned long flags;
netif_warn(tp, tx_err, netdev,
"failed tx_urb %d\n", res);
stats->tx_dropped += agg->skb_num;
spin_lock_irqsave(&tp->tx_lock, flags);
list_add_tail(&agg->list, &tp->tx_free);
spin_unlock_irqrestore(&tp->tx_lock, flags);
}
} while (res == 0);
}
static void bottom_half(unsigned long data)
{
struct r8152 *tp;
tp = (struct r8152 *)data;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
if (!test_bit(WORK_ENABLE, &tp->flags))
return;
/* When link down, the driver would cancel all bulks. */
/* This avoid the re-submitting bulk */
if (!netif_carrier_ok(tp->netdev))
return;
clear_bit(SCHEDULE_TASKLET, &tp->flags);
tx_bottom(tp);
}
static int r8152_poll(struct napi_struct *napi, int budget)
{
struct r8152 *tp = container_of(napi, struct r8152, napi);
int work_done;
work_done = rx_bottom(tp, budget);
if (work_done < budget) {
if (!napi_complete_done(napi, work_done))
goto out;
if (!list_empty(&tp->rx_done))
napi_schedule(napi);
}
out:
return work_done;
}
static
int r8152_submit_rx(struct r8152 *tp, struct rx_agg *agg, gfp_t mem_flags)
{
int ret;
/* The rx would be stopped, so skip submitting */
if (test_bit(RTL8152_UNPLUG, &tp->flags) ||
!test_bit(WORK_ENABLE, &tp->flags) || !netif_carrier_ok(tp->netdev))
return 0;
usb_fill_bulk_urb(agg->urb, tp->udev, usb_rcvbulkpipe(tp->udev, 1),
agg->buffer, tp->rx_buf_sz,
(usb_complete_t)read_bulk_callback, agg);
ret = usb_submit_urb(agg->urb, mem_flags);
if (ret == -ENODEV) {
rtl_set_unplug(tp);
netif_device_detach(tp->netdev);
} else if (ret) {
struct urb *urb = agg->urb;
unsigned long flags;
urb->actual_length = 0;
spin_lock_irqsave(&tp->rx_lock, flags);
list_add_tail(&agg->list, &tp->rx_done);
spin_unlock_irqrestore(&tp->rx_lock, flags);
netif_err(tp, rx_err, tp->netdev,
"Couldn't submit rx[%p], ret = %d\n", agg, ret);
napi_schedule(&tp->napi);
}
return ret;
}
static void rtl_drop_queued_tx(struct r8152 *tp)
{
struct net_device_stats *stats = &tp->netdev->stats;
struct sk_buff_head skb_head, *tx_queue = &tp->tx_queue;
struct sk_buff *skb;
if (skb_queue_empty(tx_queue))
return;
__skb_queue_head_init(&skb_head);
spin_lock_bh(&tx_queue->lock);
skb_queue_splice_init(tx_queue, &skb_head);
spin_unlock_bh(&tx_queue->lock);
while ((skb = __skb_dequeue(&skb_head))) {
dev_kfree_skb(skb);
stats->tx_dropped++;
}
}
static void rtl8152_tx_timeout(struct net_device *netdev, unsigned int txqueue)
{
struct r8152 *tp = netdev_priv(netdev);
netif_warn(tp, tx_err, netdev, "Tx timeout\n");
usb_queue_reset_device(tp->intf);
}
static void rtl8152_set_rx_mode(struct net_device *netdev)
{
struct r8152 *tp = netdev_priv(netdev);
if (netif_carrier_ok(netdev)) {
set_bit(RTL8152_SET_RX_MODE, &tp->flags);
schedule_delayed_work(&tp->schedule, 0);
}
}
static void _rtl8152_set_rx_mode(struct net_device *netdev)
{
struct r8152 *tp = netdev_priv(netdev);
u32 mc_filter[2]; /* Multicast hash filter */
__le32 tmp[2];
u32 ocp_data;
netif_stop_queue(netdev);
ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data &= ~RCR_ACPT_ALL;
ocp_data |= RCR_AB | RCR_APM;
if (netdev->flags & IFF_PROMISC) {
/* Unconditionally log net taps. */
netif_notice(tp, link, netdev, "Promiscuous mode enabled\n");
ocp_data |= RCR_AM | RCR_AAP;
mc_filter[1] = 0xffffffff;
mc_filter[0] = 0xffffffff;
} else if ((netdev_mc_count(netdev) > multicast_filter_limit) ||
(netdev->flags & IFF_ALLMULTI)) {
/* Too many to filter perfectly -- accept all multicasts. */
ocp_data |= RCR_AM;
mc_filter[1] = 0xffffffff;
mc_filter[0] = 0xffffffff;
} else {
struct netdev_hw_addr *ha;
mc_filter[1] = 0;
mc_filter[0] = 0;
netdev_for_each_mc_addr(ha, netdev) {
int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
ocp_data |= RCR_AM;
}
}
tmp[0] = __cpu_to_le32(swab32(mc_filter[1]));
tmp[1] = __cpu_to_le32(swab32(mc_filter[0]));
pla_ocp_write(tp, PLA_MAR, BYTE_EN_DWORD, sizeof(tmp), tmp);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
netif_wake_queue(netdev);
}
static netdev_features_t
rtl8152_features_check(struct sk_buff *skb, struct net_device *dev,
netdev_features_t features)
{
u32 mss = skb_shinfo(skb)->gso_size;
int max_offset = mss ? GTTCPHO_MAX : TCPHO_MAX;
int offset = skb_transport_offset(skb);
if ((mss || skb->ip_summed == CHECKSUM_PARTIAL) && offset > max_offset)
features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
else if ((skb->len + sizeof(struct tx_desc)) > agg_buf_sz)
features &= ~NETIF_F_GSO_MASK;
return features;
}
static netdev_tx_t rtl8152_start_xmit(struct sk_buff *skb,
struct net_device *netdev)
{
struct r8152 *tp = netdev_priv(netdev);
skb_tx_timestamp(skb);
skb_queue_tail(&tp->tx_queue, skb);
if (!list_empty(&tp->tx_free)) {
if (test_bit(SELECTIVE_SUSPEND, &tp->flags)) {
set_bit(SCHEDULE_TASKLET, &tp->flags);
schedule_delayed_work(&tp->schedule, 0);
} else {
usb_mark_last_busy(tp->udev);
tasklet_schedule(&tp->tx_tl);
}
} else if (skb_queue_len(&tp->tx_queue) > tp->tx_qlen) {
netif_stop_queue(netdev);
}
return NETDEV_TX_OK;
}
static void r8152b_reset_packet_filter(struct r8152 *tp)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_FMC);
ocp_data &= ~FMC_FCR_MCU_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_FMC, ocp_data);
ocp_data |= FMC_FCR_MCU_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_FMC, ocp_data);
}
static void rtl8152_nic_reset(struct r8152 *tp)
{
int i;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, CR_RST);
for (i = 0; i < 1000; i++) {
if (!(ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CR) & CR_RST))
break;
usleep_range(100, 400);
}
}
static void set_tx_qlen(struct r8152 *tp)
{
struct net_device *netdev = tp->netdev;
tp->tx_qlen = agg_buf_sz / (netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN +
sizeof(struct tx_desc));
}
static inline u8 rtl8152_get_speed(struct r8152 *tp)
{
return ocp_read_byte(tp, MCU_TYPE_PLA, PLA_PHYSTATUS);
}
static void rtl_set_eee_plus(struct r8152 *tp)
{
u32 ocp_data;
u8 speed;
speed = rtl8152_get_speed(tp);
if (speed & _10bps) {
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR);
ocp_data |= EEEP_CR_EEEP_TX;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR, ocp_data);
} else {
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR);
ocp_data &= ~EEEP_CR_EEEP_TX;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR, ocp_data);
}
}
static void rxdy_gated_en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MISC_1);
if (enable)
ocp_data |= RXDY_GATED_EN;
else
ocp_data &= ~RXDY_GATED_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MISC_1, ocp_data);
}
static int rtl_start_rx(struct r8152 *tp)
{
struct rx_agg *agg, *agg_next;
struct list_head tmp_list;
unsigned long flags;
int ret = 0, i = 0;
INIT_LIST_HEAD(&tmp_list);
spin_lock_irqsave(&tp->rx_lock, flags);
INIT_LIST_HEAD(&tp->rx_done);
INIT_LIST_HEAD(&tp->rx_used);
list_splice_init(&tp->rx_info, &tmp_list);
spin_unlock_irqrestore(&tp->rx_lock, flags);
list_for_each_entry_safe(agg, agg_next, &tmp_list, info_list) {
INIT_LIST_HEAD(&agg->list);
/* Only RTL8152_MAX_RX rx_agg need to be submitted. */
if (++i > RTL8152_MAX_RX) {
spin_lock_irqsave(&tp->rx_lock, flags);
list_add_tail(&agg->list, &tp->rx_used);
spin_unlock_irqrestore(&tp->rx_lock, flags);
} else if (unlikely(ret < 0)) {
spin_lock_irqsave(&tp->rx_lock, flags);
list_add_tail(&agg->list, &tp->rx_done);
spin_unlock_irqrestore(&tp->rx_lock, flags);
} else {
ret = r8152_submit_rx(tp, agg, GFP_KERNEL);
}
}
spin_lock_irqsave(&tp->rx_lock, flags);
WARN_ON(!list_empty(&tp->rx_info));
list_splice(&tmp_list, &tp->rx_info);
spin_unlock_irqrestore(&tp->rx_lock, flags);
return ret;
}
static int rtl_stop_rx(struct r8152 *tp)
{
struct rx_agg *agg, *agg_next;
struct list_head tmp_list;
unsigned long flags;
INIT_LIST_HEAD(&tmp_list);
/* The usb_kill_urb() couldn't be used in atomic.
* Therefore, move the list of rx_info to a tmp one.
* Then, list_for_each_entry_safe could be used without
* spin lock.
*/
spin_lock_irqsave(&tp->rx_lock, flags);
list_splice_init(&tp->rx_info, &tmp_list);
spin_unlock_irqrestore(&tp->rx_lock, flags);
list_for_each_entry_safe(agg, agg_next, &tmp_list, info_list) {
/* At least RTL8152_MAX_RX rx_agg have the page_count being
* equal to 1, so the other ones could be freed safely.
*/
if (page_count(agg->page) > 1)
free_rx_agg(tp, agg);
else
usb_kill_urb(agg->urb);
}
/* Move back the list of temp to the rx_info */
spin_lock_irqsave(&tp->rx_lock, flags);
WARN_ON(!list_empty(&tp->rx_info));
list_splice(&tmp_list, &tp->rx_info);
spin_unlock_irqrestore(&tp->rx_lock, flags);
while (!skb_queue_empty(&tp->rx_queue))
dev_kfree_skb(__skb_dequeue(&tp->rx_queue));
return 0;
}
static inline void r8153b_rx_agg_chg_indicate(struct r8152 *tp)
{
ocp_write_byte(tp, MCU_TYPE_USB, USB_UPT_RXDMA_OWN,
OWN_UPDATE | OWN_CLEAR);
}
static int rtl_enable(struct r8152 *tp)
{
u32 ocp_data;
r8152b_reset_packet_filter(tp);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CR);
ocp_data |= CR_RE | CR_TE;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, ocp_data);
switch (tp->version) {
case RTL_VER_08:
case RTL_VER_09:
r8153b_rx_agg_chg_indicate(tp);
break;
default:
break;
}
rxdy_gated_en(tp, false);
return 0;
}
static int rtl8152_enable(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;
set_tx_qlen(tp);
rtl_set_eee_plus(tp);
return rtl_enable(tp);
}
static void r8153_set_rx_early_timeout(struct r8152 *tp)
{
u32 ocp_data = tp->coalesce / 8;
switch (tp->version) {
case RTL_VER_03:
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_TIMEOUT,
ocp_data);
break;
case RTL_VER_08:
case RTL_VER_09:
/* The RTL8153B uses USB_RX_EXTRA_AGGR_TMR for rx timeout
* primarily. For USB_RX_EARLY_TIMEOUT, we fix it to 128ns.
