linux/kernel/trace/ftrace.c
Linus Torvalds 09c0796adf Tracing updates for 5.11
The major update to this release is that there's a new arch config option called:
 CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS. Currently, only x86_64 enables it.
 All the ftrace callbacks now take a struct ftrace_regs instead of a struct
 pt_regs. If the architecture has HAVE_DYNAMIC_FTRACE_WITH_ARGS enabled, then
 the ftrace_regs will have enough information to read the arguments of the
 function being traced, as well as access to the stack pointer. This way, if
 a user (like live kernel patching) only cares about the arguments, then it
 can avoid using the heavier weight "regs" callback, that puts in enough
 information in the struct ftrace_regs to simulate a breakpoint exception
 (needed for kprobes).
 
 New config option that audits the timestamps of the ftrace ring buffer at
 most every event recorded.  The "check_buffer()" calls will conflict with
 mainline, because I purposely added the check without including the fix that
 it caught, which is in mainline. Running a kernel built from the commit of
 the added check will trigger it.
 
 Ftrace recursion protection has been cleaned up to move the protection to
 the callback itself (this saves on an extra function call for those
 callbacks).
 
 Perf now handles its own RCU protection and does not depend on ftrace to do
 it for it (saving on that extra function call).
 
 New debug option to add "recursed_functions" file to tracefs that lists all
 the places that triggered the recursion protection of the function tracer.
 This will show where things need to be fixed as recursion slows down the
 function tracer.
 
 The eval enum mapping updates done at boot up are now offloaded to a work
 queue, as it caused a noticeable pause on slow embedded boards.
 
 Various clean ups and last minute fixes.
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCX9uq8xQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qtrwAQCHevqWMjKc1Q76bnCgwB0AbFKB6vqy
 5b6g/co5+ihv8wD/eJPWlZMAt97zTVW7bdp5qj/GTiCDbAsODMZ597LsxA0=
 =rZEz
 -----END PGP SIGNATURE-----

Merge tag 'trace-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace

Pull tracing updates from Steven Rostedt:
 "The major update to this release is that there's a new arch config
  option called CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS.

  Currently, only x86_64 enables it. All the ftrace callbacks now take a
  struct ftrace_regs instead of a struct pt_regs. If the architecture
  has HAVE_DYNAMIC_FTRACE_WITH_ARGS enabled, then the ftrace_regs will
  have enough information to read the arguments of the function being
  traced, as well as access to the stack pointer.

  This way, if a user (like live kernel patching) only cares about the
  arguments, then it can avoid using the heavier weight "regs" callback,
  that puts in enough information in the struct ftrace_regs to simulate
  a breakpoint exception (needed for kprobes).

  A new config option that audits the timestamps of the ftrace ring
  buffer at most every event recorded.

  Ftrace recursion protection has been cleaned up to move the protection
  to the callback itself (this saves on an extra function call for those
  callbacks).

  Perf now handles its own RCU protection and does not depend on ftrace
  to do it for it (saving on that extra function call).

  New debug option to add "recursed_functions" file to tracefs that
  lists all the places that triggered the recursion protection of the
  function tracer. This will show where things need to be fixed as
  recursion slows down the function tracer.

  The eval enum mapping updates done at boot up are now offloaded to a
  work queue, as it caused a noticeable pause on slow embedded boards.

  Various clean ups and last minute fixes"

* tag 'trace-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (33 commits)
  tracing: Offload eval map updates to a work queue
  Revert: "ring-buffer: Remove HAVE_64BIT_ALIGNED_ACCESS"
  ring-buffer: Add rb_check_bpage in __rb_allocate_pages
  ring-buffer: Fix two typos in comments
  tracing: Drop unneeded assignment in ring_buffer_resize()
  tracing: Disable ftrace selftests when any tracer is running
  seq_buf: Avoid type mismatch for seq_buf_init
  ring-buffer: Fix a typo in function description
  ring-buffer: Remove obsolete rb_event_is_commit()
  ring-buffer: Add test to validate the time stamp deltas
  ftrace/documentation: Fix RST C code blocks
  tracing: Clean up after filter logic rewriting
  tracing: Remove the useless value assignment in test_create_synth_event()
  livepatch: Use the default ftrace_ops instead of REGS when ARGS is available
  ftrace/x86: Allow for arguments to be passed in to ftrace_regs by default
  ftrace: Have the callbacks receive a struct ftrace_regs instead of pt_regs
  MAINTAINERS: assign ./fs/tracefs to TRACING
  tracing: Fix some typos in comments
  ftrace: Remove unused varible 'ret'
  ring-buffer: Add recording of ring buffer recursion into recursed_functions
  ...
2020-12-17 13:22:17 -08:00

