mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-05 10:04:12 +08:00
15de36a4c3
User-visible effect: Architectures that choose this method of maintaining cache coherency (MIPS and xtensa currently) are able to use high memory on cores with aliasing data cache. Without this fix such architectures can not use high memory (in case of xtensa it means that at most 128 MBytes of physical memory is available). The problem: VIPT cache with way size larger than MMU page size may suffer from aliasing problem: a single physical address accessed via different virtual addresses may end up in multiple locations in the cache. Virtual mappings of a physical address that always get cached in different cache locations are said to have different colors. L1 caching hardware usually doesn't handle this situation leaving it up to software. Software must avoid this situation as it leads to data corruption. What can be done: One way to handle this is to flush and invalidate data cache every time page mapping changes color. The other way is to always map physical page at a virtual address with the same color. Low memory pages already have this property. Giving architecture a way to control color of high memory page mapping allows reusing of existing low memory cache alias handling code. How this is done with this patch: Provide hooks that allow architectures with aliasing cache to align mapping address of high pages according to their color. Such architectures may enforce similar coloring of low- and high-memory page mappings and reuse existing cache management functions to support highmem. This code is based on the implementation of similar feature for MIPS by Leonid Yegoshin. Signed-off-by: Max Filippov <jcmvbkbc@gmail.com> Cc: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com> Cc: Chris Zankel <chris@zankel.net> Cc: Marc Gauthier <marc@cadence.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Hill <Steven.Hill@imgtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
489 lines
12 KiB
C
489 lines
12 KiB
C
/*
|
|
* High memory handling common code and variables.
|
|
*
|
|
* (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
|
|
* Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
|
|
*
|
|
*
|
|
* Redesigned the x86 32-bit VM architecture to deal with
|
|
* 64-bit physical space. With current x86 CPUs this
|
|
* means up to 64 Gigabytes physical RAM.
|
|
*
|
|
* Rewrote high memory support to move the page cache into
|
|
* high memory. Implemented permanent (schedulable) kmaps
|
|
* based on Linus' idea.
|
|
*
|
|
* Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/export.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/mempool.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/init.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/kgdb.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
|
|
#if defined(CONFIG_HIGHMEM) || defined(CONFIG_X86_32)
|
|
DEFINE_PER_CPU(int, __kmap_atomic_idx);
|
|
#endif
|
|
|
|
/*
|
|
* Virtual_count is not a pure "count".
|
|
* 0 means that it is not mapped, and has not been mapped
|
|
* since a TLB flush - it is usable.
|
|
* 1 means that there are no users, but it has been mapped
|
|
* since the last TLB flush - so we can't use it.
|
|
* n means that there are (n-1) current users of it.
|
|
*/
|
|
#ifdef CONFIG_HIGHMEM
|
|
|
|
/*
|
|
* Architecture with aliasing data cache may define the following family of
|
|
* helper functions in its asm/highmem.h to control cache color of virtual
|
|
* addresses where physical memory pages are mapped by kmap.
|
|
*/
|
|
#ifndef get_pkmap_color
|
|
|
|
/*
|
|
* Determine color of virtual address where the page should be mapped.
|
|
*/
|
|
static inline unsigned int get_pkmap_color(struct page *page)
|
|
{
|
|
return 0;
|
|
}
|
|
#define get_pkmap_color get_pkmap_color
|
|
|
|
/*
|
|
* Get next index for mapping inside PKMAP region for page with given color.
|
|
*/
|
|
static inline unsigned int get_next_pkmap_nr(unsigned int color)
|
|
{
|
|
static unsigned int last_pkmap_nr;
|
|
|
|
last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
|
|
return last_pkmap_nr;
|
|
}
|
|
|
|
/*
|
|
* Determine if page index inside PKMAP region (pkmap_nr) of given color
|
|
* has wrapped around PKMAP region end. When this happens an attempt to
|
|
* flush all unused PKMAP slots is made.
|
|
*/
|
|
static inline int no_more_pkmaps(unsigned int pkmap_nr, unsigned int color)
|
|
{
|
|
return pkmap_nr == 0;
|
|
}
|
|
|
|
/*
|
|
* Get the number of PKMAP entries of the given color. If no free slot is
|
|
* found after checking that many entries, kmap will sleep waiting for
|
|
* someone to call kunmap and free PKMAP slot.
|
|
*/
|
|
static inline int get_pkmap_entries_count(unsigned int color)
|
|
{
|
|
return LAST_PKMAP;
|
|
}
|
|
|
|
/*
|
|
* Get head of a wait queue for PKMAP entries of the given color.