*/
ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_TIMEOUT,
128 / 8);
ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EXTRA_AGGR_TMR,
ocp_data);
break;
default:
break;
}
}
static void r8153_set_rx_early_size(struct r8152 *tp)
{
u32 ocp_data = tp->rx_buf_sz - rx_reserved_size(tp->netdev->mtu);
switch (tp->version) {
case RTL_VER_03:
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_SIZE,
ocp_data / 4);
break;
case RTL_VER_08:
case RTL_VER_09:
ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_SIZE,
ocp_data / 8);
break;
default:
WARN_ON_ONCE(1);
break;
}
}
static int rtl8153_enable(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;
set_tx_qlen(tp);
rtl_set_eee_plus(tp);
r8153_set_rx_early_timeout(tp);
r8153_set_rx_early_size(tp);
if (tp->version == RTL_VER_09) {
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_TASK);
ocp_data &= ~FC_PATCH_TASK;
ocp_write_word(tp, MCU_TYPE_USB, USB_FW_TASK, ocp_data);
usleep_range(1000, 2000);
ocp_data |= FC_PATCH_TASK;
ocp_write_word(tp, MCU_TYPE_USB, USB_FW_TASK, ocp_data);
}
return rtl_enable(tp);
}
static void rtl_disable(struct r8152 *tp)
{
u32 ocp_data;
int i;
if (test_bit(RTL8152_UNPLUG, &tp->flags)) {
rtl_drop_queued_tx(tp);
return;
}
ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data &= ~RCR_ACPT_ALL;
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
rtl_drop_queued_tx(tp);
for (i = 0; i < RTL8152_MAX_TX; i++)
usb_kill_urb(tp->tx_info[i].urb);
rxdy_gated_en(tp, true);
for (i = 0; i < 1000; i++) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
if ((ocp_data & FIFO_EMPTY) == FIFO_EMPTY)
break;
usleep_range(1000, 2000);
}
for (i = 0; i < 1000; i++) {
if (ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR0) & TCR0_TX_EMPTY)
break;
usleep_range(1000, 2000);
}
rtl_stop_rx(tp);
rtl8152_nic_reset(tp);
}
static void r8152_power_cut_en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_UPS_CTRL);
if (enable)
ocp_data |= POWER_CUT;
else
ocp_data &= ~POWER_CUT;
ocp_write_word(tp, MCU_TYPE_USB, USB_UPS_CTRL, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_PM_CTRL_STATUS);
ocp_data &= ~RESUME_INDICATE;
ocp_write_word(tp, MCU_TYPE_USB, USB_PM_CTRL_STATUS, ocp_data);
}
static void rtl_rx_vlan_en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CPCR);
if (enable)
ocp_data |= CPCR_RX_VLAN;
else
ocp_data &= ~CPCR_RX_VLAN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_CPCR, ocp_data);
}
static int rtl8152_set_features(struct net_device *dev,
netdev_features_t features)
{
netdev_features_t changed = features ^ dev->features;
struct r8152 *tp = netdev_priv(dev);
int ret;
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out;
mutex_lock(&tp->control);
if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
if (features & NETIF_F_HW_VLAN_CTAG_RX)
rtl_rx_vlan_en(tp, true);
else
rtl_rx_vlan_en(tp, false);
}
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
out:
return ret;
}
#define WAKE_ANY (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_BCAST | WAKE_MCAST)
static u32 __rtl_get_wol(struct r8152 *tp)
{
u32 ocp_data;
u32 wolopts = 0;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34);
if (ocp_data & LINK_ON_WAKE_EN)
wolopts |= WAKE_PHY;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG5);
if (ocp_data & UWF_EN)
wolopts |= WAKE_UCAST;
if (ocp_data & BWF_EN)
wolopts |= WAKE_BCAST;
if (ocp_data & MWF_EN)
wolopts |= WAKE_MCAST;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CFG_WOL);
if (ocp_data & MAGIC_EN)
wolopts |= WAKE_MAGIC;
return wolopts;
}
static void __rtl_set_wol(struct r8152 *tp, u32 wolopts)
{
u32 ocp_data;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34);
ocp_data &= ~LINK_ON_WAKE_EN;
if (wolopts & WAKE_PHY)
ocp_data |= LINK_ON_WAKE_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG34, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG5);
ocp_data &= ~(UWF_EN | BWF_EN | MWF_EN);
if (wolopts & WAKE_UCAST)
ocp_data |= UWF_EN;
if (wolopts & WAKE_BCAST)
ocp_data |= BWF_EN;
if (wolopts & WAKE_MCAST)
ocp_data |= MWF_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG5, ocp_data);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CFG_WOL);
ocp_data &= ~MAGIC_EN;
if (wolopts & WAKE_MAGIC)
ocp_data |= MAGIC_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_CFG_WOL, ocp_data);
if (wolopts & WAKE_ANY)
device_set_wakeup_enable(&tp->udev->dev, true);
else
device_set_wakeup_enable(&tp->udev->dev, false);
}
static void r8153_mac_clk_spd(struct r8152 *tp, bool enable)
{
/* MAC clock speed down */
if (enable) {
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL,
ALDPS_SPDWN_RATIO);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL2,
EEE_SPDWN_RATIO);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3,
PKT_AVAIL_SPDWN_EN | SUSPEND_SPDWN_EN |
U1U2_SPDWN_EN | L1_SPDWN_EN);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL4,
PWRSAVE_SPDWN_EN | RXDV_SPDWN_EN | TX10MIDLE_EN |
TP100_SPDWN_EN | TP500_SPDWN_EN | EEE_SPDWN_EN |
TP1000_SPDWN_EN);
} else {
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL, 0);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL2, 0);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3, 0);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL4, 0);
}
}
static void r8153_u1u2en(struct r8152 *tp, bool enable)
{
u8 u1u2[8];
if (enable)
memset(u1u2, 0xff, sizeof(u1u2));
else
memset(u1u2, 0x00, sizeof(u1u2));
usb_ocp_write(tp, USB_TOLERANCE, BYTE_EN_SIX_BYTES, sizeof(u1u2), u1u2);
}
static void r8153b_u1u2en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_LPM_CONFIG);
if (enable)
ocp_data |= LPM_U1U2_EN;
else
ocp_data &= ~LPM_U1U2_EN;
ocp_write_word(tp, MCU_TYPE_USB, USB_LPM_CONFIG, ocp_data);
}
static void r8153_u2p3en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_U2P3_CTRL);
if (enable)
ocp_data |= U2P3_ENABLE;
else
ocp_data &= ~U2P3_ENABLE;
ocp_write_word(tp, MCU_TYPE_USB, USB_U2P3_CTRL, ocp_data);
}
static void r8153b_ups_flags(struct r8152 *tp)
{
u32 ups_flags = 0;
if (tp->ups_info.green)
ups_flags |= UPS_FLAGS_EN_GREEN;
if (tp->ups_info.aldps)
ups_flags |= UPS_FLAGS_EN_ALDPS;
if (tp->ups_info.eee)
ups_flags |= UPS_FLAGS_EN_EEE;
if (tp->ups_info.flow_control)
ups_flags |= UPS_FLAGS_EN_FLOW_CTR;
if (tp->ups_info.eee_ckdiv)
ups_flags |= UPS_FLAGS_EN_EEE_CKDIV;
if (tp->ups_info.eee_cmod_lv)
ups_flags |= UPS_FLAGS_EEE_CMOD_LV_EN;
if (tp->ups_info._10m_ckdiv)
ups_flags |= UPS_FLAGS_EN_10M_CKDIV;
if (tp->ups_info.eee_plloff_100)
ups_flags |= UPS_FLAGS_EEE_PLLOFF_100;
if (tp->ups_info.eee_plloff_giga)
ups_flags |= UPS_FLAGS_EEE_PLLOFF_GIGA;
if (tp->ups_info._250m_ckdiv)
ups_flags |= UPS_FLAGS_250M_CKDIV;
if (tp->ups_info.ctap_short_off)
ups_flags |= UPS_FLAGS_CTAP_SHORT_DIS;
switch (tp->ups_info.speed_duplex) {
case NWAY_10M_HALF:
ups_flags |= ups_flags_speed(1);
break;
case NWAY_10M_FULL:
ups_flags |= ups_flags_speed(2);
break;
case NWAY_100M_HALF:
ups_flags |= ups_flags_speed(3);
break;
case NWAY_100M_FULL:
ups_flags |= ups_flags_speed(4);
break;
case NWAY_1000M_FULL:
ups_flags |= ups_flags_speed(5);
break;
case FORCE_10M_HALF:
ups_flags |= ups_flags_speed(6);
break;
case FORCE_10M_FULL:
ups_flags |= ups_flags_speed(7);
break;
case FORCE_100M_HALF:
ups_flags |= ups_flags_speed(8);
break;
case FORCE_100M_FULL:
ups_flags |= ups_flags_speed(9);
break;
default:
break;
}
ocp_write_dword(tp, MCU_TYPE_USB, USB_UPS_FLAGS, ups_flags);
}
static void r8153b_green_en(struct r8152 *tp, bool enable)
{
u16 data;
if (enable) {
sram_write(tp, 0x8045, 0); /* 10M abiq&ldvbias */
sram_write(tp, 0x804d, 0x1222); /* 100M short abiq&ldvbias */
sram_write(tp, 0x805d, 0x0022); /* 1000M short abiq&ldvbias */
} else {
sram_write(tp, 0x8045, 0x2444); /* 10M abiq&ldvbias */
sram_write(tp, 0x804d, 0x2444); /* 100M short abiq&ldvbias */
sram_write(tp, 0x805d, 0x2444); /* 1000M short abiq&ldvbias */
}
data = sram_read(tp, SRAM_GREEN_CFG);
data |= GREEN_ETH_EN;
sram_write(tp, SRAM_GREEN_CFG, data);
tp->ups_info.green = enable;
}
static u16 r8153_phy_status(struct r8152 *tp, u16 desired)
{
u16 data;
int i;
for (i = 0; i < 500; i++) {
data = ocp_reg_read(tp, OCP_PHY_STATUS);
data &= PHY_STAT_MASK;
if (desired) {
if (data == desired)
break;
} else if (data == PHY_STAT_LAN_ON || data == PHY_STAT_PWRDN ||
data == PHY_STAT_EXT_INIT) {
break;
}
msleep(20);
if (test_bit(RTL8152_UNPLUG, &tp->flags))
break;
}
return data;
}
static void r8153b_ups_en(struct r8152 *tp, bool enable)
{
u32 ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_POWER_CUT);
if (enable) {
r8153b_ups_flags(tp);
ocp_data |= UPS_EN | USP_PREWAKE | PHASE2_EN;
ocp_write_byte(tp, MCU_TYPE_USB, USB_POWER_CUT, ocp_data);
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, 0xcfff);
ocp_data |= BIT(0);
ocp_write_byte(tp, MCU_TYPE_USB, 0xcfff, ocp_data);
} else {
u16 data;
ocp_data &= ~(UPS_EN | USP_PREWAKE);
ocp_write_byte(tp, MCU_TYPE_USB, USB_POWER_CUT, ocp_data);
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, 0xcfff);
ocp_data &= ~BIT(0);
ocp_write_byte(tp, MCU_TYPE_USB, 0xcfff, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0);
ocp_data &= ~PCUT_STATUS;
ocp_write_word(tp, MCU_TYPE_USB, USB_MISC_0, ocp_data);
data = r8153_phy_status(tp, 0);
switch (data) {
case PHY_STAT_PWRDN:
case PHY_STAT_EXT_INIT:
r8153b_green_en(tp,
test_bit(GREEN_ETHERNET, &tp->flags));
data = r8152_mdio_read(tp, MII_BMCR);
data &= ~BMCR_PDOWN;
data |= BMCR_RESET;
r8152_mdio_write(tp, MII_BMCR, data);
data = r8153_phy_status(tp, PHY_STAT_LAN_ON);
fallthrough;
default:
if (data != PHY_STAT_LAN_ON)
netif_warn(tp, link, tp->netdev,
"PHY not ready");
break;
}
}
}
static void r8153_power_cut_en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_POWER_CUT);
if (enable)
ocp_data |= PWR_EN | PHASE2_EN;
else
ocp_data &= ~(PWR_EN | PHASE2_EN);
ocp_write_word(tp, MCU_TYPE_USB, USB_POWER_CUT, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0);
ocp_data &= ~PCUT_STATUS;
ocp_write_word(tp, MCU_TYPE_USB, USB_MISC_0, ocp_data);
}
static void r8153b_power_cut_en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_POWER_CUT);
if (enable)
ocp_data |= PWR_EN | PHASE2_EN;
else
ocp_data &= ~PWR_EN;
ocp_write_word(tp, MCU_TYPE_USB, USB_POWER_CUT, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0);
ocp_data &= ~PCUT_STATUS;
ocp_write_word(tp, MCU_TYPE_USB, USB_MISC_0, ocp_data);
}
static void r8153_queue_wake(struct r8152 *tp, bool enable)
{
u32 ocp_data;
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_INDICATE_FALG);
if (enable)
ocp_data |= UPCOMING_RUNTIME_D3;
else
ocp_data &= ~UPCOMING_RUNTIME_D3;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_INDICATE_FALG, ocp_data);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_SUSPEND_FLAG);
ocp_data &= ~LINK_CHG_EVENT;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_SUSPEND_FLAG, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS);
ocp_data &= ~LINK_CHANGE_FLAG;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS, ocp_data);
}
static bool rtl_can_wakeup(struct r8152 *tp)
{
struct usb_device *udev = tp->udev;
return (udev->actconfig->desc.bmAttributes & USB_CONFIG_ATT_WAKEUP);
}
static void rtl_runtime_suspend_enable(struct r8152 *tp, bool enable)
{
if (enable) {
u32 ocp_data;
__rtl_set_wol(tp, WAKE_ANY);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34);
ocp_data |= LINK_OFF_WAKE_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG34, ocp_data);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML);
} else {
u32 ocp_data;
__rtl_set_wol(tp, tp->saved_wolopts);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34);
ocp_data &= ~LINK_OFF_WAKE_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG34, ocp_data);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML);
}
}
static void rtl8153_runtime_enable(struct r8152 *tp, bool enable)
{
if (enable) {
r8153_u1u2en(tp, false);
r8153_u2p3en(tp, false);
r8153_mac_clk_spd(tp, true);
rtl_runtime_suspend_enable(tp, true);
} else {
rtl_runtime_suspend_enable(tp, false);
r8153_mac_clk_spd(tp, false);
switch (tp->version) {
case RTL_VER_03:
case RTL_VER_04:
break;
case RTL_VER_05:
case RTL_VER_06:
default:
r8153_u2p3en(tp, true);
break;
}
r8153_u1u2en(tp, true);
}
}
static void rtl8153b_runtime_enable(struct r8152 *tp, bool enable)
{
if (enable) {
r8153_queue_wake(tp, true);
r8153b_u1u2en(tp, false);
r8153_u2p3en(tp, false);
rtl_runtime_suspend_enable(tp, true);
r8153b_ups_en(tp, true);
} else {
r8153b_ups_en(tp, false);
r8153_queue_wake(tp, false);
rtl_runtime_suspend_enable(tp, false);
if (tp->udev->speed != USB_SPEED_HIGH)
r8153b_u1u2en(tp, true);
}
}
static void r8153_teredo_off(struct r8152 *tp)
{
u32 ocp_data;
switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
case RTL_VER_03:
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
case RTL_VER_07:
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG);
ocp_data &= ~(TEREDO_SEL | TEREDO_RS_EVENT_MASK |
OOB_TEREDO_EN);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG, ocp_data);
break;
case RTL_VER_08:
case RTL_VER_09:
/* The bit 0 ~ 7 are relative with teredo settings. They are
* W1C (write 1 to clear), so set all 1 to disable it.