7597 lines
179 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Infrastructure for profiling code inserted by 'gcc -pg'.
*
* Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
* Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com>
*
* Originally ported from the -rt patch by:
* Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
*
* Based on code in the latency_tracer, that is:
*
* Copyright (C) 2004-2006 Ingo Molnar
* Copyright (C) 2004 Nadia Yvette Chambers
*/
#include <linux/stop_machine.h>
#include <linux/clocksource.h>
#include <linux/sched/task.h>
#include <linux/kallsyms.h>
#include <linux/security.h>
#include <linux/seq_file.h>
#include <linux/tracefs.h>
#include <linux/hardirq.h>
#include <linux/kthread.h>
#include <linux/uaccess.h>
#include <linux/bsearch.h>
#include <linux/module.h>
#include <linux/ftrace.h>
#include <linux/sysctl.h>
#include <linux/slab.h>
#include <linux/ctype.h>
#include <linux/sort.h>
#include <linux/list.h>
#include <linux/hash.h>
#include <linux/rcupdate.h>
#include <linux/kprobes.h>
#include <trace/events/sched.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include "ftrace_internal.h"
#include "trace_output.h"
#include "trace_stat.h"
#define FTRACE_WARN_ON(cond) \
({ \
int ___r = cond; \
if (WARN_ON(___r)) \
ftrace_kill(); \
___r; \
})
#define FTRACE_WARN_ON_ONCE(cond) \
({ \
int ___r = cond; \
if (WARN_ON_ONCE(___r)) \
ftrace_kill(); \
___r; \
})
/* hash bits for specific function selection */
#define FTRACE_HASH_DEFAULT_BITS 10
#define FTRACE_HASH_MAX_BITS 12
#ifdef CONFIG_DYNAMIC_FTRACE
#define INIT_OPS_HASH(opsname) \
.func_hash = &opsname.local_hash, \
.local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock),
#else
#define INIT_OPS_HASH(opsname)
#endif
enum {
FTRACE_MODIFY_ENABLE_FL = (1 << 0),
FTRACE_MODIFY_MAY_SLEEP_FL = (1 << 1),
};
struct ftrace_ops ftrace_list_end __read_mostly = {
.func = ftrace_stub,
.flags = FTRACE_OPS_FL_STUB,
INIT_OPS_HASH(ftrace_list_end)
};
/* ftrace_enabled is a method to turn ftrace on or off */
int ftrace_enabled __read_mostly;
static int last_ftrace_enabled;
/* Current function tracing op */
struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end;
/* What to set function_trace_op to */
static struct ftrace_ops *set_function_trace_op;
static bool ftrace_pids_enabled(struct ftrace_ops *ops)
{
struct trace_array *tr;
if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private)
return false;
tr = ops->private;
return tr->function_pids != NULL || tr->function_no_pids != NULL;
}
static void ftrace_update_trampoline(struct ftrace_ops *ops);
/*
* ftrace_disabled is set when an anomaly is discovered.
* ftrace_disabled is much stronger than ftrace_enabled.
*/
static int ftrace_disabled __read_mostly;
DEFINE_MUTEX(ftrace_lock);
struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end;
ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub;
struct ftrace_ops global_ops;
#if ARCH_SUPPORTS_FTRACE_OPS
static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
struct ftrace_ops *op, struct ftrace_regs *fregs);
#else
/* See comment below, where ftrace_ops_list_func is defined */
static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip);
#define ftrace_ops_list_func ((ftrace_func_t)ftrace_ops_no_ops)
#endif
static inline void ftrace_ops_init(struct ftrace_ops *ops)
{
#ifdef CONFIG_DYNAMIC_FTRACE
if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) {
mutex_init(&ops->local_hash.regex_lock);
ops->func_hash = &ops->local_hash;
ops->flags |= FTRACE_OPS_FL_INITIALIZED;
}
#endif
}
static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip,
struct ftrace_ops *op, struct ftrace_regs *fregs)
{
struct trace_array *tr = op->private;
int pid;
if (tr) {
pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid);
if (pid == FTRACE_PID_IGNORE)
return;
if (pid != FTRACE_PID_TRACE &&
pid != current->pid)
return;
}
op->saved_func(ip, parent_ip, op, fregs);
}
static void ftrace_sync_ipi(void *data)
{
/* Probably not needed, but do it anyway */
smp_rmb();
}
static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops)
{
/*
* If this is a dynamic, RCU, or per CPU ops, or we force list func,
* then it needs to call the list anyway.
*/
if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) ||
FTRACE_FORCE_LIST_FUNC)
return ftrace_ops_list_func;
return ftrace_ops_get_func(ops);
}
static void update_ftrace_function(void)
{
ftrace_func_t func;
/*
* Prepare the ftrace_ops that the arch callback will use.
* If there's only one ftrace_ops registered, the ftrace_ops_list
* will point to the ops we want.
*/
set_function_trace_op = rcu_dereference_protected(ftrace_ops_list,
lockdep_is_held(&ftrace_lock));
/* If there's no ftrace_ops registered, just call the stub function */
if (set_function_trace_op == &ftrace_list_end) {
func = ftrace_stub;
/*
* If we are at the end of the list and this ops is
* recursion safe and not dynamic and the arch supports passing ops,
* then have the mcount trampoline call the function directly.
*/
} else if (rcu_dereference_protected(ftrace_ops_list->next,
lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
func = ftrace_ops_get_list_func(ftrace_ops_list);
} else {
/* Just use the default ftrace_ops */
set_function_trace_op = &ftrace_list_end;
func = ftrace_ops_list_func;
}
update_function_graph_func();
/* If there's no change, then do nothing more here */
if (ftrace_trace_function == func)
return;
/*
* If we are using the list function, it doesn't care
* about the function_trace_ops.
*/
if (func == ftrace_ops_list_func) {
ftrace_trace_function = func;
/*
* Don't even bother setting function_trace_ops,
* it would be racy to do so anyway.
*/
return;
}
#ifndef CONFIG_DYNAMIC_FTRACE
/*
* For static tracing, we need to be a bit more careful.
* The function change takes affect immediately. Thus,
* we need to coordinate the setting of the function_trace_ops
* with the setting of the ftrace_trace_function.
*
* Set the function to the list ops, which will call the
* function we want, albeit indirectly, but it handles the
* ftrace_ops and doesn't depend on function_trace_op.
*/
ftrace_trace_function = ftrace_ops_list_func;
/*
* Make sure all CPUs see this. Yes this is slow, but static
* tracing is slow and nasty to have enabled.
*/
synchronize_rcu_tasks_rude();
/* Now all cpus are using the list ops. */
function_trace_op = set_function_trace_op;
/* Make sure the function_trace_op is visible on all CPUs */
smp_wmb();
/* Nasty way to force a rmb on all cpus */
smp_call_function(ftrace_sync_ipi, NULL, 1);
/* OK, we are all set to update the ftrace_trace_function now! */
#endif /* !CONFIG_DYNAMIC_FTRACE */
ftrace_trace_function = func;
}
static void add_ftrace_ops(struct ftrace_ops __rcu **list,
struct ftrace_ops *ops)
{
rcu_assign_pointer(ops->next, *list);
/*
* We are entering ops into the list but another
* CPU might be walking that list. We need to make sure
* the ops->next pointer is valid before another CPU sees
* the ops pointer included into the list.
*/
rcu_assign_pointer(*list, ops);
}
static int remove_ftrace_ops(struct ftrace_ops __rcu **list,
struct ftrace_ops *ops)
{
struct ftrace_ops **p;
/*
* If we are removing the last function, then simply point
* to the ftrace_stub.
*/
if (rcu_dereference_protected(*list,
lockdep_is_held(&ftrace_lock)) == ops &&
rcu_dereference_protected(ops->next,
lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
*list = &ftrace_list_end;
return 0;
}
for (p = list; *p != &ftrace_list_end; p = &(*p)->next)
if (*p == ops)
break;
if (*p != ops)
return -1;
*p = (*p)->next;
return 0;
}
static void ftrace_update_trampoline(struct ftrace_ops *ops);
int __register_ftrace_function(struct ftrace_ops *ops)
{
if (ops->flags & FTRACE_OPS_FL_DELETED)
return -EINVAL;
if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED))
return -EBUSY;
#ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS
/*
* If the ftrace_ops specifies SAVE_REGS, then it only can be used
* if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set.
* Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant.
*/
if (ops->flags & FTRACE_OPS_FL_SAVE_REGS &&
!(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED))
return -EINVAL;
if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)
ops->flags |= FTRACE_OPS_FL_SAVE_REGS;
#endif
if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT))
return -EBUSY;
if (!core_kernel_data((unsigned long)ops))
ops->flags |= FTRACE_OPS_FL_DYNAMIC;
add_ftrace_ops(&ftrace_ops_list, ops);
/* Always save the function, and reset at unregistering */
ops->saved_func = ops->func;
if (ftrace_pids_enabled(ops))
ops->func = ftrace_pid_func;
ftrace_update_trampoline(ops);
if (ftrace_enabled)
update_ftrace_function();
return 0;
}
int __unregister_ftrace_function(struct ftrace_ops *ops)
{
int ret;
if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED)))
return -EBUSY;
ret = remove_ftrace_ops(&ftrace_ops_list, ops);
if (ret < 0)
return ret;
if (ftrace_enabled)
update_ftrace_function();
ops->func = ops->saved_func;
return 0;
}
static void ftrace_update_pid_func(void)
{
struct ftrace_ops *op;
/* Only do something if we are tracing something */
if (ftrace_trace_function == ftrace_stub)
return;
do_for_each_ftrace_op(op, ftrace_ops_list) {
if (op->flags & FTRACE_OPS_FL_PID) {
op->func = ftrace_pids_enabled(op) ?
ftrace_pid_func : op->saved_func;
ftrace_update_trampoline(op);
}
} while_for_each_ftrace_op(op);
update_ftrace_function();
}
#ifdef CONFIG_FUNCTION_PROFILER
struct ftrace_profile {
struct hlist_node node;
unsigned long ip;
unsigned long counter;
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
unsigned long long time;
unsigned long long time_squared;
#endif
};
struct ftrace_profile_page {
struct ftrace_profile_page *next;
unsigned long index;
struct ftrace_profile records[];
};
struct ftrace_profile_stat {
atomic_t disabled;
struct hlist_head *hash;
struct ftrace_profile_page *pages;
struct ftrace_profile_page *start;
struct tracer_stat stat;
};
#define PROFILE_RECORDS_SIZE \
(PAGE_SIZE - offsetof(struct ftrace_profile_page, records))
#define PROFILES_PER_PAGE \
(PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile))
static int ftrace_profile_enabled __read_mostly;
/* ftrace_profile_lock - synchronize the enable and disable of the profiler */
static DEFINE_MUTEX(ftrace_profile_lock);
static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats);
#define FTRACE_PROFILE_HASH_BITS 10
#define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS)
static void *
function_stat_next(void *v, int idx)
{
struct ftrace_profile *rec = v;
struct ftrace_profile_page *pg;
pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK);
again:
if (idx != 0)
rec++;
if ((void *)rec >= (void *)&pg->records[pg->index]) {
pg = pg->next;
if (!pg)
return NULL;
rec = &pg->records[0];
if (!rec->counter)
goto again;
}
return rec;
}
static void *function_stat_start(struct tracer_stat *trace)
{
struct ftrace_profile_stat *stat =
container_of(trace, struct ftrace_profile_stat, stat);
if (!stat || !stat->start)
return NULL;
return function_stat_next(&stat->start->records[0], 0);
}
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
/* function graph compares on total time */
static int function_stat_cmp(const void *p1, const void *p2)
{
const struct ftrace_profile *a = p1;
const struct ftrace_profile *b = p2;
if (a->time < b->time)
return -1;
if (a->time > b->time)
return 1;
else
return 0;
}
#else
/* not function graph compares against hits */
static int function_stat_cmp(const void *p1, const void *p2)
{
const struct ftrace_profile *a = p1;
const struct ftrace_profile *b = p2;
if (a->counter < b->counter)
return -1;
if (a->counter > b->counter)
return 1;
else
return 0;
}
#endif
static int function_stat_headers(struct seq_file *m)
{
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
seq_puts(m, " Function "
"Hit Time Avg s^2\n"
" -------- "
"--- ---- --- ---\n");
#else
seq_puts(m, " Function Hit\n"
" -------- ---\n");
#endif
return 0;
}
static int function_stat_show(struct seq_file *m, void *v)
{
struct ftrace_profile *rec = v;
char str[KSYM_SYMBOL_LEN];
int ret = 0;
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
static struct trace_seq s;
unsigned long long avg;
unsigned long long stddev;
#endif
mutex_lock(&ftrace_profile_lock);
/* we raced with function_profile_reset() */
if (unlikely(rec->counter == 0)) {
ret = -EBUSY;
goto out;
}
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
avg = div64_ul(rec->time, rec->counter);
if (tracing_thresh && (avg < tracing_thresh))
goto out;
#endif
kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
seq_printf(m, " %-30.30s %10lu", str, rec->counter);
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
seq_puts(m, " ");
/* Sample standard deviation (s^2) */
if (rec->counter <= 1)
stddev = 0;
else {
/*
* Apply Welford's method:
* s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2)
*/
stddev = rec->counter * rec->time_squared -
rec->time * rec->time;
/*
* Divide only 1000 for ns^2 -> us^2 conversion.
* trace_print_graph_duration will divide 1000 again.
*/
stddev = div64_ul(stddev,
rec->counter * (rec->counter - 1) * 1000);
}
trace_seq_init(&s);
trace_print_graph_duration(rec->time, &s);
trace_seq_puts(&s, " ");
trace_print_graph_duration(avg, &s);
trace_seq_puts(&s, " ");
trace_print_graph_duration(stddev, &s);
trace_print_seq(m, &s);
#endif
seq_putc(m, '\n');
out:
mutex_unlock(&ftrace_profile_lock);
return ret;
}
static void ftrace_profile_reset(struct ftrace_profile_stat *stat)
{
struct ftrace_profile_page *pg;
pg = stat->pages = stat->start;
while (pg) {
memset(pg->records, 0, PROFILE_RECORDS_SIZE);
pg->index = 0;
pg = pg->next;
}
memset(stat->hash, 0,
FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head));
}
int ftrace_profile_pages_init(struct ftrace_profile_stat *stat)
{
struct ftrace_profile_page *pg;
int functions;
int pages;
int i;
/* If we already allocated, do nothing */
if (stat->pages)
return 0;
stat->pages = (void *)get_zeroed_page(GFP_KERNEL);
if (!stat->pages)
return -ENOMEM;
#ifdef CONFIG_DYNAMIC_FTRACE
functions = ftrace_update_tot_cnt;
#else
/*
* We do not know the number of functions that exist because
* dynamic tracing is what counts them. With past experience
* we have around 20K functions. That should be more than enough.
* It is highly unlikely we will execute every function in
* the kernel.
*/
functions = 20000;
#endif
pg = stat->start = stat->pages;
pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE);
for (i = 1; i < pages; i++) {
pg->next = (void *)get_zeroed_page(GFP_KERNEL);
if (!pg->next)
goto out_free;
pg = pg->next;
}
return 0;
out_free:
pg = stat->start;
while (pg) {
unsigned long tmp = (unsigned long)pg;
pg = pg->next;
free_page(tmp);
}
stat->pages = NULL;
stat->start = NULL;
return -ENOMEM;
}
static int ftrace_profile_init_cpu(int cpu)
{
struct ftrace_profile_stat *stat;
int size;
stat = &per_cpu(ftrace_profile_stats, cpu);
if (stat->hash) {
/* If the profile is already created, simply reset it */
ftrace_profile_reset(stat);
return 0;
}
/*
* We are profiling all functions, but usually only a few thousand
* functions are hit. We'll make a hash of 1024 items.
*/
size = FTRACE_PROFILE_HASH_SIZE;
stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL);
if (!stat->hash)
return -ENOMEM;
/* Preallocate the function profiling pages */
if (ftrace_profile_pages_init(stat) < 0) {
kfree(stat->hash);
stat->hash = NULL;
return -ENOMEM;
}
return 0;
}
static int ftrace_profile_init(void)
{
int cpu;
int ret = 0;
for_each_possible_cpu(cpu) {
ret = ftrace_profile_init_cpu(cpu);
if (ret)
break;
}
return ret;
}
/* interrupts must be disabled */
static struct ftrace_profile *
ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip)
{
struct ftrace_profile *rec;
struct hlist_head *hhd;
unsigned long key;
key = hash_long(ip, FTRACE_PROFILE_HASH_BITS);
hhd = &stat->hash[key];
if (hlist_empty(hhd))
return NULL;
hlist_for_each_entry_rcu_notrace(rec, hhd, node) {
if (rec->ip == ip)
return rec;
}
return NULL;
}
static void ftrace_add_profile(struct ftrace_profile_stat *stat,
struct ftrace_profile *rec)
{
unsigned long key;
key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS);
hlist_add_head_rcu(&rec->node, &stat->hash[key]);
}
/*
* The memory is already allocated, this simply finds a new record to use.
*/
static struct ftrace_profile *
ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip)
{
struct ftrace_profile *rec = NULL;
/* prevent recursion (from NMIs) */
if (atomic_inc_return(&stat->disabled) != 1)
goto out;
/*
* Try to find the function again since an NMI
* could have added it
*/
rec = ftrace_find_profiled_func(stat, ip);
if (rec)
goto out;
if (stat->pages->index == PROFILES_PER_PAGE) {
if (!stat->pages->next)
goto out;
stat->pages = stat->pages->next;
}
rec = &stat->pages->records[stat->pages->index++];
rec->ip = ip;
ftrace_add_profile(stat, rec);
out:
atomic_dec(&stat->disabled);
return rec;
}
static void
function_profile_call(unsigned long ip, unsigned long parent_ip,
struct ftrace_ops *ops, struct ftrace_regs *fregs)
{
struct ftrace_profile_stat *stat;
struct ftrace_profile *rec;
unsigned long flags;
if (!ftrace_profile_enabled)
return;
local_irq_save(flags);
stat = this_cpu_ptr(&ftrace_profile_stats);
if (!stat->hash || !ftrace_profile_enabled)
goto out;
rec = ftrace_find_profiled_func(stat, ip);
if (!rec) {
rec = ftrace_profile_alloc(stat, ip);
if (!rec)
goto out;
}
rec->counter++;
out:
local_irq_restore(flags);
}
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
static bool fgraph_graph_time = true;
void ftrace_graph_graph_time_control(bool enable)
{
fgraph_graph_time = enable;
}
static int profile_graph_entry(struct ftrace_graph_ent *trace)
{
struct ftrace_ret_stack *ret_stack;
function_profile_call(trace->func, 0, NULL, NULL);
/* If function graph is shutting down, ret_stack can be NULL */
if (!current->ret_stack)
return 0;
ret_stack = ftrace_graph_get_ret_stack(current, 0);
if (ret_stack)
ret_stack->subtime = 0;
return 1;
}
static void profile_graph_return(struct ftrace_graph_ret *trace)
{
struct ftrace_ret_stack *ret_stack;
struct ftrace_profile_stat *stat;
unsigned long long calltime;
struct ftrace_profile *rec;
unsigned long flags;
local_irq_save(flags);
stat = this_cpu_ptr(&ftrace_profile_stats);
if (!stat->hash || !ftrace_profile_enabled)
goto out;
/* If the calltime was zero'd ignore it */
if (!trace->calltime)
goto out;
calltime = trace->rettime - trace->calltime;
if (!fgraph_graph_time) {
/* Append this call time to the parent time to subtract */
ret_stack = ftrace_graph_get_ret_stack(current, 1);
if (ret_stack)
ret_stack->subtime += calltime;
ret_stack = ftrace_graph_get_ret_stack(current, 0);
if (ret_stack && ret_stack->subtime < calltime)
calltime -= ret_stack->subtime;
else
calltime = 0;
}
rec = ftrace_find_profiled_func(stat, trace->func);
if (rec) {
rec->time += calltime;
rec->time_squared += calltime * calltime;
}
out:
local_irq_restore(flags);
}
static struct fgraph_ops fprofiler_ops = {
.entryfunc = &profile_graph_entry,
.retfunc = &profile_graph_return,
};
static int register_ftrace_profiler(void)
{
return register_ftrace_graph(&fprofiler_ops);
}
static void unregister_ftrace_profiler(void)
{
unregister_ftrace_graph(&fprofiler_ops);
}
#else
static struct ftrace_ops ftrace_profile_ops __read_mostly = {
.func = function_profile_call,
.flags = FTRACE_OPS_FL_INITIALIZED,
INIT_OPS_HASH(ftrace_profile_ops)
};
static int register_ftrace_profiler(void)
{
return register_ftrace_function(&ftrace_profile_ops);
}
static void unregister_ftrace_profiler(void)
{
unregister_ftrace_function(&ftrace_profile_ops);
}
#endif /* CONFIG_FUNCTION_GRAPH_TRACER */
static ssize_t
ftrace_profile_write(struct file *filp, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
unsigned long val;
int ret;
ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
if (ret)
return ret;
val = !!val;
mutex_lock(&ftrace_profile_lock);
if (ftrace_profile_enabled ^ val) {
if (val) {
ret = ftrace_profile_init();
if (ret < 0) {
cnt = ret;
goto out;
}
ret = register_ftrace_profiler();
if (ret < 0) {
cnt = ret;
goto out;
}
ftrace_profile_enabled = 1;
} else {
ftrace_profile_enabled = 0;
/*
* unregister_ftrace_profiler calls stop_machine
* so this acts like an synchronize_rcu.
*/
unregister_ftrace_profiler();
}
}
out:
mutex_unlock(&ftrace_profile_lock);
*ppos += cnt;
return cnt;
}
static ssize_t
ftrace_profile_read(struct file *filp, char __user *ubuf,
size_t cnt, loff_t *ppos)
{
char buf[64]; /* big enough to hold a number */
int r;
r = sprintf(buf, "%u\n", ftrace_profile_enabled);
return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
}
static const struct file_operations ftrace_profile_fops = {
.open = tracing_open_generic,
.read = ftrace_profile_read,
.write = ftrace_profile_write,
.llseek = default_llseek,
};
/* used to initialize the real stat files */
static struct tracer_stat function_stats __initdata = {
.name = "functions",
.stat_start = function_stat_start,
.stat_next = function_stat_next,
.stat_cmp = function_stat_cmp,
.stat_headers = function_stat_headers,
.stat_show = function_stat_show
};
static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
{
struct ftrace_profile_stat *stat;
struct dentry *entry;
char *name;
int ret;
int cpu;
for_each_possible_cpu(cpu) {
stat = &per_cpu(ftrace_profile_stats, cpu);
name = kasprintf(GFP_KERNEL, "function%d", cpu);
if (!name) {
/*
* The files created are permanent, if something happens
* we still do not free memory.
*/
WARN(1,
"Could not allocate stat file for cpu %d\n",
cpu);
return;
}
stat->stat = function_stats;
stat->stat.name = name;
ret = register_stat_tracer(&stat->stat);
if (ret) {
WARN(1,
"Could not register function stat for cpu %d\n",
cpu);
kfree(name);
return;
}
}
entry = tracefs_create_file("function_profile_enabled", 0644,
d_tracer, NULL, &ftrace_profile_fops);
if (!entry)
pr_warn("Could not create tracefs 'function_profile_enabled' entry\n");
}
#else /* CONFIG_FUNCTION_PROFILER */
static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
{
}
#endif /* CONFIG_FUNCTION_PROFILER */
#ifdef CONFIG_DYNAMIC_FTRACE
static struct ftrace_ops *removed_ops;
/*
* Set when doing a global update, like enabling all recs or disabling them.
* It is not set when just updating a single ftrace_ops.
*/
static bool update_all_ops;
#ifndef CONFIG_FTRACE_MCOUNT_RECORD
# error Dynamic ftrace depends on MCOUNT_RECORD
#endif
struct ftrace_func_probe {
struct ftrace_probe_ops *probe_ops;
struct ftrace_ops ops;
struct trace_array *tr;
struct list_head list;
void *data;
int ref;
};
/*
* We make these constant because no one should touch them,
* but they are used as the default "empty hash", to avoid allocating
* it all the time. These are in a read only section such that if
* anyone does try to modify it, it will cause an exception.
*/
static const struct hlist_head empty_buckets[1];
static const struct ftrace_hash empty_hash = {
.buckets = (struct hlist_head *)empty_buckets,
};
#define EMPTY_HASH ((struct ftrace_hash *)&empty_hash)
struct ftrace_ops global_ops = {
.func = ftrace_stub,
.local_hash.notrace_hash = EMPTY_HASH,
.local_hash.filter_hash = EMPTY_HASH,
INIT_OPS_HASH(global_ops)
.flags = FTRACE_OPS_FL_INITIALIZED |
FTRACE_OPS_FL_PID,
};
/*
* Used by the stack undwinder to know about dynamic ftrace trampolines.
*/
struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr)
{
struct ftrace_ops *op = NULL;
/*
* Some of the ops may be dynamically allocated,
* they are freed after a synchronize_rcu().
*/
preempt_disable_notrace();
do_for_each_ftrace_op(op, ftrace_ops_list) {
/*
* This is to check for dynamically allocated trampolines.
* Trampolines that are in kernel text will have
* core_kernel_text() return true.
*/
if (op->trampoline && op->trampoline_size)
if (addr >= op->trampoline &&
addr < op->trampoline + op->trampoline_size) {
preempt_enable_notrace();
return op;
}
} while_for_each_ftrace_op(op);
preempt_enable_notrace();
return NULL;
}
/*
* This is used by __kernel_text_address() to return true if the
* address is on a dynamically allocated trampoline that would
* not return true for either core_kernel_text() or
* is_module_text_address().
*/
bool is_ftrace_trampoline(unsigned long addr)
{
return ftrace_ops_trampoline(addr) != NULL;
}
struct ftrace_page {
struct ftrace_page *next;
struct dyn_ftrace *records;
int index;
int size;
};
#define ENTRY_SIZE sizeof(struct dyn_ftrace)
#define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE)
