linux/drivers/mtd/nand/raw/nand_base.c
Miquel Raynal 4120aa0e39 mtd: rawnand: Ensure continuous reads are well disabled
The cont_read.ongoing flag should only be enabled at the beginning of a
read operation, and also disabled at its end, so we never end up
triggering nasty side effects outside of this scope. The mtd core being
highly serialized, we should not be bothered by parallel accesses
anyway.

In case we reach the end of a read operation and the boolean was not
properly disabled, it's a bug, but it's totally manageable. So warn, and
then fix the boolean state.

Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20240307115315.1942678-2-miquel.raynal@bootlin.com
2024-03-15 00:04:51 +01:00

6713 lines
175 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Overview:
* This is the generic MTD driver for NAND flash devices. It should be
* capable of working with almost all NAND chips currently available.
*
* Additional technical information is available on
* http://www.linux-mtd.infradead.org/doc/nand.html
*
* Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
* 2002-2006 Thomas Gleixner (tglx@linutronix.de)
*
* Credits:
* David Woodhouse for adding multichip support
*
* Aleph One Ltd. and Toby Churchill Ltd. for supporting the
* rework for 2K page size chips
*
* TODO:
* Enable cached programming for 2k page size chips
* Check, if mtd->ecctype should be set to MTD_ECC_HW
* if we have HW ECC support.
* BBT table is not serialized, has to be fixed
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/types.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand-ecc-sw-hamming.h>
#include <linux/mtd/nand-ecc-sw-bch.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <linux/mtd/partitions.h>
#include <linux/of.h>
#include <linux/gpio/consumer.h>
#include "internals.h"
static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page,
struct mtd_pairing_info *info)
{
int lastpage = (mtd->erasesize / mtd->writesize) - 1;
int dist = 3;
if (page == lastpage)
dist = 2;
if (!page || (page & 1)) {
info->group = 0;
info->pair = (page + 1) / 2;
} else {
info->group = 1;
info->pair = (page + 1 - dist) / 2;
}
return 0;
}
static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd,
const struct mtd_pairing_info *info)
{
int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2;
int page = info->pair * 2;
int dist = 3;
if (!info->group && !info->pair)
return 0;
if (info->pair == lastpair && info->group)
dist = 2;
if (!info->group)
page--;
else if (info->pair)
page += dist - 1;
if (page >= mtd->erasesize / mtd->writesize)
return -EINVAL;
return page;
}
const struct mtd_pairing_scheme dist3_pairing_scheme = {
.ngroups = 2,
.get_info = nand_pairing_dist3_get_info,
.get_wunit = nand_pairing_dist3_get_wunit,
};
static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
{
int ret = 0;
/* Start address must align on block boundary */
if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
pr_debug("%s: unaligned address\n", __func__);
ret = -EINVAL;
}
/* Length must align on block boundary */
if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
pr_debug("%s: length not block aligned\n", __func__);
ret = -EINVAL;
}
return ret;
}
/**
* nand_extract_bits - Copy unaligned bits from one buffer to another one
* @dst: destination buffer
* @dst_off: bit offset at which the writing starts
* @src: source buffer
* @src_off: bit offset at which the reading starts
* @nbits: number of bits to copy from @src to @dst
*
* Copy bits from one memory region to another (overlap authorized).
*/
void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
unsigned int src_off, unsigned int nbits)
{
unsigned int tmp, n;
dst += dst_off / 8;
dst_off %= 8;
src += src_off / 8;
src_off %= 8;
while (nbits) {
n = min3(8 - dst_off, 8 - src_off, nbits);
tmp = (*src >> src_off) & GENMASK(n - 1, 0);
*dst &= ~GENMASK(n - 1 + dst_off, dst_off);
*dst |= tmp << dst_off;
dst_off += n;
if (dst_off >= 8) {
dst++;
dst_off -= 8;
}
src_off += n;
if (src_off >= 8) {
src++;
src_off -= 8;
}
nbits -= n;
}
}
EXPORT_SYMBOL_GPL(nand_extract_bits);
/**
* nand_select_target() - Select a NAND target (A.K.A. die)
* @chip: NAND chip object
* @cs: the CS line to select. Note that this CS id is always from the chip
* PoV, not the controller one
*
* Select a NAND target so that further operations executed on @chip go to the
* selected NAND target.
*/
void nand_select_target(struct nand_chip *chip, unsigned int cs)
{
/*
* cs should always lie between 0 and nanddev_ntargets(), when that's
* not the case it's a bug and the caller should be fixed.
*/
if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
return;
chip->cur_cs = cs;
if (chip->legacy.select_chip)
chip->legacy.select_chip(chip, cs);
}
EXPORT_SYMBOL_GPL(nand_select_target);
/**
* nand_deselect_target() - Deselect the currently selected target
* @chip: NAND chip object
*
* Deselect the currently selected NAND target. The result of operations
* executed on @chip after the target has been deselected is undefined.
*/
void nand_deselect_target(struct nand_chip *chip)
{
if (chip->legacy.select_chip)
chip->legacy.select_chip(chip, -1);
chip->cur_cs = -1;
}
EXPORT_SYMBOL_GPL(nand_deselect_target);
/**
* nand_release_device - [GENERIC] release chip
* @chip: NAND chip object
*
* Release chip lock and wake up anyone waiting on the device.
*/
static void nand_release_device(struct nand_chip *chip)
{
/* Release the controller and the chip */
mutex_unlock(&chip->controller->lock);
mutex_unlock(&chip->lock);
}
/**
* nand_bbm_get_next_page - Get the next page for bad block markers
* @chip: NAND chip object
* @page: First page to start checking for bad block marker usage
*
* Returns an integer that corresponds to the page offset within a block, for
* a page that is used to store bad block markers. If no more pages are
* available, -EINVAL is returned.
*/
int nand_bbm_get_next_page(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int last_page = ((mtd->erasesize - mtd->writesize) >>
chip->page_shift) & chip->pagemask;
unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
| NAND_BBM_LASTPAGE;
if (page == 0 && !(chip->options & bbm_flags))
return 0;
if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
return 0;
if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
return 1;
if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
return last_page;
return -EINVAL;
}
/**
* nand_block_bad - [DEFAULT] Read bad block marker from the chip
* @chip: NAND chip object
* @ofs: offset from device start
*
* Check, if the block is bad.