*/
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG, 0xff);
break;
default:
break;
}
ocp_write_word(tp, MCU_TYPE_PLA, PLA_WDT6_CTRL, WDT6_SET_MODE);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_REALWOW_TIMER, 0);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_TEREDO_TIMER, 0);
}
static void rtl_reset_bmu(struct r8152 *tp)
{
u32 ocp_data;
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_BMU_RESET);
ocp_data &= ~(BMU_RESET_EP_IN | BMU_RESET_EP_OUT);
ocp_write_byte(tp, MCU_TYPE_USB, USB_BMU_RESET, ocp_data);
ocp_data |= BMU_RESET_EP_IN | BMU_RESET_EP_OUT;
ocp_write_byte(tp, MCU_TYPE_USB, USB_BMU_RESET, ocp_data);
}
/* Clear the bp to stop the firmware before loading a new one */
static void rtl_clear_bp(struct r8152 *tp, u16 type)
{
switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
case RTL_VER_07:
break;
case RTL_VER_03:
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
ocp_write_byte(tp, type, PLA_BP_EN, 0);
break;
case RTL_VER_08:
case RTL_VER_09:
default:
if (type == MCU_TYPE_USB) {
ocp_write_byte(tp, MCU_TYPE_USB, USB_BP2_EN, 0);
ocp_write_word(tp, MCU_TYPE_USB, USB_BP_8, 0);
ocp_write_word(tp, MCU_TYPE_USB, USB_BP_9, 0);
ocp_write_word(tp, MCU_TYPE_USB, USB_BP_10, 0);
ocp_write_word(tp, MCU_TYPE_USB, USB_BP_11, 0);
ocp_write_word(tp, MCU_TYPE_USB, USB_BP_12, 0);
ocp_write_word(tp, MCU_TYPE_USB, USB_BP_13, 0);
ocp_write_word(tp, MCU_TYPE_USB, USB_BP_14, 0);
ocp_write_word(tp, MCU_TYPE_USB, USB_BP_15, 0);
} else {
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_BP_EN, 0);
}
break;
}
ocp_write_word(tp, type, PLA_BP_0, 0);
ocp_write_word(tp, type, PLA_BP_1, 0);
ocp_write_word(tp, type, PLA_BP_2, 0);
ocp_write_word(tp, type, PLA_BP_3, 0);
ocp_write_word(tp, type, PLA_BP_4, 0);
ocp_write_word(tp, type, PLA_BP_5, 0);
ocp_write_word(tp, type, PLA_BP_6, 0);
ocp_write_word(tp, type, PLA_BP_7, 0);
/* wait 3 ms to make sure the firmware is stopped */
usleep_range(3000, 6000);
ocp_write_word(tp, type, PLA_BP_BA, 0);
}
static int r8153_patch_request(struct r8152 *tp, bool request)
{
u16 data;
int i;
data = ocp_reg_read(tp, OCP_PHY_PATCH_CMD);
if (request)
data |= PATCH_REQUEST;
else
data &= ~PATCH_REQUEST;
ocp_reg_write(tp, OCP_PHY_PATCH_CMD, data);
for (i = 0; request && i < 5000; i++) {
usleep_range(1000, 2000);
if (ocp_reg_read(tp, OCP_PHY_PATCH_STAT) & PATCH_READY)
break;
}
if (request && !(ocp_reg_read(tp, OCP_PHY_PATCH_STAT) & PATCH_READY)) {
netif_err(tp, drv, tp->netdev, "patch request fail\n");
r8153_patch_request(tp, false);
return -ETIME;
} else {
return 0;
}
}
static int r8153_pre_ram_code(struct r8152 *tp, u16 key_addr, u16 patch_key)
{
if (r8153_patch_request(tp, true)) {
dev_err(&tp->intf->dev, "patch request fail\n");
return -ETIME;
}
sram_write(tp, key_addr, patch_key);
sram_write(tp, SRAM_PHY_LOCK, PHY_PATCH_LOCK);
return 0;
}
static int r8153_post_ram_code(struct r8152 *tp, u16 key_addr)
{
u16 data;
sram_write(tp, 0x0000, 0x0000);
data = ocp_reg_read(tp, OCP_PHY_LOCK);
data &= ~PATCH_LOCK;
ocp_reg_write(tp, OCP_PHY_LOCK, data);
sram_write(tp, key_addr, 0x0000);
r8153_patch_request(tp, false);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, tp->ocp_base);
return 0;
}
static bool rtl8152_is_fw_phy_nc_ok(struct r8152 *tp, struct fw_phy_nc *phy)
{
u32 length;
u16 fw_offset, fw_reg, ba_reg, patch_en_addr, mode_reg, bp_start;
bool rc = false;
switch (tp->version) {
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
fw_reg = 0xa014;
ba_reg = 0xa012;
patch_en_addr = 0xa01a;
mode_reg = 0xb820;
bp_start = 0xa000;
break;
default:
goto out;
}
fw_offset = __le16_to_cpu(phy->fw_offset);
if (fw_offset < sizeof(*phy)) {
dev_err(&tp->intf->dev, "fw_offset too small\n");
goto out;
}
length = __le32_to_cpu(phy->blk_hdr.length);
if (length < fw_offset) {
dev_err(&tp->intf->dev, "invalid fw_offset\n");
goto out;
}
length -= __le16_to_cpu(phy->fw_offset);
if (!length || (length & 1)) {
dev_err(&tp->intf->dev, "invalid block length\n");
goto out;
}
if (__le16_to_cpu(phy->fw_reg) != fw_reg) {
dev_err(&tp->intf->dev, "invalid register to load firmware\n");
goto out;
}
if (__le16_to_cpu(phy->ba_reg) != ba_reg) {
dev_err(&tp->intf->dev, "invalid base address register\n");
goto out;
}
if (__le16_to_cpu(phy->patch_en_addr) != patch_en_addr) {
dev_err(&tp->intf->dev,
"invalid patch mode enabled register\n");
goto out;
}
if (__le16_to_cpu(phy->mode_reg) != mode_reg) {
dev_err(&tp->intf->dev,
"invalid register to switch the mode\n");
goto out;
}
if (__le16_to_cpu(phy->bp_start) != bp_start) {
dev_err(&tp->intf->dev,
"invalid start register of break point\n");
goto out;
}
if (__le16_to_cpu(phy->bp_num) > 4) {
dev_err(&tp->intf->dev, "invalid break point number\n");
goto out;
}
rc = true;
out:
return rc;
}
static bool rtl8152_is_fw_mac_ok(struct r8152 *tp, struct fw_mac *mac)
{
u16 fw_reg, bp_ba_addr, bp_en_addr, bp_start, fw_offset;
bool rc = false;
u32 length, type;
int i, max_bp;
type = __le32_to_cpu(mac->blk_hdr.type);
if (type == RTL_FW_PLA) {
switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
case RTL_VER_07:
fw_reg = 0xf800;
bp_ba_addr = PLA_BP_BA;
bp_en_addr = 0;
bp_start = PLA_BP_0;
max_bp = 8;
break;
case RTL_VER_03:
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
case RTL_VER_08:
case RTL_VER_09:
fw_reg = 0xf800;
bp_ba_addr = PLA_BP_BA;
bp_en_addr = PLA_BP_EN;
bp_start = PLA_BP_0;
max_bp = 8;
break;
default:
goto out;
}
} else if (type == RTL_FW_USB) {
switch (tp->version) {
case RTL_VER_03:
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
fw_reg = 0xf800;
bp_ba_addr = USB_BP_BA;
bp_en_addr = USB_BP_EN;
bp_start = USB_BP_0;
max_bp = 8;
break;
case RTL_VER_08:
case RTL_VER_09:
fw_reg = 0xe600;
bp_ba_addr = USB_BP_BA;
bp_en_addr = USB_BP2_EN;
bp_start = USB_BP_0;
max_bp = 16;
break;
case RTL_VER_01:
case RTL_VER_02:
case RTL_VER_07:
default:
goto out;
}
} else {
goto out;
}
fw_offset = __le16_to_cpu(mac->fw_offset);
if (fw_offset < sizeof(*mac)) {
dev_err(&tp->intf->dev, "fw_offset too small\n");
goto out;
}
length = __le32_to_cpu(mac->blk_hdr.length);
if (length < fw_offset) {
dev_err(&tp->intf->dev, "invalid fw_offset\n");
goto out;
}
length -= fw_offset;
if (length < 4 || (length & 3)) {
dev_err(&tp->intf->dev, "invalid block length\n");
goto out;
}
if (__le16_to_cpu(mac->fw_reg) != fw_reg) {
dev_err(&tp->intf->dev, "invalid register to load firmware\n");
goto out;
}
if (__le16_to_cpu(mac->bp_ba_addr) != bp_ba_addr) {
dev_err(&tp->intf->dev, "invalid base address register\n");
goto out;
}
if (__le16_to_cpu(mac->bp_en_addr) != bp_en_addr) {
dev_err(&tp->intf->dev, "invalid enabled mask register\n");
goto out;
}
if (__le16_to_cpu(mac->bp_start) != bp_start) {
dev_err(&tp->intf->dev,
"invalid start register of break point\n");
goto out;
}
if (__le16_to_cpu(mac->bp_num) > max_bp) {
dev_err(&tp->intf->dev, "invalid break point number\n");
goto out;
}
for (i = __le16_to_cpu(mac->bp_num); i < max_bp; i++) {
if (mac->bp[i]) {
dev_err(&tp->intf->dev, "unused bp%u is not zero\n", i);
goto out;
}
}
rc = true;
out:
return rc;
}
/* Verify the checksum for the firmware file. It is calculated from the version
* field to the end of the file. Compare the result with the checksum field to
* make sure the file is correct.
*/
static long rtl8152_fw_verify_checksum(struct r8152 *tp,
struct fw_header *fw_hdr, size_t size)
{
unsigned char checksum[sizeof(fw_hdr->checksum)];
struct crypto_shash *alg;
struct shash_desc *sdesc;
size_t len;
long rc;
alg = crypto_alloc_shash("sha256", 0, 0);
if (IS_ERR(alg)) {
rc = PTR_ERR(alg);
goto out;
}
if (crypto_shash_digestsize(alg) != sizeof(fw_hdr->checksum)) {
rc = -EFAULT;
dev_err(&tp->intf->dev, "digestsize incorrect (%u)\n",
crypto_shash_digestsize(alg));
goto free_shash;
}
len = sizeof(*sdesc) + crypto_shash_descsize(alg);
sdesc = kmalloc(len, GFP_KERNEL);
if (!sdesc) {
rc = -ENOMEM;
goto free_shash;
}
sdesc->tfm = alg;
len = size - sizeof(fw_hdr->checksum);
rc = crypto_shash_digest(sdesc, fw_hdr->version, len, checksum);
kfree(sdesc);
if (rc)
goto free_shash;
if (memcmp(fw_hdr->checksum, checksum, sizeof(fw_hdr->checksum))) {
dev_err(&tp->intf->dev, "checksum fail\n");
rc = -EFAULT;
}
free_shash:
crypto_free_shash(alg);
out:
return rc;
}
static long rtl8152_check_firmware(struct r8152 *tp, struct rtl_fw *rtl_fw)
{
const struct firmware *fw = rtl_fw->fw;
struct fw_header *fw_hdr = (struct fw_header *)fw->data;
struct fw_mac *pla = NULL, *usb = NULL;
struct fw_phy_patch_key *start = NULL;
struct fw_phy_nc *phy_nc = NULL;
struct fw_block *stop = NULL;
long ret = -EFAULT;
int i;
if (fw->size < sizeof(*fw_hdr)) {
dev_err(&tp->intf->dev, "file too small\n");
goto fail;
}
ret = rtl8152_fw_verify_checksum(tp, fw_hdr, fw->size);
if (ret)
goto fail;
ret = -EFAULT;
for (i = sizeof(*fw_hdr); i < fw->size;) {
struct fw_block *block = (struct fw_block *)&fw->data[i];
u32 type;
if ((i + sizeof(*block)) > fw->size)
goto fail;
type = __le32_to_cpu(block->type);
switch (type) {
case RTL_FW_END:
if (__le32_to_cpu(block->length) != sizeof(*block))
goto fail;
goto fw_end;
case RTL_FW_PLA:
if (pla) {
dev_err(&tp->intf->dev,
"multiple PLA firmware encountered");
goto fail;
}
pla = (struct fw_mac *)block;
if (!rtl8152_is_fw_mac_ok(tp, pla)) {
dev_err(&tp->intf->dev,
"check PLA firmware failed\n");
goto fail;
}
break;
case RTL_FW_USB:
if (usb) {
dev_err(&tp->intf->dev,
"multiple USB firmware encountered");
goto fail;
}
usb = (struct fw_mac *)block;
if (!rtl8152_is_fw_mac_ok(tp, usb)) {
dev_err(&tp->intf->dev,
"check USB firmware failed\n");
goto fail;
}
break;
case RTL_FW_PHY_START:
if (start || phy_nc || stop) {
dev_err(&tp->intf->dev,
"check PHY_START fail\n");
goto fail;
}
if (__le32_to_cpu(block->length) != sizeof(*start)) {
dev_err(&tp->intf->dev,
"Invalid length for PHY_START\n");
goto fail;
}
start = (struct fw_phy_patch_key *)block;
break;
case RTL_FW_PHY_STOP:
if (stop || !start) {
dev_err(&tp->intf->dev,
"Check PHY_STOP fail\n");
goto fail;
}
if (__le32_to_cpu(block->length) != sizeof(*block)) {
dev_err(&tp->intf->dev,
"Invalid length for PHY_STOP\n");
goto fail;
}
stop = block;
break;
case RTL_FW_PHY_NC:
if (!start || stop) {
dev_err(&tp->intf->dev,
"check PHY_NC fail\n");
goto fail;
}
if (phy_nc) {
dev_err(&tp->intf->dev,
"multiple PHY NC encountered\n");
goto fail;
}
phy_nc = (struct fw_phy_nc *)block;
if (!rtl8152_is_fw_phy_nc_ok(tp, phy_nc)) {
dev_err(&tp->intf->dev,
"check PHY NC firmware failed\n");
goto fail;
}
break;
default:
dev_warn(&tp->intf->dev, "Unknown type %u is found\n",
type);
break;
}
/* next block */
i += ALIGN(__le32_to_cpu(block->length), 8);
}
fw_end:
if ((phy_nc || start) && !stop) {
dev_err(&tp->intf->dev, "without PHY_STOP\n");
goto fail;
}
return 0;
fail:
return ret;
}
static void rtl8152_fw_phy_nc_apply(struct r8152 *tp, struct fw_phy_nc *phy)
{
u16 mode_reg, bp_index;
u32 length, i, num;
__le16 *data;
mode_reg = __le16_to_cpu(phy->mode_reg);
sram_write(tp, mode_reg, __le16_to_cpu(phy->mode_pre));
sram_write(tp, __le16_to_cpu(phy->ba_reg),
__le16_to_cpu(phy->ba_data));
length = __le32_to_cpu(phy->blk_hdr.length);
length -= __le16_to_cpu(phy->fw_offset);
num = length / 2;
data = (__le16 *)((u8 *)phy + __le16_to_cpu(phy->fw_offset));
ocp_reg_write(tp, OCP_SRAM_ADDR, __le16_to_cpu(phy->fw_reg));
for (i = 0; i < num; i++)
ocp_reg_write(tp, OCP_SRAM_DATA, __le16_to_cpu(data[i]));
sram_write(tp, __le16_to_cpu(phy->patch_en_addr),
__le16_to_cpu(phy->patch_en_value));
bp_index = __le16_to_cpu(phy->bp_start);
num = __le16_to_cpu(phy->bp_num);
for (i = 0; i < num; i++) {
sram_write(tp, bp_index, __le16_to_cpu(phy->bp[i]));
bp_index += 2;
}
sram_write(tp, mode_reg, __le16_to_cpu(phy->mode_post));
dev_dbg(&tp->intf->dev, "successfully applied %s\n", phy->info);
}
static void rtl8152_fw_mac_apply(struct r8152 *tp, struct fw_mac *mac)
{
u16 bp_en_addr, bp_index, type, bp_num, fw_ver_reg;
u32 length;
u8 *data;
int i;
switch (__le32_to_cpu(mac->blk_hdr.type)) {
case RTL_FW_PLA:
type = MCU_TYPE_PLA;
break;
case RTL_FW_USB:
type = MCU_TYPE_USB;
break;
default:
return;
}
rtl_clear_bp(tp, type);
/* Enable backup/restore of MACDBG. This is required after clearing PLA
* break points and before applying the PLA firmware.