static struct ftrace_page *ftrace_pages_start;
static struct ftrace_page *ftrace_pages;
static __always_inline unsigned long
ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip)
{
if (hash->size_bits > 0)
return hash_long(ip, hash->size_bits);
return 0;
}
/* Only use this function if ftrace_hash_empty() has already been tested */
static __always_inline struct ftrace_func_entry *
__ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
{
unsigned long key;
struct ftrace_func_entry *entry;
struct hlist_head *hhd;
key = ftrace_hash_key(hash, ip);
hhd = &hash->buckets[key];
hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) {
if (entry->ip == ip)
return entry;
}
return NULL;
}
/**
* ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash
* @hash: The hash to look at
* @ip: The instruction pointer to test
*
* Search a given @hash to see if a given instruction pointer (@ip)
* exists in it.
*
* Returns the entry that holds the @ip if found. NULL otherwise.
*/
struct ftrace_func_entry *
ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
{
if (ftrace_hash_empty(hash))
return NULL;
return __ftrace_lookup_ip(hash, ip);
}
static void __add_hash_entry(struct ftrace_hash *hash,
struct ftrace_func_entry *entry)
{
struct hlist_head *hhd;
unsigned long key;
key = ftrace_hash_key(hash, entry->ip);
hhd = &hash->buckets[key];
hlist_add_head(&entry->hlist, hhd);
hash->count++;
}
static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip)
{
struct ftrace_func_entry *entry;
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
entry->ip = ip;
__add_hash_entry(hash, entry);
return 0;
}
static void
free_hash_entry(struct ftrace_hash *hash,
struct ftrace_func_entry *entry)
{
hlist_del(&entry->hlist);
kfree(entry);
hash->count--;
}
static void
remove_hash_entry(struct ftrace_hash *hash,
struct ftrace_func_entry *entry)
{
hlist_del_rcu(&entry->hlist);
hash->count--;
}
static void ftrace_hash_clear(struct ftrace_hash *hash)
{
struct hlist_head *hhd;
struct hlist_node *tn;
struct ftrace_func_entry *entry;
int size = 1 << hash->size_bits;
int i;
if (!hash->count)
return;
for (i = 0; i < size; i++) {
hhd = &hash->buckets[i];
hlist_for_each_entry_safe(entry, tn, hhd, hlist)
free_hash_entry(hash, entry);
}
FTRACE_WARN_ON(hash->count);
}
static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod)
{
list_del(&ftrace_mod->list);
kfree(ftrace_mod->module);
kfree(ftrace_mod->func);
kfree(ftrace_mod);
}
static void clear_ftrace_mod_list(struct list_head *head)
{
struct ftrace_mod_load *p, *n;
/* stack tracer isn't supported yet */
if (!head)
return;
mutex_lock(&ftrace_lock);
list_for_each_entry_safe(p, n, head, list)
free_ftrace_mod(p);
mutex_unlock(&ftrace_lock);
}
static void free_ftrace_hash(struct ftrace_hash *hash)
{
if (!hash || hash == EMPTY_HASH)
return;
ftrace_hash_clear(hash);
kfree(hash->buckets);
kfree(hash);
}
static void __free_ftrace_hash_rcu(struct rcu_head *rcu)
{
struct ftrace_hash *hash;
hash = container_of(rcu, struct ftrace_hash, rcu);
free_ftrace_hash(hash);
}
static void free_ftrace_hash_rcu(struct ftrace_hash *hash)
{
if (!hash || hash == EMPTY_HASH)
return;
call_rcu(&hash->rcu, __free_ftrace_hash_rcu);
}
void ftrace_free_filter(struct ftrace_ops *ops)
{
ftrace_ops_init(ops);
free_ftrace_hash(ops->func_hash->filter_hash);
free_ftrace_hash(ops->func_hash->notrace_hash);
}
static struct ftrace_hash *alloc_ftrace_hash(int size_bits)
{
struct ftrace_hash *hash;
int size;
hash = kzalloc(sizeof(*hash), GFP_KERNEL);
if (!hash)
return NULL;
size = 1 << size_bits;
hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL);
if (!hash->buckets) {
kfree(hash);
return NULL;
}
hash->size_bits = size_bits;
return hash;
}
static int ftrace_add_mod(struct trace_array *tr,
const char *func, const char *module,
int enable)
{
struct ftrace_mod_load *ftrace_mod;
struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace;
ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL);
if (!ftrace_mod)
return -ENOMEM;
ftrace_mod->func = kstrdup(func, GFP_KERNEL);
ftrace_mod->module = kstrdup(module, GFP_KERNEL);
ftrace_mod->enable = enable;
if (!ftrace_mod->func || !ftrace_mod->module)
goto out_free;
list_add(&ftrace_mod->list, mod_head);
return 0;
out_free:
free_ftrace_mod(ftrace_mod);
return -ENOMEM;
}
static struct ftrace_hash *
alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash)
{
struct ftrace_func_entry *entry;
struct ftrace_hash *new_hash;
int size;
int ret;
int i;
new_hash = alloc_ftrace_hash(size_bits);
if (!new_hash)
return NULL;
if (hash)
new_hash->flags = hash->flags;
/* Empty hash? */
if (ftrace_hash_empty(hash))
return new_hash;
size = 1 << hash->size_bits;
for (i = 0; i < size; i++) {
hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
ret = add_hash_entry(new_hash, entry->ip);
if (ret < 0)
goto free_hash;
}
}
FTRACE_WARN_ON(new_hash->count != hash->count);
return new_hash;
free_hash:
free_ftrace_hash(new_hash);
return NULL;
}
static void
ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash);
static void
ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash);
static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
struct ftrace_hash *new_hash);
static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size)
{
struct ftrace_func_entry *entry;
struct ftrace_hash *new_hash;
struct hlist_head *hhd;
struct hlist_node *tn;
int bits = 0;
int i;
/*
* Use around half the size (max bit of it), but
* a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits).
*/
bits = fls(size / 2);
/* Don't allocate too much */
if (bits > FTRACE_HASH_MAX_BITS)
bits = FTRACE_HASH_MAX_BITS;
new_hash = alloc_ftrace_hash(bits);
if (!new_hash)
return NULL;
new_hash->flags = src->flags;
size = 1 << src->size_bits;
for (i = 0; i < size; i++) {
hhd = &src->buckets[i];
hlist_for_each_entry_safe(entry, tn, hhd, hlist) {
remove_hash_entry(src, entry);
__add_hash_entry(new_hash, entry);
}
}
return new_hash;
}
static struct ftrace_hash *
__ftrace_hash_move(struct ftrace_hash *src)
{
int size = src->count;
/*
* If the new source is empty, just return the empty_hash.
*/
if (ftrace_hash_empty(src))
return EMPTY_HASH;
return dup_hash(src, size);
}
static int
ftrace_hash_move(struct ftrace_ops *ops, int enable,
struct ftrace_hash **dst, struct ftrace_hash *src)
{
struct ftrace_hash *new_hash;
int ret;
/* Reject setting notrace hash on IPMODIFY ftrace_ops */
if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable)
return -EINVAL;
new_hash = __ftrace_hash_move(src);
if (!new_hash)
return -ENOMEM;
/* Make sure this can be applied if it is IPMODIFY ftrace_ops */
if (enable) {
/* IPMODIFY should be updated only when filter_hash updating */
ret = ftrace_hash_ipmodify_update(ops, new_hash);
if (ret < 0) {
free_ftrace_hash(new_hash);
return ret;
}
}
/*
* Remove the current set, update the hash and add
* them back.
*/
ftrace_hash_rec_disable_modify(ops, enable);
rcu_assign_pointer(*dst, new_hash);
ftrace_hash_rec_enable_modify(ops, enable);
return 0;
}
static bool hash_contains_ip(unsigned long ip,
struct ftrace_ops_hash *hash)
{
/*
* The function record is a match if it exists in the filter
* hash and not in the notrace hash. Note, an empty hash is
* considered a match for the filter hash, but an empty
* notrace hash is considered not in the notrace hash.
*/
return (ftrace_hash_empty(hash->filter_hash) ||
__ftrace_lookup_ip(hash->filter_hash, ip)) &&
(ftrace_hash_empty(hash->notrace_hash) ||
!__ftrace_lookup_ip(hash->notrace_hash, ip));
}
/*
* Test the hashes for this ops to see if we want to call
* the ops->func or not.
*
* It's a match if the ip is in the ops->filter_hash or
* the filter_hash does not exist or is empty,
* AND
* the ip is not in the ops->notrace_hash.
*
* This needs to be called with preemption disabled as
* the hashes are freed with call_rcu().
*/
int
ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
{
struct ftrace_ops_hash hash;
int ret;
#ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
/*
* There's a small race when adding ops that the ftrace handler
* that wants regs, may be called without them. We can not
* allow that handler to be called if regs is NULL.
*/
if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS))
return 0;
#endif
rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash);
rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash);
if (hash_contains_ip(ip, &hash))
ret = 1;
else
ret = 0;
return ret;
}
/*
* This is a double for. Do not use 'break' to break out of the loop,
* you must use a goto.
*/
#define do_for_each_ftrace_rec(pg, rec) \
for (pg = ftrace_pages_start; pg; pg = pg->next) { \
int _____i; \
for (_____i = 0; _____i < pg->index; _____i++) { \
rec = &pg->records[_____i];
#define while_for_each_ftrace_rec() \
} \
}
static int ftrace_cmp_recs(const void *a, const void *b)
{
const struct dyn_ftrace *key = a;
const struct dyn_ftrace *rec = b;
if (key->flags < rec->ip)
return -1;
if (key->ip >= rec->ip + MCOUNT_INSN_SIZE)
return 1;
return 0;
}
static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end)
{
struct ftrace_page *pg;
struct dyn_ftrace *rec = NULL;
struct dyn_ftrace key;
key.ip = start;
key.flags = end; /* overload flags, as it is unsigned long */
for (pg = ftrace_pages_start; pg; pg = pg->next) {
if (end < pg->records[0].ip ||
start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
continue;
rec = bsearch(&key, pg->records, pg->index,
sizeof(struct dyn_ftrace),
ftrace_cmp_recs);
if (rec)
break;
}
return rec;
}
/**
* ftrace_location_range - return the first address of a traced location
* if it touches the given ip range
* @start: start of range to search.
* @end: end of range to search (inclusive). @end points to the last byte
* to check.
*
* Returns rec->ip if the related ftrace location is a least partly within
* the given address range. That is, the first address of the instruction
* that is either a NOP or call to the function tracer. It checks the ftrace
* internal tables to determine if the address belongs or not.
*/
unsigned long ftrace_location_range(unsigned long start, unsigned long end)
{
struct dyn_ftrace *rec;
rec = lookup_rec(start, end);
if (rec)
return rec->ip;
return 0;
}
/**
* ftrace_location - return true if the ip giving is a traced location
* @ip: the instruction pointer to check
*
* Returns rec->ip if @ip given is a pointer to a ftrace location.
* That is, the instruction that is either a NOP or call to
* the function tracer. It checks the ftrace internal tables to
* determine if the address belongs or not.
*/
unsigned long ftrace_location(unsigned long ip)
{
return ftrace_location_range(ip, ip);
}
/**
* ftrace_text_reserved - return true if range contains an ftrace location
* @start: start of range to search
* @end: end of range to search (inclusive). @end points to the last byte to check.
*
* Returns 1 if @start and @end contains a ftrace location.
* That is, the instruction that is either a NOP or call to
* the function tracer. It checks the ftrace internal tables to
* determine if the address belongs or not.
*/
int ftrace_text_reserved(const void *start, const void *end)
{
unsigned long ret;
ret = ftrace_location_range((unsigned long)start,
(unsigned long)end);
return (int)!!ret;
}
/* Test if ops registered to this rec needs regs */
static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec)
{
struct ftrace_ops *ops;
bool keep_regs = false;
for (ops = ftrace_ops_list;
ops != &ftrace_list_end; ops = ops->next) {
/* pass rec in as regs to have non-NULL val */
if (ftrace_ops_test(ops, rec->ip, rec)) {
if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
keep_regs = true;
break;
}
}
}
return keep_regs;
}
static struct ftrace_ops *
ftrace_find_tramp_ops_any(struct dyn_ftrace *rec);
static struct ftrace_ops *
ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude);
static struct ftrace_ops *
ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops);
static bool __ftrace_hash_rec_update(struct ftrace_ops *ops,
int filter_hash,
bool inc)
{
struct ftrace_hash *hash;
struct ftrace_hash *other_hash;
struct ftrace_page *pg;
struct dyn_ftrace *rec;
bool update = false;
int count = 0;
int all = false;
/* Only update if the ops has been registered */
if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
return false;
/*
* In the filter_hash case:
* If the count is zero, we update all records.
* Otherwise we just update the items in the hash.
*
* In the notrace_hash case:
* We enable the update in the hash.
* As disabling notrace means enabling the tracing,
* and enabling notrace means disabling, the inc variable
* gets inversed.
*/
if (filter_hash) {
hash = ops->func_hash->filter_hash;
other_hash = ops->func_hash->notrace_hash;
if (ftrace_hash_empty(hash))
all = true;
} else {
inc = !inc;
hash = ops->func_hash->notrace_hash;
other_hash = ops->func_hash->filter_hash;
/*
* If the notrace hash has no items,
* then there's nothing to do.
*/
if (ftrace_hash_empty(hash))
return false;
}
do_for_each_ftrace_rec(pg, rec) {
int in_other_hash = 0;
int in_hash = 0;
int match = 0;
if (rec->flags & FTRACE_FL_DISABLED)
continue;
if (all) {
/*
* Only the filter_hash affects all records.
* Update if the record is not in the notrace hash.
*/
if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip))
match = 1;
} else {
in_hash = !!ftrace_lookup_ip(hash, rec->ip);
in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip);
/*
* If filter_hash is set, we want to match all functions
* that are in the hash but not in the other hash.
*
* If filter_hash is not set, then we are decrementing.
* That means we match anything that is in the hash
* and also in the other_hash. That is, we need to turn
* off functions in the other hash because they are disabled
* by this hash.
*/
if (filter_hash && in_hash && !in_other_hash)
match = 1;
else if (!filter_hash && in_hash &&
(in_other_hash || ftrace_hash_empty(other_hash)))
match = 1;
}
if (!match)
continue;
if (inc) {
rec->flags++;
if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX))
return false;
if (ops->flags & FTRACE_OPS_FL_DIRECT)
rec->flags |= FTRACE_FL_DIRECT;
/*
* If there's only a single callback registered to a
* function, and the ops has a trampoline registered
* for it, then we can call it directly.
*/
if (ftrace_rec_count(rec) == 1 && ops->trampoline)
rec->flags |= FTRACE_FL_TRAMP;
else
/*
* If we are adding another function callback
* to this function, and the previous had a
* custom trampoline in use, then we need to go
* back to the default trampoline.
*/
rec->flags &= ~FTRACE_FL_TRAMP;
/*
* If any ops wants regs saved for this function
* then all ops will get saved regs.
*/
if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
rec->flags |= FTRACE_FL_REGS;
} else {
if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0))
return false;
rec->flags--;
/*
* Only the internal direct_ops should have the
* DIRECT flag set. Thus, if it is removing a
* function, then that function should no longer
* be direct.
*/
if (ops->flags & FTRACE_OPS_FL_DIRECT)
rec->flags &= ~FTRACE_FL_DIRECT;
/*
* If the rec had REGS enabled and the ops that is
* being removed had REGS set, then see if there is
* still any ops for this record that wants regs.
* If not, we can stop recording them.
*/
if (ftrace_rec_count(rec) > 0 &&
rec->flags & FTRACE_FL_REGS &&
ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
if (!test_rec_ops_needs_regs(rec))
rec->flags &= ~FTRACE_FL_REGS;
}
/*
* The TRAMP needs to be set only if rec count
* is decremented to one, and the ops that is
* left has a trampoline. As TRAMP can only be
* enabled if there is only a single ops attached
* to it.
*/
if (ftrace_rec_count(rec) == 1 &&
ftrace_find_tramp_ops_any_other(rec, ops))
rec->flags |= FTRACE_FL_TRAMP;
else
rec->flags &= ~FTRACE_FL_TRAMP;
/*
* flags will be cleared in ftrace_check_record()
* if rec count is zero.
*/
}
count++;
/* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */
update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE;
/* Shortcut, if we handled all records, we are done. */
if (!all && count == hash->count)
return update;
} while_for_each_ftrace_rec();
return update;
}
static bool ftrace_hash_rec_disable(struct ftrace_ops *ops,
int filter_hash)
{
return __ftrace_hash_rec_update(ops, filter_hash, 0);
}
static bool ftrace_hash_rec_enable(struct ftrace_ops *ops,
int filter_hash)
{
return __ftrace_hash_rec_update(ops, filter_hash, 1);
}
static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops,
int filter_hash, int inc)
{
struct ftrace_ops *op;
__ftrace_hash_rec_update(ops, filter_hash, inc);
if (ops->func_hash != &global_ops.local_hash)
return;
/*
* If the ops shares the global_ops hash, then we need to update
* all ops that are enabled and use this hash.
*/
do_for_each_ftrace_op(op, ftrace_ops_list) {
/* Already done */
if (op == ops)
continue;
if (op->func_hash == &global_ops.local_hash)
__ftrace_hash_rec_update(op, filter_hash, inc);
} while_for_each_ftrace_op(op);
}
static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops,
int filter_hash)
{
ftrace_hash_rec_update_modify(ops, filter_hash, 0);
}
static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops,
int filter_hash)
{
ftrace_hash_rec_update_modify(ops, filter_hash, 1);
}
/*
* Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK
* or no-needed to update, -EBUSY if it detects a conflict of the flag
* on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs.
* Note that old_hash and new_hash has below meanings
* - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected)
* - If the hash is EMPTY_HASH, it hits nothing
* - Anything else hits the recs which match the hash entries.
*/
static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops,
struct ftrace_hash *old_hash,
struct ftrace_hash *new_hash)
{
struct ftrace_page *pg;
struct dyn_ftrace *rec, *end = NULL;
int in_old, in_new;
/* Only update if the ops has been registered */
if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
return 0;
if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
return 0;
/*
* Since the IPMODIFY is a very address sensitive action, we do not
* allow ftrace_ops to set all functions to new hash.
*/
if (!new_hash || !old_hash)
return -EINVAL;
/* Update rec->flags */
do_for_each_ftrace_rec(pg, rec) {
if (rec->flags & FTRACE_FL_DISABLED)
continue;
/* We need to update only differences of filter_hash */
in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
if (in_old == in_new)
continue;
if (in_new) {
/* New entries must ensure no others are using it */
if (rec->flags & FTRACE_FL_IPMODIFY)
goto rollback;
rec->flags |= FTRACE_FL_IPMODIFY;
} else /* Removed entry */
rec->flags &= ~FTRACE_FL_IPMODIFY;
} while_for_each_ftrace_rec();
return 0;
rollback:
end = rec;
/* Roll back what we did above */
do_for_each_ftrace_rec(pg, rec) {
if (rec->flags & FTRACE_FL_DISABLED)
continue;
if (rec == end)
goto err_out;
in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
if (in_old == in_new)
continue;
if (in_new)
rec->flags &= ~FTRACE_FL_IPMODIFY;
else
rec->flags |= FTRACE_FL_IPMODIFY;
} while_for_each_ftrace_rec();
err_out:
return -EBUSY;
}
static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops)
{
struct ftrace_hash *hash = ops->func_hash->filter_hash;
if (ftrace_hash_empty(hash))
hash = NULL;
return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash);
}
/* Disabling always succeeds */
static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops)
{
struct ftrace_hash *hash = ops->func_hash->filter_hash;
if (ftrace_hash_empty(hash))
hash = NULL;
__ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH);
}
static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
struct ftrace_hash *new_hash)
{
struct ftrace_hash *old_hash = ops->func_hash->filter_hash;
if (ftrace_hash_empty(old_hash))
old_hash = NULL;
if (ftrace_hash_empty(new_hash))
new_hash = NULL;
return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash);
}
static void print_ip_ins(const char *fmt, const unsigned char *p)
{
int i;
printk(KERN_CONT "%s", fmt);
for (i = 0; i < MCOUNT_INSN_SIZE; i++)
printk(KERN_CONT "%s%02x", i ? ":" : "", p[i]);
}
enum ftrace_bug_type ftrace_bug_type;
const void *ftrace_expected;
static void print_bug_type(void)
{
switch (ftrace_bug_type) {
case FTRACE_BUG_UNKNOWN:
break;
case FTRACE_BUG_INIT:
pr_info("Initializing ftrace call sites\n");
break;
case FTRACE_BUG_NOP:
pr_info("Setting ftrace call site to NOP\n");
break;
case FTRACE_BUG_CALL:
pr_info("Setting ftrace call site to call ftrace function\n");
break;
case FTRACE_BUG_UPDATE:
pr_info("Updating ftrace call site to call a different ftrace function\n");
break;
}
}
/**
* ftrace_bug - report and shutdown function tracer
* @failed: The failed type (EFAULT, EINVAL, EPERM)
* @rec: The record that failed
*
* The arch code that enables or disables the function tracing
* can call ftrace_bug() when it has detected a problem in
* modifying the code. @failed should be one of either:
* EFAULT - if the problem happens on reading the @ip address
* EINVAL - if what is read at @ip is not what was expected
* EPERM - if the problem happens on writing to the @ip address
*/
void ftrace_bug(int failed, struct dyn_ftrace *rec)
{
unsigned long ip = rec ? rec->ip : 0;
pr_info("------------[ ftrace bug ]------------\n");
switch (failed) {
case -EFAULT:
pr_info("ftrace faulted on modifying ");
print_ip_sym(KERN_INFO, ip);
break;
case -EINVAL:
pr_info("ftrace failed to modify ");
print_ip_sym(KERN_INFO, ip);
print_ip_ins(" actual: ", (unsigned char *)ip);
pr_cont("\n");
if (ftrace_expected) {
print_ip_ins(" expected: ", ftrace_expected);
pr_cont("\n");
}
break;
case -EPERM:
pr_info("ftrace faulted on writing ");
print_ip_sym(KERN_INFO, ip);
break;
default:
pr_info("ftrace faulted on unknown error ");
print_ip_sym(KERN_INFO, ip);
}
print_bug_type();
if (rec) {
struct ftrace_ops *ops = NULL;
pr_info("ftrace record flags: %lx\n", rec->flags);
pr_cont(" (%ld)%s", ftrace_rec_count(rec),
rec->flags & FTRACE_FL_REGS ? " R" : " ");
if (rec->flags & FTRACE_FL_TRAMP_EN) {
ops = ftrace_find_tramp_ops_any(rec);
if (ops) {
do {
pr_cont("\ttramp: %pS (%pS)",
(void *)ops->trampoline,
(void *)ops->func);
ops = ftrace_find_tramp_ops_next(rec, ops);
} while (ops);
} else
pr_cont("\ttramp: ERROR!");
}
ip = ftrace_get_addr_curr(rec);
pr_cont("\n expected tramp: %lx\n", ip);
}
FTRACE_WARN_ON_ONCE(1);
}
static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update)
{
unsigned long flag = 0UL;
ftrace_bug_type = FTRACE_BUG_UNKNOWN;
if (rec->flags & FTRACE_FL_DISABLED)
return FTRACE_UPDATE_IGNORE;
/*
* If we are updating calls:
*
* If the record has a ref count, then we need to enable it
* because someone is using it.
*
* Otherwise we make sure its disabled.
*
* If we are disabling calls, then disable all records that
* are enabled.
*/
if (enable && ftrace_rec_count(rec))
flag = FTRACE_FL_ENABLED;
/*
* If enabling and the REGS flag does not match the REGS_EN, or
* the TRAMP flag doesn't match the TRAMP_EN, then do not ignore
* this record. Set flags to fail the compare against ENABLED.
* Same for direct calls.
*/
if (flag) {
if (!(rec->flags & FTRACE_FL_REGS) !=
!(rec->flags & FTRACE_FL_REGS_EN))
flag |= FTRACE_FL_REGS;
if (!(rec->flags & FTRACE_FL_TRAMP) !=
!(rec->flags & FTRACE_FL_TRAMP_EN))
flag |= FTRACE_FL_TRAMP;
/*
* Direct calls are special, as count matters.
* We must test the record for direct, if the
* DIRECT and DIRECT_EN do not match, but only
* if the count is 1. That's because, if the
* count is something other than one, we do not
* want the direct enabled (it will be done via the
* direct helper). But if DIRECT_EN is set, and
* the count is not one, we need to clear it.
*/
if (ftrace_rec_count(rec) == 1) {
if (!(rec->flags & FTRACE_FL_DIRECT) !=
!(rec->flags & FTRACE_FL_DIRECT_EN))
flag |= FTRACE_FL_DIRECT;
} else if (rec->flags & FTRACE_FL_DIRECT_EN) {
flag |= FTRACE_FL_DIRECT;
}
}
/* If the state of this record hasn't changed, then do nothing */
if ((rec->flags & FTRACE_FL_ENABLED) == flag)
return FTRACE_UPDATE_IGNORE;
if (flag) {
/* Save off if rec is being enabled (for return value) */
flag ^= rec->flags & FTRACE_FL_ENABLED;
if (update) {
rec->flags |= FTRACE_FL_ENABLED;
if (flag & FTRACE_FL_REGS) {
if (rec->flags & FTRACE_FL_REGS)
rec->flags |= FTRACE_FL_REGS_EN;
else
rec->flags &= ~FTRACE_FL_REGS_EN;
}
if (flag & FTRACE_FL_TRAMP) {
if (rec->flags & FTRACE_FL_TRAMP)
rec->flags |= FTRACE_FL_TRAMP_EN;
else
rec->flags &= ~FTRACE_FL_TRAMP_EN;
}
if (flag & FTRACE_FL_DIRECT) {
/*
* If there's only one user (direct_ops helper)