|
|
* Wait queues for different mapping colors should be independent to avoid
|
|
* unnecessary wakeups caused by freeing of slots of other colors.
|
|
*/
|
|
static inline wait_queue_head_t *get_pkmap_wait_queue_head(unsigned int color)
|
|
{
|
|
static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
|
|
|
|
return &pkmap_map_wait;
|
|
}
|
|
#endif
|
|
|
|
unsigned long totalhigh_pages __read_mostly;
|
|
EXPORT_SYMBOL(totalhigh_pages);
|
|
|
|
|
|
EXPORT_PER_CPU_SYMBOL(__kmap_atomic_idx);
|
|
|
|
unsigned int nr_free_highpages (void)
|
|
{
|
|
pg_data_t *pgdat;
|
|
unsigned int pages = 0;
|
|
|
|
for_each_online_pgdat(pgdat) {
|
|
pages += zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
|
|
NR_FREE_PAGES);
|
|
if (zone_movable_is_highmem())
|
|
pages += zone_page_state(
|
|
&pgdat->node_zones[ZONE_MOVABLE],
|
|
NR_FREE_PAGES);
|
|
}
|
|
|
|
return pages;
|
|
}
|
|
|
|
static int pkmap_count[LAST_PKMAP];
|
|
static __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);
|
|
|
|
pte_t * pkmap_page_table;
|
|
|
|
/*
|
|
* Most architectures have no use for kmap_high_get(), so let's abstract
|
|
* the disabling of IRQ out of the locking in that case to save on a
|
|
* potential useless overhead.
|
|
*/
|
|
#ifdef ARCH_NEEDS_KMAP_HIGH_GET
|
|
#define lock_kmap() spin_lock_irq(&kmap_lock)
|
|
#define unlock_kmap() spin_unlock_irq(&kmap_lock)
|
|
#define lock_kmap_any(flags) spin_lock_irqsave(&kmap_lock, flags)
|
|
#define unlock_kmap_any(flags) spin_unlock_irqrestore(&kmap_lock, flags)
|
|
#else
|
|
#define lock_kmap() spin_lock(&kmap_lock)
|
|
#define unlock_kmap() spin_unlock(&kmap_lock)
|
|
#define lock_kmap_any(flags) \
|
|
do { spin_lock(&kmap_lock); (void)(flags); } while (0)
|
|
#define unlock_kmap_any(flags) \
|
|
do { spin_unlock(&kmap_lock); (void)(flags); } while (0)
|
|
#endif
|
|
|
|
struct page *kmap_to_page(void *vaddr)
|
|
{
|
|
unsigned long addr = (unsigned long)vaddr;
|
|
|
|
if (addr >= PKMAP_ADDR(0) && addr < PKMAP_ADDR(LAST_PKMAP)) {
|
|
int i = PKMAP_NR(addr);
|
|
return pte_page(pkmap_page_table[i]);
|
|
}
|
|
|
|
return virt_to_page(addr);
|
|
}
|
|
EXPORT_SYMBOL(kmap_to_page);
|
|
|
|
static void flush_all_zero_pkmaps(void)
|
|
{
|
|
int i;
|
|
int need_flush = 0;
|
|
|
|
flush_cache_kmaps();
|
|
|
|
for (i = 0; i < LAST_PKMAP; i++) {
|
|
struct page *page;
|
|
|
|
/*
|
|
* zero means we don't have anything to do,
|
|
* >1 means that it is still in use. Only
|
|
* a count of 1 means that it is free but
|
|
* needs to be unmapped
|
|
*/
|
|
if (pkmap_count[i] != 1)
|
|
continue;
|
|
pkmap_count[i] = 0;
|
|
|
|
/* sanity check */
|
|
BUG_ON(pte_none(pkmap_page_table[i]));
|
|
|
|
/*
|
|
* Don't need an atomic fetch-and-clear op here;
|
|
* no-one has the page mapped, and cannot get at
|
|
* its virtual address (and hence PTE) without first
|
|
* getting the kmap_lock (which is held here).
|
|
* So no dangers, even with speculative execution.