*/
static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
{
int first_page, page_offset;
int res;
u8 bad;
first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
page_offset = nand_bbm_get_next_page(chip, 0);
while (page_offset >= 0) {
res = chip->ecc.read_oob(chip, first_page + page_offset);
if (res < 0)
return res;
bad = chip->oob_poi[chip->badblockpos];
if (likely(chip->badblockbits == 8))
res = bad != 0xFF;
else
res = hweight8(bad) < chip->badblockbits;
if (res)
return res;
page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
}
return 0;
}
/**
* nand_region_is_secured() - Check if the region is secured
* @chip: NAND chip object
* @offset: Offset of the region to check
* @size: Size of the region to check
*
* Checks if the region is secured by comparing the offset and size with the
* list of secure regions obtained from DT. Returns true if the region is
* secured else false.
*/
static bool nand_region_is_secured(struct nand_chip *chip, loff_t offset, u64 size)
{
int i;
/* Skip touching the secure regions if present */
for (i = 0; i < chip->nr_secure_regions; i++) {
const struct nand_secure_region *region = &chip->secure_regions[i];
if (offset + size <= region->offset ||
offset >= region->offset + region->size)
continue;
pr_debug("%s: Region 0x%llx - 0x%llx is secured!",
__func__, offset, offset + size);
return true;
}
return false;
}
static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
{
struct mtd_info *mtd = nand_to_mtd(chip);
if (chip->options & NAND_NO_BBM_QUIRK)
return 0;
/* Check if the region is secured */
if (nand_region_is_secured(chip, ofs, mtd->erasesize))
return -EIO;
if (mtd_check_expert_analysis_mode())
return 0;
if (chip->legacy.block_bad)
return chip->legacy.block_bad(chip, ofs);
return nand_block_bad(chip, ofs);
}
/**
* nand_get_device - [GENERIC] Get chip for selected access
* @chip: NAND chip structure
*
* Lock the device and its controller for exclusive access
*/
static void nand_get_device(struct nand_chip *chip)
{
/* Wait until the device is resumed. */
while (1) {
mutex_lock(&chip->lock);
if (!chip->suspended) {
mutex_lock(&chip->controller->lock);
return;
}
mutex_unlock(&chip->lock);
wait_event(chip->resume_wq, !chip->suspended);
}
}
/**
* nand_check_wp - [GENERIC] check if the chip is write protected
* @chip: NAND chip object
*
* Check, if the device is write protected. The function expects, that the
* device is already selected.
*/
static int nand_check_wp(struct nand_chip *chip)
{
u8 status;
int ret;
/* Broken xD cards report WP despite being writable */
if (chip->options & NAND_BROKEN_XD)
return 0;
/* controller responsible for NAND write protect */
if (chip->controller->controller_wp)
return 0;
/* Check the WP bit */
ret = nand_status_op(chip, &status);
if (ret)
return ret;
return status & NAND_STATUS_WP ? 0 : 1;
}
/**
* nand_fill_oob - [INTERN] Transfer client buffer to oob
* @chip: NAND chip object
* @oob: oob data buffer
* @len: oob data write length
* @ops: oob ops structure
*/
static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
struct mtd_oob_ops *ops)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
/*
* Initialise to all 0xFF, to avoid the possibility of left over OOB
* data from a previous OOB read.
*/
memset(chip->oob_poi, 0xff, mtd->oobsize);
switch (ops->mode) {
case MTD_OPS_PLACE_OOB:
case MTD_OPS_RAW:
memcpy(chip->oob_poi + ops->ooboffs, oob, len);
return oob + len;
case MTD_OPS_AUTO_OOB:
ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
ops->ooboffs, len);
BUG_ON(ret);
return oob + len;
default:
BUG();
}
return NULL;
}
/**
* nand_do_write_oob - [MTD Interface] NAND write out-of-band
* @chip: NAND chip object
* @to: offset to write to
* @ops: oob operation description structure
*
* NAND write out-of-band.
*/
static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
struct mtd_oob_ops *ops)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int chipnr, page, status, len, ret;
pr_debug("%s: to = 0x%08x, len = %i\n",
__func__, (unsigned int)to, (int)ops->ooblen);
len = mtd_oobavail(mtd, ops);
/* Do not allow write past end of page */
if ((ops->ooboffs + ops->ooblen) > len) {
pr_debug("%s: attempt to write past end of page\n",
__func__);
return -EINVAL;
}
/* Check if the region is secured */
if (nand_region_is_secured(chip, to, ops->ooblen))
return -EIO;
chipnr = (int)(to >> chip->chip_shift);
/*
* Reset the chip. Some chips (like the Toshiba TC5832DC found in one
* of my DiskOnChip 2000 test units) will clear the whole data page too
* if we don't do this. I have no clue why, but I seem to have 'fixed'
* it in the doc2000 driver in August 1999. dwmw2.
*/
ret = nand_reset(chip, chipnr);
if (ret)
return ret;
nand_select_target(chip, chipnr);
/* Shift to get page */
page = (int)(to >> chip->page_shift);
/* Check, if it is write protected */
if (nand_check_wp(chip)) {
nand_deselect_target(chip);
return -EROFS;
}
/* Invalidate the page cache, if we write to the cached page */
if (page == chip->pagecache.page)
chip->pagecache.page = -1;
nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
if (ops->mode == MTD_OPS_RAW)
status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
else
status = chip->ecc.write_oob(chip, page & chip->pagemask);
nand_deselect_target(chip);
if (status)
return status;
ops->oobretlen = ops->ooblen;
return 0;
}
/**
* nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
* @chip: NAND chip object
* @ofs: offset from device start
*
* This is the default implementation, which can be overridden by a hardware
* specific driver. It provides the details for writing a bad block marker to a
* block.