* then we can call the direct function
* directly (no ftrace trampoline).
*/
if (ftrace_rec_count(rec) == 1) {
if (rec->flags & FTRACE_FL_DIRECT)
rec->flags |= FTRACE_FL_DIRECT_EN;
else
rec->flags &= ~FTRACE_FL_DIRECT_EN;
} else {
/*
* Can only call directly if there's
* only one callback to the function.
*/
rec->flags &= ~FTRACE_FL_DIRECT_EN;
}
}
}
/*
* If this record is being updated from a nop, then
* return UPDATE_MAKE_CALL.
* Otherwise,
* return UPDATE_MODIFY_CALL to tell the caller to convert
* from the save regs, to a non-save regs function or
* vice versa, or from a trampoline call.
*/
if (flag & FTRACE_FL_ENABLED) {
ftrace_bug_type = FTRACE_BUG_CALL;
return FTRACE_UPDATE_MAKE_CALL;
}
ftrace_bug_type = FTRACE_BUG_UPDATE;
return FTRACE_UPDATE_MODIFY_CALL;
}
if (update) {
/* If there's no more users, clear all flags */
if (!ftrace_rec_count(rec))
rec->flags = 0;
else
/*
* Just disable the record, but keep the ops TRAMP
* and REGS states. The _EN flags must be disabled though.
*/
rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN |
FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN);
}
ftrace_bug_type = FTRACE_BUG_NOP;
return FTRACE_UPDATE_MAKE_NOP;
}
/**
* ftrace_update_record, set a record that now is tracing or not
* @rec: the record to update
* @enable: set to true if the record is tracing, false to force disable
*
* The records that represent all functions that can be traced need
* to be updated when tracing has been enabled.
*/
int ftrace_update_record(struct dyn_ftrace *rec, bool enable)
{
return ftrace_check_record(rec, enable, true);
}
/**
* ftrace_test_record, check if the record has been enabled or not
* @rec: the record to test
* @enable: set to true to check if enabled, false if it is disabled
*
* The arch code may need to test if a record is already set to
* tracing to determine how to modify the function code that it
* represents.
*/
int ftrace_test_record(struct dyn_ftrace *rec, bool enable)
{
return ftrace_check_record(rec, enable, false);
}
static struct ftrace_ops *
ftrace_find_tramp_ops_any(struct dyn_ftrace *rec)
{
struct ftrace_ops *op;
unsigned long ip = rec->ip;
do_for_each_ftrace_op(op, ftrace_ops_list) {
if (!op->trampoline)
continue;
if (hash_contains_ip(ip, op->func_hash))
return op;
} while_for_each_ftrace_op(op);
return NULL;
}
static struct ftrace_ops *
ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude)
{
struct ftrace_ops *op;
unsigned long ip = rec->ip;
do_for_each_ftrace_op(op, ftrace_ops_list) {
if (op == op_exclude || !op->trampoline)
continue;
if (hash_contains_ip(ip, op->func_hash))
return op;
} while_for_each_ftrace_op(op);
return NULL;
}
static struct ftrace_ops *
ftrace_find_tramp_ops_next(struct dyn_ftrace *rec,
struct ftrace_ops *op)
{
unsigned long ip = rec->ip;
while_for_each_ftrace_op(op) {
if (!op->trampoline)
continue;
if (hash_contains_ip(ip, op->func_hash))
return op;
}
return NULL;
}
static struct ftrace_ops *
ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec)
{
struct ftrace_ops *op;
unsigned long ip = rec->ip;
/*
* Need to check removed ops first.
* If they are being removed, and this rec has a tramp,
* and this rec is in the ops list, then it would be the
* one with the tramp.
*/
if (removed_ops) {
if (hash_contains_ip(ip, &removed_ops->old_hash))
return removed_ops;
}
/*
* Need to find the current trampoline for a rec.
* Now, a trampoline is only attached to a rec if there
* was a single 'ops' attached to it. But this can be called
* when we are adding another op to the rec or removing the
* current one. Thus, if the op is being added, we can
* ignore it because it hasn't attached itself to the rec
* yet.
*
* If an ops is being modified (hooking to different functions)
* then we don't care about the new functions that are being
* added, just the old ones (that are probably being removed).
*
* If we are adding an ops to a function that already is using
* a trampoline, it needs to be removed (trampolines are only
* for single ops connected), then an ops that is not being
* modified also needs to be checked.
*/
do_for_each_ftrace_op(op, ftrace_ops_list) {
if (!op->trampoline)
continue;
/*
* If the ops is being added, it hasn't gotten to
* the point to be removed from this tree yet.
*/
if (op->flags & FTRACE_OPS_FL_ADDING)
continue;
/*
* If the ops is being modified and is in the old
* hash, then it is probably being removed from this
* function.
*/
if ((op->flags & FTRACE_OPS_FL_MODIFYING) &&
hash_contains_ip(ip, &op->old_hash))
return op;
/*
* If the ops is not being added or modified, and it's
* in its normal filter hash, then this must be the one
* we want!
*/
if (!(op->flags & FTRACE_OPS_FL_MODIFYING) &&
hash_contains_ip(ip, op->func_hash))
return op;
} while_for_each_ftrace_op(op);
return NULL;
}
static struct ftrace_ops *
ftrace_find_tramp_ops_new(struct dyn_ftrace *rec)
{
struct ftrace_ops *op;
unsigned long ip = rec->ip;
do_for_each_ftrace_op(op, ftrace_ops_list) {
/* pass rec in as regs to have non-NULL val */
if (hash_contains_ip(ip, op->func_hash))
return op;
} while_for_each_ftrace_op(op);
return NULL;
}
#ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
/* Protected by rcu_tasks for reading, and direct_mutex for writing */
static struct ftrace_hash *direct_functions = EMPTY_HASH;
static DEFINE_MUTEX(direct_mutex);
int ftrace_direct_func_count;
/*
* Search the direct_functions hash to see if the given instruction pointer
* has a direct caller attached to it.
*/
unsigned long ftrace_find_rec_direct(unsigned long ip)
{
struct ftrace_func_entry *entry;
entry = __ftrace_lookup_ip(direct_functions, ip);
if (!entry)
return 0;
return entry->direct;
}
static void call_direct_funcs(unsigned long ip, unsigned long pip,
struct ftrace_ops *ops, struct ftrace_regs *fregs)
{
struct pt_regs *regs = ftrace_get_regs(fregs);
unsigned long addr;
addr = ftrace_find_rec_direct(ip);
if (!addr)
return;
arch_ftrace_set_direct_caller(regs, addr);
}
struct ftrace_ops direct_ops = {
.func = call_direct_funcs,
.flags = FTRACE_OPS_FL_IPMODIFY
| FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS
| FTRACE_OPS_FL_PERMANENT,
/*
* By declaring the main trampoline as this trampoline
* it will never have one allocated for it. Allocated
* trampolines should not call direct functions.
* The direct_ops should only be called by the builtin
* ftrace_regs_caller trampoline.
*/
.trampoline = FTRACE_REGS_ADDR,
};
#endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
/**
* ftrace_get_addr_new - Get the call address to set to
* @rec: The ftrace record descriptor
*
* If the record has the FTRACE_FL_REGS set, that means that it
* wants to convert to a callback that saves all regs. If FTRACE_FL_REGS
* is not set, then it wants to convert to the normal callback.
*
* Returns the address of the trampoline to set to
*/
unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec)
{
struct ftrace_ops *ops;
unsigned long addr;
if ((rec->flags & FTRACE_FL_DIRECT) &&
(ftrace_rec_count(rec) == 1)) {
addr = ftrace_find_rec_direct(rec->ip);
if (addr)
return addr;
WARN_ON_ONCE(1);
}
/* Trampolines take precedence over regs */
if (rec->flags & FTRACE_FL_TRAMP) {
ops = ftrace_find_tramp_ops_new(rec);
if (FTRACE_WARN_ON(!ops || !ops->trampoline)) {
pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n",
(void *)rec->ip, (void *)rec->ip, rec->flags);
/* Ftrace is shutting down, return anything */
return (unsigned long)FTRACE_ADDR;
}
return ops->trampoline;
}
if (rec->flags & FTRACE_FL_REGS)
return (unsigned long)FTRACE_REGS_ADDR;
else
return (unsigned long)FTRACE_ADDR;
}
/**
* ftrace_get_addr_curr - Get the call address that is already there
* @rec: The ftrace record descriptor
*
* The FTRACE_FL_REGS_EN is set when the record already points to
* a function that saves all the regs. Basically the '_EN' version
* represents the current state of the function.
*
* Returns the address of the trampoline that is currently being called
*/
unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec)
{
struct ftrace_ops *ops;
unsigned long addr;
/* Direct calls take precedence over trampolines */
if (rec->flags & FTRACE_FL_DIRECT_EN) {
addr = ftrace_find_rec_direct(rec->ip);
if (addr)
return addr;
WARN_ON_ONCE(1);
}
/* Trampolines take precedence over regs */
if (rec->flags & FTRACE_FL_TRAMP_EN) {
ops = ftrace_find_tramp_ops_curr(rec);
if (FTRACE_WARN_ON(!ops)) {
pr_warn("Bad trampoline accounting at: %p (%pS)\n",
(void *)rec->ip, (void *)rec->ip);
/* Ftrace is shutting down, return anything */
return (unsigned long)FTRACE_ADDR;
}
return ops->trampoline;
}
if (rec->flags & FTRACE_FL_REGS_EN)
return (unsigned long)FTRACE_REGS_ADDR;
else
return (unsigned long)FTRACE_ADDR;
}
static int
__ftrace_replace_code(struct dyn_ftrace *rec, bool enable)
{
unsigned long ftrace_old_addr;
unsigned long ftrace_addr;
int ret;
ftrace_addr = ftrace_get_addr_new(rec);
/* This needs to be done before we call ftrace_update_record */
ftrace_old_addr = ftrace_get_addr_curr(rec);
ret = ftrace_update_record(rec, enable);
ftrace_bug_type = FTRACE_BUG_UNKNOWN;
switch (ret) {
case FTRACE_UPDATE_IGNORE:
return 0;
case FTRACE_UPDATE_MAKE_CALL:
ftrace_bug_type = FTRACE_BUG_CALL;
return ftrace_make_call(rec, ftrace_addr);
case FTRACE_UPDATE_MAKE_NOP:
ftrace_bug_type = FTRACE_BUG_NOP;
return ftrace_make_nop(NULL, rec, ftrace_old_addr);
case FTRACE_UPDATE_MODIFY_CALL:
ftrace_bug_type = FTRACE_BUG_UPDATE;
return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr);
}
return -1; /* unknown ftrace bug */
}
void __weak ftrace_replace_code(int mod_flags)
{
struct dyn_ftrace *rec;
struct ftrace_page *pg;
bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL;
int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL;
int failed;
if (unlikely(ftrace_disabled))
return;
do_for_each_ftrace_rec(pg, rec) {
if (rec->flags & FTRACE_FL_DISABLED)
continue;
failed = __ftrace_replace_code(rec, enable);
if (failed) {
ftrace_bug(failed, rec);
/* Stop processing */
return;
}
if (schedulable)
cond_resched();
} while_for_each_ftrace_rec();
}
struct ftrace_rec_iter {
struct ftrace_page *pg;
int index;
};
/**
* ftrace_rec_iter_start, start up iterating over traced functions
*
* Returns an iterator handle that is used to iterate over all
* the records that represent address locations where functions
* are traced.
*
* May return NULL if no records are available.
*/
struct ftrace_rec_iter *ftrace_rec_iter_start(void)
{
/*
* We only use a single iterator.
* Protected by the ftrace_lock mutex.
*/
static struct ftrace_rec_iter ftrace_rec_iter;
struct ftrace_rec_iter *iter = &ftrace_rec_iter;
iter->pg = ftrace_pages_start;
iter->index = 0;
/* Could have empty pages */
while (iter->pg && !iter->pg->index)
iter->pg = iter->pg->next;
if (!iter->pg)
return NULL;
return iter;
}
/**
* ftrace_rec_iter_next, get the next record to process.
* @iter: The handle to the iterator.
*
* Returns the next iterator after the given iterator @iter.
*/
struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter)
{
iter->index++;
if (iter->index >= iter->pg->index) {
iter->pg = iter->pg->next;
iter->index = 0;
/* Could have empty pages */
while (iter->pg && !iter->pg->index)
iter->pg = iter->pg->next;
}
if (!iter->pg)
return NULL;
return iter;
}
/**
* ftrace_rec_iter_record, get the record at the iterator location
* @iter: The current iterator location
*
* Returns the record that the current @iter is at.
*/
struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter)
{
return &iter->pg->records[iter->index];
}
static int
ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec)
{
int ret;
if (unlikely(ftrace_disabled))
return 0;
ret = ftrace_init_nop(mod, rec);
if (ret) {
ftrace_bug_type = FTRACE_BUG_INIT;
ftrace_bug(ret, rec);
return 0;
}
return 1;
}
/*
* archs can override this function if they must do something
* before the modifying code is performed.
*/
int __weak ftrace_arch_code_modify_prepare(void)
{
return 0;
}
/*
* archs can override this function if they must do something
* after the modifying code is performed.
*/
int __weak ftrace_arch_code_modify_post_process(void)
{
return 0;
}
void ftrace_modify_all_code(int command)
{
int update = command & FTRACE_UPDATE_TRACE_FUNC;
int mod_flags = 0;
int err = 0;
if (command & FTRACE_MAY_SLEEP)
mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL;
/*
* If the ftrace_caller calls a ftrace_ops func directly,
* we need to make sure that it only traces functions it
* expects to trace. When doing the switch of functions,
* we need to update to the ftrace_ops_list_func first
* before the transition between old and new calls are set,
* as the ftrace_ops_list_func will check the ops hashes
* to make sure the ops are having the right functions
* traced.
*/
if (update) {
err = ftrace_update_ftrace_func(ftrace_ops_list_func);
if (FTRACE_WARN_ON(err))
return;
}
if (command & FTRACE_UPDATE_CALLS)
ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL);
else if (command & FTRACE_DISABLE_CALLS)
ftrace_replace_code(mod_flags);
if (update && ftrace_trace_function != ftrace_ops_list_func) {
function_trace_op = set_function_trace_op;
smp_wmb();
/* If irqs are disabled, we are in stop machine */
if (!irqs_disabled())
smp_call_function(ftrace_sync_ipi, NULL, 1);
err = ftrace_update_ftrace_func(ftrace_trace_function);
if (FTRACE_WARN_ON(err))
return;
}
if (command & FTRACE_START_FUNC_RET)
err = ftrace_enable_ftrace_graph_caller();
else if (command & FTRACE_STOP_FUNC_RET)
err = ftrace_disable_ftrace_graph_caller();
FTRACE_WARN_ON(err);
}
static int __ftrace_modify_code(void *data)
{
int *command = data;
ftrace_modify_all_code(*command);
return 0;
}
/**
* ftrace_run_stop_machine, go back to the stop machine method
* @command: The command to tell ftrace what to do
*
* If an arch needs to fall back to the stop machine method, the
* it can call this function.
*/
void ftrace_run_stop_machine(int command)
{
stop_machine(__ftrace_modify_code, &command, NULL);
}
/**
* arch_ftrace_update_code, modify the code to trace or not trace
* @command: The command that needs to be done
*
* Archs can override this function if it does not need to
* run stop_machine() to modify code.
*/
void __weak arch_ftrace_update_code(int command)
{
ftrace_run_stop_machine(command);
}
static void ftrace_run_update_code(int command)
{
int ret;
ret = ftrace_arch_code_modify_prepare();
FTRACE_WARN_ON(ret);
if (ret)
return;
/*
* By default we use stop_machine() to modify the code.
* But archs can do what ever they want as long as it
* is safe. The stop_machine() is the safest, but also
* produces the most overhead.
*/
arch_ftrace_update_code(command);
ret = ftrace_arch_code_modify_post_process();
FTRACE_WARN_ON(ret);
}
static void ftrace_run_modify_code(struct ftrace_ops *ops, int command,
struct ftrace_ops_hash *old_hash)
{
ops->flags |= FTRACE_OPS_FL_MODIFYING;
ops->old_hash.filter_hash = old_hash->filter_hash;
ops->old_hash.notrace_hash = old_hash->notrace_hash;
ftrace_run_update_code(command);
ops->old_hash.filter_hash = NULL;
ops->old_hash.notrace_hash = NULL;
ops->flags &= ~FTRACE_OPS_FL_MODIFYING;
}
static ftrace_func_t saved_ftrace_func;
static int ftrace_start_up;
void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops)
{
}
/* List of trace_ops that have allocated trampolines */
static LIST_HEAD(ftrace_ops_trampoline_list);
static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops)
{
lockdep_assert_held(&ftrace_lock);
list_add_rcu(&ops->list, &ftrace_ops_trampoline_list);
}
static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops)
{
lockdep_assert_held(&ftrace_lock);
list_del_rcu(&ops->list);
synchronize_rcu();
}
/*
* "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols
* for pages allocated for ftrace purposes, even though "__builtin__ftrace" is
* not a module.
*/
#define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace"
#define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline"
static void ftrace_trampoline_free(struct ftrace_ops *ops)
{
if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) &&
ops->trampoline) {
/*
* Record the text poke event before the ksymbol unregister
* event.
*/
perf_event_text_poke((void *)ops->trampoline,
(void *)ops->trampoline,
ops->trampoline_size, NULL, 0);
perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
ops->trampoline, ops->trampoline_size,
true, FTRACE_TRAMPOLINE_SYM);
/* Remove from kallsyms after the perf events */
ftrace_remove_trampoline_from_kallsyms(ops);
}
arch_ftrace_trampoline_free(ops);
}
static void ftrace_startup_enable(int command)
{
if (saved_ftrace_func != ftrace_trace_function) {
saved_ftrace_func = ftrace_trace_function;
command |= FTRACE_UPDATE_TRACE_FUNC;
}
if (!command || !ftrace_enabled)
return;
ftrace_run_update_code(command);
}
static void ftrace_startup_all(int command)
{
update_all_ops = true;
ftrace_startup_enable(command);
update_all_ops = false;
}
int ftrace_startup(struct ftrace_ops *ops, int command)
{
int ret;
if (unlikely(ftrace_disabled))
return -ENODEV;
ret = __register_ftrace_function(ops);
if (ret)
return ret;
ftrace_start_up++;
/*
* Note that ftrace probes uses this to start up
* and modify functions it will probe. But we still
* set the ADDING flag for modification, as probes
* do not have trampolines. If they add them in the
* future, then the probes will need to distinguish
* between adding and updating probes.
*/
ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING;
ret = ftrace_hash_ipmodify_enable(ops);
if (ret < 0) {
/* Rollback registration process */
__unregister_ftrace_function(ops);
ftrace_start_up--;
ops->flags &= ~FTRACE_OPS_FL_ENABLED;
if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
ftrace_trampoline_free(ops);
return ret;
}
if (ftrace_hash_rec_enable(ops, 1))
command |= FTRACE_UPDATE_CALLS;
ftrace_startup_enable(command);
ops->flags &= ~FTRACE_OPS_FL_ADDING;
return 0;
}
int ftrace_shutdown(struct ftrace_ops *ops, int command)
{
int ret;
if (unlikely(ftrace_disabled))
return -ENODEV;
ret = __unregister_ftrace_function(ops);
if (ret)
return ret;
ftrace_start_up--;
/*
* Just warn in case of unbalance, no need to kill ftrace, it's not
* critical but the ftrace_call callers may be never nopped again after
* further ftrace uses.
*/
WARN_ON_ONCE(ftrace_start_up < 0);
/* Disabling ipmodify never fails */
ftrace_hash_ipmodify_disable(ops);
if (ftrace_hash_rec_disable(ops, 1))
command |= FTRACE_UPDATE_CALLS;
ops->flags &= ~FTRACE_OPS_FL_ENABLED;
if (saved_ftrace_func != ftrace_trace_function) {
saved_ftrace_func = ftrace_trace_function;
command |= FTRACE_UPDATE_TRACE_FUNC;
}
if (!command || !ftrace_enabled) {
/*
* If these are dynamic or per_cpu ops, they still
* need their data freed. Since, function tracing is
* not currently active, we can just free them
* without synchronizing all CPUs.
*/
if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
goto free_ops;
return 0;
}
/*
* If the ops uses a trampoline, then it needs to be
* tested first on update.
*/
ops->flags |= FTRACE_OPS_FL_REMOVING;
removed_ops = ops;
/* The trampoline logic checks the old hashes */
ops->old_hash.filter_hash = ops->func_hash->filter_hash;
ops->old_hash.notrace_hash = ops->func_hash->notrace_hash;
ftrace_run_update_code(command);
/*
* If there's no more ops registered with ftrace, run a
* sanity check to make sure all rec flags are cleared.
*/
if (rcu_dereference_protected(ftrace_ops_list,
lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
struct ftrace_page *pg;
struct dyn_ftrace *rec;
do_for_each_ftrace_rec(pg, rec) {
if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED))
pr_warn(" %pS flags:%lx\n",
(void *)rec->ip, rec->flags);
} while_for_each_ftrace_rec();
}
ops->old_hash.filter_hash = NULL;
ops->old_hash.notrace_hash = NULL;
removed_ops = NULL;
ops->flags &= ~FTRACE_OPS_FL_REMOVING;
/*
* Dynamic ops may be freed, we must make sure that all
* callers are done before leaving this function.
* The same goes for freeing the per_cpu data of the per_cpu
* ops.
*/
if (ops->flags & FTRACE_OPS_FL_DYNAMIC) {
/*
* We need to do a hard force of sched synchronization.
* This is because we use preempt_disable() to do RCU, but
* the function tracers can be called where RCU is not watching
* (like before user_exit()). We can not rely on the RCU
* infrastructure to do the synchronization, thus we must do it
* ourselves.
*/
synchronize_rcu_tasks_rude();
/*
* When the kernel is preemptive, tasks can be preempted
* while on a ftrace trampoline. Just scheduling a task on
* a CPU is not good enough to flush them. Calling
* synchornize_rcu_tasks() will wait for those tasks to
* execute and either schedule voluntarily or enter user space.
*/
if (IS_ENABLED(CONFIG_PREEMPTION))
synchronize_rcu_tasks();
free_ops:
ftrace_trampoline_free(ops);
}
return 0;
}
static void ftrace_startup_sysctl(void)
{
int command;
if (unlikely(ftrace_disabled))
return;
/* Force update next time */
saved_ftrace_func = NULL;
/* ftrace_start_up is true if we want ftrace running */
if (ftrace_start_up) {
command = FTRACE_UPDATE_CALLS;
if (ftrace_graph_active)
command |= FTRACE_START_FUNC_RET;
ftrace_startup_enable(command);
}
}
static void ftrace_shutdown_sysctl(void)
{
int command;
if (unlikely(ftrace_disabled))
return;
/* ftrace_start_up is true if ftrace is running */
if (ftrace_start_up) {
command = FTRACE_DISABLE_CALLS;
if (ftrace_graph_active)
command |= FTRACE_STOP_FUNC_RET;
ftrace_run_update_code(command);
}
}
static u64 ftrace_update_time;
unsigned long ftrace_update_tot_cnt;
unsigned long ftrace_number_of_pages;
unsigned long ftrace_number_of_groups;
static inline int ops_traces_mod(struct ftrace_ops *ops)
{
/*
* Filter_hash being empty will default to trace module.
* But notrace hash requires a test of individual module functions.
*/
return ftrace_hash_empty(ops->func_hash->filter_hash) &&
ftrace_hash_empty(ops->func_hash->notrace_hash);
}
/*
* Check if the current ops references the record.
*
* If the ops traces all functions, then it was already accounted for.
* If the ops does not trace the current record function, skip it.
* If the ops ignores the function via notrace filter, skip it.
*/
static inline bool
ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec)
{
/* If ops isn't enabled, ignore it */
if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
return false;
/* If ops traces all then it includes this function */
if (ops_traces_mod(ops))
return true;
/* The function must be in the filter */
if (!ftrace_hash_empty(ops->func_hash->filter_hash) &&
!__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip))
return false;
/* If in notrace hash, we ignore it too */
if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip))
return false;
return true;
}
static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
{
struct ftrace_page *pg;
struct dyn_ftrace *p;
u64 start, stop;
unsigned long update_cnt = 0;
unsigned long rec_flags = 0;
int i;
start = ftrace_now(raw_smp_processor_id());
/*
* When a module is loaded, this function is called to convert
* the calls to mcount in its text to nops, and also to create
* an entry in the ftrace data. Now, if ftrace is activated
* after this call, but before the module sets its text to
* read-only, the modification of enabling ftrace can fail if
* the read-only is done while ftrace is converting the calls.
* To prevent this, the module's records are set as disabled
* and will be enabled after the call to set the module's text
* to read-only.
*/
if (mod)
rec_flags |= FTRACE_FL_DISABLED;
for (pg = new_pgs; pg; pg = pg->next) {
for (i = 0; i < pg->index; i++) {
/* If something went wrong, bail without enabling anything */
if (unlikely(ftrace_disabled))
return -1;
p = &pg->records[i];
p->flags = rec_flags;
/*
* Do the initial record conversion from mcount jump
* to the NOP instructions.
*/
if (!__is_defined(CC_USING_NOP_MCOUNT) &&
!ftrace_nop_initialize(mod, p))
break;
update_cnt++;
}
}
stop = ftrace_now(raw_smp_processor_id());
ftrace_update_time = stop - start;
ftrace_update_tot_cnt += update_cnt;
return 0;
}
static int ftrace_allocate_records(struct ftrace_page *pg, int count)
{
int order;
int pages;
int cnt;
if (WARN_ON(!count))
return -EINVAL;
pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE);
order = get_count_order(pages);
/*
* We want to fill as much as possible. No more than a page
* may be empty.
*/
if (!is_power_of_2(pages))
order--;
again:
pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
if (!pg->records) {
/* if we can't allocate this size, try something smaller */