|
|
*/
|
|
page = pte_page(pkmap_page_table[i]);
|
|
pte_clear(&init_mm, PKMAP_ADDR(i), &pkmap_page_table[i]);
|
|
|
|
set_page_address(page, NULL);
|
|
need_flush = 1;
|
|
}
|
|
if (need_flush)
|
|
flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
|
|
}
|
|
|
|
/**
|
|
* kmap_flush_unused - flush all unused kmap mappings in order to remove stray mappings
|
|
*/
|
|
void kmap_flush_unused(void)
|
|
{
|
|
lock_kmap();
|
|
flush_all_zero_pkmaps();
|
|
unlock_kmap();
|
|
}
|
|
|
|
static inline unsigned long map_new_virtual(struct page *page)
|
|
{
|
|
unsigned long vaddr;
|
|
int count;
|
|
unsigned int last_pkmap_nr;
|
|
unsigned int color = get_pkmap_color(page);
|
|
|
|
start:
|
|
count = get_pkmap_entries_count(color);
|
|
/* Find an empty entry */
|
|
for (;;) {
|
|
last_pkmap_nr = get_next_pkmap_nr(color);
|
|
if (no_more_pkmaps(last_pkmap_nr, color)) {
|
|
flush_all_zero_pkmaps();
|
|
count = get_pkmap_entries_count(color);
|
|
}
|
|
if (!pkmap_count[last_pkmap_nr])
|
|
break; /* Found a usable entry */
|
|
if (--count)
|
|
continue;
|
|
|
|
/*
|
|
* Sleep for somebody else to unmap their entries
|
|
*/
|
|
{
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
wait_queue_head_t *pkmap_map_wait =
|
|
get_pkmap_wait_queue_head(color);
|
|
|
|
__set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(pkmap_map_wait, &wait);
|
|
unlock_kmap();
|
|
schedule();
|
|
remove_wait_queue(pkmap_map_wait, &wait);
|
|
lock_kmap();
|
|
|
|
/* Somebody else might have mapped it while we slept */
|
|
if (page_address(page))
|
|
return (unsigned long)page_address(page);
|
|
|
|
/* Re-start */
|
|
goto start;
|
|
}
|
|
}
|
|
vaddr = PKMAP_ADDR(last_pkmap_nr);
|
|
set_pte_at(&init_mm, vaddr,
|
|
&(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
|
|
|
|
pkmap_count[last_pkmap_nr] = 1;
|
|
set_page_address(page, (void *)vaddr);
|
|
|
|
return vaddr;
|
|
}
|
|
|
|
/**
|
|
* kmap_high - map a highmem page into memory
|
|
* @page: &struct page to map
|
|
*
|
|
* Returns the page's virtual memory address.
|
|
*
|
|
* We cannot call this from interrupts, as it may block.
|
|
*/
|
|
void *kmap_high(struct page *page)
|
|
{
|
|
unsigned long vaddr;
|
|
|
|
/*
|
|
* For highmem pages, we can't trust "virtual" until
|
|
* after we have the lock.
|
|
*/
|
|
lock_kmap();
|
|
vaddr = (unsigned long)page_address(page);
|
|
if (!vaddr)
|
|
vaddr = map_new_virtual(page);
|
|
pkmap_count[PKMAP_NR(vaddr)]++;
|
|
BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2);
|
|
unlock_kmap();
|
|
return (void*) vaddr;
|
|
}
|
|
|
|
EXPORT_SYMBOL(kmap_high);
|
|
|
|
#ifdef ARCH_NEEDS_KMAP_HIGH_GET
|
|
/**
|
|
* kmap_high_get - pin a highmem page into memory
|
|
* @page: &struct page to pin
|
|
*
|
|
* Returns the page's current virtual memory address, or NULL if no mapping
|
|
* exists. If and only if a non null address is returned then a
|
|
* matching call to kunmap_high() is necessary.
|
|
*
|
|
* This can be called from any context.
|
|
*/
|
|
void *kmap_high_get(struct page *page)
|
|
{
|
|
unsigned long vaddr, flags;
|
|
|
|
lock_kmap_any(flags);
|
|
vaddr = (unsigned long)page_address(page);
|
|
if (vaddr) {
|
|
BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 1);
|
|
pkmap_count[PKMAP_NR(vaddr)]++;
|
|
}
|
|
unlock_kmap_any(flags);
|
|
return (void*) vaddr;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* kunmap_high - unmap a highmem page into memory
|
|
* @page: &struct page to unmap
|
|
*
|
|
* If ARCH_NEEDS_KMAP_HIGH_GET is not defined then this may be called
|
|
* only from user context.
|
|
*/
|
|
void kunmap_high(struct page *page)
|
|
{
|
|
unsigned long vaddr;
|
|
unsigned long nr;
|
|
unsigned long flags;
|
|
int need_wakeup;
|
|
unsigned int color = get_pkmap_color(page);
|
|
wait_queue_head_t *pkmap_map_wait;
|
|
|
|
lock_kmap_any(flags);
|
|
vaddr = (unsigned long)page_address(page);
|
|
BUG_ON(!vaddr);
|
|
nr = PKMAP_NR(vaddr);
|
|
|
|
/*
|
|
* A count must never go down to zero
|
|
* without a TLB flush!