*/
static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct mtd_oob_ops ops;
uint8_t buf[2] = { 0, 0 };
int ret = 0, res, page_offset;
memset(&ops, 0, sizeof(ops));
ops.oobbuf = buf;
ops.ooboffs = chip->badblockpos;
if (chip->options & NAND_BUSWIDTH_16) {
ops.ooboffs &= ~0x01;
ops.len = ops.ooblen = 2;
} else {
ops.len = ops.ooblen = 1;
}
ops.mode = MTD_OPS_PLACE_OOB;
page_offset = nand_bbm_get_next_page(chip, 0);
while (page_offset >= 0) {
res = nand_do_write_oob(chip,
ofs + (page_offset * mtd->writesize),
&ops);
if (!ret)
ret = res;
page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
}
return ret;
}
/**
* nand_markbad_bbm - mark a block by updating the BBM
* @chip: NAND chip object
* @ofs: offset of the block to mark bad
*/
int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
{
if (chip->legacy.block_markbad)
return chip->legacy.block_markbad(chip, ofs);
return nand_default_block_markbad(chip, ofs);
}
/**
* nand_block_markbad_lowlevel - mark a block bad
* @chip: NAND chip object
* @ofs: offset from device start
*
* This function performs the generic NAND bad block marking steps (i.e., bad
* block table(s) and/or marker(s)). We only allow the hardware driver to
* specify how to write bad block markers to OOB (chip->legacy.block_markbad).
*
* We try operations in the following order:
*
* (1) erase the affected block, to allow OOB marker to be written cleanly
* (2) write bad block marker to OOB area of affected block (unless flag
* NAND_BBT_NO_OOB_BBM is present)
* (3) update the BBT
*
* Note that we retain the first error encountered in (2) or (3), finish the
* procedures, and dump the error in the end.
*/
static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int res, ret = 0;
if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
struct erase_info einfo;
/* Attempt erase before marking OOB */
memset(&einfo, 0, sizeof(einfo));
einfo.addr = ofs;
einfo.len = 1ULL << chip->phys_erase_shift;
nand_erase_nand(chip, &einfo, 0);
/* Write bad block marker to OOB */
nand_get_device(chip);
ret = nand_markbad_bbm(chip, ofs);
nand_release_device(chip);
}
/* Mark block bad in BBT */
if (chip->bbt) {
res = nand_markbad_bbt(chip, ofs);
if (!ret)
ret = res;
}
if (!ret)
mtd->ecc_stats.badblocks++;
return ret;
}
/**
* nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
* @mtd: MTD device structure
* @ofs: offset from device start
*
* Check if the block is marked as reserved.
*/
static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (!chip->bbt)
return 0;
/* Return info from the table */
return nand_isreserved_bbt(chip, ofs);
}
/**
* nand_block_checkbad - [GENERIC] Check if a block is marked bad
* @chip: NAND chip object
* @ofs: offset from device start
* @allowbbt: 1, if its allowed to access the bbt area
*
* Check, if the block is bad. Either by reading the bad block table or
* calling of the scan function.
*/
static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
{
/* Return info from the table */
if (chip->bbt)
return nand_isbad_bbt(chip, ofs, allowbbt);
return nand_isbad_bbm(chip, ofs);
}
/**
* nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
* @chip: NAND chip structure
* @timeout_ms: Timeout in ms
*
* Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
* If that does not happen whitin the specified timeout, -ETIMEDOUT is
* returned.
*
* This helper is intended to be used when the controller does not have access
* to the NAND R/B pin.
*
* Be aware that calling this helper from an ->exec_op() implementation means
* ->exec_op() must be re-entrant.
*
* Return 0 if the NAND chip is ready, a negative error otherwise.
*/
int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
{
const struct nand_interface_config *conf;
u8 status = 0;
int ret;
if (!nand_has_exec_op(chip))
return -ENOTSUPP;
/* Wait tWB before polling the STATUS reg. */
conf = nand_get_interface_config(chip);
ndelay(NAND_COMMON_TIMING_NS(conf, tWB_max));
ret = nand_status_op(chip, NULL);
if (ret)
return ret;
/*
* +1 below is necessary because if we are now in the last fraction
* of jiffy and msecs_to_jiffies is 1 then we will wait only that
* small jiffy fraction - possibly leading to false timeout
*/
timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
do {
ret = nand_read_data_op(chip, &status, sizeof(status), true,
false);
if (ret)
break;
if (status & NAND_STATUS_READY)
break;
/*
* Typical lowest execution time for a tR on most NANDs is 10us,
* use this as polling delay before doing something smarter (ie.
* deriving a delay from the timeout value, timeout_ms/ratio).
*/
udelay(10);
} while (time_before(jiffies, timeout_ms));
/*
* We have to exit READ_STATUS mode in order to read real data on the
* bus in case the WAITRDY instruction is preceding a DATA_IN
* instruction.
*/
nand_exit_status_op(chip);
if (ret)
return ret;
return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
};
EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
/**
* nand_gpio_waitrdy - Poll R/B GPIO pin until ready
* @chip: NAND chip structure
* @gpiod: GPIO descriptor of R/B pin
* @timeout_ms: Timeout in ms
*
* Poll the R/B GPIO pin until it becomes ready. If that does not happen
* whitin the specified timeout, -ETIMEDOUT is returned.
*
* This helper is intended to be used when the controller has access to the
* NAND R/B pin over GPIO.
*
* Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
*/
int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
unsigned long timeout_ms)
{
/*
* Wait until R/B pin indicates chip is ready or timeout occurs.
* +1 below is necessary because if we are now in the last fraction
* of jiffy and msecs_to_jiffies is 1 then we will wait only that
* small jiffy fraction - possibly leading to false timeout.
*/
timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
do {
if (gpiod_get_value_cansleep(gpiod))
return 0;
cond_resched();
} while (time_before(jiffies, timeout_ms));
return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
};
EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
/**
* panic_nand_wait - [GENERIC] wait until the command is done
* @chip: NAND chip structure
* @timeo: timeout
*
* Wait for command done. This is a helper function for nand_wait used when
* we are in interrupt context. May happen when in panic and trying to write
* an oops through mtdoops.
*/
void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
{
int i;
for (i = 0; i < timeo; i++) {
if (chip->legacy.dev_ready) {
if (chip->legacy.dev_ready(chip))
break;
} else {
int ret;
u8 status;
ret = nand_read_data_op(chip, &status, sizeof(status),
true, false);
if (ret)
return;
if (status & NAND_STATUS_READY)
break;
}
mdelay(1);
}
}
static bool nand_supports_get_features(struct nand_chip *chip, int addr)
{
return (chip->parameters.supports_set_get_features &&
test_bit(addr, chip->parameters.get_feature_list));
}
static bool nand_supports_set_features(struct nand_chip *chip, int addr)
{
return (chip->parameters.supports_set_get_features &&
test_bit(addr, chip->parameters.set_feature_list));
}
/**
* nand_reset_interface - Reset data interface and timings
* @chip: The NAND chip
* @chipnr: Internal die id
*
* Reset the Data interface and timings to ONFI mode 0.