if (!order)
return -ENOMEM;
order >>= 1;
goto again;
}
ftrace_number_of_pages += 1 << order;
ftrace_number_of_groups++;
cnt = (PAGE_SIZE << order) / ENTRY_SIZE;
pg->size = cnt;
if (cnt > count)
cnt = count;
return cnt;
}
static struct ftrace_page *
ftrace_allocate_pages(unsigned long num_to_init)
{
struct ftrace_page *start_pg;
struct ftrace_page *pg;
int order;
int cnt;
if (!num_to_init)
return NULL;
start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL);
if (!pg)
return NULL;
/*
* Try to allocate as much as possible in one continues
* location that fills in all of the space. We want to
* waste as little space as possible.
*/
for (;;) {
cnt = ftrace_allocate_records(pg, num_to_init);
if (cnt < 0)
goto free_pages;
num_to_init -= cnt;
if (!num_to_init)
break;
pg->next = kzalloc(sizeof(*pg), GFP_KERNEL);
if (!pg->next)
goto free_pages;
pg = pg->next;
}
return start_pg;
free_pages:
pg = start_pg;
while (pg) {
order = get_count_order(pg->size / ENTRIES_PER_PAGE);
free_pages((unsigned long)pg->records, order);
start_pg = pg->next;
kfree(pg);
pg = start_pg;
ftrace_number_of_pages -= 1 << order;
ftrace_number_of_groups--;
}
pr_info("ftrace: FAILED to allocate memory for functions\n");
return NULL;
}
#define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */
struct ftrace_iterator {
loff_t pos;
loff_t func_pos;
loff_t mod_pos;
struct ftrace_page *pg;
struct dyn_ftrace *func;
struct ftrace_func_probe *probe;
struct ftrace_func_entry *probe_entry;
struct trace_parser parser;
struct ftrace_hash *hash;
struct ftrace_ops *ops;
struct trace_array *tr;
struct list_head *mod_list;
int pidx;
int idx;
unsigned flags;
};
static void *
t_probe_next(struct seq_file *m, loff_t *pos)
{
struct ftrace_iterator *iter = m->private;
struct trace_array *tr = iter->ops->private;
struct list_head *func_probes;
struct ftrace_hash *hash;
struct list_head *next;
struct hlist_node *hnd = NULL;
struct hlist_head *hhd;
int size;
(*pos)++;
iter->pos = *pos;
if (!tr)
return NULL;
func_probes = &tr->func_probes;
if (list_empty(func_probes))
return NULL;
if (!iter->probe) {
next = func_probes->next;
iter->probe = list_entry(next, struct ftrace_func_probe, list);
}
if (iter->probe_entry)
hnd = &iter->probe_entry->hlist;
hash = iter->probe->ops.func_hash->filter_hash;
/*
* A probe being registered may temporarily have an empty hash
* and it's at the end of the func_probes list.
*/
if (!hash || hash == EMPTY_HASH)
return NULL;
size = 1 << hash->size_bits;
retry:
if (iter->pidx >= size) {
if (iter->probe->list.next == func_probes)
return NULL;
next = iter->probe->list.next;
iter->probe = list_entry(next, struct ftrace_func_probe, list);
hash = iter->probe->ops.func_hash->filter_hash;
size = 1 << hash->size_bits;
iter->pidx = 0;
}
hhd = &hash->buckets[iter->pidx];
if (hlist_empty(hhd)) {
iter->pidx++;
hnd = NULL;
goto retry;
}
if (!hnd)
hnd = hhd->first;
else {
hnd = hnd->next;
if (!hnd) {
iter->pidx++;
goto retry;
}
}
if (WARN_ON_ONCE(!hnd))
return NULL;
iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist);
return iter;
}
static void *t_probe_start(struct seq_file *m, loff_t *pos)
{
struct ftrace_iterator *iter = m->private;
void *p = NULL;
loff_t l;
if (!(iter->flags & FTRACE_ITER_DO_PROBES))
return NULL;
if (iter->mod_pos > *pos)
return NULL;
iter->probe = NULL;
iter->probe_entry = NULL;
iter->pidx = 0;
for (l = 0; l <= (*pos - iter->mod_pos); ) {
p = t_probe_next(m, &l);
if (!p)
break;
}
if (!p)
return NULL;
/* Only set this if we have an item */
iter->flags |= FTRACE_ITER_PROBE;
return iter;
}
static int
t_probe_show(struct seq_file *m, struct ftrace_iterator *iter)
{
struct ftrace_func_entry *probe_entry;
struct ftrace_probe_ops *probe_ops;
struct ftrace_func_probe *probe;
probe = iter->probe;
probe_entry = iter->probe_entry;
if (WARN_ON_ONCE(!probe || !probe_entry))
return -EIO;
probe_ops = probe->probe_ops;
if (probe_ops->print)
return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data);
seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip,
(void *)probe_ops->func);
return 0;
}
static void *
t_mod_next(struct seq_file *m, loff_t *pos)
{
struct ftrace_iterator *iter = m->private;
struct trace_array *tr = iter->tr;
(*pos)++;
iter->pos = *pos;
iter->mod_list = iter->mod_list->next;
if (iter->mod_list == &tr->mod_trace ||
iter->mod_list == &tr->mod_notrace) {
iter->flags &= ~FTRACE_ITER_MOD;
return NULL;
}
iter->mod_pos = *pos;
return iter;
}
static void *t_mod_start(struct seq_file *m, loff_t *pos)
{
struct ftrace_iterator *iter = m->private;
void *p = NULL;
loff_t l;
if (iter->func_pos > *pos)
return NULL;
iter->mod_pos = iter->func_pos;
/* probes are only available if tr is set */
if (!iter->tr)
return NULL;
for (l = 0; l <= (*pos - iter->func_pos); ) {
p = t_mod_next(m, &l);
if (!p)
break;
}
if (!p) {
iter->flags &= ~FTRACE_ITER_MOD;
return t_probe_start(m, pos);
}
/* Only set this if we have an item */
iter->flags |= FTRACE_ITER_MOD;
return iter;
}
static int
t_mod_show(struct seq_file *m, struct ftrace_iterator *iter)
{
struct ftrace_mod_load *ftrace_mod;
struct trace_array *tr = iter->tr;
if (WARN_ON_ONCE(!iter->mod_list) ||
iter->mod_list == &tr->mod_trace ||
iter->mod_list == &tr->mod_notrace)
return -EIO;
ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list);
if (ftrace_mod->func)
seq_printf(m, "%s", ftrace_mod->func);
else
seq_putc(m, '*');
seq_printf(m, ":mod:%s\n", ftrace_mod->module);
return 0;
}
static void *
t_func_next(struct seq_file *m, loff_t *pos)
{
struct ftrace_iterator *iter = m->private;
struct dyn_ftrace *rec = NULL;
(*pos)++;
retry:
if (iter->idx >= iter->pg->index) {
if (iter->pg->next) {
iter->pg = iter->pg->next;
iter->idx = 0;
goto retry;
}
} else {
rec = &iter->pg->records[iter->idx++];
if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
!ftrace_lookup_ip(iter->hash, rec->ip)) ||
((iter->flags & FTRACE_ITER_ENABLED) &&
!(rec->flags & FTRACE_FL_ENABLED))) {
rec = NULL;
goto retry;
}
}
if (!rec)
return NULL;
iter->pos = iter->func_pos = *pos;
iter->func = rec;
return iter;
}
static void *
t_next(struct seq_file *m, void *v, loff_t *pos)
{
struct ftrace_iterator *iter = m->private;
loff_t l = *pos; /* t_probe_start() must use original pos */
void *ret;
if (unlikely(ftrace_disabled))
return NULL;
if (iter->flags & FTRACE_ITER_PROBE)
return t_probe_next(m, pos);
if (iter->flags & FTRACE_ITER_MOD)
return t_mod_next(m, pos);
if (iter->flags & FTRACE_ITER_PRINTALL) {
/* next must increment pos, and t_probe_start does not */
(*pos)++;
return t_mod_start(m, &l);
}
ret = t_func_next(m, pos);
if (!ret)
return t_mod_start(m, &l);
return ret;
}
static void reset_iter_read(struct ftrace_iterator *iter)
{
iter->pos = 0;
iter->func_pos = 0;
iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD);
}
static void *t_start(struct seq_file *m, loff_t *pos)
{
struct ftrace_iterator *iter = m->private;
void *p = NULL;
loff_t l;
mutex_lock(&ftrace_lock);
if (unlikely(ftrace_disabled))
return NULL;
/*
* If an lseek was done, then reset and start from beginning.
*/
if (*pos < iter->pos)
reset_iter_read(iter);
/*
* For set_ftrace_filter reading, if we have the filter
* off, we can short cut and just print out that all
* functions are enabled.
*/
if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
ftrace_hash_empty(iter->hash)) {
iter->func_pos = 1; /* Account for the message */
if (*pos > 0)
return t_mod_start(m, pos);
iter->flags |= FTRACE_ITER_PRINTALL;
/* reset in case of seek/pread */
iter->flags &= ~FTRACE_ITER_PROBE;
return iter;
}
if (iter->flags & FTRACE_ITER_MOD)
return t_mod_start(m, pos);
/*
* Unfortunately, we need to restart at ftrace_pages_start
* every time we let go of the ftrace_mutex. This is because
* those pointers can change without the lock.
*/
iter->pg = ftrace_pages_start;
iter->idx = 0;
for (l = 0; l <= *pos; ) {
p = t_func_next(m, &l);
if (!p)
break;
}
if (!p)
return t_mod_start(m, pos);
return iter;
}
static void t_stop(struct seq_file *m, void *p)
{
mutex_unlock(&ftrace_lock);
}
void * __weak
arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec)
{
return NULL;
}
static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops,
struct dyn_ftrace *rec)
{
void *ptr;
ptr = arch_ftrace_trampoline_func(ops, rec);
if (ptr)
seq_printf(m, " ->%pS", ptr);
}
static int t_show(struct seq_file *m, void *v)
{
struct ftrace_iterator *iter = m->private;
struct dyn_ftrace *rec;
if (iter->flags & FTRACE_ITER_PROBE)
return t_probe_show(m, iter);
if (iter->flags & FTRACE_ITER_MOD)
return t_mod_show(m, iter);
if (iter->flags & FTRACE_ITER_PRINTALL) {
if (iter->flags & FTRACE_ITER_NOTRACE)
seq_puts(m, "#### no functions disabled ####\n");
else
seq_puts(m, "#### all functions enabled ####\n");
return 0;
}
rec = iter->func;
if (!rec)
return 0;
seq_printf(m, "%ps", (void *)rec->ip);
if (iter->flags & FTRACE_ITER_ENABLED) {
struct ftrace_ops *ops;
seq_printf(m, " (%ld)%s%s%s",
ftrace_rec_count(rec),
rec->flags & FTRACE_FL_REGS ? " R" : " ",
rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ",
rec->flags & FTRACE_FL_DIRECT ? " D" : " ");
if (rec->flags & FTRACE_FL_TRAMP_EN) {
ops = ftrace_find_tramp_ops_any(rec);
if (ops) {
do {
seq_printf(m, "\ttramp: %pS (%pS)",
(void *)ops->trampoline,
(void *)ops->func);
add_trampoline_func(m, ops, rec);
ops = ftrace_find_tramp_ops_next(rec, ops);
} while (ops);
} else
seq_puts(m, "\ttramp: ERROR!");
} else {
add_trampoline_func(m, NULL, rec);
}
if (rec->flags & FTRACE_FL_DIRECT) {
unsigned long direct;
direct = ftrace_find_rec_direct(rec->ip);
if (direct)
seq_printf(m, "\n\tdirect-->%pS", (void *)direct);
}
}
seq_putc(m, '\n');
return 0;
}
static const struct seq_operations show_ftrace_seq_ops = {
.start = t_start,
.next = t_next,
.stop = t_stop,
.show = t_show,
};
static int
ftrace_avail_open(struct inode *inode, struct file *file)
{
struct ftrace_iterator *iter;
int ret;
ret = security_locked_down(LOCKDOWN_TRACEFS);
if (ret)
return ret;
if (unlikely(ftrace_disabled))
return -ENODEV;
iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
if (!iter)
return -ENOMEM;
iter->pg = ftrace_pages_start;
iter->ops = &global_ops;
return 0;
}
static int
ftrace_enabled_open(struct inode *inode, struct file *file)
{
struct ftrace_iterator *iter;
/*
* This shows us what functions are currently being
* traced and by what. Not sure if we want lockdown
* to hide such critical information for an admin.
* Although, perhaps it can show information we don't
* want people to see, but if something is tracing
* something, we probably want to know about it.
*/
iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
if (!iter)
return -ENOMEM;
iter->pg = ftrace_pages_start;
iter->flags = FTRACE_ITER_ENABLED;
iter->ops = &global_ops;
return 0;
}
/**
* ftrace_regex_open - initialize function tracer filter files
* @ops: The ftrace_ops that hold the hash filters
* @flag: The type of filter to process
* @inode: The inode, usually passed in to your open routine
* @file: The file, usually passed in to your open routine
*
* ftrace_regex_open() initializes the filter files for the
* @ops. Depending on @flag it may process the filter hash or
* the notrace hash of @ops. With this called from the open
* routine, you can use ftrace_filter_write() for the write
* routine if @flag has FTRACE_ITER_FILTER set, or
* ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set.
* tracing_lseek() should be used as the lseek routine, and
* release must call ftrace_regex_release().
*/
int
ftrace_regex_open(struct ftrace_ops *ops, int flag,
struct inode *inode, struct file *file)
{
struct ftrace_iterator *iter;
struct ftrace_hash *hash;
struct list_head *mod_head;
struct trace_array *tr = ops->private;
int ret = -ENOMEM;
ftrace_ops_init(ops);
if (unlikely(ftrace_disabled))
return -ENODEV;
if (tracing_check_open_get_tr(tr))
return -ENODEV;
iter = kzalloc(sizeof(*iter), GFP_KERNEL);
if (!iter)
goto out;
if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX))
goto out;
iter->ops = ops;
iter->flags = flag;
iter->tr = tr;
mutex_lock(&ops->func_hash->regex_lock);
if (flag & FTRACE_ITER_NOTRACE) {
hash = ops->func_hash->notrace_hash;
mod_head = tr ? &tr->mod_notrace : NULL;
} else {
hash = ops->func_hash->filter_hash;
mod_head = tr ? &tr->mod_trace : NULL;
}
iter->mod_list = mod_head;
if (file->f_mode & FMODE_WRITE) {
const int size_bits = FTRACE_HASH_DEFAULT_BITS;
if (file->f_flags & O_TRUNC) {
iter->hash = alloc_ftrace_hash(size_bits);
clear_ftrace_mod_list(mod_head);
} else {
iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash);
}
if (!iter->hash) {
trace_parser_put(&iter->parser);
goto out_unlock;
}
} else
iter->hash = hash;
ret = 0;
if (file->f_mode & FMODE_READ) {
iter->pg = ftrace_pages_start;
ret = seq_open(file, &show_ftrace_seq_ops);
if (!ret) {
struct seq_file *m = file->private_data;
m->private = iter;
} else {
/* Failed */
free_ftrace_hash(iter->hash);
trace_parser_put(&iter->parser);
}
} else
file->private_data = iter;
out_unlock:
mutex_unlock(&ops->func_hash->regex_lock);
out:
if (ret) {
kfree(iter);
if (tr)
trace_array_put(tr);
}
return ret;
}
static int
ftrace_filter_open(struct inode *inode, struct file *file)
{
struct ftrace_ops *ops = inode->i_private;
/* Checks for tracefs lockdown */
return ftrace_regex_open(ops,
FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES,
inode, file);
}
static int
ftrace_notrace_open(struct inode *inode, struct file *file)
{
struct ftrace_ops *ops = inode->i_private;
/* Checks for tracefs lockdown */
return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE,
inode, file);
}
/* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */
struct ftrace_glob {
char *search;
unsigned len;
int type;
};
/*
* If symbols in an architecture don't correspond exactly to the user-visible
* name of what they represent, it is possible to define this function to
* perform the necessary adjustments.
*/
char * __weak arch_ftrace_match_adjust(char *str, const char *search)
{
return str;
}
static int ftrace_match(char *str, struct ftrace_glob *g)
{
int matched = 0;
int slen;
str = arch_ftrace_match_adjust(str, g->search);
switch (g->type) {
case MATCH_FULL:
if (strcmp(str, g->search) == 0)
matched = 1;
break;
case MATCH_FRONT_ONLY:
if (strncmp(str, g->search, g->len) == 0)
matched = 1;
break;
case MATCH_MIDDLE_ONLY:
if (strstr(str, g->search))
matched = 1;
break;
case MATCH_END_ONLY:
slen = strlen(str);
if (slen >= g->len &&
memcmp(str + slen - g->len, g->search, g->len) == 0)
matched = 1;
break;
case MATCH_GLOB:
if (glob_match(g->search, str))
matched = 1;
break;
}
return matched;
}
static int
enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter)
{
struct ftrace_func_entry *entry;
int ret = 0;
entry = ftrace_lookup_ip(hash, rec->ip);
if (clear_filter) {
/* Do nothing if it doesn't exist */
if (!entry)
return 0;
free_hash_entry(hash, entry);
} else {
/* Do nothing if it exists */
if (entry)
return 0;
ret = add_hash_entry(hash, rec->ip);
}
return ret;
}
static int
add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g,
int clear_filter)
{
long index = simple_strtoul(func_g->search, NULL, 0);
struct ftrace_page *pg;
struct dyn_ftrace *rec;
/* The index starts at 1 */
if (--index < 0)
return 0;
do_for_each_ftrace_rec(pg, rec) {
if (pg->index <= index) {
index -= pg->index;
/* this is a double loop, break goes to the next page */
break;
}
rec = &pg->records[index];
enter_record(hash, rec, clear_filter);
return 1;
} while_for_each_ftrace_rec();
return 0;
}
static int
ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g,
struct ftrace_glob *mod_g, int exclude_mod)
{
char str[KSYM_SYMBOL_LEN];
char *modname;
kallsyms_lookup(rec->ip, NULL, NULL, &modname, str);
if (mod_g) {
int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0;
/* blank module name to match all modules */
if (!mod_g->len) {
/* blank module globbing: modname xor exclude_mod */
if (!exclude_mod != !modname)
goto func_match;
return 0;
}
/*
* exclude_mod is set to trace everything but the given
* module. If it is set and the module matches, then
* return 0. If it is not set, and the module doesn't match
* also return 0. Otherwise, check the function to see if
* that matches.
*/
if (!mod_matches == !exclude_mod)
return 0;
func_match:
/* blank search means to match all funcs in the mod */
if (!func_g->len)
return 1;
}
return ftrace_match(str, func_g);
}
static int
match_records(struct ftrace_hash *hash, char *func, int len, char *mod)
{
struct ftrace_page *pg;
struct dyn_ftrace *rec;
struct ftrace_glob func_g = { .type = MATCH_FULL };
struct ftrace_glob mod_g = { .type = MATCH_FULL };
struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL;
int exclude_mod = 0;
int found = 0;
int ret;
int clear_filter = 0;
if (func) {
func_g.type = filter_parse_regex(func, len, &func_g.search,
&clear_filter);
func_g.len = strlen(func_g.search);
}
if (mod) {
mod_g.type = filter_parse_regex(mod, strlen(mod),
&mod_g.search, &exclude_mod);
mod_g.len = strlen(mod_g.search);
}
mutex_lock(&ftrace_lock);
if (unlikely(ftrace_disabled))
goto out_unlock;
if (func_g.type == MATCH_INDEX) {
found = add_rec_by_index(hash, &func_g, clear_filter);
goto out_unlock;
}
do_for_each_ftrace_rec(pg, rec) {
if (rec->flags & FTRACE_FL_DISABLED)
continue;
if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) {
ret = enter_record(hash, rec, clear_filter);
if (ret < 0) {
found = ret;
goto out_unlock;
}
found = 1;
}
} while_for_each_ftrace_rec();
out_unlock:
mutex_unlock(&ftrace_lock);
return found;
}
static int
ftrace_match_records(struct ftrace_hash *hash, char *buff, int len)
{
return match_records(hash, buff, len, NULL);
}
static void ftrace_ops_update_code(struct ftrace_ops *ops,
struct ftrace_ops_hash *old_hash)
{
struct ftrace_ops *op;
if (!ftrace_enabled)
return;
if (ops->flags & FTRACE_OPS_FL_ENABLED) {
ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash);
return;
}
/*
* If this is the shared global_ops filter, then we need to
* check if there is another ops that shares it, is enabled.
* If so, we still need to run the modify code.
*/
if (ops->func_hash != &global_ops.local_hash)
return;
do_for_each_ftrace_op(op, ftrace_ops_list) {
if (op->func_hash == &global_ops.local_hash &&
op->flags & FTRACE_OPS_FL_ENABLED) {
ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash);
/* Only need to do this once */
return;
}
} while_for_each_ftrace_op(op);
}
static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops,
struct ftrace_hash **orig_hash,
struct ftrace_hash *hash,
int enable)
{
struct ftrace_ops_hash old_hash_ops;
struct ftrace_hash *old_hash;
int ret;
old_hash = *orig_hash;
old_hash_ops.filter_hash = ops->func_hash->filter_hash;
old_hash_ops.notrace_hash = ops->func_hash->notrace_hash;
ret = ftrace_hash_move(ops, enable, orig_hash, hash);
if (!ret) {
ftrace_ops_update_code(ops, &old_hash_ops);
free_ftrace_hash_rcu(old_hash);
}
return ret;
}
static bool module_exists(const char *module)
{
/* All modules have the symbol __this_module */
static const char this_mod[] = "__this_module";
char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2];
unsigned long val;
int n;
n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod);
if (n > sizeof(modname) - 1)
return false;
val = module_kallsyms_lookup_name(modname);
return val != 0;
}
static int cache_mod(struct trace_array *tr,
const char *func, char *module, int enable)
{
struct ftrace_mod_load *ftrace_mod, *n;
struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace;
int ret;
mutex_lock(&ftrace_lock);
/* We do not cache inverse filters */
if (func[0] == '!') {
func++;
ret = -EINVAL;
/* Look to remove this hash */
list_for_each_entry_safe(ftrace_mod, n, head, list) {
if (strcmp(ftrace_mod->module, module) != 0)
continue;
/* no func matches all */
if (strcmp(func, "*") == 0 ||
(ftrace_mod->func &&
strcmp(ftrace_mod->func, func) == 0)) {
ret = 0;
free_ftrace_mod(ftrace_mod);
continue;
}
}
goto out;
}
ret = -EINVAL;
/* We only care about modules that have not been loaded yet */
if (module_exists(module))
goto out;
/* Save this string off, and execute it when the module is loaded */
ret = ftrace_add_mod(tr, func, module, enable);
out:
mutex_unlock(&ftrace_lock);
return ret;
}
static int
ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
int reset, int enable);
#ifdef CONFIG_MODULES
static void process_mod_list(struct list_head *head, struct ftrace_ops *ops,
char *mod, bool enable)
{
struct ftrace_mod_load *ftrace_mod, *n;
struct ftrace_hash **orig_hash, *new_hash;
LIST_HEAD(process_mods);
char *func;
mutex_lock(&ops->func_hash->regex_lock);
if (enable)
orig_hash = &ops->func_hash->filter_hash;
else
orig_hash = &ops->func_hash->notrace_hash;
new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS,
*orig_hash);
if (!new_hash)
goto out; /* warn? */
mutex_lock(&ftrace_lock);
list_for_each_entry_safe(ftrace_mod, n, head, list) {
if (strcmp(ftrace_mod->module, mod) != 0)
continue;
if (ftrace_mod->func)
func = kstrdup(ftrace_mod->func, GFP_KERNEL);
else
func = kstrdup("*", GFP_KERNEL);
if (!func) /* warn? */
continue;
list_del(&ftrace_mod->list);
list_add(&ftrace_mod->list, &process_mods);
/* Use the newly allocated func, as it may be "*" */
kfree(ftrace_mod->func);
ftrace_mod->func = func;
}
mutex_unlock(&ftrace_lock);
list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) {
func = ftrace_mod->func;
/* Grabs ftrace_lock, which is why we have this extra step */
match_records(new_hash, func, strlen(func), mod);
free_ftrace_mod(ftrace_mod);
}
if (enable && list_empty(head))
new_hash->flags &= ~FTRACE_HASH_FL_MOD;
mutex_lock(&ftrace_lock);
ftrace_hash_move_and_update_ops(ops, orig_hash,
new_hash, enable);
mutex_unlock(&ftrace_lock);
out:
mutex_unlock(&ops->func_hash->regex_lock);
free_ftrace_hash(new_hash);
}
static void process_cached_mods(const char *mod_name)
{
struct trace_array *tr;
char *mod;
mod = kstrdup(mod_name, GFP_KERNEL);
if (!mod)
return;
mutex_lock(&trace_types_lock);
list_for_each_entry(tr, &ftrace_trace_arrays, list) {
if (!list_empty(&tr->mod_trace))
process_mod_list(&tr->mod_trace, tr->ops, mod, true);
if (!list_empty(&tr->mod_notrace))
process_mod_list(&tr->mod_notrace, tr->ops, mod, false);
}
mutex_unlock(&trace_types_lock);
kfree(mod);
}
#endif
/*
* We register the module command as a template to show others how
* to register the a command as well.
*/
static int
ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash,
char *func_orig, char *cmd, char *module, int enable)
{
char *func;
int ret;
/* match_records() modifies func, and we need the original */
func = kstrdup(func_orig, GFP_KERNEL);
if (!func)
return -ENOMEM;
/*
* cmd == 'mod' because we only registered this func
* for the 'mod' ftrace_func_command.
* But if you register one func with multiple commands,
* you can tell which command was used by the cmd
* parameter.
*/
ret = match_records(hash, func, strlen(func), module);
kfree(func);
if (!ret)
return cache_mod(tr, func_orig, module, enable);
if (ret < 0)
return ret;
return 0;
}
static struct ftrace_func_command ftrace_mod_cmd = {
.name = "mod",
.func = ftrace_mod_callback,
};
static int __init ftrace_mod_cmd_init(void)
{
return register_ftrace_command(&ftrace_mod_cmd);
}
core_initcall(ftrace_mod_cmd_init);
static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip,
struct ftrace_ops *op, struct ftrace_regs *fregs)
{
struct ftrace_probe_ops *probe_ops;
struct ftrace_func_probe *probe;
probe = container_of(op, struct ftrace_func_probe, ops);
probe_ops = probe->probe_ops;
/*
* Disable preemption for these calls to prevent a RCU grace
* period. This syncs the hash iteration and freeing of items
* on the hash. rcu_read_lock is too dangerous here.
*/
preempt_disable_notrace();
probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data);
preempt_enable_notrace();
}
struct ftrace_func_map {
struct ftrace_func_entry entry;
void *data;
};
struct ftrace_func_mapper {
struct ftrace_hash hash;
};
/**
* allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper
*
* Returns a ftrace_func_mapper descriptor that can be used to map ips to data.
*/
struct ftrace_func_mapper *allocate_ftrace_func_mapper(void)
{
struct ftrace_hash *hash;
/*
* The mapper is simply a ftrace_hash, but since the entries
* in the hash are not ftrace_func_entry type, we define it
* as a separate structure.
*/
hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
return (struct ftrace_func_mapper *)hash;
}
/**
* ftrace_func_mapper_find_ip - Find some data mapped to an ip
* @mapper: The mapper that has the ip maps