*/
if (tp->version == RTL_VER_04 && type == MCU_TYPE_PLA &&
!(ocp_read_word(tp, MCU_TYPE_PLA, PLA_MACDBG_POST) & DEBUG_OE)) {
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MACDBG_PRE, DEBUG_LTSSM);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MACDBG_POST, DEBUG_LTSSM);
}
length = __le32_to_cpu(mac->blk_hdr.length);
length -= __le16_to_cpu(mac->fw_offset);
data = (u8 *)mac;
data += __le16_to_cpu(mac->fw_offset);
generic_ocp_write(tp, __le16_to_cpu(mac->fw_reg), 0xff, length, data,
type);
ocp_write_word(tp, type, __le16_to_cpu(mac->bp_ba_addr),
__le16_to_cpu(mac->bp_ba_value));
bp_index = __le16_to_cpu(mac->bp_start);
bp_num = __le16_to_cpu(mac->bp_num);
for (i = 0; i < bp_num; i++) {
ocp_write_word(tp, type, bp_index, __le16_to_cpu(mac->bp[i]));
bp_index += 2;
}
bp_en_addr = __le16_to_cpu(mac->bp_en_addr);
if (bp_en_addr)
ocp_write_word(tp, type, bp_en_addr,
__le16_to_cpu(mac->bp_en_value));
fw_ver_reg = __le16_to_cpu(mac->fw_ver_reg);
if (fw_ver_reg)
ocp_write_byte(tp, MCU_TYPE_USB, fw_ver_reg,
mac->fw_ver_data);
dev_dbg(&tp->intf->dev, "successfully applied %s\n", mac->info);
}
static void rtl8152_apply_firmware(struct r8152 *tp)
{
struct rtl_fw *rtl_fw = &tp->rtl_fw;
const struct firmware *fw;
struct fw_header *fw_hdr;
struct fw_phy_patch_key *key;
u16 key_addr = 0;
int i;
if (IS_ERR_OR_NULL(rtl_fw->fw))
return;
fw = rtl_fw->fw;
fw_hdr = (struct fw_header *)fw->data;
if (rtl_fw->pre_fw)
rtl_fw->pre_fw(tp);
for (i = offsetof(struct fw_header, blocks); i < fw->size;) {
struct fw_block *block = (struct fw_block *)&fw->data[i];
switch (__le32_to_cpu(block->type)) {
case RTL_FW_END:
goto post_fw;
case RTL_FW_PLA:
case RTL_FW_USB:
rtl8152_fw_mac_apply(tp, (struct fw_mac *)block);
break;
case RTL_FW_PHY_START:
key = (struct fw_phy_patch_key *)block;
key_addr = __le16_to_cpu(key->key_reg);
r8153_pre_ram_code(tp, key_addr,
__le16_to_cpu(key->key_data));
break;
case RTL_FW_PHY_STOP:
WARN_ON(!key_addr);
r8153_post_ram_code(tp, key_addr);
break;
case RTL_FW_PHY_NC:
rtl8152_fw_phy_nc_apply(tp, (struct fw_phy_nc *)block);
break;
default:
break;
}
i += ALIGN(__le32_to_cpu(block->length), 8);
}
post_fw:
if (rtl_fw->post_fw)
rtl_fw->post_fw(tp);
strscpy(rtl_fw->version, fw_hdr->version, RTL_VER_SIZE);
dev_info(&tp->intf->dev, "load %s successfully\n", rtl_fw->version);
}
static void rtl8152_release_firmware(struct r8152 *tp)
{
struct rtl_fw *rtl_fw = &tp->rtl_fw;
if (!IS_ERR_OR_NULL(rtl_fw->fw)) {
release_firmware(rtl_fw->fw);
rtl_fw->fw = NULL;
}
}
static int rtl8152_request_firmware(struct r8152 *tp)
{
struct rtl_fw *rtl_fw = &tp->rtl_fw;
long rc;
if (rtl_fw->fw || !rtl_fw->fw_name) {
dev_info(&tp->intf->dev, "skip request firmware\n");
rc = 0;
goto result;
}
rc = request_firmware(&rtl_fw->fw, rtl_fw->fw_name, &tp->intf->dev);
if (rc < 0)
goto result;
rc = rtl8152_check_firmware(tp, rtl_fw);
if (rc < 0)
release_firmware(rtl_fw->fw);
result:
if (rc) {
rtl_fw->fw = ERR_PTR(rc);
dev_warn(&tp->intf->dev,
"unable to load firmware patch %s (%ld)\n",
rtl_fw->fw_name, rc);
}
return rc;
}
static void r8152_aldps_en(struct r8152 *tp, bool enable)
{
if (enable) {
ocp_reg_write(tp, OCP_ALDPS_CONFIG, ENPWRSAVE | ENPDNPS |
LINKENA | DIS_SDSAVE);
} else {
ocp_reg_write(tp, OCP_ALDPS_CONFIG, ENPDNPS | LINKENA |
DIS_SDSAVE);
msleep(20);
}
}
static inline void r8152_mmd_indirect(struct r8152 *tp, u16 dev, u16 reg)
{
ocp_reg_write(tp, OCP_EEE_AR, FUN_ADDR | dev);
ocp_reg_write(tp, OCP_EEE_DATA, reg);
ocp_reg_write(tp, OCP_EEE_AR, FUN_DATA | dev);
}
static u16 r8152_mmd_read(struct r8152 *tp, u16 dev, u16 reg)
{
u16 data;
r8152_mmd_indirect(tp, dev, reg);
data = ocp_reg_read(tp, OCP_EEE_DATA);
ocp_reg_write(tp, OCP_EEE_AR, 0x0000);
return data;
}
static void r8152_mmd_write(struct r8152 *tp, u16 dev, u16 reg, u16 data)
{
r8152_mmd_indirect(tp, dev, reg);
ocp_reg_write(tp, OCP_EEE_DATA, data);
ocp_reg_write(tp, OCP_EEE_AR, 0x0000);
}
static void r8152_eee_en(struct r8152 *tp, bool enable)
{
u16 config1, config2, config3;
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEE_CR);
config1 = ocp_reg_read(tp, OCP_EEE_CONFIG1) & ~sd_rise_time_mask;
config2 = ocp_reg_read(tp, OCP_EEE_CONFIG2);
config3 = ocp_reg_read(tp, OCP_EEE_CONFIG3) & ~fast_snr_mask;
if (enable) {
ocp_data |= EEE_RX_EN | EEE_TX_EN;
config1 |= EEE_10_CAP | EEE_NWAY_EN | TX_QUIET_EN | RX_QUIET_EN;
config1 |= sd_rise_time(1);
config2 |= RG_DACQUIET_EN | RG_LDVQUIET_EN;
config3 |= fast_snr(42);
} else {
ocp_data &= ~(EEE_RX_EN | EEE_TX_EN);
config1 &= ~(EEE_10_CAP | EEE_NWAY_EN | TX_QUIET_EN |
RX_QUIET_EN);
config1 |= sd_rise_time(7);
config2 &= ~(RG_DACQUIET_EN | RG_LDVQUIET_EN);
config3 |= fast_snr(511);
}
ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEE_CR, ocp_data);
ocp_reg_write(tp, OCP_EEE_CONFIG1, config1);
ocp_reg_write(tp, OCP_EEE_CONFIG2, config2);
ocp_reg_write(tp, OCP_EEE_CONFIG3, config3);
}
static void r8153_eee_en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
u16 config;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEE_CR);
config = ocp_reg_read(tp, OCP_EEE_CFG);
if (enable) {
ocp_data |= EEE_RX_EN | EEE_TX_EN;
config |= EEE10_EN;
} else {
ocp_data &= ~(EEE_RX_EN | EEE_TX_EN);
config &= ~EEE10_EN;
}
ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEE_CR, ocp_data);
ocp_reg_write(tp, OCP_EEE_CFG, config);
tp->ups_info.eee = enable;
}
static void rtl_eee_enable(struct r8152 *tp, bool enable)
{
switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
case RTL_VER_07:
if (enable) {
r8152_eee_en(tp, true);
r8152_mmd_write(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
tp->eee_adv);
} else {
r8152_eee_en(tp, false);
r8152_mmd_write(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 0);
}
break;
case RTL_VER_03:
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
case RTL_VER_08:
case RTL_VER_09:
if (enable) {
r8153_eee_en(tp, true);
ocp_reg_write(tp, OCP_EEE_ADV, tp->eee_adv);
} else {
r8153_eee_en(tp, false);
ocp_reg_write(tp, OCP_EEE_ADV, 0);
}
break;
default:
break;
}
}
static void r8152b_enable_fc(struct r8152 *tp)
{
u16 anar;
anar = r8152_mdio_read(tp, MII_ADVERTISE);
anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
r8152_mdio_write(tp, MII_ADVERTISE, anar);
tp->ups_info.flow_control = true;
}
static void rtl8152_disable(struct r8152 *tp)
{
r8152_aldps_en(tp, false);
rtl_disable(tp);
r8152_aldps_en(tp, true);
}
static void r8152b_hw_phy_cfg(struct r8152 *tp)
{
rtl8152_apply_firmware(tp);
rtl_eee_enable(tp, tp->eee_en);
r8152_aldps_en(tp, true);
r8152b_enable_fc(tp);
set_bit(PHY_RESET, &tp->flags);
}
static void wait_oob_link_list_ready(struct r8152 *tp)
{
u32 ocp_data;
int i;
for (i = 0; i < 1000; i++) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
if (ocp_data & LINK_LIST_READY)
break;
usleep_range(1000, 2000);
}
}
static void r8152b_exit_oob(struct r8152 *tp)
{
u32 ocp_data;
ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data &= ~RCR_ACPT_ALL;
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
rxdy_gated_en(tp, true);
r8153_teredo_off(tp);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, 0x00);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
ocp_data &= ~NOW_IS_OOB;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
ocp_data &= ~MCU_BORW_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);
wait_oob_link_list_ready(tp);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
ocp_data |= RE_INIT_LL;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);
wait_oob_link_list_ready(tp);
rtl8152_nic_reset(tp);
/* rx share fifo credit full threshold */
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL0, RXFIFO_THR1_NORMAL);
if (tp->udev->speed == USB_SPEED_FULL ||
tp->udev->speed == USB_SPEED_LOW) {
/* rx share fifo credit near full threshold */
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1,
RXFIFO_THR2_FULL);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2,
RXFIFO_THR3_FULL);
} else {
/* rx share fifo credit near full threshold */
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1,
RXFIFO_THR2_HIGH);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2,
RXFIFO_THR3_HIGH);
}
/* TX share fifo free credit full threshold */
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_TXFIFO_CTRL, TXFIFO_THR_NORMAL);
ocp_write_byte(tp, MCU_TYPE_USB, USB_TX_AGG, TX_AGG_MAX_THRESHOLD);
ocp_write_dword(tp, MCU_TYPE_USB, USB_RX_BUF_TH, RX_THR_HIGH);
ocp_write_dword(tp, MCU_TYPE_USB, USB_TX_DMA,
TEST_MODE_DISABLE | TX_SIZE_ADJUST1);
rtl_rx_vlan_en(tp, tp->netdev->features & NETIF_F_HW_VLAN_CTAG_RX);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, RTL8152_RMS);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR0);
ocp_data |= TCR0_AUTO_FIFO;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_TCR0, ocp_data);
}
static void r8152b_enter_oob(struct r8152 *tp)
{
u32 ocp_data;
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
ocp_data &= ~NOW_IS_OOB;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL0, RXFIFO_THR1_OOB);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1, RXFIFO_THR2_OOB);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2, RXFIFO_THR3_OOB);
rtl_disable(tp);
wait_oob_link_list_ready(tp);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
ocp_data |= RE_INIT_LL;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);
wait_oob_link_list_ready(tp);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, RTL8152_RMS);
rtl_rx_vlan_en(tp, true);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_BDC_CR);
ocp_data |= ALDPS_PROXY_MODE;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_BDC_CR, ocp_data);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
ocp_data |= NOW_IS_OOB | DIS_MCU_CLROOB;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);
rxdy_gated_en(tp, false);
ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data |= RCR_APM | RCR_AM | RCR_AB;
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
}
static int r8153_pre_firmware_1(struct r8152 *tp)
{
int i;
/* Wait till the WTD timer is ready. It would take at most 104 ms. */
for (i = 0; i < 104; i++) {
u32 ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_WDT1_CTRL);
if (!(ocp_data & WTD1_EN))
break;
usleep_range(1000, 2000);
}
return 0;
}
static int r8153_post_firmware_1(struct r8152 *tp)
{
/* set USB_BP_4 to support USB_SPEED_SUPER only */
if (ocp_read_byte(tp, MCU_TYPE_USB, USB_CSTMR) & FORCE_SUPER)
ocp_write_word(tp, MCU_TYPE_USB, USB_BP_4, BP4_SUPER_ONLY);
/* reset UPHY timer to 36 ms */
ocp_write_word(tp, MCU_TYPE_PLA, PLA_UPHY_TIMER, 36000 / 16);
return 0;
}
static int r8153_pre_firmware_2(struct r8152 *tp)
{
u32 ocp_data;
r8153_pre_firmware_1(tp);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN0);
ocp_data &= ~FW_FIX_SUSPEND;
ocp_write_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN0, ocp_data);
return 0;
}
static int r8153_post_firmware_2(struct r8152 *tp)
{
u32 ocp_data;
/* enable bp0 if support USB_SPEED_SUPER only */
if (ocp_read_byte(tp, MCU_TYPE_USB, USB_CSTMR) & FORCE_SUPER) {
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_BP_EN);
ocp_data |= BIT(0);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_BP_EN, ocp_data);
}
/* reset UPHY timer to 36 ms */
ocp_write_word(tp, MCU_TYPE_PLA, PLA_UPHY_TIMER, 36000 / 16);
/* enable U3P3 check, set the counter to 4 */
ocp_write_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS, U3P3_CHECK_EN | 4);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN0);
ocp_data |= FW_FIX_SUSPEND;
ocp_write_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN0, ocp_data);
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_USB2PHY);
ocp_data |= USB2PHY_L1 | USB2PHY_SUSPEND;
ocp_write_byte(tp, MCU_TYPE_USB, USB_USB2PHY, ocp_data);
return 0;
}
static int r8153_post_firmware_3(struct r8152 *tp)
{
u32 ocp_data;
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_USB2PHY);
ocp_data |= USB2PHY_L1 | USB2PHY_SUSPEND;
ocp_write_byte(tp, MCU_TYPE_USB, USB_USB2PHY, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN1);
ocp_data |= FW_IP_RESET_EN;
ocp_write_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN1, ocp_data);
return 0;
}
static int r8153b_pre_firmware_1(struct r8152 *tp)
{
/* enable fc timer and set timer to 1 second. */
ocp_write_word(tp, MCU_TYPE_USB, USB_FC_TIMER,
CTRL_TIMER_EN | (1000 / 8));
return 0;
}
static int r8153b_post_firmware_1(struct r8152 *tp)
{
u32 ocp_data;
/* enable bp0 for RTL8153-BND */
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_MISC_1);
if (ocp_data & BND_MASK) {
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_BP_EN);
ocp_data |= BIT(0);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_BP_EN, ocp_data);
}
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_CTRL);
ocp_data |= FLOW_CTRL_PATCH_OPT;
ocp_write_word(tp, MCU_TYPE_USB, USB_FW_CTRL, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_TASK);
ocp_data |= FC_PATCH_TASK;
ocp_write_word(tp, MCU_TYPE_USB, USB_FW_TASK, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN1);
ocp_data |= FW_IP_RESET_EN;
ocp_write_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN1, ocp_data);
return 0;
}
static void r8153_aldps_en(struct r8152 *tp, bool enable)
{
u16 data;
data = ocp_reg_read(tp, OCP_POWER_CFG);
if (enable) {
data |= EN_ALDPS;
ocp_reg_write(tp, OCP_POWER_CFG, data);
} else {
int i;
data &= ~EN_ALDPS;
ocp_reg_write(tp, OCP_POWER_CFG, data);
for (i = 0; i < 20; i++) {
usleep_range(1000, 2000);
if (ocp_read_word(tp, MCU_TYPE_PLA, 0xe000) & 0x0100)
break;
}
}
tp->ups_info.aldps = enable;
}
static void r8153_hw_phy_cfg(struct r8152 *tp)
{
u32 ocp_data;
u16 data;
/* disable ALDPS before updating the PHY parameters */
r8153_aldps_en(tp, false);
/* disable EEE before updating the PHY parameters */
rtl_eee_enable(tp, false);
rtl8152_apply_firmware(tp);
if (tp->version == RTL_VER_03) {
data = ocp_reg_read(tp, OCP_EEE_CFG);
data &= ~CTAP_SHORT_EN;
ocp_reg_write(tp, OCP_EEE_CFG, data);
}
data = ocp_reg_read(tp, OCP_POWER_CFG);
data |= EEE_CLKDIV_EN;
ocp_reg_write(tp, OCP_POWER_CFG, data);
data = ocp_reg_read(tp, OCP_DOWN_SPEED);
data |= EN_10M_BGOFF;
ocp_reg_write(tp, OCP_DOWN_SPEED, data);
data = ocp_reg_read(tp, OCP_POWER_CFG);
data |= EN_10M_PLLOFF;
ocp_reg_write(tp, OCP_POWER_CFG, data);
sram_write(tp, SRAM_IMPEDANCE, 0x0b13);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR);
ocp_data |= PFM_PWM_SWITCH;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR, ocp_data);
/* Enable LPF corner auto tune */
sram_write(tp, SRAM_LPF_CFG, 0xf70f);
/* Adjust 10M Amplitude */
sram_write(tp, SRAM_10M_AMP1, 0x00af);
sram_write(tp, SRAM_10M_AMP2, 0x0208);
if (tp->eee_en)
rtl_eee_enable(tp, true);
r8153_aldps_en(tp, true);
r8152b_enable_fc(tp);
switch (tp->version) {
case RTL_VER_03:
case RTL_VER_04:
break;
case RTL_VER_05:
case RTL_VER_06:
default:
r8153_u2p3en(tp, true);
break;
}
set_bit(PHY_RESET, &tp->flags);
}
static u32 r8152_efuse_read(struct r8152 *tp, u8 addr)
{
u32 ocp_data;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_EFUSE_CMD, EFUSE_READ_CMD | addr);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EFUSE_CMD);
ocp_data = (ocp_data & EFUSE_DATA_BIT16) << 9; /* data of bit16 */
ocp_data |= ocp_read_word(tp, MCU_TYPE_PLA, PLA_EFUSE_DATA);
return ocp_data;
}
static void r8153b_hw_phy_cfg(struct r8152 *tp)
{
u32 ocp_data;
u16 data;
/* disable ALDPS before updating the PHY parameters */
r8153_aldps_en(tp, false);
/* disable EEE before updating the PHY parameters */
rtl_eee_enable(tp, false);
rtl8152_apply_firmware(tp);
r8153b_green_en(tp, test_bit(GREEN_ETHERNET, &tp->flags));
data = sram_read(tp, SRAM_GREEN_CFG);
data |= R_TUNE_EN;
sram_write(tp, SRAM_GREEN_CFG, data);
data = ocp_reg_read(tp, OCP_NCTL_CFG);
data |= PGA_RETURN_EN;
ocp_reg_write(tp, OCP_NCTL_CFG, data);
/* ADC Bias Calibration:
* read efuse offset 0x7d to get a 17-bit data. Remove the dummy/fake
* bit (bit3) to rebuild the real 16-bit data. Write the data to the
* ADC ioffset.