|
|
*/
|
|
need_wakeup = 0;
|
|
switch (--pkmap_count[nr]) {
|
|
case 0:
|
|
BUG();
|
|
case 1:
|
|
/*
|
|
* Avoid an unnecessary wake_up() function call.
|
|
* The common case is pkmap_count[] == 1, but
|
|
* no waiters.
|
|
* The tasks queued in the wait-queue are guarded
|
|
* by both the lock in the wait-queue-head and by
|
|
* the kmap_lock. As the kmap_lock is held here,
|
|
* no need for the wait-queue-head's lock. Simply
|
|
* test if the queue is empty.
|
|
*/
|
|
pkmap_map_wait = get_pkmap_wait_queue_head(color);
|
|
need_wakeup = waitqueue_active(pkmap_map_wait);
|
|
}
|
|
unlock_kmap_any(flags);
|
|
|
|
/* do wake-up, if needed, race-free outside of the spin lock */
|
|
if (need_wakeup)
|
|
wake_up(pkmap_map_wait);
|
|
}
|
|
|
|
EXPORT_SYMBOL(kunmap_high);
|
|
#endif
|
|
|
|
#if defined(HASHED_PAGE_VIRTUAL)
|
|
|
|
#define PA_HASH_ORDER 7
|
|
|
|
/*
|
|
* Describes one page->virtual association
|
|
*/
|
|
struct page_address_map {
|
|
struct page *page;
|
|
void *virtual;
|
|
struct list_head list;
|
|
};
|
|
|
|
static struct page_address_map page_address_maps[LAST_PKMAP];
|
|
|
|
/*
|
|
* Hash table bucket
|
|
*/
|
|
static struct page_address_slot {
|
|
struct list_head lh; /* List of page_address_maps */
|
|
spinlock_t lock; /* Protect this bucket's list */
|
|
} ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
|
|
|
|
static struct page_address_slot *page_slot(const struct page *page)
|
|
{
|
|
return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
|
|
}
|
|
|
|
/**
|
|
* page_address - get the mapped virtual address of a page
|
|
* @page: &struct page to get the virtual address of
|
|
*
|
|
* Returns the page's virtual address.
|
|
*/
|
|
void *page_address(const struct page *page)
|
|
{
|
|
unsigned long flags;
|
|
void *ret;
|
|
struct page_address_slot *pas;
|
|
|
|
if (!PageHighMem(page))
|
|
return lowmem_page_address(page);
|
|
|
|
pas = page_slot(page);
|
|
ret = NULL;
|
|
spin_lock_irqsave(&pas->lock, flags);
|
|
if (!list_empty(&pas->lh)) {
|
|
struct page_address_map *pam;
|
|
|
|
list_for_each_entry(pam, &pas->lh, list) {
|
|
if (pam->page == page) {
|
|
ret = pam->virtual;
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
done:
|
|
spin_unlock_irqrestore(&pas->lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
EXPORT_SYMBOL(page_address);
|
|
|
|
/**
|
|
* set_page_address - set a page's virtual address
|
|
* @page: &struct page to set
|
|
* @virtual: virtual address to use
|
|
*/
|
|
void set_page_address(struct page *page, void *virtual)
|
|
{
|
|
unsigned long flags;
|
|
struct page_address_slot *pas;
|
|
struct page_address_map *pam;
|
|
|
|
BUG_ON(!PageHighMem(page));
|
|
|
|
pas = page_slot(page);
|
|
if (virtual) { /* Add */
|
|
pam = &page_address_maps[PKMAP_NR((unsigned long)virtual)];
|
|
pam->page = page;
|
|
pam->virtual = virtual;
|
|
|
|
spin_lock_irqsave(&pas->lock, flags);
|
|
list_add_tail(&pam->list, &pas->lh);
|
|
spin_unlock_irqrestore(&pas->lock, flags);
|
|
} else { /* Remove */
|
|
spin_lock_irqsave(&pas->lock, flags);
|
|
list_for_each_entry(pam, &pas->lh, list) {
|
|
if (pam->page == page) {
|
|
list_del(&pam->list);
|
|
spin_unlock_irqrestore(&pas->lock, flags);
|
|
goto done;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&pas->lock, flags);
|
|
}
|
|
done:
|
|
return;
|
|
}
|
|
|
|
void __init page_address_init(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
|
|
INIT_LIST_HEAD(&page_address_htable[i].lh);
|
|
spin_lock_init(&page_address_htable[i].lock);
|
|
}
|
|
}
|
|
|
|
#endif /* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */
|