* @ip: the instruction pointer to find the data for
*
* Returns the data mapped to @ip if found otherwise NULL. The return
* is actually the address of the mapper data pointer. The address is
* returned for use cases where the data is no bigger than a long, and
* the user can use the data pointer as its data instead of having to
* allocate more memory for the reference.
*/
void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper,
unsigned long ip)
{
struct ftrace_func_entry *entry;
struct ftrace_func_map *map;
entry = ftrace_lookup_ip(&mapper->hash, ip);
if (!entry)
return NULL;
map = (struct ftrace_func_map *)entry;
return &map->data;
}
/**
* ftrace_func_mapper_add_ip - Map some data to an ip
* @mapper: The mapper that has the ip maps
* @ip: The instruction pointer address to map @data to
* @data: The data to map to @ip
*
* Returns 0 on success otherwise an error.
*/
int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper,
unsigned long ip, void *data)
{
struct ftrace_func_entry *entry;
struct ftrace_func_map *map;
entry = ftrace_lookup_ip(&mapper->hash, ip);
if (entry)
return -EBUSY;
map = kmalloc(sizeof(*map), GFP_KERNEL);
if (!map)
return -ENOMEM;
map->entry.ip = ip;
map->data = data;
__add_hash_entry(&mapper->hash, &map->entry);
return 0;
}
/**
* ftrace_func_mapper_remove_ip - Remove an ip from the mapping
* @mapper: The mapper that has the ip maps
* @ip: The instruction pointer address to remove the data from
*
* Returns the data if it is found, otherwise NULL.
* Note, if the data pointer is used as the data itself, (see
* ftrace_func_mapper_find_ip(), then the return value may be meaningless,
* if the data pointer was set to zero.
*/
void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper,
unsigned long ip)
{
struct ftrace_func_entry *entry;
struct ftrace_func_map *map;
void *data;
entry = ftrace_lookup_ip(&mapper->hash, ip);
if (!entry)
return NULL;
map = (struct ftrace_func_map *)entry;
data = map->data;
remove_hash_entry(&mapper->hash, entry);
kfree(entry);
return data;
}
/**
* free_ftrace_func_mapper - free a mapping of ips and data
* @mapper: The mapper that has the ip maps
* @free_func: A function to be called on each data item.
*
* This is used to free the function mapper. The @free_func is optional
* and can be used if the data needs to be freed as well.
*/
void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper,
ftrace_mapper_func free_func)
{
struct ftrace_func_entry *entry;
struct ftrace_func_map *map;
struct hlist_head *hhd;
int size, i;
if (!mapper)
return;
if (free_func && mapper->hash.count) {
size = 1 << mapper->hash.size_bits;
for (i = 0; i < size; i++) {
hhd = &mapper->hash.buckets[i];
hlist_for_each_entry(entry, hhd, hlist) {
map = (struct ftrace_func_map *)entry;
free_func(map);
}
}
}
free_ftrace_hash(&mapper->hash);
}
static void release_probe(struct ftrace_func_probe *probe)
{
struct ftrace_probe_ops *probe_ops;
mutex_lock(&ftrace_lock);
WARN_ON(probe->ref <= 0);
/* Subtract the ref that was used to protect this instance */
probe->ref--;
if (!probe->ref) {
probe_ops = probe->probe_ops;
/*
* Sending zero as ip tells probe_ops to free
* the probe->data itself
*/
if (probe_ops->free)
probe_ops->free(probe_ops, probe->tr, 0, probe->data);
list_del(&probe->list);
kfree(probe);
}
mutex_unlock(&ftrace_lock);
}
static void acquire_probe_locked(struct ftrace_func_probe *probe)
{
/*
* Add one ref to keep it from being freed when releasing the
* ftrace_lock mutex.
*/
probe->ref++;
}
int
register_ftrace_function_probe(char *glob, struct trace_array *tr,
struct ftrace_probe_ops *probe_ops,
void *data)
{
struct ftrace_func_entry *entry;
struct ftrace_func_probe *probe;
struct ftrace_hash **orig_hash;
struct ftrace_hash *old_hash;
struct ftrace_hash *hash;
int count = 0;
int size;
int ret;
int i;
if (WARN_ON(!tr))
return -EINVAL;
/* We do not support '!' for function probes */
if (WARN_ON(glob[0] == '!'))
return -EINVAL;
mutex_lock(&ftrace_lock);
/* Check if the probe_ops is already registered */
list_for_each_entry(probe, &tr->func_probes, list) {
if (probe->probe_ops == probe_ops)
break;
}
if (&probe->list == &tr->func_probes) {
probe = kzalloc(sizeof(*probe), GFP_KERNEL);
if (!probe) {
mutex_unlock(&ftrace_lock);
return -ENOMEM;
}
probe->probe_ops = probe_ops;
probe->ops.func = function_trace_probe_call;
probe->tr = tr;
ftrace_ops_init(&probe->ops);
list_add(&probe->list, &tr->func_probes);
}
acquire_probe_locked(probe);
mutex_unlock(&ftrace_lock);
/*
* Note, there's a small window here that the func_hash->filter_hash
* may be NULL or empty. Need to be careful when reading the loop.
*/
mutex_lock(&probe->ops.func_hash->regex_lock);
orig_hash = &probe->ops.func_hash->filter_hash;
old_hash = *orig_hash;
hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
if (!hash) {
ret = -ENOMEM;
goto out;
}
ret = ftrace_match_records(hash, glob, strlen(glob));
/* Nothing found? */
if (!ret)
ret = -EINVAL;
if (ret < 0)
goto out;
size = 1 << hash->size_bits;
for (i = 0; i < size; i++) {
hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
if (ftrace_lookup_ip(old_hash, entry->ip))
continue;
/*
* The caller might want to do something special
* for each function we find. We call the callback
* to give the caller an opportunity to do so.
*/
if (probe_ops->init) {
ret = probe_ops->init(probe_ops, tr,
entry->ip, data,
&probe->data);
if (ret < 0) {
if (probe_ops->free && count)
probe_ops->free(probe_ops, tr,
0, probe->data);
probe->data = NULL;
goto out;
}
}
count++;
}
}
mutex_lock(&ftrace_lock);
if (!count) {
/* Nothing was added? */
ret = -EINVAL;
goto out_unlock;
}
ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
hash, 1);
if (ret < 0)
goto err_unlock;
/* One ref for each new function traced */
probe->ref += count;
if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED))
ret = ftrace_startup(&probe->ops, 0);
out_unlock:
mutex_unlock(&ftrace_lock);
if (!ret)
ret = count;
out:
mutex_unlock(&probe->ops.func_hash->regex_lock);
free_ftrace_hash(hash);
release_probe(probe);
return ret;
err_unlock:
if (!probe_ops->free || !count)
goto out_unlock;
/* Failed to do the move, need to call the free functions */
for (i = 0; i < size; i++) {
hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
if (ftrace_lookup_ip(old_hash, entry->ip))
continue;
probe_ops->free(probe_ops, tr, entry->ip, probe->data);
}
}
goto out_unlock;
}
int
unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr,
struct ftrace_probe_ops *probe_ops)
{
struct ftrace_ops_hash old_hash_ops;
struct ftrace_func_entry *entry;
struct ftrace_func_probe *probe;
struct ftrace_glob func_g;
struct ftrace_hash **orig_hash;
struct ftrace_hash *old_hash;
struct ftrace_hash *hash = NULL;
struct hlist_node *tmp;
struct hlist_head hhd;
char str[KSYM_SYMBOL_LEN];
int count = 0;
int i, ret = -ENODEV;
int size;
if (!glob || !strlen(glob) || !strcmp(glob, "*"))
func_g.search = NULL;
else {
int not;
func_g.type = filter_parse_regex(glob, strlen(glob),
&func_g.search, &not);
func_g.len = strlen(func_g.search);
/* we do not support '!' for function probes */
if (WARN_ON(not))
return -EINVAL;
}
mutex_lock(&ftrace_lock);
/* Check if the probe_ops is already registered */
list_for_each_entry(probe, &tr->func_probes, list) {
if (probe->probe_ops == probe_ops)
break;
}
if (&probe->list == &tr->func_probes)
goto err_unlock_ftrace;
ret = -EINVAL;
if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED))
goto err_unlock_ftrace;
acquire_probe_locked(probe);
mutex_unlock(&ftrace_lock);
mutex_lock(&probe->ops.func_hash->regex_lock);
orig_hash = &probe->ops.func_hash->filter_hash;
old_hash = *orig_hash;
if (ftrace_hash_empty(old_hash))
goto out_unlock;
old_hash_ops.filter_hash = old_hash;
/* Probes only have filters */
old_hash_ops.notrace_hash = NULL;
ret = -ENOMEM;
hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
if (!hash)
goto out_unlock;
INIT_HLIST_HEAD(&hhd);
size = 1 << hash->size_bits;
for (i = 0; i < size; i++) {
hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) {
if (func_g.search) {
kallsyms_lookup(entry->ip, NULL, NULL,
NULL, str);
if (!ftrace_match(str, &func_g))
continue;
}
count++;
remove_hash_entry(hash, entry);
hlist_add_head(&entry->hlist, &hhd);
}
}
/* Nothing found? */
if (!count) {
ret = -EINVAL;
goto out_unlock;
}
mutex_lock(&ftrace_lock);
WARN_ON(probe->ref < count);
probe->ref -= count;
if (ftrace_hash_empty(hash))
ftrace_shutdown(&probe->ops, 0);
ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
hash, 1);
/* still need to update the function call sites */
if (ftrace_enabled && !ftrace_hash_empty(hash))
ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS,
&old_hash_ops);
synchronize_rcu();
hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) {
hlist_del(&entry->hlist);
if (probe_ops->free)
probe_ops->free(probe_ops, tr, entry->ip, probe->data);
kfree(entry);
}
mutex_unlock(&ftrace_lock);
out_unlock:
mutex_unlock(&probe->ops.func_hash->regex_lock);
free_ftrace_hash(hash);
release_probe(probe);
return ret;
err_unlock_ftrace:
mutex_unlock(&ftrace_lock);
return ret;
}
void clear_ftrace_function_probes(struct trace_array *tr)
{
struct ftrace_func_probe *probe, *n;
list_for_each_entry_safe(probe, n, &tr->func_probes, list)
unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops);
}
static LIST_HEAD(ftrace_commands);
static DEFINE_MUTEX(ftrace_cmd_mutex);
/*
* Currently we only register ftrace commands from __init, so mark this
* __init too.
*/
__init int register_ftrace_command(struct ftrace_func_command *cmd)
{
struct ftrace_func_command *p;
int ret = 0;
mutex_lock(&ftrace_cmd_mutex);
list_for_each_entry(p, &ftrace_commands, list) {
if (strcmp(cmd->name, p->name) == 0) {
ret = -EBUSY;
goto out_unlock;
}
}
list_add(&cmd->list, &ftrace_commands);
out_unlock:
mutex_unlock(&ftrace_cmd_mutex);
return ret;
}
/*
* Currently we only unregister ftrace commands from __init, so mark
* this __init too.
*/
__init int unregister_ftrace_command(struct ftrace_func_command *cmd)
{
struct ftrace_func_command *p, *n;
int ret = -ENODEV;
mutex_lock(&ftrace_cmd_mutex);
list_for_each_entry_safe(p, n, &ftrace_commands, list) {
if (strcmp(cmd->name, p->name) == 0) {
ret = 0;
list_del_init(&p->list);
goto out_unlock;
}
}
out_unlock:
mutex_unlock(&ftrace_cmd_mutex);
return ret;
}
static int ftrace_process_regex(struct ftrace_iterator *iter,
char *buff, int len, int enable)
{
struct ftrace_hash *hash = iter->hash;
struct trace_array *tr = iter->ops->private;
char *func, *command, *next = buff;
struct ftrace_func_command *p;
int ret = -EINVAL;
func = strsep(&next, ":");
if (!next) {
ret = ftrace_match_records(hash, func, len);
if (!ret)
ret = -EINVAL;
if (ret < 0)
return ret;
return 0;
}
/* command found */
command = strsep(&next, ":");
mutex_lock(&ftrace_cmd_mutex);
list_for_each_entry(p, &ftrace_commands, list) {
if (strcmp(p->name, command) == 0) {
ret = p->func(tr, hash, func, command, next, enable);
goto out_unlock;
}
}
out_unlock:
mutex_unlock(&ftrace_cmd_mutex);
return ret;
}
static ssize_t
ftrace_regex_write(struct file *file, const char __user *ubuf,
size_t cnt, loff_t *ppos, int enable)
{
struct ftrace_iterator *iter;
struct trace_parser *parser;
ssize_t ret, read;
if (!cnt)
return 0;
if (file->f_mode & FMODE_READ) {
struct seq_file *m = file->private_data;
iter = m->private;
} else
iter = file->private_data;
if (unlikely(ftrace_disabled))
return -ENODEV;
/* iter->hash is a local copy, so we don't need regex_lock */
parser = &iter->parser;
read = trace_get_user(parser, ubuf, cnt, ppos);
if (read >= 0 && trace_parser_loaded(parser) &&
!trace_parser_cont(parser)) {
ret = ftrace_process_regex(iter, parser->buffer,
parser->idx, enable);
trace_parser_clear(parser);
if (ret < 0)
goto out;
}
ret = read;
out:
return ret;
}
ssize_t
ftrace_filter_write(struct file *file, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
return ftrace_regex_write(file, ubuf, cnt, ppos, 1);
}
ssize_t
ftrace_notrace_write(struct file *file, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
return ftrace_regex_write(file, ubuf, cnt, ppos, 0);
}
static int
ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove)
{
struct ftrace_func_entry *entry;
if (!ftrace_location(ip))
return -EINVAL;
if (remove) {
entry = ftrace_lookup_ip(hash, ip);
if (!entry)
return -ENOENT;
free_hash_entry(hash, entry);
return 0;
}
return add_hash_entry(hash, ip);
}
static int
ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len,
unsigned long ip, int remove, int reset, int enable)
{
struct ftrace_hash **orig_hash;
struct ftrace_hash *hash;
int ret;
if (unlikely(ftrace_disabled))
return -ENODEV;
mutex_lock(&ops->func_hash->regex_lock);
if (enable)
orig_hash = &ops->func_hash->filter_hash;
else
orig_hash = &ops->func_hash->notrace_hash;
if (reset)
hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
else
hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
if (!hash) {
ret = -ENOMEM;
goto out_regex_unlock;
}
if (buf && !ftrace_match_records(hash, buf, len)) {
ret = -EINVAL;
goto out_regex_unlock;
}
if (ip) {
ret = ftrace_match_addr(hash, ip, remove);
if (ret < 0)
goto out_regex_unlock;
}
mutex_lock(&ftrace_lock);
ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable);
mutex_unlock(&ftrace_lock);
out_regex_unlock:
mutex_unlock(&ops->func_hash->regex_lock);
free_ftrace_hash(hash);
return ret;
}
static int
ftrace_set_addr(struct ftrace_ops *ops, unsigned long ip, int remove,
int reset, int enable)
{
return ftrace_set_hash(ops, NULL, 0, ip, remove, reset, enable);
}
#ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
struct ftrace_direct_func {
struct list_head next;
unsigned long addr;
int count;
};
static LIST_HEAD(ftrace_direct_funcs);
/**
* ftrace_find_direct_func - test an address if it is a registered direct caller
* @addr: The address of a registered direct caller
*
* This searches to see if a ftrace direct caller has been registered
* at a specific address, and if so, it returns a descriptor for it.
*
* This can be used by architecture code to see if an address is
* a direct caller (trampoline) attached to a fentry/mcount location.
* This is useful for the function_graph tracer, as it may need to
* do adjustments if it traced a location that also has a direct
* trampoline attached to it.
*/
struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr)
{
struct ftrace_direct_func *entry;
bool found = false;
/* May be called by fgraph trampoline (protected by rcu tasks) */
list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) {
if (entry->addr == addr) {
found = true;
break;
}
}
if (found)
return entry;
return NULL;
}
/**
* register_ftrace_direct - Call a custom trampoline directly
* @ip: The address of the nop at the beginning of a function
* @addr: The address of the trampoline to call at @ip
*
* This is used to connect a direct call from the nop location (@ip)
* at the start of ftrace traced functions. The location that it calls
* (@addr) must be able to handle a direct call, and save the parameters
* of the function being traced, and restore them (or inject new ones
* if needed), before returning.
*
* Returns:
* 0 on success
* -EBUSY - Another direct function is already attached (there can be only one)
* -ENODEV - @ip does not point to a ftrace nop location (or not supported)
* -ENOMEM - There was an allocation failure.
*/
int register_ftrace_direct(unsigned long ip, unsigned long addr)
{
struct ftrace_direct_func *direct;
struct ftrace_func_entry *entry;
struct ftrace_hash *free_hash = NULL;
struct dyn_ftrace *rec;
int ret = -EBUSY;
mutex_lock(&direct_mutex);
/* See if there's a direct function at @ip already */
if (ftrace_find_rec_direct(ip))
goto out_unlock;
ret = -ENODEV;
rec = lookup_rec(ip, ip);
if (!rec)
goto out_unlock;
/*
* Check if the rec says it has a direct call but we didn't
* find one earlier?
*/
if (WARN_ON(rec->flags & FTRACE_FL_DIRECT))
goto out_unlock;
/* Make sure the ip points to the exact record */
if (ip != rec->ip) {
ip = rec->ip;
/* Need to check this ip for a direct. */
if (ftrace_find_rec_direct(ip))
goto out_unlock;
}
ret = -ENOMEM;
if (ftrace_hash_empty(direct_functions) ||
direct_functions->count > 2 * (1 << direct_functions->size_bits)) {
struct ftrace_hash *new_hash;
int size = ftrace_hash_empty(direct_functions) ? 0 :
direct_functions->count + 1;
if (size < 32)
size = 32;
new_hash = dup_hash(direct_functions, size);
if (!new_hash)
goto out_unlock;
free_hash = direct_functions;
direct_functions = new_hash;
}
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
goto out_unlock;
direct = ftrace_find_direct_func(addr);
if (!direct) {
direct = kmalloc(sizeof(*direct), GFP_KERNEL);
if (!direct) {
kfree(entry);
goto out_unlock;
}
direct->addr = addr;
direct->count = 0;
list_add_rcu(&direct->next, &ftrace_direct_funcs);
ftrace_direct_func_count++;
}
entry->ip = ip;
entry->direct = addr;
__add_hash_entry(direct_functions, entry);
ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0);
if (ret)
remove_hash_entry(direct_functions, entry);
if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) {
ret = register_ftrace_function(&direct_ops);
if (ret)
ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
}
if (ret) {
kfree(entry);
if (!direct->count) {
list_del_rcu(&direct->next);
synchronize_rcu_tasks();
kfree(direct);
if (free_hash)
free_ftrace_hash(free_hash);
free_hash = NULL;
ftrace_direct_func_count--;
}
} else {
direct->count++;
}
out_unlock:
mutex_unlock(&direct_mutex);
if (free_hash) {
synchronize_rcu_tasks();
free_ftrace_hash(free_hash);
}
return ret;
}
EXPORT_SYMBOL_GPL(register_ftrace_direct);
static struct ftrace_func_entry *find_direct_entry(unsigned long *ip,
struct dyn_ftrace **recp)
{
struct ftrace_func_entry *entry;
struct dyn_ftrace *rec;
rec = lookup_rec(*ip, *ip);
if (!rec)
return NULL;
entry = __ftrace_lookup_ip(direct_functions, rec->ip);
if (!entry) {
WARN_ON(rec->flags & FTRACE_FL_DIRECT);
return NULL;
}
WARN_ON(!(rec->flags & FTRACE_FL_DIRECT));
/* Passed in ip just needs to be on the call site */
*ip = rec->ip;
if (recp)
*recp = rec;
return entry;
}
int unregister_ftrace_direct(unsigned long ip, unsigned long addr)
{
struct ftrace_direct_func *direct;
struct ftrace_func_entry *entry;
int ret = -ENODEV;
mutex_lock(&direct_mutex);
entry = find_direct_entry(&ip, NULL);
if (!entry)
goto out_unlock;
if (direct_functions->count == 1)
unregister_ftrace_function(&direct_ops);
ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
WARN_ON(ret);
remove_hash_entry(direct_functions, entry);
direct = ftrace_find_direct_func(addr);
if (!WARN_ON(!direct)) {
/* This is the good path (see the ! before WARN) */
direct->count--;
WARN_ON(direct->count < 0);
if (!direct->count) {
list_del_rcu(&direct->next);
synchronize_rcu_tasks();
kfree(direct);
kfree(entry);
ftrace_direct_func_count--;
}
}
out_unlock:
mutex_unlock(&direct_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(unregister_ftrace_direct);
static struct ftrace_ops stub_ops = {
.func = ftrace_stub,
};
/**
* ftrace_modify_direct_caller - modify ftrace nop directly
* @entry: The ftrace hash entry of the direct helper for @rec
* @rec: The record representing the function site to patch
* @old_addr: The location that the site at @rec->ip currently calls
* @new_addr: The location that the site at @rec->ip should call
*
* An architecture may overwrite this function to optimize the
* changing of the direct callback on an ftrace nop location.
* This is called with the ftrace_lock mutex held, and no other
* ftrace callbacks are on the associated record (@rec). Thus,
* it is safe to modify the ftrace record, where it should be
* currently calling @old_addr directly, to call @new_addr.
*
* Safety checks should be made to make sure that the code at
* @rec->ip is currently calling @old_addr. And this must
* also update entry->direct to @new_addr.
*/
int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry,
struct dyn_ftrace *rec,
unsigned long old_addr,
unsigned long new_addr)
{
unsigned long ip = rec->ip;
int ret;
/*
* The ftrace_lock was used to determine if the record
* had more than one registered user to it. If it did,
* we needed to prevent that from changing to do the quick
* switch. But if it did not (only a direct caller was attached)
* then this function is called. But this function can deal
* with attached callers to the rec that we care about, and
* since this function uses standard ftrace calls that take
* the ftrace_lock mutex, we need to release it.
*/
mutex_unlock(&ftrace_lock);
/*
* By setting a stub function at the same address, we force
* the code to call the iterator and the direct_ops helper.
* This means that @ip does not call the direct call, and
* we can simply modify it.
*/
ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0);
if (ret)
goto out_lock;
ret = register_ftrace_function(&stub_ops);
if (ret) {
ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
goto out_lock;
}
entry->direct = new_addr;
/*
* By removing the stub, we put back the direct call, calling
* the @new_addr.
*/
unregister_ftrace_function(&stub_ops);
ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
out_lock:
mutex_lock(&ftrace_lock);
return ret;
}
/**
* modify_ftrace_direct - Modify an existing direct call to call something else
* @ip: The instruction pointer to modify
* @old_addr: The address that the current @ip calls directly
* @new_addr: The address that the @ip should call
*
* This modifies a ftrace direct caller at an instruction pointer without
* having to disable it first. The direct call will switch over to the
* @new_addr without missing anything.
*
* Returns: zero on success. Non zero on error, which includes:
* -ENODEV : the @ip given has no direct caller attached
* -EINVAL : the @old_addr does not match the current direct caller
*/
int modify_ftrace_direct(unsigned long ip,
unsigned long old_addr, unsigned long new_addr)
{
struct ftrace_func_entry *entry;
struct dyn_ftrace *rec;
int ret = -ENODEV;
mutex_lock(&direct_mutex);
mutex_lock(&ftrace_lock);
entry = find_direct_entry(&ip, &rec);
if (!entry)
goto out_unlock;
ret = -EINVAL;
if (entry->direct != old_addr)
goto out_unlock;
/*
* If there's no other ftrace callback on the rec->ip location,
* then it can be changed directly by the architecture.
* If there is another caller, then we just need to change the
* direct caller helper to point to @new_addr.
*/
if (ftrace_rec_count(rec) == 1) {
ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr);
} else {
entry->direct = new_addr;
ret = 0;
}
out_unlock:
mutex_unlock(&ftrace_lock);
mutex_unlock(&direct_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(modify_ftrace_direct);
#endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
/**
* ftrace_set_filter_ip - set a function to filter on in ftrace by address
* @ops - the ops to set the filter with
* @ip - the address to add to or remove from the filter.
* @remove - non zero to remove the ip from the filter
* @reset - non zero to reset all filters before applying this filter.
*
* Filters denote which functions should be enabled when tracing is enabled
* If @ip is NULL, it failes to update filter.
*/
int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip,
int remove, int reset)
{
ftrace_ops_init(ops);
return ftrace_set_addr(ops, ip, remove, reset, 1);
}
EXPORT_SYMBOL_GPL(ftrace_set_filter_ip);
/**
* ftrace_ops_set_global_filter - setup ops to use global filters
* @ops - the ops which will use the global filters
*
* ftrace users who need global function trace filtering should call this.
* It can set the global filter only if ops were not initialized before.
*/
void ftrace_ops_set_global_filter(struct ftrace_ops *ops)
{
if (ops->flags & FTRACE_OPS_FL_INITIALIZED)
return;
ftrace_ops_init(ops);
ops->func_hash = &global_ops.local_hash;
}
EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter);
static int
ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
int reset, int enable)
{
return ftrace_set_hash(ops, buf, len, 0, 0, reset, enable);
}
/**
* ftrace_set_filter - set a function to filter on in ftrace
* @ops - the ops to set the filter with
* @buf - the string that holds the function filter text.
* @len - the length of the string.
* @reset - non zero to reset all filters before applying this filter.
*
* Filters denote which functions should be enabled when tracing is enabled.
* If @buf is NULL and reset is set, all functions will be enabled for tracing.
*/
int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
int len, int reset)
{
ftrace_ops_init(ops);
