mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-18 09:44:18 +08:00
4e77ae3e10
The clock events merge introduced a change to the nmi watchdog code to handle the not longer increasing local apic timer count in the broadcast mode. This is fine for UP, but on SMP it pampers over a stuck CPU which is not handling the broadcast interrupt due to the unconditional sum up of local apic timer count and irq0 count. To cover all cases we need to keep track on which CPU irq0 is handled. In theory this is CPU#0 due to the explicit disabling of irq balancing for irq0, but there are systems which ignore this on the hardware level. The per cpu irq0 accounting allows us to remove the irq0 to CPU0 binding as well. Add a per cpu counter for irq0 and evaluate this instead of the global irq0 count in the nmi watchdog code. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
336 lines
8.4 KiB
C
336 lines
8.4 KiB
C
/*
|
|
* linux/arch/x86-64/kernel/time.c
|
|
*
|
|
* "High Precision Event Timer" based timekeeping.
|
|
*
|
|
* Copyright (c) 1991,1992,1995 Linus Torvalds
|
|
* Copyright (c) 1994 Alan Modra
|
|
* Copyright (c) 1995 Markus Kuhn
|
|
* Copyright (c) 1996 Ingo Molnar
|
|
* Copyright (c) 1998 Andrea Arcangeli
|
|
* Copyright (c) 2002,2006 Vojtech Pavlik
|
|
* Copyright (c) 2003 Andi Kleen
|
|
* RTC support code taken from arch/i386/kernel/timers/time_hpet.c
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mc146818rtc.h>
|
|
#include <linux/time.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/module.h>
|
|
#include <linux/device.h>
|
|
#include <linux/sysdev.h>
|
|
#include <linux/bcd.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/clockchips.h>
|
|
|
|
#ifdef CONFIG_ACPI
|
|
#include <acpi/achware.h> /* for PM timer frequency */
|
|
#include <acpi/acpi_bus.h>
|
|
#endif
|
|
#include <asm/i8253.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/vsyscall.h>
|
|
#include <asm/timex.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/hpet.h>
|
|
#include <asm/sections.h>
|
|
#include <linux/hpet.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/hpet.h>
|
|
#include <asm/mpspec.h>
|
|
#include <asm/nmi.h>
|
|
#include <asm/vgtod.h>
|
|
|
|
DEFINE_SPINLOCK(rtc_lock);
|
|
EXPORT_SYMBOL(rtc_lock);
|
|
|
|
volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
|
|
|
|
unsigned long profile_pc(struct pt_regs *regs)
|
|
{
|
|
unsigned long pc = instruction_pointer(regs);
|
|
|
|
/* Assume the lock function has either no stack frame or a copy
|
|
of eflags from PUSHF
|
|
Eflags always has bits 22 and up cleared unlike kernel addresses. */
|
|
if (!user_mode(regs) && in_lock_functions(pc)) {
|
|
unsigned long *sp = (unsigned long *)regs->rsp;
|
|
if (sp[0] >> 22)
|
|
return sp[0];
|
|
if (sp[1] >> 22)
|
|
return sp[1];
|
|
}
|
|
return pc;
|
|
}
|
|
EXPORT_SYMBOL(profile_pc);
|
|
|
|
/*
|
|
* In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
|
|
* ms after the second nowtime has started, because when nowtime is written
|
|
* into the registers of the CMOS clock, it will jump to the next second
|
|
* precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
|
|
* sheet for details.
|
|
*/
|
|
|
|
static int set_rtc_mmss(unsigned long nowtime)
|
|
{
|
|
int retval = 0;
|
|
int real_seconds, real_minutes, cmos_minutes;
|
|
unsigned char control, freq_select;
|
|
|
|
/*
|
|
* IRQs are disabled when we're called from the timer interrupt,
|
|
* no need for spin_lock_irqsave()
|
|
*/
|
|
|
|
spin_lock(&rtc_lock);
|
|
|
|
/*
|
|
* Tell the clock it's being set and stop it.
|
|
*/
|
|
|
|
control = CMOS_READ(RTC_CONTROL);
|
|
CMOS_WRITE(control | RTC_SET, RTC_CONTROL);
|
|
|
|
freq_select = CMOS_READ(RTC_FREQ_SELECT);
|
|
CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);
|
|
|
|
cmos_minutes = CMOS_READ(RTC_MINUTES);
|
|
BCD_TO_BIN(cmos_minutes);
|
|
|
|
/*
|
|
* since we're only adjusting minutes and seconds, don't interfere with hour
|
|
* overflow. This avoids messing with unknown time zones but requires your RTC
|
|
* not to be off by more than 15 minutes. Since we're calling it only when
|
|
* our clock is externally synchronized using NTP, this shouldn't be a problem.