*/
ocp_data = r8152_efuse_read(tp, 0x7d);
data = (u16)(((ocp_data & 0x1fff0) >> 1) | (ocp_data & 0x7));
if (data != 0xffff)
ocp_reg_write(tp, OCP_ADC_IOFFSET, data);
/* ups mode tx-link-pulse timing adjustment:
* rg_saw_cnt = OCP reg 0xC426 Bit[13:0]
* swr_cnt_1ms_ini = 16000000 / rg_saw_cnt
*/
ocp_data = ocp_reg_read(tp, 0xc426);
ocp_data &= 0x3fff;
if (ocp_data) {
u32 swr_cnt_1ms_ini;
swr_cnt_1ms_ini = (16000000 / ocp_data) & SAW_CNT_1MS_MASK;
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_UPS_CFG);
ocp_data = (ocp_data & ~SAW_CNT_1MS_MASK) | swr_cnt_1ms_ini;
ocp_write_word(tp, MCU_TYPE_USB, USB_UPS_CFG, ocp_data);
}
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR);
ocp_data |= PFM_PWM_SWITCH;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR, ocp_data);
/* Advnace EEE */
if (!r8153_patch_request(tp, true)) {
data = ocp_reg_read(tp, OCP_POWER_CFG);
data |= EEE_CLKDIV_EN;
ocp_reg_write(tp, OCP_POWER_CFG, data);
tp->ups_info.eee_ckdiv = true;
data = ocp_reg_read(tp, OCP_DOWN_SPEED);
data |= EN_EEE_CMODE | EN_EEE_1000 | EN_10M_CLKDIV;
ocp_reg_write(tp, OCP_DOWN_SPEED, data);
tp->ups_info.eee_cmod_lv = true;
tp->ups_info._10m_ckdiv = true;
tp->ups_info.eee_plloff_giga = true;
ocp_reg_write(tp, OCP_SYSCLK_CFG, 0);
ocp_reg_write(tp, OCP_SYSCLK_CFG, clk_div_expo(5));
tp->ups_info._250m_ckdiv = true;
r8153_patch_request(tp, false);
}
if (tp->eee_en)
rtl_eee_enable(tp, true);
r8153_aldps_en(tp, true);
r8152b_enable_fc(tp);
set_bit(PHY_RESET, &tp->flags);
}
static void r8153_first_init(struct r8152 *tp)
{
u32 ocp_data;
r8153_mac_clk_spd(tp, false);
rxdy_gated_en(tp, true);
r8153_teredo_off(tp);
ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data &= ~RCR_ACPT_ALL;
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
rtl8152_nic_reset(tp);
rtl_reset_bmu(tp);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
ocp_data &= ~NOW_IS_OOB;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
ocp_data &= ~MCU_BORW_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);
wait_oob_link_list_ready(tp);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
ocp_data |= RE_INIT_LL;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);
wait_oob_link_list_ready(tp);
rtl_rx_vlan_en(tp, tp->netdev->features & NETIF_F_HW_VLAN_CTAG_RX);
ocp_data = tp->netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, ocp_data);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_MTPS, MTPS_JUMBO);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR0);
ocp_data |= TCR0_AUTO_FIFO;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_TCR0, ocp_data);
rtl8152_nic_reset(tp);
/* rx share fifo credit full threshold */
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL0, RXFIFO_THR1_NORMAL);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1, RXFIFO_THR2_NORMAL);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2, RXFIFO_THR3_NORMAL);
/* TX share fifo free credit full threshold */
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_TXFIFO_CTRL, TXFIFO_THR_NORMAL2);
}
static void r8153_enter_oob(struct r8152 *tp)
{
u32 ocp_data;
r8153_mac_clk_spd(tp, true);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
ocp_data &= ~NOW_IS_OOB;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);
rtl_disable(tp);
rtl_reset_bmu(tp);
wait_oob_link_list_ready(tp);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
ocp_data |= RE_INIT_LL;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);
wait_oob_link_list_ready(tp);
ocp_data = tp->netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, ocp_data);
switch (tp->version) {
case RTL_VER_03:
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG);
ocp_data &= ~TEREDO_WAKE_MASK;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG, ocp_data);
break;
case RTL_VER_08:
case RTL_VER_09:
/* Clear teredo wake event. bit[15:8] is the teredo wakeup
* type. Set it to zero. bits[7:0] are the W1C bits about
* the events. Set them to all 1 to clear them.
*/
ocp_write_word(tp, MCU_TYPE_PLA, PLA_TEREDO_WAKE_BASE, 0x00ff);
break;
default:
break;
}
rtl_rx_vlan_en(tp, true);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_BDC_CR);
ocp_data |= ALDPS_PROXY_MODE;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_BDC_CR, ocp_data);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
ocp_data |= NOW_IS_OOB | DIS_MCU_CLROOB;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);
rxdy_gated_en(tp, false);
ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data |= RCR_APM | RCR_AM | RCR_AB;
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
}
static void rtl8153_disable(struct r8152 *tp)
{
r8153_aldps_en(tp, false);
rtl_disable(tp);
rtl_reset_bmu(tp);
r8153_aldps_en(tp, true);
}
static int rtl8152_set_speed(struct r8152 *tp, u8 autoneg, u32 speed, u8 duplex,
u32 advertising)
{
u16 bmcr;
int ret = 0;
if (autoneg == AUTONEG_DISABLE) {
if (duplex != DUPLEX_HALF && duplex != DUPLEX_FULL)
return -EINVAL;
switch (speed) {
case SPEED_10:
bmcr = BMCR_SPEED10;
if (duplex == DUPLEX_FULL) {
bmcr |= BMCR_FULLDPLX;
tp->ups_info.speed_duplex = FORCE_10M_FULL;
} else {
tp->ups_info.speed_duplex = FORCE_10M_HALF;
}
break;
case SPEED_100:
bmcr = BMCR_SPEED100;
if (duplex == DUPLEX_FULL) {
bmcr |= BMCR_FULLDPLX;
tp->ups_info.speed_duplex = FORCE_100M_FULL;
} else {
tp->ups_info.speed_duplex = FORCE_100M_HALF;
}
break;
case SPEED_1000:
if (tp->mii.supports_gmii) {
bmcr = BMCR_SPEED1000 | BMCR_FULLDPLX;
tp->ups_info.speed_duplex = NWAY_1000M_FULL;
break;
}
fallthrough;
default:
ret = -EINVAL;
goto out;
}
if (duplex == DUPLEX_FULL)
tp->mii.full_duplex = 1;
else
tp->mii.full_duplex = 0;
tp->mii.force_media = 1;
} else {
u16 anar, tmp1;
u32 support;
support = RTL_ADVERTISED_10_HALF | RTL_ADVERTISED_10_FULL |
RTL_ADVERTISED_100_HALF | RTL_ADVERTISED_100_FULL;
if (tp->mii.supports_gmii)
support |= RTL_ADVERTISED_1000_FULL;
if (!(advertising & support))
return -EINVAL;
anar = r8152_mdio_read(tp, MII_ADVERTISE);
tmp1 = anar & ~(ADVERTISE_10HALF | ADVERTISE_10FULL |
ADVERTISE_100HALF | ADVERTISE_100FULL);
if (advertising & RTL_ADVERTISED_10_HALF) {
tmp1 |= ADVERTISE_10HALF;
tp->ups_info.speed_duplex = NWAY_10M_HALF;
}
if (advertising & RTL_ADVERTISED_10_FULL) {
tmp1 |= ADVERTISE_10FULL;
tp->ups_info.speed_duplex = NWAY_10M_FULL;
}
if (advertising & RTL_ADVERTISED_100_HALF) {
tmp1 |= ADVERTISE_100HALF;
tp->ups_info.speed_duplex = NWAY_100M_HALF;
}
if (advertising & RTL_ADVERTISED_100_FULL) {
tmp1 |= ADVERTISE_100FULL;
tp->ups_info.speed_duplex = NWAY_100M_FULL;
}
if (anar != tmp1) {
r8152_mdio_write(tp, MII_ADVERTISE, tmp1);
tp->mii.advertising = tmp1;
}
if (tp->mii.supports_gmii) {
u16 gbcr;
gbcr = r8152_mdio_read(tp, MII_CTRL1000);
tmp1 = gbcr & ~(ADVERTISE_1000FULL |
ADVERTISE_1000HALF);
if (advertising & RTL_ADVERTISED_1000_FULL) {
tmp1 |= ADVERTISE_1000FULL;
tp->ups_info.speed_duplex = NWAY_1000M_FULL;
}
if (gbcr != tmp1)
r8152_mdio_write(tp, MII_CTRL1000, tmp1);
}
bmcr = BMCR_ANENABLE | BMCR_ANRESTART;
tp->mii.force_media = 0;
}
if (test_and_clear_bit(PHY_RESET, &tp->flags))
bmcr |= BMCR_RESET;
r8152_mdio_write(tp, MII_BMCR, bmcr);
if (bmcr & BMCR_RESET) {
int i;
for (i = 0; i < 50; i++) {
msleep(20);
if ((r8152_mdio_read(tp, MII_BMCR) & BMCR_RESET) == 0)
break;
}
}
out:
return ret;
}
static void rtl8152_up(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
r8152_aldps_en(tp, false);
r8152b_exit_oob(tp);
r8152_aldps_en(tp, true);
}
static void rtl8152_down(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags)) {
rtl_drop_queued_tx(tp);
return;
}
r8152_power_cut_en(tp, false);
r8152_aldps_en(tp, false);
r8152b_enter_oob(tp);
r8152_aldps_en(tp, true);
}
static void rtl8153_up(struct r8152 *tp)
{
u32 ocp_data;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
r8153_u1u2en(tp, false);
r8153_u2p3en(tp, false);
r8153_aldps_en(tp, false);
r8153_first_init(tp);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CONFIG6);
ocp_data |= LANWAKE_CLR_EN;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CONFIG6, ocp_data);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_LWAKE_CTRL_REG);
ocp_data &= ~LANWAKE_PIN;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_LWAKE_CTRL_REG, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_SSPHYLINK1);
ocp_data &= ~DELAY_PHY_PWR_CHG;
ocp_write_word(tp, MCU_TYPE_USB, USB_SSPHYLINK1, ocp_data);
r8153_aldps_en(tp, true);
switch (tp->version) {
case RTL_VER_03:
case RTL_VER_04:
break;
case RTL_VER_05:
case RTL_VER_06:
default:
r8153_u2p3en(tp, true);
break;
}
r8153_u1u2en(tp, true);
}
static void rtl8153_down(struct r8152 *tp)
{
u32 ocp_data;
if (test_bit(RTL8152_UNPLUG, &tp->flags)) {
rtl_drop_queued_tx(tp);
return;
}
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CONFIG6);
ocp_data &= ~LANWAKE_CLR_EN;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CONFIG6, ocp_data);
r8153_u1u2en(tp, false);
r8153_u2p3en(tp, false);
r8153_power_cut_en(tp, false);
r8153_aldps_en(tp, false);
r8153_enter_oob(tp);
r8153_aldps_en(tp, true);
}
static void rtl8153b_up(struct r8152 *tp)
{
u32 ocp_data;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
r8153b_u1u2en(tp, false);
r8153_u2p3en(tp, false);
r8153_aldps_en(tp, false);
r8153_first_init(tp);
ocp_write_dword(tp, MCU_TYPE_USB, USB_RX_BUF_TH, RX_THR_B);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3);
ocp_data &= ~PLA_MCU_SPDWN_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3, ocp_data);
r8153_aldps_en(tp, true);
if (tp->udev->speed != USB_SPEED_HIGH)
r8153b_u1u2en(tp, true);
}
static void rtl8153b_down(struct r8152 *tp)
{
u32 ocp_data;
if (test_bit(RTL8152_UNPLUG, &tp->flags)) {
rtl_drop_queued_tx(tp);
return;
}
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3);
ocp_data |= PLA_MCU_SPDWN_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3, ocp_data);
r8153b_u1u2en(tp, false);
r8153_u2p3en(tp, false);
r8153b_power_cut_en(tp, false);
r8153_aldps_en(tp, false);
r8153_enter_oob(tp);
r8153_aldps_en(tp, true);
}
static bool rtl8152_in_nway(struct r8152 *tp)
{
u16 nway_state;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, 0x2000);
tp->ocp_base = 0x2000;
ocp_write_byte(tp, MCU_TYPE_PLA, 0xb014, 0x4c); /* phy state */
nway_state = ocp_read_word(tp, MCU_TYPE_PLA, 0xb01a);
/* bit 15: TXDIS_STATE, bit 14: ABD_STATE */
if (nway_state & 0xc000)
return false;
else
return true;
}
static bool rtl8153_in_nway(struct r8152 *tp)
{
u16 phy_state = ocp_reg_read(tp, OCP_PHY_STATE) & 0xff;
if (phy_state == TXDIS_STATE || phy_state == ABD_STATE)
return false;
else
return true;
}
static void set_carrier(struct r8152 *tp)
{
struct net_device *netdev = tp->netdev;
struct napi_struct *napi = &tp->napi;
u8 speed;
speed = rtl8152_get_speed(tp);
if (speed & LINK_STATUS) {
if (!netif_carrier_ok(netdev)) {
tp->rtl_ops.enable(tp);
netif_stop_queue(netdev);
napi_disable(napi);
netif_carrier_on(netdev);
rtl_start_rx(tp);
clear_bit(RTL8152_SET_RX_MODE, &tp->flags);
_rtl8152_set_rx_mode(netdev);
napi_enable(&tp->napi);
netif_wake_queue(netdev);
netif_info(tp, link, netdev, "carrier on\n");
} else if (netif_queue_stopped(netdev) &&
skb_queue_len(&tp->tx_queue) < tp->tx_qlen) {
netif_wake_queue(netdev);
}
} else {
if (netif_carrier_ok(netdev)) {
netif_carrier_off(netdev);
tasklet_disable(&tp->tx_tl);
napi_disable(napi);
tp->rtl_ops.disable(tp);
napi_enable(napi);
tasklet_enable(&tp->tx_tl);
netif_info(tp, link, netdev, "carrier off\n");
}
}
}
static void rtl_work_func_t(struct work_struct *work)
{
struct r8152 *tp = container_of(work, struct r8152, schedule.work);
/* If the device is unplugged or !netif_running(), the workqueue
* doesn't need to wake the device, and could return directly.
*/
if (test_bit(RTL8152_UNPLUG, &tp->flags) || !netif_running(tp->netdev))
return;
if (usb_autopm_get_interface(tp->intf) < 0)
return;
if (!test_bit(WORK_ENABLE, &tp->flags))
goto out1;
if (!mutex_trylock(&tp->control)) {
schedule_delayed_work(&tp->schedule, 0);
goto out1;
}
if (test_and_clear_bit(RTL8152_LINK_CHG, &tp->flags))
set_carrier(tp);
if (test_and_clear_bit(RTL8152_SET_RX_MODE, &tp->flags))
_rtl8152_set_rx_mode(tp->netdev);
/* don't schedule tasket before linking */
if (test_and_clear_bit(SCHEDULE_TASKLET, &tp->flags) &&
netif_carrier_ok(tp->netdev))
tasklet_schedule(&tp->tx_tl);
mutex_unlock(&tp->control);
out1:
usb_autopm_put_interface(tp->intf);
}
static void rtl_hw_phy_work_func_t(struct work_struct *work)
{
struct r8152 *tp = container_of(work, struct r8152, hw_phy_work.work);
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
if (usb_autopm_get_interface(tp->intf) < 0)
return;
mutex_lock(&tp->control);
if (rtl8152_request_firmware(tp) == -ENODEV && tp->rtl_fw.retry) {
tp->rtl_fw.retry = false;
tp->rtl_fw.fw = NULL;
/* Delay execution in case request_firmware() is not ready yet.