return ftrace_set_regex(ops, buf, len, reset, 1);
}
EXPORT_SYMBOL_GPL(ftrace_set_filter);
/**
* ftrace_set_notrace - set a function to not trace in ftrace
* @ops - the ops to set the notrace filter with
* @buf - the string that holds the function notrace text.
* @len - the length of the string.
* @reset - non zero to reset all filters before applying this filter.
*
* Notrace Filters denote which functions should not be enabled when tracing
* is enabled. If @buf is NULL and reset is set, all functions will be enabled
* for tracing.
*/
int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
int len, int reset)
{
ftrace_ops_init(ops);
return ftrace_set_regex(ops, buf, len, reset, 0);
}
EXPORT_SYMBOL_GPL(ftrace_set_notrace);
/**
* ftrace_set_global_filter - set a function to filter on with global tracers
* @buf - the string that holds the function filter text.
* @len - the length of the string.
* @reset - non zero to reset all filters before applying this filter.
*
* Filters denote which functions should be enabled when tracing is enabled.
* If @buf is NULL and reset is set, all functions will be enabled for tracing.
*/
void ftrace_set_global_filter(unsigned char *buf, int len, int reset)
{
ftrace_set_regex(&global_ops, buf, len, reset, 1);
}
EXPORT_SYMBOL_GPL(ftrace_set_global_filter);
/**
* ftrace_set_global_notrace - set a function to not trace with global tracers
* @buf - the string that holds the function notrace text.
* @len - the length of the string.
* @reset - non zero to reset all filters before applying this filter.
*
* Notrace Filters denote which functions should not be enabled when tracing
* is enabled. If @buf is NULL and reset is set, all functions will be enabled
* for tracing.
*/
void ftrace_set_global_notrace(unsigned char *buf, int len, int reset)
{
ftrace_set_regex(&global_ops, buf, len, reset, 0);
}
EXPORT_SYMBOL_GPL(ftrace_set_global_notrace);
/*
* command line interface to allow users to set filters on boot up.
*/
#define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE
static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata;
/* Used by function selftest to not test if filter is set */
bool ftrace_filter_param __initdata;
static int __init set_ftrace_notrace(char *str)
{
ftrace_filter_param = true;
strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE);
return 1;
}
__setup("ftrace_notrace=", set_ftrace_notrace);
static int __init set_ftrace_filter(char *str)
{
ftrace_filter_param = true;
strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE);
return 1;
}
__setup("ftrace_filter=", set_ftrace_filter);
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata;
static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer);
static int __init set_graph_function(char *str)
{
strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE);
return 1;
}
__setup("ftrace_graph_filter=", set_graph_function);
static int __init set_graph_notrace_function(char *str)
{
strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE);
return 1;
}
__setup("ftrace_graph_notrace=", set_graph_notrace_function);
static int __init set_graph_max_depth_function(char *str)
{
if (!str)
return 0;
fgraph_max_depth = simple_strtoul(str, NULL, 0);
return 1;
}
__setup("ftrace_graph_max_depth=", set_graph_max_depth_function);
static void __init set_ftrace_early_graph(char *buf, int enable)
{
int ret;
char *func;
struct ftrace_hash *hash;
hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
if (MEM_FAIL(!hash, "Failed to allocate hash\n"))
return;
while (buf) {
func = strsep(&buf, ",");
/* we allow only one expression at a time */
ret = ftrace_graph_set_hash(hash, func);
if (ret)
printk(KERN_DEBUG "ftrace: function %s not "
"traceable\n", func);
}
if (enable)
ftrace_graph_hash = hash;
else
ftrace_graph_notrace_hash = hash;
}
#endif /* CONFIG_FUNCTION_GRAPH_TRACER */
void __init
ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable)
{
char *func;
ftrace_ops_init(ops);
while (buf) {
func = strsep(&buf, ",");
ftrace_set_regex(ops, func, strlen(func), 0, enable);
}
}
static void __init set_ftrace_early_filters(void)
{
if (ftrace_filter_buf[0])
ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1);
if (ftrace_notrace_buf[0])
ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0);
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
if (ftrace_graph_buf[0])
set_ftrace_early_graph(ftrace_graph_buf, 1);
if (ftrace_graph_notrace_buf[0])
set_ftrace_early_graph(ftrace_graph_notrace_buf, 0);
#endif /* CONFIG_FUNCTION_GRAPH_TRACER */
}
int ftrace_regex_release(struct inode *inode, struct file *file)
{
struct seq_file *m = (struct seq_file *)file->private_data;
struct ftrace_iterator *iter;
struct ftrace_hash **orig_hash;
struct trace_parser *parser;
int filter_hash;
if (file->f_mode & FMODE_READ) {
iter = m->private;
seq_release(inode, file);
} else
iter = file->private_data;
parser = &iter->parser;
if (trace_parser_loaded(parser)) {
ftrace_match_records(iter->hash, parser->buffer, parser->idx);
}
trace_parser_put(parser);
mutex_lock(&iter->ops->func_hash->regex_lock);
if (file->f_mode & FMODE_WRITE) {
filter_hash = !!(iter->flags & FTRACE_ITER_FILTER);
if (filter_hash) {
orig_hash = &iter->ops->func_hash->filter_hash;
if (iter->tr && !list_empty(&iter->tr->mod_trace))
iter->hash->flags |= FTRACE_HASH_FL_MOD;
} else
orig_hash = &iter->ops->func_hash->notrace_hash;
mutex_lock(&ftrace_lock);
ftrace_hash_move_and_update_ops(iter->ops, orig_hash,
iter->hash, filter_hash);
mutex_unlock(&ftrace_lock);
} else {
/* For read only, the hash is the ops hash */
iter->hash = NULL;
}
mutex_unlock(&iter->ops->func_hash->regex_lock);
free_ftrace_hash(iter->hash);
if (iter->tr)
trace_array_put(iter->tr);
kfree(iter);
return 0;
}
static const struct file_operations ftrace_avail_fops = {
.open = ftrace_avail_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private,
};
static const struct file_operations ftrace_enabled_fops = {
.open = ftrace_enabled_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private,
};
static const struct file_operations ftrace_filter_fops = {
.open = ftrace_filter_open,
.read = seq_read,
.write = ftrace_filter_write,
.llseek = tracing_lseek,
.release = ftrace_regex_release,
};
static const struct file_operations ftrace_notrace_fops = {
.open = ftrace_notrace_open,
.read = seq_read,
.write = ftrace_notrace_write,
.llseek = tracing_lseek,
.release = ftrace_regex_release,
};
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
static DEFINE_MUTEX(graph_lock);
struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH;
struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH;
enum graph_filter_type {
GRAPH_FILTER_NOTRACE = 0,
GRAPH_FILTER_FUNCTION,
};
#define FTRACE_GRAPH_EMPTY ((void *)1)
struct ftrace_graph_data {
struct ftrace_hash *hash;
struct ftrace_func_entry *entry;
int idx; /* for hash table iteration */
enum graph_filter_type type;
struct ftrace_hash *new_hash;
const struct seq_operations *seq_ops;
struct trace_parser parser;
};
static void *
__g_next(struct seq_file *m, loff_t *pos)
{
struct ftrace_graph_data *fgd = m->private;
struct ftrace_func_entry *entry = fgd->entry;
struct hlist_head *head;
int i, idx = fgd->idx;
if (*pos >= fgd->hash->count)
return NULL;
if (entry) {
hlist_for_each_entry_continue(entry, hlist) {
fgd->entry = entry;
return entry;
}
idx++;
}
for (i = idx; i < 1 << fgd->hash->size_bits; i++) {
head = &fgd->hash->buckets[i];
hlist_for_each_entry(entry, head, hlist) {
fgd->entry = entry;
fgd->idx = i;
return entry;
}
}
return NULL;
}
static void *
g_next(struct seq_file *m, void *v, loff_t *pos)
{
(*pos)++;
return __g_next(m, pos);
}
static void *g_start(struct seq_file *m, loff_t *pos)
{
struct ftrace_graph_data *fgd = m->private;
mutex_lock(&graph_lock);
if (fgd->type == GRAPH_FILTER_FUNCTION)
fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
lockdep_is_held(&graph_lock));
else
fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
lockdep_is_held(&graph_lock));
/* Nothing, tell g_show to print all functions are enabled */
if (ftrace_hash_empty(fgd->hash) && !*pos)
return FTRACE_GRAPH_EMPTY;
fgd->idx = 0;
fgd->entry = NULL;
return __g_next(m, pos);
}
static void g_stop(struct seq_file *m, void *p)
{
mutex_unlock(&graph_lock);
}
static int g_show(struct seq_file *m, void *v)
{
struct ftrace_func_entry *entry = v;
if (!entry)
return 0;
if (entry == FTRACE_GRAPH_EMPTY) {
struct ftrace_graph_data *fgd = m->private;
if (fgd->type == GRAPH_FILTER_FUNCTION)
seq_puts(m, "#### all functions enabled ####\n");
else
seq_puts(m, "#### no functions disabled ####\n");
return 0;
}
seq_printf(m, "%ps\n", (void *)entry->ip);
return 0;
}
static const struct seq_operations ftrace_graph_seq_ops = {
.start = g_start,
.next = g_next,
.stop = g_stop,
.show = g_show,
};
static int
__ftrace_graph_open(struct inode *inode, struct file *file,
struct ftrace_graph_data *fgd)
{
int ret;
struct ftrace_hash *new_hash = NULL;
ret = security_locked_down(LOCKDOWN_TRACEFS);
if (ret)
return ret;
if (file->f_mode & FMODE_WRITE) {
const int size_bits = FTRACE_HASH_DEFAULT_BITS;
if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX))
return -ENOMEM;
if (file->f_flags & O_TRUNC)
new_hash = alloc_ftrace_hash(size_bits);
else
new_hash = alloc_and_copy_ftrace_hash(size_bits,
fgd->hash);
if (!new_hash) {
ret = -ENOMEM;
goto out;
}
}
if (file->f_mode & FMODE_READ) {
ret = seq_open(file, &ftrace_graph_seq_ops);
if (!ret) {
struct seq_file *m = file->private_data;
m->private = fgd;
} else {
/* Failed */
free_ftrace_hash(new_hash);
new_hash = NULL;
}
} else
file->private_data = fgd;
out:
if (ret < 0 && file->f_mode & FMODE_WRITE)
trace_parser_put(&fgd->parser);
fgd->new_hash = new_hash;
/*
* All uses of fgd->hash must be taken with the graph_lock
* held. The graph_lock is going to be released, so force
* fgd->hash to be reinitialized when it is taken again.
*/
fgd->hash = NULL;
return ret;
}
static int
ftrace_graph_open(struct inode *inode, struct file *file)
{
struct ftrace_graph_data *fgd;
int ret;
if (unlikely(ftrace_disabled))
return -ENODEV;
fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
if (fgd == NULL)
return -ENOMEM;
mutex_lock(&graph_lock);
fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
lockdep_is_held(&graph_lock));
fgd->type = GRAPH_FILTER_FUNCTION;
fgd->seq_ops = &ftrace_graph_seq_ops;
ret = __ftrace_graph_open(inode, file, fgd);
if (ret < 0)
kfree(fgd);
mutex_unlock(&graph_lock);
return ret;
}
static int
ftrace_graph_notrace_open(struct inode *inode, struct file *file)
{
struct ftrace_graph_data *fgd;
int ret;
if (unlikely(ftrace_disabled))
return -ENODEV;
fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
if (fgd == NULL)
return -ENOMEM;
mutex_lock(&graph_lock);
fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
lockdep_is_held(&graph_lock));
fgd->type = GRAPH_FILTER_NOTRACE;
fgd->seq_ops = &ftrace_graph_seq_ops;
ret = __ftrace_graph_open(inode, file, fgd);
if (ret < 0)
kfree(fgd);
mutex_unlock(&graph_lock);
return ret;
}
static int
ftrace_graph_release(struct inode *inode, struct file *file)
{
struct ftrace_graph_data *fgd;
struct ftrace_hash *old_hash, *new_hash;
struct trace_parser *parser;
int ret = 0;
if (file->f_mode & FMODE_READ) {
struct seq_file *m = file->private_data;
fgd = m->private;
seq_release(inode, file);
} else {
fgd = file->private_data;
}
if (file->f_mode & FMODE_WRITE) {
parser = &fgd->parser;
if (trace_parser_loaded((parser))) {
ret = ftrace_graph_set_hash(fgd->new_hash,
parser->buffer);
}
trace_parser_put(parser);
new_hash = __ftrace_hash_move(fgd->new_hash);
if (!new_hash) {
ret = -ENOMEM;
goto out;
}
mutex_lock(&graph_lock);
if (fgd->type == GRAPH_FILTER_FUNCTION) {
old_hash = rcu_dereference_protected(ftrace_graph_hash,
lockdep_is_held(&graph_lock));
rcu_assign_pointer(ftrace_graph_hash, new_hash);
} else {
old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
lockdep_is_held(&graph_lock));
rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash);
}
mutex_unlock(&graph_lock);
/*
* We need to do a hard force of sched synchronization.
* This is because we use preempt_disable() to do RCU, but
* the function tracers can be called where RCU is not watching
* (like before user_exit()). We can not rely on the RCU
* infrastructure to do the synchronization, thus we must do it
* ourselves.
*/
synchronize_rcu_tasks_rude();
free_ftrace_hash(old_hash);
}
out:
free_ftrace_hash(fgd->new_hash);
kfree(fgd);
return ret;
}
static int
ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer)
{
struct ftrace_glob func_g;
struct dyn_ftrace *rec;
struct ftrace_page *pg;
struct ftrace_func_entry *entry;
int fail = 1;
int not;
/* decode regex */
func_g.type = filter_parse_regex(buffer, strlen(buffer),
&func_g.search, &not);
func_g.len = strlen(func_g.search);
mutex_lock(&ftrace_lock);
if (unlikely(ftrace_disabled)) {
mutex_unlock(&ftrace_lock);
return -ENODEV;
}
do_for_each_ftrace_rec(pg, rec) {
if (rec->flags & FTRACE_FL_DISABLED)
continue;
if (ftrace_match_record(rec, &func_g, NULL, 0)) {
entry = ftrace_lookup_ip(hash, rec->ip);
if (!not) {
fail = 0;
if (entry)
continue;
if (add_hash_entry(hash, rec->ip) < 0)
goto out;
} else {
if (entry) {
free_hash_entry(hash, entry);
fail = 0;
}
}
}
} while_for_each_ftrace_rec();
out:
mutex_unlock(&ftrace_lock);
if (fail)
return -EINVAL;
return 0;
}
static ssize_t
ftrace_graph_write(struct file *file, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
ssize_t read, ret = 0;
struct ftrace_graph_data *fgd = file->private_data;
struct trace_parser *parser;
if (!cnt)
return 0;
/* Read mode uses seq functions */
if (file->f_mode & FMODE_READ) {
struct seq_file *m = file->private_data;
fgd = m->private;
}
parser = &fgd->parser;
read = trace_get_user(parser, ubuf, cnt, ppos);
if (read >= 0 && trace_parser_loaded(parser) &&
!trace_parser_cont(parser)) {
ret = ftrace_graph_set_hash(fgd->new_hash,
parser->buffer);
trace_parser_clear(parser);
}
if (!ret)
ret = read;
return ret;
}
static const struct file_operations ftrace_graph_fops = {
.open = ftrace_graph_open,
.read = seq_read,
.write = ftrace_graph_write,
.llseek = tracing_lseek,
.release = ftrace_graph_release,
};
static const struct file_operations ftrace_graph_notrace_fops = {
.open = ftrace_graph_notrace_open,
.read = seq_read,
.write = ftrace_graph_write,
.llseek = tracing_lseek,
.release = ftrace_graph_release,
};
#endif /* CONFIG_FUNCTION_GRAPH_TRACER */
void ftrace_create_filter_files(struct ftrace_ops *ops,
struct dentry *parent)
{
trace_create_file("set_ftrace_filter", 0644, parent,
ops, &ftrace_filter_fops);
trace_create_file("set_ftrace_notrace", 0644, parent,
ops, &ftrace_notrace_fops);
}
/*
* The name "destroy_filter_files" is really a misnomer. Although
* in the future, it may actually delete the files, but this is
* really intended to make sure the ops passed in are disabled
* and that when this function returns, the caller is free to
* free the ops.
*
* The "destroy" name is only to match the "create" name that this
* should be paired with.
*/
void ftrace_destroy_filter_files(struct ftrace_ops *ops)
{
mutex_lock(&ftrace_lock);
if (ops->flags & FTRACE_OPS_FL_ENABLED)
ftrace_shutdown(ops, 0);
ops->flags |= FTRACE_OPS_FL_DELETED;
ftrace_free_filter(ops);
mutex_unlock(&ftrace_lock);
}
static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer)
{
trace_create_file("available_filter_functions", 0444,
d_tracer, NULL, &ftrace_avail_fops);
trace_create_file("enabled_functions", 0444,
d_tracer, NULL, &ftrace_enabled_fops);
ftrace_create_filter_files(&global_ops, d_tracer);
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
trace_create_file("set_graph_function", 0644, d_tracer,
NULL,
&ftrace_graph_fops);
trace_create_file("set_graph_notrace", 0644, d_tracer,
NULL,
&ftrace_graph_notrace_fops);
#endif /* CONFIG_FUNCTION_GRAPH_TRACER */
return 0;
}
static int ftrace_cmp_ips(const void *a, const void *b)
{
const unsigned long *ipa = a;
const unsigned long *ipb = b;
if (*ipa > *ipb)
return 1;
if (*ipa < *ipb)
return -1;
return 0;
}
static int ftrace_process_locs(struct module *mod,
unsigned long *start,
unsigned long *end)
{
struct ftrace_page *start_pg;
struct ftrace_page *pg;
struct dyn_ftrace *rec;
unsigned long count;
unsigned long *p;
unsigned long addr;
unsigned long flags = 0; /* Shut up gcc */
int ret = -ENOMEM;
count = end - start;
if (!count)
return 0;
sort(start, count, sizeof(*start),
ftrace_cmp_ips, NULL);
start_pg = ftrace_allocate_pages(count);
if (!start_pg)
return -ENOMEM;
mutex_lock(&ftrace_lock);
/*
* Core and each module needs their own pages, as
* modules will free them when they are removed.
* Force a new page to be allocated for modules.
*/
if (!mod) {
WARN_ON(ftrace_pages || ftrace_pages_start);
/* First initialization */
ftrace_pages = ftrace_pages_start = start_pg;
} else {
if (!ftrace_pages)
goto out;
if (WARN_ON(ftrace_pages->next)) {
/* Hmm, we have free pages? */
while (ftrace_pages->next)
ftrace_pages = ftrace_pages->next;
}
ftrace_pages->next = start_pg;
}
p = start;
pg = start_pg;
while (p < end) {
addr = ftrace_call_adjust(*p++);
/*
* Some architecture linkers will pad between
* the different mcount_loc sections of different
* object files to satisfy alignments.
* Skip any NULL pointers.
*/
if (!addr)
continue;
if (pg->index == pg->size) {
/* We should have allocated enough */
if (WARN_ON(!pg->next))
break;
pg = pg->next;
}
rec = &pg->records[pg->index++];
rec->ip = addr;
}
/* We should have used all pages */
WARN_ON(pg->next);
/* Assign the last page to ftrace_pages */
ftrace_pages = pg;
/*
* We only need to disable interrupts on start up
* because we are modifying code that an interrupt
* may execute, and the modification is not atomic.
* But for modules, nothing runs the code we modify
* until we are finished with it, and there's no
* reason to cause large interrupt latencies while we do it.
*/
if (!mod)
local_irq_save(flags);
ftrace_update_code(mod, start_pg);
if (!mod)
local_irq_restore(flags);
ret = 0;
out:
mutex_unlock(&ftrace_lock);
return ret;
}
struct ftrace_mod_func {
struct list_head list;
char *name;
unsigned long ip;
unsigned int size;
};
struct ftrace_mod_map {
struct rcu_head rcu;
struct list_head list;
struct module *mod;
unsigned long start_addr;
unsigned long end_addr;
struct list_head funcs;
unsigned int num_funcs;
};
static int ftrace_get_trampoline_kallsym(unsigned int symnum,
unsigned long *value, char *type,
char *name, char *module_name,
int *exported)
{
struct ftrace_ops *op;
list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) {
if (!op->trampoline || symnum--)
continue;
*value = op->trampoline;
*type = 't';
strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN);
strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN);
*exported = 0;
return 0;
}
return -ERANGE;
}
#ifdef CONFIG_MODULES
#define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next)
static LIST_HEAD(ftrace_mod_maps);
static int referenced_filters(struct dyn_ftrace *rec)
{
struct ftrace_ops *ops;
int cnt = 0;
for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) {
if (ops_references_rec(ops, rec)) {
if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT))
continue;
if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY))
continue;
cnt++;
if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
rec->flags |= FTRACE_FL_REGS;
if (cnt == 1 && ops->trampoline)
rec->flags |= FTRACE_FL_TRAMP;
else
rec->flags &= ~FTRACE_FL_TRAMP;
}
}
return cnt;
}
static void
clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash)
{
struct ftrace_func_entry *entry;
struct dyn_ftrace *rec;
int i;
if (ftrace_hash_empty(hash))
return;
for (i = 0; i < pg->index; i++) {
rec = &pg->records[i];
entry = __ftrace_lookup_ip(hash, rec->ip);
/*
* Do not allow this rec to match again.
* Yeah, it may waste some memory, but will be removed
* if/when the hash is modified again.
*/
if (entry)
entry->ip = 0;
}
}
/* Clear any records from hashs */
static void clear_mod_from_hashes(struct ftrace_page *pg)
{
struct trace_array *tr;
mutex_lock(&trace_types_lock);
list_for_each_entry(tr, &ftrace_trace_arrays, list) {
if (!tr->ops || !tr->ops->func_hash)
continue;
mutex_lock(&tr->ops->func_hash->regex_lock);
clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash);
clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash);
mutex_unlock(&tr->ops->func_hash->regex_lock);
}
mutex_unlock(&trace_types_lock);
}
static void ftrace_free_mod_map(struct rcu_head *rcu)
{
struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu);
struct ftrace_mod_func *mod_func;
struct ftrace_mod_func *n;
/* All the contents of mod_map are now not visible to readers */
list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) {
kfree(mod_func->name);
list_del(&mod_func->list);
kfree(mod_func);
}
kfree(mod_map);
}
void ftrace_release_mod(struct module *mod)
{
struct ftrace_mod_map *mod_map;
struct ftrace_mod_map *n;
struct dyn_ftrace *rec;
struct ftrace_page **last_pg;
struct ftrace_page *tmp_page = NULL;
struct ftrace_page *pg;
int order;
mutex_lock(&ftrace_lock);
if (ftrace_disabled)
goto out_unlock;
list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) {
if (mod_map->mod == mod) {
list_del_rcu(&mod_map->list);
call_rcu(&mod_map->rcu, ftrace_free_mod_map);
break;
}
}
/*
* Each module has its own ftrace_pages, remove
* them from the list.
*/
last_pg = &ftrace_pages_start;
for (pg = ftrace_pages_start; pg; pg = *last_pg) {
rec = &pg->records[0];
if (within_module_core(rec->ip, mod) ||
within_module_init(rec->ip, mod)) {
/*
* As core pages are first, the first
* page should never be a module page.
*/
if (WARN_ON(pg == ftrace_pages_start))
goto out_unlock;
/* Check if we are deleting the last page */
if (pg == ftrace_pages)
ftrace_pages = next_to_ftrace_page(last_pg);
ftrace_update_tot_cnt -= pg->index;
*last_pg = pg->next;
pg->next = tmp_page;
tmp_page = pg;
} else
last_pg = &pg->next;
}
out_unlock:
mutex_unlock(&ftrace_lock);
for (pg = tmp_page; pg; pg = tmp_page) {
/* Needs to be called outside of ftrace_lock */
clear_mod_from_hashes(pg);
order = get_count_order(pg->size / ENTRIES_PER_PAGE);
free_pages((unsigned long)pg->records, order);
tmp_page = pg->next;
kfree(pg);
ftrace_number_of_pages -= 1 << order;
ftrace_number_of_groups--;
}
}
void ftrace_module_enable(struct module *mod)
{
struct dyn_ftrace *rec;
struct ftrace_page *pg;
mutex_lock(&ftrace_lock);
if (ftrace_disabled)
goto out_unlock;
/*
* If the tracing is enabled, go ahead and enable the record.
*
* The reason not to enable the record immediately is the
* inherent check of ftrace_make_nop/ftrace_make_call for
* correct previous instructions. Making first the NOP
* conversion puts the module to the correct state, thus
* passing the ftrace_make_call check.
*
* We also delay this to after the module code already set the
* text to read-only, as we now need to set it back to read-write
* so that we can modify the text.
*/
if (ftrace_start_up)
ftrace_arch_code_modify_prepare();
do_for_each_ftrace_rec(pg, rec) {
int cnt;
/*
* do_for_each_ftrace_rec() is a double loop.
* module text shares the pg. If a record is
* not part of this module, then skip this pg,
* which the "break" will do.
*/
if (!within_module_core(rec->ip, mod) &&
!within_module_init(rec->ip, mod))
break;
cnt = 0;
/*
* When adding a module, we need to check if tracers are
* currently enabled and if they are, and can trace this record,
* we need to enable the module functions as well as update the
* reference counts for those function records.
*/
if (ftrace_start_up)
cnt += referenced_filters(rec);
rec->flags &= ~FTRACE_FL_DISABLED;
rec->flags += cnt;
if (ftrace_start_up && cnt) {
int failed = __ftrace_replace_code(rec, 1);
if (failed) {
ftrace_bug(failed, rec);
goto out_loop;
}
}
} while_for_each_ftrace_rec();
out_loop:
if (ftrace_start_up)
ftrace_arch_code_modify_post_process();
out_unlock:
mutex_unlock(&ftrace_lock);
process_cached_mods(mod->name);
}
void ftrace_module_init(struct module *mod)
{
if (ftrace_disabled || !mod->num_ftrace_callsites)
return;
ftrace_process_locs(mod, mod->ftrace_callsites,
mod->ftrace_callsites + mod->num_ftrace_callsites);
}
static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
struct dyn_ftrace *rec)
{
struct ftrace_mod_func *mod_func;
unsigned long symsize;
unsigned long offset;
char str[KSYM_SYMBOL_LEN];
char *modname;
const char *ret;
ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str);
if (!ret)
return;
mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL);
if (!mod_func)
return;