*
* Returns 0 for success or negative error code otherwise.
*/
static int nand_reset_interface(struct nand_chip *chip, int chipnr)
{
const struct nand_controller_ops *ops = chip->controller->ops;
int ret;
if (!nand_controller_can_setup_interface(chip))
return 0;
/*
* The ONFI specification says:
* "
* To transition from NV-DDR or NV-DDR2 to the SDR data
* interface, the host shall use the Reset (FFh) command
* using SDR timing mode 0. A device in any timing mode is
* required to recognize Reset (FFh) command issued in SDR
* timing mode 0.
* "
*
* Configure the data interface in SDR mode and set the
* timings to timing mode 0.
*/
chip->current_interface_config = nand_get_reset_interface_config();
ret = ops->setup_interface(chip, chipnr,
chip->current_interface_config);
if (ret)
pr_err("Failed to configure data interface to SDR timing mode 0\n");
return ret;
}
/**
* nand_setup_interface - Setup the best data interface and timings
* @chip: The NAND chip
* @chipnr: Internal die id
*
* Configure what has been reported to be the best data interface and NAND
* timings supported by the chip and the driver.
*
* Returns 0 for success or negative error code otherwise.
*/
static int nand_setup_interface(struct nand_chip *chip, int chipnr)
{
const struct nand_controller_ops *ops = chip->controller->ops;
u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { }, request;
int ret;
if (!nand_controller_can_setup_interface(chip))
return 0;
/*
* A nand_reset_interface() put both the NAND chip and the NAND
* controller in timings mode 0. If the default mode for this chip is
* also 0, no need to proceed to the change again. Plus, at probe time,
* nand_setup_interface() uses ->set/get_features() which would
* fail anyway as the parameter page is not available yet.
*/
if (!chip->best_interface_config)
return 0;
request = chip->best_interface_config->timings.mode;
if (nand_interface_is_sdr(chip->best_interface_config))
request |= ONFI_DATA_INTERFACE_SDR;
else
request |= ONFI_DATA_INTERFACE_NVDDR;
tmode_param[0] = request;
/* Change the mode on the chip side (if supported by the NAND chip) */
if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
nand_select_target(chip, chipnr);
ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
tmode_param);
nand_deselect_target(chip);
if (ret)
return ret;
}
/* Change the mode on the controller side */
ret = ops->setup_interface(chip, chipnr, chip->best_interface_config);
if (ret)
return ret;
/* Check the mode has been accepted by the chip, if supported */
if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
goto update_interface_config;
memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
nand_select_target(chip, chipnr);
ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
tmode_param);
nand_deselect_target(chip);
if (ret)
goto err_reset_chip;
if (request != tmode_param[0]) {
pr_warn("%s timing mode %d not acknowledged by the NAND chip\n",
nand_interface_is_nvddr(chip->best_interface_config) ? "NV-DDR" : "SDR",
chip->best_interface_config->timings.mode);
pr_debug("NAND chip would work in %s timing mode %d\n",
tmode_param[0] & ONFI_DATA_INTERFACE_NVDDR ? "NV-DDR" : "SDR",
(unsigned int)ONFI_TIMING_MODE_PARAM(tmode_param[0]));
goto err_reset_chip;
}
update_interface_config:
chip->current_interface_config = chip->best_interface_config;
return 0;
err_reset_chip:
/*
* Fallback to mode 0 if the chip explicitly did not ack the chosen
* timing mode.
*/
nand_reset_interface(chip, chipnr);
nand_select_target(chip, chipnr);
nand_reset_op(chip);
nand_deselect_target(chip);
return ret;
}
/**
* nand_choose_best_sdr_timings - Pick up the best SDR timings that both the
* NAND controller and the NAND chip support
* @chip: the NAND chip
* @iface: the interface configuration (can eventually be updated)
* @spec_timings: specific timings, when not fitting the ONFI specification
*
* If specific timings are provided, use them. Otherwise, retrieve supported
* timing modes from ONFI information.
*/
int nand_choose_best_sdr_timings(struct nand_chip *chip,
struct nand_interface_config *iface,
struct nand_sdr_timings *spec_timings)
{
const struct nand_controller_ops *ops = chip->controller->ops;
int best_mode = 0, mode, ret = -EOPNOTSUPP;
iface->type = NAND_SDR_IFACE;
if (spec_timings) {
iface->timings.sdr = *spec_timings;
iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings);
/* Verify the controller supports the requested interface */
ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
iface);
if (!ret) {
chip->best_interface_config = iface;
return ret;
}
/* Fallback to slower modes */
best_mode = iface->timings.mode;
} else if (chip->parameters.onfi) {
best_mode = fls(chip->parameters.onfi->sdr_timing_modes) - 1;
}
for (mode = best_mode; mode >= 0; mode--) {
onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode);
ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
iface);
if (!ret) {
chip->best_interface_config = iface;
break;
}
}
return ret;
}
/**
* nand_choose_best_nvddr_timings - Pick up the best NVDDR timings that both the
* NAND controller and the NAND chip support
* @chip: the NAND chip
* @iface: the interface configuration (can eventually be updated)
* @spec_timings: specific timings, when not fitting the ONFI specification
*
* If specific timings are provided, use them. Otherwise, retrieve supported
* timing modes from ONFI information.
*/
int nand_choose_best_nvddr_timings(struct nand_chip *chip,
struct nand_interface_config *iface,
struct nand_nvddr_timings *spec_timings)
{
const struct nand_controller_ops *ops = chip->controller->ops;
int best_mode = 0, mode, ret = -EOPNOTSUPP;
iface->type = NAND_NVDDR_IFACE;
if (spec_timings) {
iface->timings.nvddr = *spec_timings;
iface->timings.mode = onfi_find_closest_nvddr_mode(spec_timings);
/* Verify the controller supports the requested interface */
ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
iface);
if (!ret) {
chip->best_interface_config = iface;
return ret;
}
/* Fallback to slower modes */
best_mode = iface->timings.mode;
} else if (chip->parameters.onfi) {
best_mode = fls(chip->parameters.onfi->nvddr_timing_modes) - 1;
}
for (mode = best_mode; mode >= 0; mode--) {
onfi_fill_interface_config(chip, iface, NAND_NVDDR_IFACE, mode);
ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
iface);
if (!ret) {
chip->best_interface_config = iface;
break;
}
}
return ret;
}
/**
* nand_choose_best_timings - Pick up the best NVDDR or SDR timings that both
* NAND controller and the NAND chip support
* @chip: the NAND chip
* @iface: the interface configuration (can eventually be updated)
*
* If specific timings are provided, use them. Otherwise, retrieve supported
* timing modes from ONFI information.