|
|
*/
|
|
|
|
real_seconds = nowtime % 60;
|
|
real_minutes = nowtime / 60;
|
|
if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
|
|
real_minutes += 30; /* correct for half hour time zone */
|
|
real_minutes %= 60;
|
|
|
|
if (abs(real_minutes - cmos_minutes) >= 30) {
|
|
printk(KERN_WARNING "time.c: can't update CMOS clock "
|
|
"from %d to %d\n", cmos_minutes, real_minutes);
|
|
retval = -1;
|
|
} else {
|
|
BIN_TO_BCD(real_seconds);
|
|
BIN_TO_BCD(real_minutes);
|
|
CMOS_WRITE(real_seconds, RTC_SECONDS);
|
|
CMOS_WRITE(real_minutes, RTC_MINUTES);
|
|
}
|
|
|
|
/*
|
|
* The following flags have to be released exactly in this order, otherwise the
|
|
* DS12887 (popular MC146818A clone with integrated battery and quartz) will
|
|
* not reset the oscillator and will not update precisely 500 ms later. You
|
|
* won't find this mentioned in the Dallas Semiconductor data sheets, but who
|
|
* believes data sheets anyway ... -- Markus Kuhn
|
|
*/
|
|
|
|
CMOS_WRITE(control, RTC_CONTROL);
|
|
CMOS_WRITE(freq_select, RTC_FREQ_SELECT);
|
|
|
|
spin_unlock(&rtc_lock);
|
|
|
|
return retval;
|
|
}
|
|
|
|
int update_persistent_clock(struct timespec now)
|
|
{
|
|
return set_rtc_mmss(now.tv_sec);
|
|
}
|
|
|
|
void main_timer_handler(void)
|
|
{
|
|
/*
|
|
* Here we are in the timer irq handler. We have irqs locally disabled (so we
|
|
* don't need spin_lock_irqsave()) but we don't know if the timer_bh is running
|
|
* on the other CPU, so we need a lock. We also need to lock the vsyscall
|
|
* variables, because both do_timer() and us change them -arca+vojtech
|
|
*/
|
|
|
|
write_seqlock(&xtime_lock);
|
|
|
|
/*
|
|
* Do the timer stuff.
|
|
*/
|
|
|
|
do_timer(1);
|
|
#ifndef CONFIG_SMP
|
|
update_process_times(user_mode(get_irq_regs()));
|
|
#endif
|
|
|
|
/*
|
|
* In the SMP case we use the local APIC timer interrupt to do the profiling,
|
|
* except when we simulate SMP mode on a uniprocessor system, in that case we
|
|
* have to call the local interrupt handler.
|
|
*/
|
|
|
|
if (!using_apic_timer)
|
|
smp_local_timer_interrupt();
|
|
|
|
write_sequnlock(&xtime_lock);
|
|
}
|
|
|
|
static irqreturn_t timer_interrupt(int irq, void *dev_id)
|
|
{
|
|
if (apic_runs_main_timer > 1)
|
|
return IRQ_HANDLED;
|
|
main_timer_handler();
|
|
if (using_apic_timer)
|
|
smp_send_timer_broadcast_ipi();
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t timer_event_interrupt(int irq, void *dev_id)
|
|
{
|
|
add_pda(irq0_irqs, 1);
|
|
|
|
global_clock_event->event_handler(global_clock_event);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
unsigned long read_persistent_clock(void)
|
|
{
|
|
unsigned int year, mon, day, hour, min, sec;
|
|
unsigned long flags;
|
|
unsigned century = 0;
|
|
|
|
spin_lock_irqsave(&rtc_lock, flags);
|
|
|
|
do {
|
|
sec = CMOS_READ(RTC_SECONDS);
|
|
min = CMOS_READ(RTC_MINUTES);
|
|
hour = CMOS_READ(RTC_HOURS);
|
|
day = CMOS_READ(RTC_DAY_OF_MONTH);
|
|
mon = CMOS_READ(RTC_MONTH);
|
|
year = CMOS_READ(RTC_YEAR);
|
|
#ifdef CONFIG_ACPI
|
|
if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
|
|
acpi_gbl_FADT.century)
|
|
century = CMOS_READ(acpi_gbl_FADT.century);
|
|
#endif
|
|
} while (sec != CMOS_READ(RTC_SECONDS));
|
|
|
|
spin_unlock_irqrestore(&rtc_lock, flags);
|
|
|
|
/*
|
|
* We know that x86-64 always uses BCD format, no need to check the
|
|
* config register.