*/
queue_delayed_work(system_long_wq, &tp->hw_phy_work, HZ * 10);
goto ignore_once;
}
tp->rtl_ops.hw_phy_cfg(tp);
rtl8152_set_speed(tp, tp->autoneg, tp->speed, tp->duplex,
tp->advertising);
ignore_once:
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
}
#ifdef CONFIG_PM_SLEEP
static int rtl_notifier(struct notifier_block *nb, unsigned long action,
void *data)
{
struct r8152 *tp = container_of(nb, struct r8152, pm_notifier);
switch (action) {
case PM_HIBERNATION_PREPARE:
case PM_SUSPEND_PREPARE:
usb_autopm_get_interface(tp->intf);
break;
case PM_POST_HIBERNATION:
case PM_POST_SUSPEND:
usb_autopm_put_interface(tp->intf);
break;
case PM_POST_RESTORE:
case PM_RESTORE_PREPARE:
default:
break;
}
return NOTIFY_DONE;
}
#endif
static int rtl8152_open(struct net_device *netdev)
{
struct r8152 *tp = netdev_priv(netdev);
int res = 0;
if (work_busy(&tp->hw_phy_work.work) & WORK_BUSY_PENDING) {
cancel_delayed_work_sync(&tp->hw_phy_work);
rtl_hw_phy_work_func_t(&tp->hw_phy_work.work);
}
res = alloc_all_mem(tp);
if (res)
goto out;
res = usb_autopm_get_interface(tp->intf);
if (res < 0)
goto out_free;
mutex_lock(&tp->control);
tp->rtl_ops.up(tp);
netif_carrier_off(netdev);
netif_start_queue(netdev);
set_bit(WORK_ENABLE, &tp->flags);
res = usb_submit_urb(tp->intr_urb, GFP_KERNEL);
if (res) {
if (res == -ENODEV)
netif_device_detach(tp->netdev);
netif_warn(tp, ifup, netdev, "intr_urb submit failed: %d\n",
res);
goto out_unlock;
}
napi_enable(&tp->napi);
tasklet_enable(&tp->tx_tl);
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
#ifdef CONFIG_PM_SLEEP
tp->pm_notifier.notifier_call = rtl_notifier;
register_pm_notifier(&tp->pm_notifier);
#endif
return 0;
out_unlock:
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
out_free:
free_all_mem(tp);
out:
return res;
}
static int rtl8152_close(struct net_device *netdev)
{
struct r8152 *tp = netdev_priv(netdev);
int res = 0;
#ifdef CONFIG_PM_SLEEP
unregister_pm_notifier(&tp->pm_notifier);
#endif
tasklet_disable(&tp->tx_tl);
clear_bit(WORK_ENABLE, &tp->flags);
usb_kill_urb(tp->intr_urb);
cancel_delayed_work_sync(&tp->schedule);
napi_disable(&tp->napi);
netif_stop_queue(netdev);
res = usb_autopm_get_interface(tp->intf);
if (res < 0 || test_bit(RTL8152_UNPLUG, &tp->flags)) {
rtl_drop_queued_tx(tp);
rtl_stop_rx(tp);
} else {
mutex_lock(&tp->control);
tp->rtl_ops.down(tp);
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
}
free_all_mem(tp);
return res;
}
static void rtl_tally_reset(struct r8152 *tp)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_RSTTALLY);
ocp_data |= TALLY_RESET;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_RSTTALLY, ocp_data);
}
static void r8152b_init(struct r8152 *tp)
{
u32 ocp_data;
u16 data;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
data = r8152_mdio_read(tp, MII_BMCR);
if (data & BMCR_PDOWN) {
data &= ~BMCR_PDOWN;
r8152_mdio_write(tp, MII_BMCR, data);
}
r8152_aldps_en(tp, false);
if (tp->version == RTL_VER_01) {
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE);
ocp_data &= ~LED_MODE_MASK;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE, ocp_data);
}
r8152_power_cut_en(tp, false);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR);
ocp_data |= TX_10M_IDLE_EN | PFM_PWM_SWITCH;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR, ocp_data);
ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL);
ocp_data &= ~MCU_CLK_RATIO_MASK;
ocp_data |= MCU_CLK_RATIO | D3_CLK_GATED_EN;
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL, ocp_data);
ocp_data = GPHY_STS_MSK | SPEED_DOWN_MSK |
SPDWN_RXDV_MSK | SPDWN_LINKCHG_MSK;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_GPHY_INTR_IMR, ocp_data);
rtl_tally_reset(tp);
/* enable rx aggregation */
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_USB_CTRL);
ocp_data &= ~(RX_AGG_DISABLE | RX_ZERO_EN);
ocp_write_word(tp, MCU_TYPE_USB, USB_USB_CTRL, ocp_data);
}
static void r8153_init(struct r8152 *tp)
{
u32 ocp_data;
u16 data;
int i;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
r8153_u1u2en(tp, false);
for (i = 0; i < 500; i++) {
if (ocp_read_word(tp, MCU_TYPE_PLA, PLA_BOOT_CTRL) &
AUTOLOAD_DONE)
break;
msleep(20);
if (test_bit(RTL8152_UNPLUG, &tp->flags))
break;
}
data = r8153_phy_status(tp, 0);
if (tp->version == RTL_VER_03 || tp->version == RTL_VER_04 ||
tp->version == RTL_VER_05)
ocp_reg_write(tp, OCP_ADC_CFG, CKADSEL_L | ADC_EN | EN_EMI_L);
data = r8152_mdio_read(tp, MII_BMCR);
if (data & BMCR_PDOWN) {
data &= ~BMCR_PDOWN;
r8152_mdio_write(tp, MII_BMCR, data);
}
data = r8153_phy_status(tp, PHY_STAT_LAN_ON);
r8153_u2p3en(tp, false);
if (tp->version == RTL_VER_04) {
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_SSPHYLINK2);
ocp_data &= ~pwd_dn_scale_mask;
ocp_data |= pwd_dn_scale(96);
ocp_write_word(tp, MCU_TYPE_USB, USB_SSPHYLINK2, ocp_data);
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_USB2PHY);
ocp_data |= USB2PHY_L1 | USB2PHY_SUSPEND;
ocp_write_byte(tp, MCU_TYPE_USB, USB_USB2PHY, ocp_data);
} else if (tp->version == RTL_VER_05) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_DMY_REG0);
ocp_data &= ~ECM_ALDPS;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_DMY_REG0, ocp_data);
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1);
if (ocp_read_word(tp, MCU_TYPE_USB, USB_BURST_SIZE) == 0)
ocp_data &= ~DYNAMIC_BURST;
else
ocp_data |= DYNAMIC_BURST;
ocp_write_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1, ocp_data);
} else if (tp->version == RTL_VER_06) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1);
if (ocp_read_word(tp, MCU_TYPE_USB, USB_BURST_SIZE) == 0)
ocp_data &= ~DYNAMIC_BURST;
else
ocp_data |= DYNAMIC_BURST;
ocp_write_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1, ocp_data);
r8153_queue_wake(tp, false);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS);
if (rtl8152_get_speed(tp) & LINK_STATUS)
ocp_data |= CUR_LINK_OK;
else
ocp_data &= ~CUR_LINK_OK;
ocp_data |= POLL_LINK_CHG;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS, ocp_data);
}
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY2);
ocp_data |= EP4_FULL_FC;
ocp_write_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY2, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_WDT11_CTRL);
ocp_data &= ~TIMER11_EN;
ocp_write_word(tp, MCU_TYPE_USB, USB_WDT11_CTRL, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE);
ocp_data &= ~LED_MODE_MASK;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE, ocp_data);
ocp_data = FIFO_EMPTY_1FB | ROK_EXIT_LPM;
if (tp->version == RTL_VER_04 && tp->udev->speed < USB_SPEED_SUPER)
ocp_data |= LPM_TIMER_500MS;
else
ocp_data |= LPM_TIMER_500US;
ocp_write_byte(tp, MCU_TYPE_USB, USB_LPM_CTRL, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_AFE_CTRL2);
ocp_data &= ~SEN_VAL_MASK;
ocp_data |= SEN_VAL_NORMAL | SEL_RXIDLE;
ocp_write_word(tp, MCU_TYPE_USB, USB_AFE_CTRL2, ocp_data);
ocp_write_word(tp, MCU_TYPE_USB, USB_CONNECT_TIMER, 0x0001);
r8153_power_cut_en(tp, false);
rtl_runtime_suspend_enable(tp, false);
r8153_u1u2en(tp, true);
r8153_mac_clk_spd(tp, false);
usb_enable_lpm(tp->udev);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CONFIG6);
ocp_data |= LANWAKE_CLR_EN;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CONFIG6, ocp_data);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_LWAKE_CTRL_REG);
ocp_data &= ~LANWAKE_PIN;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_LWAKE_CTRL_REG, ocp_data);
/* rx aggregation */
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_USB_CTRL);
ocp_data &= ~(RX_AGG_DISABLE | RX_ZERO_EN);
if (test_bit(DELL_TB_RX_AGG_BUG, &tp->flags))
ocp_data |= RX_AGG_DISABLE;
ocp_write_word(tp, MCU_TYPE_USB, USB_USB_CTRL, ocp_data);
rtl_tally_reset(tp);
switch (tp->udev->speed) {
case USB_SPEED_SUPER:
case USB_SPEED_SUPER_PLUS:
tp->coalesce = COALESCE_SUPER;
break;
case USB_SPEED_HIGH:
tp->coalesce = COALESCE_HIGH;
break;
default:
tp->coalesce = COALESCE_SLOW;
break;
}
}
static void r8153b_init(struct r8152 *tp)
{
u32 ocp_data;
u16 data;
int i;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
r8153b_u1u2en(tp, false);
for (i = 0; i < 500; i++) {
if (ocp_read_word(tp, MCU_TYPE_PLA, PLA_BOOT_CTRL) &
AUTOLOAD_DONE)
break;
msleep(20);
if (test_bit(RTL8152_UNPLUG, &tp->flags))
break;
}
data = r8153_phy_status(tp, 0);
data = r8152_mdio_read(tp, MII_BMCR);
if (data & BMCR_PDOWN) {
data &= ~BMCR_PDOWN;
r8152_mdio_write(tp, MII_BMCR, data);
}
data = r8153_phy_status(tp, PHY_STAT_LAN_ON);
r8153_u2p3en(tp, false);
/* MSC timer = 0xfff * 8ms = 32760 ms */
ocp_write_word(tp, MCU_TYPE_USB, USB_MSC_TIMER, 0x0fff);
/* U1/U2/L1 idle timer. 500 us */
ocp_write_word(tp, MCU_TYPE_USB, USB_U1U2_TIMER, 500);
r8153b_power_cut_en(tp, false);
r8153b_ups_en(tp, false);
r8153_queue_wake(tp, false);
rtl_runtime_suspend_enable(tp, false);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS);
if (rtl8152_get_speed(tp) & LINK_STATUS)
ocp_data |= CUR_LINK_OK;
else
ocp_data &= ~CUR_LINK_OK;
ocp_data |= POLL_LINK_CHG;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS, ocp_data);
if (tp->udev->speed != USB_SPEED_HIGH)
r8153b_u1u2en(tp, true);
usb_enable_lpm(tp->udev);
/* MAC clock speed down */
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL2);
ocp_data |= MAC_CLK_SPDWN_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL2, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3);
ocp_data &= ~PLA_MCU_SPDWN_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3, ocp_data);
if (tp->version == RTL_VER_09) {
/* Disable Test IO for 32QFN */
if (ocp_read_byte(tp, MCU_TYPE_PLA, 0xdc00) & BIT(5)) {
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR);
ocp_data |= TEST_IO_OFF;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR, ocp_data);
}
}
set_bit(GREEN_ETHERNET, &tp->flags);
/* rx aggregation */
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_USB_CTRL);
ocp_data &= ~(RX_AGG_DISABLE | RX_ZERO_EN);
ocp_write_word(tp, MCU_TYPE_USB, USB_USB_CTRL, ocp_data);
rtl_tally_reset(tp);
tp->coalesce = 15000; /* 15 us */
}
static int rtl8152_pre_reset(struct usb_interface *intf)
{
struct r8152 *tp = usb_get_intfdata(intf);
struct net_device *netdev;
if (!tp)
return 0;
netdev = tp->netdev;
if (!netif_running(netdev))
return 0;
netif_stop_queue(netdev);
tasklet_disable(&tp->tx_tl);
clear_bit(WORK_ENABLE, &tp->flags);
usb_kill_urb(tp->intr_urb);
cancel_delayed_work_sync(&tp->schedule);
napi_disable(&tp->napi);
if (netif_carrier_ok(netdev)) {
mutex_lock(&tp->control);
tp->rtl_ops.disable(tp);
mutex_unlock(&tp->control);
}
return 0;
}
static int rtl8152_post_reset(struct usb_interface *intf)
{
struct r8152 *tp = usb_get_intfdata(intf);
struct net_device *netdev;
struct sockaddr sa;
if (!tp)
return 0;
/* reset the MAC adddress in case of policy change */
if (determine_ethernet_addr(tp, &sa) >= 0) {
rtnl_lock();
dev_set_mac_address (tp->netdev, &sa, NULL);
rtnl_unlock();
}
netdev = tp->netdev;
if (!netif_running(netdev))
return 0;
set_bit(WORK_ENABLE, &tp->flags);
if (netif_carrier_ok(netdev)) {
mutex_lock(&tp->control);
tp->rtl_ops.enable(tp);
rtl_start_rx(tp);
_rtl8152_set_rx_mode(netdev);
mutex_unlock(&tp->control);
}
napi_enable(&tp->napi);
tasklet_enable(&tp->tx_tl);
netif_wake_queue(netdev);
usb_submit_urb(tp->intr_urb, GFP_KERNEL);
if (!list_empty(&tp->rx_done))
napi_schedule(&tp->napi);
return 0;
}
static bool delay_autosuspend(struct r8152 *tp)
{
bool sw_linking = !!netif_carrier_ok(tp->netdev);
bool hw_linking = !!(rtl8152_get_speed(tp) & LINK_STATUS);
/* This means a linking change occurs and the driver doesn't detect it,
* yet. If the driver has disabled tx/rx and hw is linking on, the
* device wouldn't wake up by receiving any packet.
*/
if (work_busy(&tp->schedule.work) || sw_linking != hw_linking)
return true;
/* If the linking down is occurred by nway, the device may miss the
* linking change event. And it wouldn't wake when linking on.