*/
static int nand_choose_best_timings(struct nand_chip *chip,
struct nand_interface_config *iface)
{
int ret;
/* Try the fastest timings: NV-DDR */
ret = nand_choose_best_nvddr_timings(chip, iface, NULL);
if (!ret)
return 0;
/* Fallback to SDR timings otherwise */
return nand_choose_best_sdr_timings(chip, iface, NULL);
}
/**
* nand_choose_interface_config - find the best data interface and timings
* @chip: The NAND chip
*
* Find the best data interface and NAND timings supported by the chip
* and the driver. Eventually let the NAND manufacturer driver propose his own
* set of timings.
*
* After this function nand_chip->interface_config is initialized with the best
* timing mode available.
*
* Returns 0 for success or negative error code otherwise.
*/
static int nand_choose_interface_config(struct nand_chip *chip)
{
struct nand_interface_config *iface;
int ret;
if (!nand_controller_can_setup_interface(chip))
return 0;
iface = kzalloc(sizeof(*iface), GFP_KERNEL);
if (!iface)
return -ENOMEM;
if (chip->ops.choose_interface_config)
ret = chip->ops.choose_interface_config(chip, iface);
else
ret = nand_choose_best_timings(chip, iface);
if (ret)
kfree(iface);
return ret;
}
/**
* nand_fill_column_cycles - fill the column cycles of an address
* @chip: The NAND chip
* @addrs: Array of address cycles to fill
* @offset_in_page: The offset in the page
*
* Fills the first or the first two bytes of the @addrs field depending
* on the NAND bus width and the page size.
*
* Returns the number of cycles needed to encode the column, or a negative
* error code in case one of the arguments is invalid.
*/
static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
unsigned int offset_in_page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
/* Make sure the offset is less than the actual page size. */
if (offset_in_page > mtd->writesize + mtd->oobsize)
return -EINVAL;
/*
* On small page NANDs, there's a dedicated command to access the OOB
* area, and the column address is relative to the start of the OOB
* area, not the start of the page. Asjust the address accordingly.
*/
if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
offset_in_page -= mtd->writesize;
/*
* The offset in page is expressed in bytes, if the NAND bus is 16-bit
* wide, then it must be divided by 2.
*/
if (chip->options & NAND_BUSWIDTH_16) {
if (WARN_ON(offset_in_page % 2))
return -EINVAL;
offset_in_page /= 2;
}
addrs[0] = offset_in_page;
/*
* Small page NANDs use 1 cycle for the columns, while large page NANDs
* need 2
*/
if (mtd->writesize <= 512)
return 1;
addrs[1] = offset_in_page >> 8;
return 2;
}
static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
unsigned int offset_in_page, void *buf,
unsigned int len)
{
const struct nand_interface_config *conf =
nand_get_interface_config(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
u8 addrs[4];
struct nand_op_instr instrs[] = {
NAND_OP_CMD(NAND_CMD_READ0, 0),
NAND_OP_ADDR(3, addrs, NAND_COMMON_TIMING_NS(conf, tWB_max)),
NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
NAND_COMMON_TIMING_NS(conf, tRR_min)),
NAND_OP_DATA_IN(len, buf, 0),
};
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
int ret;
/* Drop the DATA_IN instruction if len is set to 0. */
if (!len)
op.ninstrs--;
if (offset_in_page >= mtd->writesize)
instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
else if (offset_in_page >= 256 &&
!(chip->options & NAND_BUSWIDTH_16))
instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
if (ret < 0)
return ret;
addrs[1] = page;
addrs[2] = page >> 8;
if (chip->options & NAND_ROW_ADDR_3) {
addrs[3] = page >> 16;
instrs[1].ctx.addr.naddrs++;
}
return nand_exec_op(chip, &op);
}
static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
unsigned int offset_in_page, void *buf,
unsigned int len)
{
const struct nand_interface_config *conf =
nand_get_interface_config(chip);
u8 addrs[5];
struct nand_op_instr instrs[] = {
NAND_OP_CMD(NAND_CMD_READ0, 0),
NAND_OP_ADDR(4, addrs, 0),
NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
NAND_COMMON_TIMING_NS(conf, tRR_min)),
NAND_OP_DATA_IN(len, buf, 0),
};
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
int ret;
/* Drop the DATA_IN instruction if len is set to 0. */
if (!len)
op.ninstrs--;
ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
if (ret < 0)
return ret;
addrs[2] = page;
addrs[3] = page >> 8;
if (chip->options & NAND_ROW_ADDR_3) {
addrs[4] = page >> 16;
instrs[1].ctx.addr.naddrs++;
}
return nand_exec_op(chip, &op);
}
static unsigned int rawnand_last_page_of_lun(unsigned int pages_per_lun, unsigned int lun)
{
/* lun is expected to be very small */
return (lun * pages_per_lun) + pages_per_lun - 1;
}
static void rawnand_cap_cont_reads(struct nand_chip *chip)
{
struct nand_memory_organization *memorg;
unsigned int ppl, first_lun, last_lun;
memorg = nanddev_get_memorg(&chip->base);
ppl = memorg->pages_per_eraseblock * memorg->eraseblocks_per_lun;
first_lun = chip->cont_read.first_page / ppl;
last_lun = chip->cont_read.last_page / ppl;
/* Prevent sequential cache reads across LUN boundaries */
if (first_lun != last_lun)
chip->cont_read.pause_page = rawnand_last_page_of_lun(ppl, first_lun);
else
chip->cont_read.pause_page = chip->cont_read.last_page;
if (chip->cont_read.first_page == chip->cont_read.pause_page) {
chip->cont_read.first_page++;
chip->cont_read.pause_page = min(chip->cont_read.last_page,
rawnand_last_page_of_lun(ppl, first_lun + 1));
}
if (chip->cont_read.first_page >= chip->cont_read.last_page)
chip->cont_read.ongoing = false;
}
static int nand_lp_exec_cont_read_page_op(struct nand_chip *chip, unsigned int page,
unsigned int offset_in_page, void *buf,
unsigned int len, bool check_only)
{
const struct nand_interface_config *conf =
nand_get_interface_config(chip);
u8 addrs[5];
struct nand_op_instr start_instrs[] = {
NAND_OP_CMD(NAND_CMD_READ0, 0),
NAND_OP_ADDR(4, addrs, 0),
NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 0),
NAND_OP_CMD(NAND_CMD_READCACHESEQ, NAND_COMMON_TIMING_NS(conf, tWB_max)),
NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
NAND_COMMON_TIMING_NS(conf, tRR_min)),
NAND_OP_DATA_IN(len, buf, 0),
};
struct nand_op_instr cont_instrs[] = {
NAND_OP_CMD(page == chip->cont_read.pause_page ?