mod_func->name = kstrdup(str, GFP_KERNEL);
if (!mod_func->name) {
kfree(mod_func);
return;
}
mod_func->ip = rec->ip - offset;
mod_func->size = symsize;
mod_map->num_funcs++;
list_add_rcu(&mod_func->list, &mod_map->funcs);
}
static struct ftrace_mod_map *
allocate_ftrace_mod_map(struct module *mod,
unsigned long start, unsigned long end)
{
struct ftrace_mod_map *mod_map;
mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL);
if (!mod_map)
return NULL;
mod_map->mod = mod;
mod_map->start_addr = start;
mod_map->end_addr = end;
mod_map->num_funcs = 0;
INIT_LIST_HEAD_RCU(&mod_map->funcs);
list_add_rcu(&mod_map->list, &ftrace_mod_maps);
return mod_map;
}
static const char *
ftrace_func_address_lookup(struct ftrace_mod_map *mod_map,
unsigned long addr, unsigned long *size,
unsigned long *off, char *sym)
{
struct ftrace_mod_func *found_func = NULL;
struct ftrace_mod_func *mod_func;
list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
if (addr >= mod_func->ip &&
addr < mod_func->ip + mod_func->size) {
found_func = mod_func;
break;
}
}
if (found_func) {
if (size)
*size = found_func->size;
if (off)
*off = addr - found_func->ip;
if (sym)
strlcpy(sym, found_func->name, KSYM_NAME_LEN);
return found_func->name;
}
return NULL;
}
const char *
ftrace_mod_address_lookup(unsigned long addr, unsigned long *size,
unsigned long *off, char **modname, char *sym)
{
struct ftrace_mod_map *mod_map;
const char *ret = NULL;
/* mod_map is freed via call_rcu() */
preempt_disable();
list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym);
if (ret) {
if (modname)
*modname = mod_map->mod->name;
break;
}
}
preempt_enable();
return ret;
}
int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
char *type, char *name,
char *module_name, int *exported)
{
struct ftrace_mod_map *mod_map;
struct ftrace_mod_func *mod_func;
int ret;
preempt_disable();
list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
if (symnum >= mod_map->num_funcs) {
symnum -= mod_map->num_funcs;
continue;
}
list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
if (symnum > 1) {
symnum--;
continue;
}
*value = mod_func->ip;
*type = 'T';
strlcpy(name, mod_func->name, KSYM_NAME_LEN);
strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
*exported = 1;
preempt_enable();
return 0;
}
WARN_ON(1);
break;
}
ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
module_name, exported);
preempt_enable();
return ret;
}
#else
static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
struct dyn_ftrace *rec) { }
static inline struct ftrace_mod_map *
allocate_ftrace_mod_map(struct module *mod,
unsigned long start, unsigned long end)
{
return NULL;
}
int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
char *type, char *name, char *module_name,
int *exported)
{
int ret;
preempt_disable();
ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
module_name, exported);
preempt_enable();
return ret;
}
#endif /* CONFIG_MODULES */
struct ftrace_init_func {
struct list_head list;
unsigned long ip;
};
/* Clear any init ips from hashes */
static void
clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash)
{
struct ftrace_func_entry *entry;
entry = ftrace_lookup_ip(hash, func->ip);
/*
* Do not allow this rec to match again.
* Yeah, it may waste some memory, but will be removed
* if/when the hash is modified again.
*/
if (entry)
entry->ip = 0;
}
static void
clear_func_from_hashes(struct ftrace_init_func *func)
{
struct trace_array *tr;
mutex_lock(&trace_types_lock);
list_for_each_entry(tr, &ftrace_trace_arrays, list) {
if (!tr->ops || !tr->ops->func_hash)
continue;
mutex_lock(&tr->ops->func_hash->regex_lock);
clear_func_from_hash(func, tr->ops->func_hash->filter_hash);
clear_func_from_hash(func, tr->ops->func_hash->notrace_hash);
mutex_unlock(&tr->ops->func_hash->regex_lock);
}
mutex_unlock(&trace_types_lock);
}
static void add_to_clear_hash_list(struct list_head *clear_list,
struct dyn_ftrace *rec)
{
struct ftrace_init_func *func;
func = kmalloc(sizeof(*func), GFP_KERNEL);
if (!func) {
MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n");
return;
}
func->ip = rec->ip;
list_add(&func->list, clear_list);
}
void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr)
{
unsigned long start = (unsigned long)(start_ptr);
unsigned long end = (unsigned long)(end_ptr);
struct ftrace_page **last_pg = &ftrace_pages_start;
struct ftrace_page *pg;
struct dyn_ftrace *rec;
struct dyn_ftrace key;
struct ftrace_mod_map *mod_map = NULL;
struct ftrace_init_func *func, *func_next;
struct list_head clear_hash;
int order;
INIT_LIST_HEAD(&clear_hash);
key.ip = start;
key.flags = end; /* overload flags, as it is unsigned long */
mutex_lock(&ftrace_lock);
/*
* If we are freeing module init memory, then check if
* any tracer is active. If so, we need to save a mapping of
* the module functions being freed with the address.
*/
if (mod && ftrace_ops_list != &ftrace_list_end)
mod_map = allocate_ftrace_mod_map(mod, start, end);
for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) {
if (end < pg->records[0].ip ||
start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
continue;
again:
rec = bsearch(&key, pg->records, pg->index,
sizeof(struct dyn_ftrace),
ftrace_cmp_recs);
if (!rec)
continue;
/* rec will be cleared from hashes after ftrace_lock unlock */
add_to_clear_hash_list(&clear_hash, rec);
if (mod_map)
save_ftrace_mod_rec(mod_map, rec);
pg->index--;
ftrace_update_tot_cnt--;
if (!pg->index) {
*last_pg = pg->next;
order = get_count_order(pg->size / ENTRIES_PER_PAGE);
free_pages((unsigned long)pg->records, order);
ftrace_number_of_pages -= 1 << order;
ftrace_number_of_groups--;
kfree(pg);
pg = container_of(last_pg, struct ftrace_page, next);
if (!(*last_pg))
ftrace_pages = pg;
continue;
}
memmove(rec, rec + 1,
(pg->index - (rec - pg->records)) * sizeof(*rec));
/* More than one function may be in this block */
goto again;
}
mutex_unlock(&ftrace_lock);
list_for_each_entry_safe(func, func_next, &clear_hash, list) {
clear_func_from_hashes(func);
kfree(func);
}
}
void __init ftrace_free_init_mem(void)
{
void *start = (void *)(&__init_begin);
void *end = (void *)(&__init_end);
ftrace_free_mem(NULL, start, end);
}
void __init ftrace_init(void)
{
extern unsigned long __start_mcount_loc[];
extern unsigned long __stop_mcount_loc[];
unsigned long count, flags;
int ret;
local_irq_save(flags);
ret = ftrace_dyn_arch_init();
local_irq_restore(flags);
if (ret)
goto failed;
count = __stop_mcount_loc - __start_mcount_loc;
if (!count) {
pr_info("ftrace: No functions to be traced?\n");
goto failed;
}
pr_info("ftrace: allocating %ld entries in %ld pages\n",
count, count / ENTRIES_PER_PAGE + 1);
last_ftrace_enabled = ftrace_enabled = 1;
ret = ftrace_process_locs(NULL,
__start_mcount_loc,
__stop_mcount_loc);
pr_info("ftrace: allocated %ld pages with %ld groups\n",
ftrace_number_of_pages, ftrace_number_of_groups);
set_ftrace_early_filters();
return;
failed:
ftrace_disabled = 1;
}
/* Do nothing if arch does not support this */
void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops)
{
}
static void ftrace_update_trampoline(struct ftrace_ops *ops)
{
unsigned long trampoline = ops->trampoline;
arch_ftrace_update_trampoline(ops);
if (ops->trampoline && ops->trampoline != trampoline &&
(ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) {
/* Add to kallsyms before the perf events */
ftrace_add_trampoline_to_kallsyms(ops);
perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
ops->trampoline, ops->trampoline_size, false,
FTRACE_TRAMPOLINE_SYM);
/*
* Record the perf text poke event after the ksymbol register
* event.
*/
perf_event_text_poke((void *)ops->trampoline, NULL, 0,
(void *)ops->trampoline,
ops->trampoline_size);
}
}
void ftrace_init_trace_array(struct trace_array *tr)
{
INIT_LIST_HEAD(&tr->func_probes);
INIT_LIST_HEAD(&tr->mod_trace);
INIT_LIST_HEAD(&tr->mod_notrace);
}
#else
struct ftrace_ops global_ops = {
.func = ftrace_stub,
.flags = FTRACE_OPS_FL_INITIALIZED |
FTRACE_OPS_FL_PID,
};
static int __init ftrace_nodyn_init(void)
{
ftrace_enabled = 1;
return 0;
}
core_initcall(ftrace_nodyn_init);
static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; }
static inline void ftrace_startup_enable(int command) { }
static inline void ftrace_startup_all(int command) { }
# define ftrace_startup_sysctl() do { } while (0)
# define ftrace_shutdown_sysctl() do { } while (0)
static void ftrace_update_trampoline(struct ftrace_ops *ops)
{
}
#endif /* CONFIG_DYNAMIC_FTRACE */
__init void ftrace_init_global_array_ops(struct trace_array *tr)
{
tr->ops = &global_ops;
tr->ops->private = tr;
ftrace_init_trace_array(tr);
}
void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func)
{
/* If we filter on pids, update to use the pid function */
if (tr->flags & TRACE_ARRAY_FL_GLOBAL) {
if (WARN_ON(tr->ops->func != ftrace_stub))
printk("ftrace ops had %pS for function\n",
tr->ops->func);
}
tr->ops->func = func;
tr->ops->private = tr;
}
void ftrace_reset_array_ops(struct trace_array *tr)
{
tr->ops->func = ftrace_stub;
}
static nokprobe_inline void
__ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
struct ftrace_ops *ignored, struct ftrace_regs *fregs)
{
struct pt_regs *regs = ftrace_get_regs(fregs);
struct ftrace_ops *op;
int bit;
bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START, TRACE_LIST_MAX);
if (bit < 0)
return;
/*
* Some of the ops may be dynamically allocated,
* they must be freed after a synchronize_rcu().
*/
preempt_disable_notrace();
do_for_each_ftrace_op(op, ftrace_ops_list) {
/* Stub functions don't need to be called nor tested */
if (op->flags & FTRACE_OPS_FL_STUB)
continue;
/*
* Check the following for each ops before calling their func:
* if RCU flag is set, then rcu_is_watching() must be true
* if PER_CPU is set, then ftrace_function_local_disable()
* must be false
* Otherwise test if the ip matches the ops filter
*
* If any of the above fails then the op->func() is not executed.
*/
if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) &&
ftrace_ops_test(op, ip, regs)) {
if (FTRACE_WARN_ON(!op->func)) {
pr_warn("op=%p %pS\n", op, op);
goto out;
}
op->func(ip, parent_ip, op, fregs);
}
} while_for_each_ftrace_op(op);
out:
preempt_enable_notrace();
trace_clear_recursion(bit);
}
/*
* Some archs only support passing ip and parent_ip. Even though
* the list function ignores the op parameter, we do not want any
* C side effects, where a function is called without the caller
* sending a third parameter.
* Archs are to support both the regs and ftrace_ops at the same time.
* If they support ftrace_ops, it is assumed they support regs.
* If call backs want to use regs, they must either check for regs
* being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS.
* Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved.
* An architecture can pass partial regs with ftrace_ops and still
* set the ARCH_SUPPORTS_FTRACE_OPS.
*/
#if ARCH_SUPPORTS_FTRACE_OPS
static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
struct ftrace_ops *op, struct ftrace_regs *fregs)
{
__ftrace_ops_list_func(ip, parent_ip, NULL, fregs);
}
NOKPROBE_SYMBOL(ftrace_ops_list_func);
#else
static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip)
{
__ftrace_ops_list_func(ip, parent_ip, NULL, NULL);
}
NOKPROBE_SYMBOL(ftrace_ops_no_ops);
#endif
/*
* If there's only one function registered but it does not support
* recursion, needs RCU protection and/or requires per cpu handling, then
* this function will be called by the mcount trampoline.
*/
static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip,
struct ftrace_ops *op, struct ftrace_regs *fregs)
{
int bit;
bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START, TRACE_LIST_MAX);
if (bit < 0)
return;
preempt_disable_notrace();
if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching())
op->func(ip, parent_ip, op, fregs);
preempt_enable_notrace();
trace_clear_recursion(bit);
}
NOKPROBE_SYMBOL(ftrace_ops_assist_func);
/**
* ftrace_ops_get_func - get the function a trampoline should call
* @ops: the ops to get the function for
*
* Normally the mcount trampoline will call the ops->func, but there
* are times that it should not. For example, if the ops does not
* have its own recursion protection, then it should call the
* ftrace_ops_assist_func() instead.
*
* Returns the function that the trampoline should call for @ops.
*/
ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops)
{
/*
* If the function does not handle recursion or needs to be RCU safe,
* then we need to call the assist handler.
*/
if (ops->flags & (FTRACE_OPS_FL_RECURSION |
FTRACE_OPS_FL_RCU))
return ftrace_ops_assist_func;
return ops->func;
}
static void
ftrace_filter_pid_sched_switch_probe(void *data, bool preempt,
struct task_struct *prev, struct task_struct *next)
{
struct trace_array *tr = data;
struct trace_pid_list *pid_list;
struct trace_pid_list *no_pid_list;
pid_list = rcu_dereference_sched(tr->function_pids);
no_pid_list = rcu_dereference_sched(tr->function_no_pids);
if (trace_ignore_this_task(pid_list, no_pid_list, next))
this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
FTRACE_PID_IGNORE);
else
this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
next->pid);
}
static void
ftrace_pid_follow_sched_process_fork(void *data,
struct task_struct *self,
struct task_struct *task)
{
struct trace_pid_list *pid_list;
struct trace_array *tr = data;
pid_list = rcu_dereference_sched(tr->function_pids);
trace_filter_add_remove_task(pid_list, self, task);
pid_list = rcu_dereference_sched(tr->function_no_pids);
trace_filter_add_remove_task(pid_list, self, task);
}
static void
ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task)
{
struct trace_pid_list *pid_list;
struct trace_array *tr = data;
pid_list = rcu_dereference_sched(tr->function_pids);
trace_filter_add_remove_task(pid_list, NULL, task);
pid_list = rcu_dereference_sched(tr->function_no_pids);
trace_filter_add_remove_task(pid_list, NULL, task);
}
void ftrace_pid_follow_fork(struct trace_array *tr, bool enable)
{
if (enable) {
register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
tr);
register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
tr);
} else {
unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
tr);
unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
tr);
}
}
static void clear_ftrace_pids(struct trace_array *tr, int type)
{
struct trace_pid_list *pid_list;
struct trace_pid_list *no_pid_list;
int cpu;
pid_list = rcu_dereference_protected(tr->function_pids,
lockdep_is_held(&ftrace_lock));
no_pid_list = rcu_dereference_protected(tr->function_no_pids,
lockdep_is_held(&ftrace_lock));
/* Make sure there's something to do */
if (!pid_type_enabled(type, pid_list, no_pid_list))
return;
/* See if the pids still need to be checked after this */
if (!still_need_pid_events(type, pid_list, no_pid_list)) {
unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
for_each_possible_cpu(cpu)
per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE;
}
if (type & TRACE_PIDS)
rcu_assign_pointer(tr->function_pids, NULL);
if (type & TRACE_NO_PIDS)
rcu_assign_pointer(tr->function_no_pids, NULL);
/* Wait till all users are no longer using pid filtering */
synchronize_rcu();
if ((type & TRACE_PIDS) && pid_list)
trace_free_pid_list(pid_list);
if ((type & TRACE_NO_PIDS) && no_pid_list)
trace_free_pid_list(no_pid_list);
}
void ftrace_clear_pids(struct trace_array *tr)
{
mutex_lock(&ftrace_lock);
clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS);
mutex_unlock(&ftrace_lock);
}
static void ftrace_pid_reset(struct trace_array *tr, int type)
{
mutex_lock(&ftrace_lock);
clear_ftrace_pids(tr, type);
ftrace_update_pid_func();
ftrace_startup_all(0);
mutex_unlock(&ftrace_lock);
}
/* Greater than any max PID */
#define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1)
static void *fpid_start(struct seq_file *m, loff_t *pos)
__acquires(RCU)
{
struct trace_pid_list *pid_list;
struct trace_array *tr = m->private;
mutex_lock(&ftrace_lock);
rcu_read_lock_sched();
pid_list = rcu_dereference_sched(tr->function_pids);
if (!pid_list)
return !(*pos) ? FTRACE_NO_PIDS : NULL;
return trace_pid_start(pid_list, pos);
}
static void *fpid_next(struct seq_file *m, void *v, loff_t *pos)
{
struct trace_array *tr = m->private;
struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids);
if (v == FTRACE_NO_PIDS) {
(*pos)++;
return NULL;
}
return trace_pid_next(pid_list, v, pos);
}
static void fpid_stop(struct seq_file *m, void *p)
__releases(RCU)
{
rcu_read_unlock_sched();
mutex_unlock(&ftrace_lock);
}
static int fpid_show(struct seq_file *m, void *v)
{
if (v == FTRACE_NO_PIDS) {
seq_puts(m, "no pid\n");
return 0;
}
return trace_pid_show(m, v);
}
static const struct seq_operations ftrace_pid_sops = {
.start = fpid_start,
.next = fpid_next,
.stop = fpid_stop,
.show = fpid_show,
};
static void *fnpid_start(struct seq_file *m, loff_t *pos)
__acquires(RCU)
{
struct trace_pid_list *pid_list;
struct trace_array *tr = m->private;
mutex_lock(&ftrace_lock);
rcu_read_lock_sched();
pid_list = rcu_dereference_sched(tr->function_no_pids);
if (!pid_list)
return !(*pos) ? FTRACE_NO_PIDS : NULL;
return trace_pid_start(pid_list, pos);
}
static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos)
{
struct trace_array *tr = m->private;
struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids);
if (v == FTRACE_NO_PIDS) {
(*pos)++;
return NULL;
}
return trace_pid_next(pid_list, v, pos);
}
static const struct seq_operations ftrace_no_pid_sops = {
.start = fnpid_start,
.next = fnpid_next,
.stop = fpid_stop,
.show = fpid_show,
};
static int pid_open(struct inode *inode, struct file *file, int type)
{
const struct seq_operations *seq_ops;
struct trace_array *tr = inode->i_private;
struct seq_file *m;
int ret = 0;
ret = tracing_check_open_get_tr(tr);
if (ret)
return ret;
if ((file->f_mode & FMODE_WRITE) &&
(file->f_flags & O_TRUNC))
ftrace_pid_reset(tr, type);
switch (type) {
case TRACE_PIDS:
seq_ops = &ftrace_pid_sops;
break;
case TRACE_NO_PIDS:
seq_ops = &ftrace_no_pid_sops;
break;
default:
trace_array_put(tr);
WARN_ON_ONCE(1);
return -EINVAL;
}
ret = seq_open(file, seq_ops);
if (ret < 0) {
trace_array_put(tr);
} else {
m = file->private_data;
/* copy tr over to seq ops */
m->private = tr;
}
return ret;
}
static int
ftrace_pid_open(struct inode *inode, struct file *file)
{
return pid_open(inode, file, TRACE_PIDS);
}
static int
ftrace_no_pid_open(struct inode *inode, struct file *file)
{
return pid_open(inode, file, TRACE_NO_PIDS);
}
static void ignore_task_cpu(void *data)
{
struct trace_array *tr = data;
struct trace_pid_list *pid_list;
struct trace_pid_list *no_pid_list;
/*
* This function is called by on_each_cpu() while the
* event_mutex is held.
*/
pid_list = rcu_dereference_protected(tr->function_pids,
mutex_is_locked(&ftrace_lock));
no_pid_list = rcu_dereference_protected(tr->function_no_pids,
mutex_is_locked(&ftrace_lock));
if (trace_ignore_this_task(pid_list, no_pid_list, current))
this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
FTRACE_PID_IGNORE);
else
this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
current->pid);
}
static ssize_t
pid_write(struct file *filp, const char __user *ubuf,
size_t cnt, loff_t *ppos, int type)
{
struct seq_file *m = filp->private_data;
struct trace_array *tr = m->private;
struct trace_pid_list *filtered_pids;
struct trace_pid_list *other_pids;
struct trace_pid_list *pid_list;
ssize_t ret;
if (!cnt)
return 0;
mutex_lock(&ftrace_lock);
switch (type) {
case TRACE_PIDS:
filtered_pids = rcu_dereference_protected(tr->function_pids,
lockdep_is_held(&ftrace_lock));
other_pids = rcu_dereference_protected(tr->function_no_pids,
lockdep_is_held(&ftrace_lock));
break;
case TRACE_NO_PIDS:
filtered_pids = rcu_dereference_protected(tr->function_no_pids,
lockdep_is_held(&ftrace_lock));
other_pids = rcu_dereference_protected(tr->function_pids,
lockdep_is_held(&ftrace_lock));
break;
default:
ret = -EINVAL;
WARN_ON_ONCE(1);
goto out;
}
ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt);
if (ret < 0)
goto out;
switch (type) {
case TRACE_PIDS:
rcu_assign_pointer(tr->function_pids, pid_list);
break;
case TRACE_NO_PIDS:
rcu_assign_pointer(tr->function_no_pids, pid_list);
break;
}
if (filtered_pids) {
synchronize_rcu();
trace_free_pid_list(filtered_pids);
} else if (pid_list && !other_pids) {
/* Register a probe to set whether to ignore the tracing of a task */
register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
}
/*
* Ignoring of pids is done at task switch. But we have to
* check for those tasks that are currently running.
* Always do this in case a pid was appended or removed.
*/
on_each_cpu(ignore_task_cpu, tr, 1);
ftrace_update_pid_func();
ftrace_startup_all(0);
out:
mutex_unlock(&ftrace_lock);
if (ret > 0)
*ppos += ret;
return ret;
}
static ssize_t
ftrace_pid_write(struct file *filp, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS);
}
static ssize_t
ftrace_no_pid_write(struct file *filp, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS);
}
static int
ftrace_pid_release(struct inode *inode, struct file *file)
{
struct trace_array *tr = inode->i_private;
trace_array_put(tr);
return seq_release(inode, file);
}
static const struct file_operations ftrace_pid_fops = {
.open = ftrace_pid_open,
.write = ftrace_pid_write,
.read = seq_read,
.llseek = tracing_lseek,
.release = ftrace_pid_release,
};
static const struct file_operations ftrace_no_pid_fops = {
.open = ftrace_no_pid_open,
.write = ftrace_no_pid_write,
.read = seq_read,
.llseek = tracing_lseek,
.release = ftrace_pid_release,
};
void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer)
{
trace_create_file("set_ftrace_pid", 0644, d_tracer,
tr, &ftrace_pid_fops);
trace_create_file("set_ftrace_notrace_pid", 0644, d_tracer,
tr, &ftrace_no_pid_fops);
}
void __init ftrace_init_tracefs_toplevel(struct trace_array *tr,
struct dentry *d_tracer)
{
/* Only the top level directory has the dyn_tracefs and profile */
WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL));
ftrace_init_dyn_tracefs(d_tracer);
ftrace_profile_tracefs(d_tracer);
}
/**
* ftrace_kill - kill ftrace
*
* This function should be used by panic code. It stops ftrace
* but in a not so nice way. If you need to simply kill ftrace
* from a non-atomic section, use ftrace_kill.
*/
void ftrace_kill(void)
{
ftrace_disabled = 1;
ftrace_enabled = 0;
ftrace_trace_function = ftrace_stub;
}
/**
* Test if ftrace is dead or not.
*/
int ftrace_is_dead(void)
{
return ftrace_disabled;
}
/**
* register_ftrace_function - register a function for profiling
* @ops - ops structure that holds the function for profiling.
*
* Register a function to be called by all functions in the
* kernel.
*
* Note: @ops->func and all the functions it calls must be labeled
* with "notrace", otherwise it will go into a
* recursive loop.
*/
int register_ftrace_function(struct ftrace_ops *ops)
{
int ret = -1;
ftrace_ops_init(ops);
mutex_lock(&ftrace_lock);
ret = ftrace_startup(ops, 0);
mutex_unlock(&ftrace_lock);
return ret;
}
EXPORT_SYMBOL_GPL(register_ftrace_function);
/**
* unregister_ftrace_function - unregister a function for profiling.
* @ops - ops structure that holds the function to unregister
*
* Unregister a function that was added to be called by ftrace profiling.
*/
int unregister_ftrace_function(struct ftrace_ops *ops)
{
int ret;
mutex_lock(&ftrace_lock);
ret = ftrace_shutdown(ops, 0);
mutex_unlock(&ftrace_lock);
return ret;
}
EXPORT_SYMBOL_GPL(unregister_ftrace_function);
static bool is_permanent_ops_registered(void)
{
struct ftrace_ops *op;
do_for_each_ftrace_op(op, ftrace_ops_list) {
if (op->flags & FTRACE_OPS_FL_PERMANENT)
return true;
} while_for_each_ftrace_op(op);
return false;
}
int
ftrace_enable_sysctl(struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
int ret = -ENODEV;
mutex_lock(&ftrace_lock);
if (unlikely(ftrace_disabled))
goto out;
ret = proc_dointvec(table, write, buffer, lenp, ppos);
if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled))
goto out;
if (ftrace_enabled) {
/* we are starting ftrace again */
if (rcu_dereference_protected(ftrace_ops_list,
lockdep_is_held(&ftrace_lock)) != &ftrace_list_end)
update_ftrace_function();
ftrace_startup_sysctl();
} else {
if (is_permanent_ops_registered()) {
ftrace_enabled = true;
ret = -EBUSY;
goto out;
}
/* stopping ftrace calls (just send to ftrace_stub) */
ftrace_trace_function = ftrace_stub;
ftrace_shutdown_sysctl();
}
last_ftrace_enabled = !!ftrace_enabled;
out:
mutex_unlock(&ftrace_lock);
return ret;
}