*/
if (!sw_linking && tp->rtl_ops.in_nway(tp))
return true;
else if (!skb_queue_empty(&tp->tx_queue))
return true;
else
return false;
}
static int rtl8152_runtime_resume(struct r8152 *tp)
{
struct net_device *netdev = tp->netdev;
if (netif_running(netdev) && netdev->flags & IFF_UP) {
struct napi_struct *napi = &tp->napi;
tp->rtl_ops.autosuspend_en(tp, false);
napi_disable(napi);
set_bit(WORK_ENABLE, &tp->flags);
if (netif_carrier_ok(netdev)) {
if (rtl8152_get_speed(tp) & LINK_STATUS) {
rtl_start_rx(tp);
} else {
netif_carrier_off(netdev);
tp->rtl_ops.disable(tp);
netif_info(tp, link, netdev, "linking down\n");
}
}
napi_enable(napi);
clear_bit(SELECTIVE_SUSPEND, &tp->flags);
smp_mb__after_atomic();
if (!list_empty(&tp->rx_done))
napi_schedule(&tp->napi);
usb_submit_urb(tp->intr_urb, GFP_NOIO);
} else {
if (netdev->flags & IFF_UP)
tp->rtl_ops.autosuspend_en(tp, false);
clear_bit(SELECTIVE_SUSPEND, &tp->flags);
}
return 0;
}
static int rtl8152_system_resume(struct r8152 *tp)
{
struct net_device *netdev = tp->netdev;
netif_device_attach(netdev);
if (netif_running(netdev) && (netdev->flags & IFF_UP)) {
tp->rtl_ops.up(tp);
netif_carrier_off(netdev);
set_bit(WORK_ENABLE, &tp->flags);
usb_submit_urb(tp->intr_urb, GFP_NOIO);
}
return 0;
}
static int rtl8152_runtime_suspend(struct r8152 *tp)
{
struct net_device *netdev = tp->netdev;
int ret = 0;
set_bit(SELECTIVE_SUSPEND, &tp->flags);
smp_mb__after_atomic();
if (netif_running(netdev) && test_bit(WORK_ENABLE, &tp->flags)) {
u32 rcr = 0;
if (netif_carrier_ok(netdev)) {
u32 ocp_data;
rcr = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data = rcr & ~RCR_ACPT_ALL;
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
rxdy_gated_en(tp, true);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA,
PLA_OOB_CTRL);
if (!(ocp_data & RXFIFO_EMPTY)) {
rxdy_gated_en(tp, false);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, rcr);
clear_bit(SELECTIVE_SUSPEND, &tp->flags);
smp_mb__after_atomic();
ret = -EBUSY;
goto out1;
}
}
clear_bit(WORK_ENABLE, &tp->flags);
usb_kill_urb(tp->intr_urb);
tp->rtl_ops.autosuspend_en(tp, true);
if (netif_carrier_ok(netdev)) {
struct napi_struct *napi = &tp->napi;
napi_disable(napi);
rtl_stop_rx(tp);
rxdy_gated_en(tp, false);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, rcr);
napi_enable(napi);
}
if (delay_autosuspend(tp)) {
rtl8152_runtime_resume(tp);
ret = -EBUSY;
}
}
out1:
return ret;
}
static int rtl8152_system_suspend(struct r8152 *tp)
{
struct net_device *netdev = tp->netdev;
netif_device_detach(netdev);
if (netif_running(netdev) && test_bit(WORK_ENABLE, &tp->flags)) {
struct napi_struct *napi = &tp->napi;
clear_bit(WORK_ENABLE, &tp->flags);
usb_kill_urb(tp->intr_urb);
tasklet_disable(&tp->tx_tl);
napi_disable(napi);
cancel_delayed_work_sync(&tp->schedule);
tp->rtl_ops.down(tp);
napi_enable(napi);
tasklet_enable(&tp->tx_tl);
}
return 0;
}
static int rtl8152_suspend(struct usb_interface *intf, pm_message_t message)
{
struct r8152 *tp = usb_get_intfdata(intf);
int ret;
mutex_lock(&tp->control);
if (PMSG_IS_AUTO(message))
ret = rtl8152_runtime_suspend(tp);
else
ret = rtl8152_system_suspend(tp);
mutex_unlock(&tp->control);
return ret;
}
static int rtl8152_resume(struct usb_interface *intf)
{
struct r8152 *tp = usb_get_intfdata(intf);
int ret;
mutex_lock(&tp->control);
if (test_bit(SELECTIVE_SUSPEND, &tp->flags))
ret = rtl8152_runtime_resume(tp);
else
ret = rtl8152_system_resume(tp);
mutex_unlock(&tp->control);
return ret;
}
static int rtl8152_reset_resume(struct usb_interface *intf)
{
struct r8152 *tp = usb_get_intfdata(intf);
clear_bit(SELECTIVE_SUSPEND, &tp->flags);
tp->rtl_ops.init(tp);
queue_delayed_work(system_long_wq, &tp->hw_phy_work, 0);
set_ethernet_addr(tp);
return rtl8152_resume(intf);
}
static void rtl8152_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct r8152 *tp = netdev_priv(dev);
if (usb_autopm_get_interface(tp->intf) < 0)
return;
if (!rtl_can_wakeup(tp)) {
wol->supported = 0;
wol->wolopts = 0;
} else {
mutex_lock(&tp->control);
wol->supported = WAKE_ANY;
wol->wolopts = __rtl_get_wol(tp);
mutex_unlock(&tp->control);
}
usb_autopm_put_interface(tp->intf);
}
static int rtl8152_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct r8152 *tp = netdev_priv(dev);
int ret;
if (!rtl_can_wakeup(tp))
return -EOPNOTSUPP;
if (wol->wolopts & ~WAKE_ANY)
return -EINVAL;
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out_set_wol;
mutex_lock(&tp->control);
__rtl_set_wol(tp, wol->wolopts);
tp->saved_wolopts = wol->wolopts & WAKE_ANY;
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
out_set_wol:
return ret;
}
static u32 rtl8152_get_msglevel(struct net_device *dev)
{
struct r8152 *tp = netdev_priv(dev);
return tp->msg_enable;
}
static void rtl8152_set_msglevel(struct net_device *dev, u32 value)
{
struct r8152 *tp = netdev_priv(dev);
tp->msg_enable = value;
}
static void rtl8152_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *info)
{
struct r8152 *tp = netdev_priv(netdev);
strlcpy(info->driver, MODULENAME, sizeof(info->driver));
strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
usb_make_path(tp->udev, info->bus_info, sizeof(info->bus_info));
if (!IS_ERR_OR_NULL(tp->rtl_fw.fw))
strlcpy(info->fw_version, tp->rtl_fw.version,
sizeof(info->fw_version));
}
static
int rtl8152_get_link_ksettings(struct net_device *netdev,
struct ethtool_link_ksettings *cmd)
{
struct r8152 *tp = netdev_priv(netdev);
int ret;
if (!tp->mii.mdio_read)
return -EOPNOTSUPP;
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out;
mutex_lock(&tp->control);
mii_ethtool_get_link_ksettings(&tp->mii, cmd);
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
out:
return ret;
}
static int rtl8152_set_link_ksettings(struct net_device *dev,
const struct ethtool_link_ksettings *cmd)
{
struct r8152 *tp = netdev_priv(dev);
u32 advertising = 0;
int ret;
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out;
if (test_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT,
cmd->link_modes.advertising))
advertising |= RTL_ADVERTISED_10_HALF;
if (test_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT,
cmd->link_modes.advertising))
advertising |= RTL_ADVERTISED_10_FULL;
if (test_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT,
cmd->link_modes.advertising))
advertising |= RTL_ADVERTISED_100_HALF;
if (test_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT,
cmd->link_modes.advertising))
advertising |= RTL_ADVERTISED_100_FULL;
if (test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
cmd->link_modes.advertising))
advertising |= RTL_ADVERTISED_1000_HALF;
if (test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
cmd->link_modes.advertising))
advertising |= RTL_ADVERTISED_1000_FULL;
mutex_lock(&tp->control);
ret = rtl8152_set_speed(tp, cmd->base.autoneg, cmd->base.speed,
cmd->base.duplex, advertising);
if (!ret) {
tp->autoneg = cmd->base.autoneg;
tp->speed = cmd->base.speed;
tp->duplex = cmd->base.duplex;
tp->advertising = advertising;
}
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
out:
return ret;
}
static const char rtl8152_gstrings[][ETH_GSTRING_LEN] = {
"tx_packets",
"rx_packets",
"tx_errors",
"rx_errors",
"rx_missed",
"align_errors",
"tx_single_collisions",
"tx_multi_collisions",
"rx_unicast",
"rx_broadcast",
"rx_multicast",
"tx_aborted",
"tx_underrun",
};
static int rtl8152_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return ARRAY_SIZE(rtl8152_gstrings);
default:
return -EOPNOTSUPP;
}
}
static void rtl8152_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct r8152 *tp = netdev_priv(dev);
struct tally_counter tally;
if (usb_autopm_get_interface(tp->intf) < 0)
return;
generic_ocp_read(tp, PLA_TALLYCNT, sizeof(tally), &tally, MCU_TYPE_PLA);
usb_autopm_put_interface(tp->intf);
data[0] = le64_to_cpu(tally.tx_packets);
data[1] = le64_to_cpu(tally.rx_packets);
data[2] = le64_to_cpu(tally.tx_errors);
data[3] = le32_to_cpu(tally.rx_errors);
data[4] = le16_to_cpu(tally.rx_missed);
data[5] = le16_to_cpu(tally.align_errors);
data[6] = le32_to_cpu(tally.tx_one_collision);
data[7] = le32_to_cpu(tally.tx_multi_collision);
data[8] = le64_to_cpu(tally.rx_unicast);
data[9] = le64_to_cpu(tally.rx_broadcast);
data[10] = le32_to_cpu(tally.rx_multicast);
data[11] = le16_to_cpu(tally.tx_aborted);
data[12] = le16_to_cpu(tally.tx_underrun);
}
static void rtl8152_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
switch (stringset) {
case ETH_SS_STATS:
memcpy(data, *rtl8152_gstrings, sizeof(rtl8152_gstrings));
break;
}
}
static int r8152_get_eee(struct r8152 *tp, struct ethtool_eee *eee)
{
u32 lp, adv, supported = 0;
u16 val;
val = r8152_mmd_read(tp, MDIO_MMD_PCS, MDIO_PCS_EEE_ABLE);
supported = mmd_eee_cap_to_ethtool_sup_t(val);
val = r8152_mmd_read(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV);
adv = mmd_eee_adv_to_ethtool_adv_t(val);
val = r8152_mmd_read(tp, MDIO_MMD_AN, MDIO_AN_EEE_LPABLE);
lp = mmd_eee_adv_to_ethtool_adv_t(val);
eee->eee_enabled = tp->eee_en;
eee->eee_active = !!(supported & adv & lp);
eee->supported = supported;
eee->advertised = tp->eee_adv;
eee->lp_advertised = lp;
return 0;
}
static int r8152_set_eee(struct r8152 *tp, struct ethtool_eee *eee)
{
u16 val = ethtool_adv_to_mmd_eee_adv_t(eee->advertised);
tp->eee_en = eee->eee_enabled;
tp->eee_adv = val;
rtl_eee_enable(tp, tp->eee_en);
return 0;
}
static int r8153_get_eee(struct r8152 *tp, struct ethtool_eee *eee)
{
u32 lp, adv, supported = 0;
u16 val;
val = ocp_reg_read(tp, OCP_EEE_ABLE);
supported = mmd_eee_cap_to_ethtool_sup_t(val);
val = ocp_reg_read(tp, OCP_EEE_ADV);
adv = mmd_eee_adv_to_ethtool_adv_t(val);
val = ocp_reg_read(tp, OCP_EEE_LPABLE);
lp = mmd_eee_adv_to_ethtool_adv_t(val);
eee->eee_enabled = tp->eee_en;
eee->eee_active = !!(supported & adv & lp);
eee->supported = supported;
eee->advertised = tp->eee_adv;
eee->lp_advertised = lp;
return 0;
}
static int
rtl_ethtool_get_eee(struct net_device *net, struct ethtool_eee *edata)
{
struct r8152 *tp = netdev_priv(net);
int ret;
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out;
mutex_lock(&tp->control);
ret = tp->rtl_ops.eee_get(tp, edata);
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
out:
return ret;
}
static int
rtl_ethtool_set_eee(struct net_device *net, struct ethtool_eee *edata)
{
struct r8152 *tp = netdev_priv(net);
int ret;
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out;
mutex_lock(&tp->control);
ret = tp->rtl_ops.eee_set(tp, edata);
if (!ret)
ret = mii_nway_restart(&tp->mii);
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
out:
return ret;
}
static int rtl8152_nway_reset(struct net_device *dev)
{
struct r8152 *tp = netdev_priv(dev);
int ret;
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out;
mutex_lock(&tp->control);
ret = mii_nway_restart(&tp->mii);
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
out:
return ret;
}
static int rtl8152_get_coalesce(struct net_device *netdev,
struct ethtool_coalesce *coalesce)
{
struct r8152 *tp = netdev_priv(netdev);
switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
case RTL_VER_07:
return -EOPNOTSUPP;
default:
break;
}
coalesce->rx_coalesce_usecs = tp->coalesce;
return 0;
}
static int rtl8152_set_coalesce(struct net_device *netdev,
struct ethtool_coalesce *coalesce)
{
struct r8152 *tp = netdev_priv(netdev);
int ret;
switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
case RTL_VER_07:
return -EOPNOTSUPP;
default:
break;
}
if (coalesce->rx_coalesce_usecs > COALESCE_SLOW)
return -EINVAL;
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
return ret;
mutex_lock(&tp->control);
if (tp->coalesce != coalesce->rx_coalesce_usecs) {
tp->coalesce = coalesce->rx_coalesce_usecs;
if (netif_running(netdev) && netif_carrier_ok(netdev)) {
netif_stop_queue(netdev);
napi_disable(&tp->napi);
tp->rtl_ops.disable(tp);
tp->rtl_ops.enable(tp);
rtl_start_rx(tp);
clear_bit(RTL8152_SET_RX_MODE, &tp->flags);
_rtl8152_set_rx_mode(netdev);
napi_enable(&tp->napi);
netif_wake_queue(netdev);
}
}
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
return ret;
}
static int rtl8152_get_tunable(struct net_device *netdev,
const struct ethtool_tunable *tunable, void *d)
{
struct r8152 *tp = netdev_priv(netdev);
switch (tunable->id) {
case ETHTOOL_RX_COPYBREAK:
*(u32 *)d = tp->rx_copybreak;
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int rtl8152_set_tunable(struct net_device *netdev,
const struct ethtool_tunable *tunable,
const void *d)
{
struct r8152 *tp = netdev_priv(netdev);
u32 val;
switch (tunable->id) {
case ETHTOOL_RX_COPYBREAK:
val = *(u32 *)d;
if (val < ETH_ZLEN) {
netif_err(tp, rx_err, netdev,
"Invalid rx copy break value\n");
return -EINVAL;
}
if (tp->rx_copybreak != val) {
if (netdev->flags & IFF_UP) {
mutex_lock(&tp->control);
napi_disable(&tp->napi);
tp->rx_copybreak = val;
napi_enable(&tp->napi);
mutex_unlock(&tp->control);
} else {
tp->rx_copybreak = val;
}
}
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static void rtl8152_get_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring)
{
struct r8152 *tp = netdev_priv(netdev);
ring->rx_max_pending = RTL8152_RX_MAX_PENDING;
ring->rx_pending = tp->rx_pending;
}
static int rtl8152_set_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring)
{
struct r8152 *tp = netdev_priv(netdev);
if (ring->rx_pending < (RTL8152_MAX_RX * 2))
return -EINVAL;
if (tp->rx_pending != ring->rx_pending) {
if (netdev->flags & IFF_UP) {
mutex_lock(&tp->control);
napi_disable(&tp->napi);
tp->rx_pending = ring->rx_pending;
napi_enable(&tp->napi);
mutex_unlock(&tp->control);
} else {