NAND_CMD_READCACHEEND : NAND_CMD_READCACHESEQ,
NAND_COMMON_TIMING_NS(conf, tWB_max)),
NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
NAND_COMMON_TIMING_NS(conf, tRR_min)),
NAND_OP_DATA_IN(len, buf, 0),
};
struct nand_operation start_op = NAND_OPERATION(chip->cur_cs, start_instrs);
struct nand_operation cont_op = NAND_OPERATION(chip->cur_cs, cont_instrs);
int ret;
if (!len) {
start_op.ninstrs--;
cont_op.ninstrs--;
}
ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
if (ret < 0)
return ret;
addrs[2] = page;
addrs[3] = page >> 8;
if (chip->options & NAND_ROW_ADDR_3) {
addrs[4] = page >> 16;
start_instrs[1].ctx.addr.naddrs++;
}
/* Check if cache reads are supported */
if (check_only) {
if (nand_check_op(chip, &start_op) || nand_check_op(chip, &cont_op))
return -EOPNOTSUPP;
return 0;
}
if (page == chip->cont_read.first_page)
ret = nand_exec_op(chip, &start_op);
else
ret = nand_exec_op(chip, &cont_op);
if (ret)
return ret;
if (!chip->cont_read.ongoing)
return 0;
if (page == chip->cont_read.last_page) {
chip->cont_read.ongoing = false;
} else if (page == chip->cont_read.pause_page) {
chip->cont_read.first_page++;
rawnand_cap_cont_reads(chip);
}
return 0;
}
static bool rawnand_cont_read_ongoing(struct nand_chip *chip, unsigned int page)
{
return chip->cont_read.ongoing && page >= chip->cont_read.first_page;
}
/**
* nand_read_page_op - Do a READ PAGE operation
* @chip: The NAND chip
* @page: page to read
* @offset_in_page: offset within the page
* @buf: buffer used to store the data
* @len: length of the buffer
*
* This function issues a READ PAGE operation.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_read_page_op(struct nand_chip *chip, unsigned int page,
unsigned int offset_in_page, void *buf, unsigned int len)
{
struct mtd_info *mtd = nand_to_mtd(chip);
if (len && !buf)
return -EINVAL;
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
return -EINVAL;
if (nand_has_exec_op(chip)) {
if (mtd->writesize > 512) {
if (rawnand_cont_read_ongoing(chip, page))
return nand_lp_exec_cont_read_page_op(chip, page,
offset_in_page,
buf, len, false);
else
return nand_lp_exec_read_page_op(chip, page,
offset_in_page, buf,
len);
}
return nand_sp_exec_read_page_op(chip, page, offset_in_page,
buf, len);
}
chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
if (len)
chip->legacy.read_buf(chip, buf, len);
return 0;
}
EXPORT_SYMBOL_GPL(nand_read_page_op);
/**
* nand_read_param_page_op - Do a READ PARAMETER PAGE operation
* @chip: The NAND chip
* @page: parameter page to read
* @buf: buffer used to store the data
* @len: length of the buffer
*
* This function issues a READ PARAMETER PAGE operation.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
unsigned int len)
{
unsigned int i;
u8 *p = buf;
if (len && !buf)
return -EINVAL;
if (nand_has_exec_op(chip)) {
const struct nand_interface_config *conf =
nand_get_interface_config(chip);
struct nand_op_instr instrs[] = {
NAND_OP_CMD(NAND_CMD_PARAM, 0),
NAND_OP_ADDR(1, &page,
NAND_COMMON_TIMING_NS(conf, tWB_max)),
NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
NAND_COMMON_TIMING_NS(conf, tRR_min)),
NAND_OP_8BIT_DATA_IN(len, buf, 0),
};
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
/* Drop the DATA_IN instruction if len is set to 0. */
if (!len)
op.ninstrs--;
return nand_exec_op(chip, &op);
}
chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
for (i = 0; i < len; i++)
p[i] = chip->legacy.read_byte(chip);
return 0;
}
/**
* nand_change_read_column_op - Do a CHANGE READ COLUMN operation
* @chip: The NAND chip
* @offset_in_page: offset within the page
* @buf: buffer used to store the data
* @len: length of the buffer
* @force_8bit: force 8-bit bus access
*
* This function issues a CHANGE READ COLUMN operation.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_change_read_column_op(struct nand_chip *chip,
unsigned int offset_in_page, void *buf,
unsigned int len, bool force_8bit)
{
struct mtd_info *mtd = nand_to_mtd(chip);
if (len && !buf)
return -EINVAL;
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
return -EINVAL;
/* Small page NANDs do not support column change. */
if (mtd->writesize <= 512)
return -ENOTSUPP;
if (nand_has_exec_op(chip)) {
const struct nand_interface_config *conf =
nand_get_interface_config(chip);
u8 addrs[2] = {};
struct nand_op_instr instrs[] = {
NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
NAND_OP_ADDR(2, addrs, 0),
NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
NAND_COMMON_TIMING_NS(conf, tCCS_min)),
NAND_OP_DATA_IN(len, buf, 0),
};
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
int ret;
ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
if (ret < 0)
return ret;
/* Drop the DATA_IN instruction if len is set to 0. */
if (!len)
op.ninstrs--;
instrs[3].ctx.data.force_8bit = force_8bit;
return nand_exec_op(chip, &op);
}
chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
if (len)
chip->legacy.read_buf(chip, buf, len);
return 0;
}
EXPORT_SYMBOL_GPL(nand_change_read_column_op);
/**
* nand_read_oob_op - Do a READ OOB operation
* @chip: The NAND chip
* @page: page to read
* @offset_in_oob: offset within the OOB area
* @buf: buffer used to store the data
* @len: length of the buffer
*
* This function issues a READ OOB operation.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
unsigned int offset_in_oob, void *buf, unsigned int len)
{
struct mtd_info *mtd = nand_to_mtd(chip);
if (len && !buf)
return -EINVAL;
if (offset_in_oob + len > mtd->oobsize)
return -EINVAL;
if (nand_has_exec_op(chip))
return nand_read_page_op(chip, page,
mtd->writesize + offset_in_oob,
buf, len);
chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
if (len)
chip->legacy.read_buf(chip, buf, len);
return 0;
}
EXPORT_SYMBOL_GPL(nand_read_oob_op);
static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
unsigned int offset_in_page, const void *buf,
unsigned int len, bool prog)
{
const struct nand_interface_config *conf =
nand_get_interface_config(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
u8 addrs[5] = {};
struct nand_op_instr instrs[] = {
/*
* The first instruction will be dropped if we're dealing
* with a large page NAND and adjusted if we're dealing
* with a small page NAND and the page offset is > 255.