|
|
*/
|
|
|
|
BCD_TO_BIN(sec);
|
|
BCD_TO_BIN(min);
|
|
BCD_TO_BIN(hour);
|
|
BCD_TO_BIN(day);
|
|
BCD_TO_BIN(mon);
|
|
BCD_TO_BIN(year);
|
|
|
|
if (century) {
|
|
BCD_TO_BIN(century);
|
|
year += century * 100;
|
|
printk(KERN_INFO "Extended CMOS year: %d\n", century * 100);
|
|
} else {
|
|
/*
|
|
* x86-64 systems only exists since 2002.
|
|
* This will work up to Dec 31, 2100
|
|
*/
|
|
year += 2000;
|
|
}
|
|
|
|
return mktime(year, mon, day, hour, min, sec);
|
|
}
|
|
|
|
/* calibrate_cpu is used on systems with fixed rate TSCs to determine
|
|
* processor frequency */
|
|
#define TICK_COUNT 100000000
|
|
static unsigned int __init tsc_calibrate_cpu_khz(void)
|
|
{
|
|
int tsc_start, tsc_now;
|
|
int i, no_ctr_free;
|
|
unsigned long evntsel3 = 0, pmc3 = 0, pmc_now = 0;
|
|
unsigned long flags;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
if (avail_to_resrv_perfctr_nmi_bit(i))
|
|
break;
|
|
no_ctr_free = (i == 4);
|
|
if (no_ctr_free) {
|
|
i = 3;
|
|
rdmsrl(MSR_K7_EVNTSEL3, evntsel3);
|
|
wrmsrl(MSR_K7_EVNTSEL3, 0);
|
|
rdmsrl(MSR_K7_PERFCTR3, pmc3);
|
|
} else {
|
|
reserve_perfctr_nmi(MSR_K7_PERFCTR0 + i);
|
|
reserve_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
|
|
}
|
|
local_irq_save(flags);
|
|
/* start meauring cycles, incrementing from 0 */
|
|
wrmsrl(MSR_K7_PERFCTR0 + i, 0);
|
|
wrmsrl(MSR_K7_EVNTSEL0 + i, 1 << 22 | 3 << 16 | 0x76);
|
|
rdtscl(tsc_start);
|
|
do {
|
|
rdmsrl(MSR_K7_PERFCTR0 + i, pmc_now);
|
|
tsc_now = get_cycles_sync();
|
|
} while ((tsc_now - tsc_start) < TICK_COUNT);
|
|
|
|
local_irq_restore(flags);
|
|
if (no_ctr_free) {
|
|
wrmsrl(MSR_K7_EVNTSEL3, 0);
|
|
wrmsrl(MSR_K7_PERFCTR3, pmc3);
|
|
wrmsrl(MSR_K7_EVNTSEL3, evntsel3);
|
|
} else {
|
|
release_perfctr_nmi(MSR_K7_PERFCTR0 + i);
|
|
release_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
|
|
}
|
|
|
|
return pmc_now * tsc_khz / (tsc_now - tsc_start);
|
|
}
|
|
|
|
static struct irqaction irq0 = {
|
|
.handler = timer_event_interrupt,
|
|
.flags = IRQF_DISABLED | IRQF_IRQPOLL | IRQF_NOBALANCING,
|
|
.mask = CPU_MASK_NONE,
|
|
.name = "timer"
|
|
};
|
|
|
|
void __init time_init(void)
|
|
{
|
|
if (!hpet_enable())
|
|
setup_pit_timer();
|
|
|
|
setup_irq(0, &irq0);
|
|
|
|
tsc_calibrate();
|
|
|
|
cpu_khz = tsc_khz;
|
|
if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
|
|
boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
|
|
boot_cpu_data.x86 == 16)
|
|
cpu_khz = tsc_calibrate_cpu_khz();
|
|
|
|
if (unsynchronized_tsc())
|
|
mark_tsc_unstable("TSCs unsynchronized");
|
|
|
|
if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
|
|
vgetcpu_mode = VGETCPU_RDTSCP;
|
|
else
|
|
vgetcpu_mode = VGETCPU_LSL;
|
|
|
|
set_cyc2ns_scale(tsc_khz);
|
|
printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n",
|
|
cpu_khz / 1000, cpu_khz % 1000);
|
|
init_tsc_clocksource();
|
|
}
|