tp->rx_pending = ring->rx_pending;
}
}
return 0;
}
static const struct ethtool_ops ops = {
.supported_coalesce_params = ETHTOOL_COALESCE_USECS,
.get_drvinfo = rtl8152_get_drvinfo,
.get_link = ethtool_op_get_link,
.nway_reset = rtl8152_nway_reset,
.get_msglevel = rtl8152_get_msglevel,
.set_msglevel = rtl8152_set_msglevel,
.get_wol = rtl8152_get_wol,
.set_wol = rtl8152_set_wol,
.get_strings = rtl8152_get_strings,
.get_sset_count = rtl8152_get_sset_count,
.get_ethtool_stats = rtl8152_get_ethtool_stats,
.get_coalesce = rtl8152_get_coalesce,
.set_coalesce = rtl8152_set_coalesce,
.get_eee = rtl_ethtool_get_eee,
.set_eee = rtl_ethtool_set_eee,
.get_link_ksettings = rtl8152_get_link_ksettings,
.set_link_ksettings = rtl8152_set_link_ksettings,
.get_tunable = rtl8152_get_tunable,
.set_tunable = rtl8152_set_tunable,
.get_ringparam = rtl8152_get_ringparam,
.set_ringparam = rtl8152_set_ringparam,
};
static int rtl8152_ioctl(struct net_device *netdev, struct ifreq *rq, int cmd)
{
struct r8152 *tp = netdev_priv(netdev);
struct mii_ioctl_data *data = if_mii(rq);
int res;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;
res = usb_autopm_get_interface(tp->intf);
if (res < 0)
goto out;
switch (cmd) {
case SIOCGMIIPHY:
data->phy_id = R8152_PHY_ID; /* Internal PHY */
break;
case SIOCGMIIREG:
mutex_lock(&tp->control);
data->val_out = r8152_mdio_read(tp, data->reg_num);
mutex_unlock(&tp->control);
break;
case SIOCSMIIREG:
if (!capable(CAP_NET_ADMIN)) {
res = -EPERM;
break;
}
mutex_lock(&tp->control);
r8152_mdio_write(tp, data->reg_num, data->val_in);
mutex_unlock(&tp->control);
break;
default:
res = -EOPNOTSUPP;
}
usb_autopm_put_interface(tp->intf);
out:
return res;
}
static int rtl8152_change_mtu(struct net_device *dev, int new_mtu)
{
struct r8152 *tp = netdev_priv(dev);
int ret;
switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
case RTL_VER_07:
dev->mtu = new_mtu;
return 0;
default:
break;
}
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
return ret;
mutex_lock(&tp->control);
dev->mtu = new_mtu;
if (netif_running(dev)) {
u32 rms = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, rms);
if (netif_carrier_ok(dev))
r8153_set_rx_early_size(tp);
}
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
return ret;
}
static const struct net_device_ops rtl8152_netdev_ops = {
.ndo_open = rtl8152_open,
.ndo_stop = rtl8152_close,
.ndo_do_ioctl = rtl8152_ioctl,
.ndo_start_xmit = rtl8152_start_xmit,
.ndo_tx_timeout = rtl8152_tx_timeout,
.ndo_set_features = rtl8152_set_features,
.ndo_set_rx_mode = rtl8152_set_rx_mode,
.ndo_set_mac_address = rtl8152_set_mac_address,
.ndo_change_mtu = rtl8152_change_mtu,
.ndo_validate_addr = eth_validate_addr,
.ndo_features_check = rtl8152_features_check,
};
static void rtl8152_unload(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
if (tp->version != RTL_VER_01)
r8152_power_cut_en(tp, true);
}
static void rtl8153_unload(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
r8153_power_cut_en(tp, false);
}
static void rtl8153b_unload(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
r8153b_power_cut_en(tp, false);
}
static int rtl_ops_init(struct r8152 *tp)
{
struct rtl_ops *ops = &tp->rtl_ops;
int ret = 0;
switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
case RTL_VER_07:
ops->init = r8152b_init;
ops->enable = rtl8152_enable;
ops->disable = rtl8152_disable;
ops->up = rtl8152_up;
ops->down = rtl8152_down;
ops->unload = rtl8152_unload;
ops->eee_get = r8152_get_eee;
ops->eee_set = r8152_set_eee;
ops->in_nway = rtl8152_in_nway;
ops->hw_phy_cfg = r8152b_hw_phy_cfg;
ops->autosuspend_en = rtl_runtime_suspend_enable;
tp->rx_buf_sz = 16 * 1024;
tp->eee_en = true;
tp->eee_adv = MDIO_EEE_100TX;
break;
case RTL_VER_03:
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
ops->init = r8153_init;
ops->enable = rtl8153_enable;
ops->disable = rtl8153_disable;
ops->up = rtl8153_up;
ops->down = rtl8153_down;
ops->unload = rtl8153_unload;
ops->eee_get = r8153_get_eee;
ops->eee_set = r8152_set_eee;
ops->in_nway = rtl8153_in_nway;
ops->hw_phy_cfg = r8153_hw_phy_cfg;
ops->autosuspend_en = rtl8153_runtime_enable;
tp->rx_buf_sz = 32 * 1024;
tp->eee_en = true;
tp->eee_adv = MDIO_EEE_1000T | MDIO_EEE_100TX;
break;
case RTL_VER_08:
case RTL_VER_09:
ops->init = r8153b_init;
ops->enable = rtl8153_enable;
ops->disable = rtl8153_disable;
ops->up = rtl8153b_up;
ops->down = rtl8153b_down;
ops->unload = rtl8153b_unload;
ops->eee_get = r8153_get_eee;
ops->eee_set = r8152_set_eee;
ops->in_nway = rtl8153_in_nway;
ops->hw_phy_cfg = r8153b_hw_phy_cfg;
ops->autosuspend_en = rtl8153b_runtime_enable;
tp->rx_buf_sz = 32 * 1024;
tp->eee_en = true;
tp->eee_adv = MDIO_EEE_1000T | MDIO_EEE_100TX;
break;
default:
ret = -ENODEV;
netif_err(tp, probe, tp->netdev, "Unknown Device\n");
break;
}
return ret;
}
#define FIRMWARE_8153A_2 "rtl_nic/rtl8153a-2.fw"
#define FIRMWARE_8153A_3 "rtl_nic/rtl8153a-3.fw"
#define FIRMWARE_8153A_4 "rtl_nic/rtl8153a-4.fw"
#define FIRMWARE_8153B_2 "rtl_nic/rtl8153b-2.fw"
MODULE_FIRMWARE(FIRMWARE_8153A_2);
MODULE_FIRMWARE(FIRMWARE_8153A_3);
MODULE_FIRMWARE(FIRMWARE_8153A_4);
MODULE_FIRMWARE(FIRMWARE_8153B_2);
static int rtl_fw_init(struct r8152 *tp)
{
struct rtl_fw *rtl_fw = &tp->rtl_fw;
switch (tp->version) {
case RTL_VER_04:
rtl_fw->fw_name = FIRMWARE_8153A_2;
rtl_fw->pre_fw = r8153_pre_firmware_1;
rtl_fw->post_fw = r8153_post_firmware_1;
break;
case RTL_VER_05:
rtl_fw->fw_name = FIRMWARE_8153A_3;
rtl_fw->pre_fw = r8153_pre_firmware_2;
rtl_fw->post_fw = r8153_post_firmware_2;
break;
case RTL_VER_06:
rtl_fw->fw_name = FIRMWARE_8153A_4;
rtl_fw->post_fw = r8153_post_firmware_3;
break;
case RTL_VER_09:
rtl_fw->fw_name = FIRMWARE_8153B_2;
rtl_fw->pre_fw = r8153b_pre_firmware_1;
rtl_fw->post_fw = r8153b_post_firmware_1;
break;
default:
break;
}
return 0;
}
u8 rtl8152_get_version(struct usb_interface *intf)
{
struct usb_device *udev = interface_to_usbdev(intf);
u32 ocp_data = 0;
__le32 *tmp;
u8 version;
int ret;
tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
if (!tmp)
return 0;
ret = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
RTL8152_REQ_GET_REGS, RTL8152_REQT_READ,
PLA_TCR0, MCU_TYPE_PLA, tmp, sizeof(*tmp), 500);
if (ret > 0)
ocp_data = (__le32_to_cpu(*tmp) >> 16) & VERSION_MASK;
kfree(tmp);
switch (ocp_data) {
case 0x4c00:
version = RTL_VER_01;
break;
case 0x4c10:
version = RTL_VER_02;
break;
case 0x5c00:
version = RTL_VER_03;
break;
case 0x5c10:
version = RTL_VER_04;
break;
case 0x5c20:
version = RTL_VER_05;
break;
case 0x5c30:
version = RTL_VER_06;
break;
case 0x4800:
version = RTL_VER_07;
break;
case 0x6000:
version = RTL_VER_08;
break;
case 0x6010:
version = RTL_VER_09;
break;
default:
version = RTL_VER_UNKNOWN;
dev_info(&intf->dev, "Unknown version 0x%04x\n", ocp_data);
break;
}
dev_dbg(&intf->dev, "Detected version 0x%04x\n", version);
return version;
}
EXPORT_SYMBOL_GPL(rtl8152_get_version);
static int rtl8152_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
struct usb_device *udev = interface_to_usbdev(intf);
u8 version = rtl8152_get_version(intf);
struct r8152 *tp;
struct net_device *netdev;
int ret;
if (version == RTL_VER_UNKNOWN)
return -ENODEV;
if (udev->actconfig->desc.bConfigurationValue != 1) {
usb_driver_set_configuration(udev, 1);
return -ENODEV;
}
if (intf->cur_altsetting->desc.bNumEndpoints < 3)
return -ENODEV;
usb_reset_device(udev);
netdev = alloc_etherdev(sizeof(struct r8152));
if (!netdev) {
dev_err(&intf->dev, "Out of memory\n");
return -ENOMEM;
}
SET_NETDEV_DEV(netdev, &intf->dev);
tp = netdev_priv(netdev);
tp->msg_enable = 0x7FFF;
tp->udev = udev;
tp->netdev = netdev;
tp->intf = intf;
tp->version = version;
switch (version) {
case RTL_VER_01:
case RTL_VER_02:
case RTL_VER_07:
tp->mii.supports_gmii = 0;
break;
default:
tp->mii.supports_gmii = 1;
break;
}
ret = rtl_ops_init(tp);
if (ret)
goto out;
rtl_fw_init(tp);
mutex_init(&tp->control);
INIT_DELAYED_WORK(&tp->schedule, rtl_work_func_t);
INIT_DELAYED_WORK(&tp->hw_phy_work, rtl_hw_phy_work_func_t);
tasklet_init(&tp->tx_tl, bottom_half, (unsigned long)tp);
tasklet_disable(&tp->tx_tl);
netdev->netdev_ops = &rtl8152_netdev_ops;
netdev->watchdog_timeo = RTL8152_TX_TIMEOUT;
netdev->features |= NETIF_F_RXCSUM | NETIF_F_IP_CSUM | NETIF_F_SG |
NETIF_F_TSO | NETIF_F_FRAGLIST | NETIF_F_IPV6_CSUM |
NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_HW_VLAN_CTAG_TX;
netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM | NETIF_F_SG |
NETIF_F_TSO | NETIF_F_FRAGLIST |
NETIF_F_IPV6_CSUM | NETIF_F_TSO6 |
NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
netdev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
NETIF_F_IPV6_CSUM | NETIF_F_TSO6;
if (tp->version == RTL_VER_01) {
netdev->features &= ~NETIF_F_RXCSUM;
netdev->hw_features &= ~NETIF_F_RXCSUM;
}
if (le16_to_cpu(udev->descriptor.idVendor) == VENDOR_ID_LENOVO) {
switch (le16_to_cpu(udev->descriptor.idProduct)) {
case DEVICE_ID_THINKPAD_THUNDERBOLT3_DOCK_GEN2:
case DEVICE_ID_THINKPAD_USB_C_DOCK_GEN2:
set_bit(LENOVO_MACPASSTHRU, &tp->flags);
}
}
if (le16_to_cpu(udev->descriptor.bcdDevice) == 0x3011 && udev->serial &&
(!strcmp(udev->serial, "000001000000") ||
!strcmp(udev->serial, "000002000000"))) {
dev_info(&udev->dev, "Dell TB16 Dock, disable RX aggregation");
set_bit(DELL_TB_RX_AGG_BUG, &tp->flags);
}
netdev->ethtool_ops = &ops;
netif_set_gso_max_size(netdev, RTL_LIMITED_TSO_SIZE);
/* MTU range: 68 - 1500 or 9194 */
netdev->min_mtu = ETH_MIN_MTU;
switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
netdev->max_mtu = ETH_DATA_LEN;
break;
default:
netdev->max_mtu = RTL8153_MAX_MTU;
break;
}
tp->mii.dev = netdev;
tp->mii.mdio_read = read_mii_word;
tp->mii.mdio_write = write_mii_word;
tp->mii.phy_id_mask = 0x3f;
tp->mii.reg_num_mask = 0x1f;
tp->mii.phy_id = R8152_PHY_ID;
tp->autoneg = AUTONEG_ENABLE;
tp->speed = SPEED_100;
tp->advertising = RTL_ADVERTISED_10_HALF | RTL_ADVERTISED_10_FULL |
RTL_ADVERTISED_100_HALF | RTL_ADVERTISED_100_FULL;
if (tp->mii.supports_gmii) {
tp->speed = SPEED_1000;
tp->advertising |= RTL_ADVERTISED_1000_FULL;
}
tp->duplex = DUPLEX_FULL;
tp->rx_copybreak = RTL8152_RXFG_HEADSZ;
tp->rx_pending = 10 * RTL8152_MAX_RX;
intf->needs_remote_wakeup = 1;
if (!rtl_can_wakeup(tp))
__rtl_set_wol(tp, 0);
else
tp->saved_wolopts = __rtl_get_wol(tp);
tp->rtl_ops.init(tp);
#if IS_BUILTIN(CONFIG_USB_RTL8152)
/* Retry in case request_firmware() is not ready yet. */
tp->rtl_fw.retry = true;
#endif
queue_delayed_work(system_long_wq, &tp->hw_phy_work, 0);
set_ethernet_addr(tp);
usb_set_intfdata(intf, tp);
netif_napi_add(netdev, &tp->napi, r8152_poll, RTL8152_NAPI_WEIGHT);
ret = register_netdev(netdev);
if (ret != 0) {
netif_err(tp, probe, netdev, "couldn't register the device\n");
goto out1;
}
if (tp->saved_wolopts)
device_set_wakeup_enable(&udev->dev, true);
else
device_set_wakeup_enable(&udev->dev, false);
netif_info(tp, probe, netdev, "%s\n", DRIVER_VERSION);
return 0;
out1:
tasklet_kill(&tp->tx_tl);
usb_set_intfdata(intf, NULL);
out:
free_netdev(netdev);
return ret;
}
static void rtl8152_disconnect(struct usb_interface *intf)
{
struct r8152 *tp = usb_get_intfdata(intf);
usb_set_intfdata(intf, NULL);
if (tp) {
rtl_set_unplug(tp);
unregister_netdev(tp->netdev);
tasklet_kill(&tp->tx_tl);
cancel_delayed_work_sync(&tp->hw_phy_work);
tp->rtl_ops.unload(tp);
rtl8152_release_firmware(tp);
free_netdev(tp->netdev);
}
}
#define REALTEK_USB_DEVICE(vend, prod) \
.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
USB_DEVICE_ID_MATCH_INT_CLASS, \
.idVendor = (vend), \
.idProduct = (prod), \
.bInterfaceClass = USB_CLASS_VENDOR_SPEC \
}, \
{ \
.match_flags = USB_DEVICE_ID_MATCH_INT_INFO | \
USB_DEVICE_ID_MATCH_DEVICE, \
.idVendor = (vend), \
.idProduct = (prod), \
.bInterfaceClass = USB_CLASS_COMM, \
.bInterfaceSubClass = USB_CDC_SUBCLASS_ETHERNET, \
.bInterfaceProtocol = USB_CDC_PROTO_NONE
/* table of devices that work with this driver */
static const struct usb_device_id rtl8152_table[] = {
{REALTEK_USB_DEVICE(VENDOR_ID_REALTEK, 0x8050)},
{REALTEK_USB_DEVICE(VENDOR_ID_REALTEK, 0x8152)},
{REALTEK_USB_DEVICE(VENDOR_ID_REALTEK, 0x8153)},
{REALTEK_USB_DEVICE(VENDOR_ID_MICROSOFT, 0x07ab)},
{REALTEK_USB_DEVICE(VENDOR_ID_MICROSOFT, 0x07c6)},
{REALTEK_USB_DEVICE(VENDOR_ID_MICROSOFT, 0x0927)},
{REALTEK_USB_DEVICE(VENDOR_ID_SAMSUNG, 0xa101)},
{REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x304f)},
{REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x3062)},
{REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x3069)},
{REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x3082)},
{REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x7205)},
{REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x720c)},
{REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x7214)},
{REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x721e)},
{REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0xa387)},
{REALTEK_USB_DEVICE(VENDOR_ID_LINKSYS, 0x0041)},
{REALTEK_USB_DEVICE(VENDOR_ID_NVIDIA, 0x09ff)},
{REALTEK_USB_DEVICE(VENDOR_ID_TPLINK, 0x0601)},
{}
};
MODULE_DEVICE_TABLE(usb, rtl8152_table);
static struct usb_driver rtl8152_driver = {
.name = MODULENAME,
.id_table = rtl8152_table,
.probe = rtl8152_probe,
.disconnect = rtl8152_disconnect,
.suspend = rtl8152_suspend,
.resume = rtl8152_resume,
.reset_resume = rtl8152_reset_resume,
.pre_reset = rtl8152_pre_reset,
.post_reset = rtl8152_post_reset,
.supports_autosuspend = 1,
.disable_hub_initiated_lpm = 1,
};
module_usb_driver(rtl8152_driver);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");
MODULE_VERSION(DRIVER_VERSION);