*/
NAND_OP_CMD(NAND_CMD_READ0, 0),
NAND_OP_CMD(NAND_CMD_SEQIN, 0),
NAND_OP_ADDR(0, addrs, NAND_COMMON_TIMING_NS(conf, tADL_min)),
NAND_OP_DATA_OUT(len, buf, 0),
NAND_OP_CMD(NAND_CMD_PAGEPROG,
NAND_COMMON_TIMING_NS(conf, tWB_max)),
NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 0),
};
struct nand_operation op = NAND_DESTRUCTIVE_OPERATION(chip->cur_cs,
instrs);
int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
if (naddrs < 0)
return naddrs;
addrs[naddrs++] = page;
addrs[naddrs++] = page >> 8;
if (chip->options & NAND_ROW_ADDR_3)
addrs[naddrs++] = page >> 16;
instrs[2].ctx.addr.naddrs = naddrs;
/* Drop the last two instructions if we're not programming the page. */
if (!prog) {
op.ninstrs -= 2;
/* Also drop the DATA_OUT instruction if empty. */
if (!len)
op.ninstrs--;
}
if (mtd->writesize <= 512) {
/*
* Small pages need some more tweaking: we have to adjust the
* first instruction depending on the page offset we're trying
* to access.
*/
if (offset_in_page >= mtd->writesize)
instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
else if (offset_in_page >= 256 &&
!(chip->options & NAND_BUSWIDTH_16))
instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
} else {
/*
* Drop the first command if we're dealing with a large page
* NAND.
*/
op.instrs++;
op.ninstrs--;
}
return nand_exec_op(chip, &op);
}
/**
* nand_prog_page_begin_op - starts a PROG PAGE operation
* @chip: The NAND chip
* @page: page to write
* @offset_in_page: offset within the page
* @buf: buffer containing the data to write to the page
* @len: length of the buffer
*
* This function issues the first half of a PROG PAGE operation.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
unsigned int offset_in_page, const void *buf,
unsigned int len)
{
struct mtd_info *mtd = nand_to_mtd(chip);
if (len && !buf)
return -EINVAL;
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
return -EINVAL;
if (nand_has_exec_op(chip))
return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
len, false);
chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
if (buf)
chip->legacy.write_buf(chip, buf, len);
return 0;
}
EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
/**
* nand_prog_page_end_op - ends a PROG PAGE operation
* @chip: The NAND chip
*
* This function issues the second half of a PROG PAGE operation.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_prog_page_end_op(struct nand_chip *chip)
{
int ret;
u8 status;
if (nand_has_exec_op(chip)) {
const struct nand_interface_config *conf =
nand_get_interface_config(chip);
struct nand_op_instr instrs[] = {
NAND_OP_CMD(NAND_CMD_PAGEPROG,
NAND_COMMON_TIMING_NS(conf, tWB_max)),
NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max),
0),
};
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
ret = nand_exec_op(chip, &op);
if (ret)
return ret;
ret = nand_status_op(chip, &status);
if (ret)
return ret;
} else {
chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
ret = chip->legacy.waitfunc(chip);
if (ret < 0)
return ret;
status = ret;
}
if (status & NAND_STATUS_FAIL)
return -EIO;
return 0;
}
EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
/**
* nand_prog_page_op - Do a full PROG PAGE operation
* @chip: The NAND chip
* @page: page to write
* @offset_in_page: offset within the page
* @buf: buffer containing the data to write to the page
* @len: length of the buffer
*
* This function issues a full PROG PAGE operation.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
unsigned int offset_in_page, const void *buf,
unsigned int len)
{
struct mtd_info *mtd = nand_to_mtd(chip);
u8 status;
int ret;
if (!len || !buf)
return -EINVAL;
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
return -EINVAL;
if (nand_has_exec_op(chip)) {
ret = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
len, true);
if (ret)
return ret;
ret = nand_status_op(chip, &status);
if (ret)
return ret;
} else {
chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
page);
chip->legacy.write_buf(chip, buf, len);
chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
ret = chip->legacy.waitfunc(chip);
if (ret < 0)
return ret;
status = ret;
}
if (status & NAND_STATUS_FAIL)
return -EIO;
return 0;
}
EXPORT_SYMBOL_GPL(nand_prog_page_op);
/**
* nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
* @chip: The NAND chip
* @offset_in_page: offset within the page
* @buf: buffer containing the data to send to the NAND
* @len: length of the buffer
* @force_8bit: force 8-bit bus access
*
* This function issues a CHANGE WRITE COLUMN operation.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_change_write_column_op(struct nand_chip *chip,
unsigned int offset_in_page,
const void *buf, unsigned int len,
bool force_8bit)
{
struct mtd_info *mtd = nand_to_mtd(chip);
if (len && !buf)
return -EINVAL;
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
return -EINVAL;
/* Small page NANDs do not support column change. */
if (mtd->writesize <= 512)
return -ENOTSUPP;
if (nand_has_exec_op(chip)) {
const struct nand_interface_config *conf =
nand_get_interface_config(chip);
u8 addrs[2];
struct nand_op_instr instrs[] = {
NAND_OP_CMD(NAND_CMD_RNDIN, 0),
NAND_OP_ADDR(2, addrs, NAND_COMMON_TIMING_NS(conf, tCCS_min)),
NAND_OP_DATA_OUT(len, buf, 0),
};
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
int ret;
ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
if (ret < 0)
return ret;
instrs[2].ctx.data.force_8bit = force_8bit;
/* Drop the DATA_OUT instruction if len is set to 0. */
if (!len)
op.ninstrs--;
return nand_exec_op(chip, &op);
}
chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
if (len)
chip->legacy.write_buf(chip, buf, len);
return 0;
}
EXPORT_SYMBOL_GPL(nand_change_write_column_op);
/**
* nand_readid_op - Do a READID operation
* @chip: The NAND chip
* @addr: address cycle to pass after the READID command
* @buf: buffer used to store the ID
* @len: length of the buffer
*
* This function sends a READID command and reads back the ID returned by the
* NAND.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
unsigned int len)
{
unsigned int i;
u8 *id = buf, *ddrbuf = NULL;
if (len && !buf)
return -EINVAL;
if (nand_has_exec_op(chip)) {
const struct nand_interface_config *conf =
nand_get_interface_config(chip);
struct nand_op_instr instrs[] = {
NAND_OP_CMD(NAND_CMD_READID, 0),
NAND_OP_ADDR(1, &addr,
NAND_COMMON_TIMING_NS(conf, tADL_min)),
NAND_OP_8BIT_DATA_IN(len, buf, 0),
};
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
int ret;
/* READ_ID data bytes are received twice in NV-DDR mode */
if (len && nand_interface_is_nvddr(conf)) {
ddrbuf = kzalloc(len * 2, GFP_KERNEL);
if (!ddrbuf)
return -ENOMEM;
instrs[2].ctx.data.len *= 2;
instrs[2].ctx.data.buf.in = ddrbuf;
}
/* Drop the DATA_IN instruction if len is set to 0. */
if (!len)
op.ninstrs--;
ret = nand_exec_op(chip, &op);
if (!ret && len && nand_interface_is_nvddr(conf)) {
for (i = 0; i < len; i++)
id[i] = ddrbuf[i * 2];
}
kfree(ddrbuf);
return ret;
}
chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
for (i = 0; i < len; i++)
id[i] = chip->legacy.read_byte(chip);
return 0;
}
EXPORT_SYMBOL_GPL(nand_readid_op);
/**
* nand_status_op - Do a STATUS operation
* @chip: The NAND chip
* @status: out variable to store the NAND status
*
* This function sends a STATUS command and reads back the status returned by
* the NAND.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_status_op(struct nand_chip *chip, u8 *status)
{
if (nand_has_exec_op(chip)) {
const struct nand_interface_config *conf =
nand_get_interface_config(chip);
u8 ddrstatus[2];
struct nand_op_instr instrs[] = {
NAND_OP_CMD(NAND_CMD_STATUS,
NAND_COMMON_TIMING_NS(conf, tADL_min)),
NAND_OP_8BIT_DATA_IN(1, status, 0),
};
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
int ret;
/* The status data byte will be received twice in NV-DDR mode */
if (status && nand_interface_is_nvddr(conf)) {
instrs[1].ctx.data.len *= 2;
instrs[1].ctx.data.buf.in = ddrstatus;
}
if (!status)
op.ninstrs--;
ret = nand_exec_op(chip, &op);
if (!ret && status && nand_interface_is_nvddr(conf))
*status = ddrstatus[0];
return ret;
}
chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
if (status)
*status = chip->legacy.read_byte(chip);
return 0;
}
EXPORT_SYMBOL_GPL(nand_status_op);
/**
* nand_exit_status_op - Exit a STATUS operation
* @chip: The NAND chip
*
* This function sends a READ0 command to cancel the effect of the STATUS
* command to avoid reading only the status until a new read command is sent.
*
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_exit_status_op(struct nand_chip *chip)
{
if (nand_has_exec_op(chip)) {
struct nand_op_instr instrs[] = {
NAND_OP_CMD(NAND_CMD_READ0, 0),
};
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
return nand_exec_op(chip, &op);
}
chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
return 0;
}
EXPORT_SYMBOL_GPL(nand_exit_status_op);
/**
* nand_erase_op - Do an erase operation
* @chip: The NAND chip
* @eraseblock: block to erase
*
* This function sends an ERASE command and waits for the NAND to be ready
* before returning.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
{
unsigned int page = eraseblock <<
(chip->phys_erase_shift - chip->page_shift);
int ret;
u8 status;
if (nand_has_exec_op(chip)) {
const struct nand_interface_config *conf =
nand_get_interface_config(chip);
u8 addrs[3] = { page, page >> 8, page >> 16 };
struct nand_op_instr instrs[] = {
NAND_OP_CMD(NAND_CMD_ERASE1, 0),
NAND_OP_ADDR(2, addrs, 0),
NAND_OP_CMD(NAND_CMD_ERASE2,
NAND_COMMON_TIMING_NS(conf, tWB_max)),
NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tBERS_max),
0),
};
struct nand_operation op = NAND_DESTRUCTIVE_OPERATION(chip->cur_cs,
instrs);
if (chip->options & NAND_ROW_ADDR_3)
instrs[1].ctx.addr.naddrs++;
ret = nand_exec_op(chip, &op);
if (ret)
return ret;
ret = nand_status_op(chip, &status);
if (ret)
return ret;
} else {
chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
ret = chip->legacy.waitfunc(chip);
if (ret < 0)
return ret;
status = ret;
}
if (status & NAND_STATUS_FAIL)
return -EIO;
return 0;
}
EXPORT_SYMBOL_GPL(nand_erase_op);
/**
* nand_set_features_op - Do a SET FEATURES operation
* @chip: The NAND chip
* @feature: feature id
* @data: 4 bytes of data
*
* This function sends a SET FEATURES command and waits for the NAND to be
* ready before returning.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
static int nand_set_features_op(struct nand_chip *chip, u8 feature,
const void *data)
{
const u8 *params = data;
int i, ret;
if (nand_has_exec_op(chip)) {
const struct nand_interface_config *conf =
nand_get_interface_config(chip);
struct nand_op_instr instrs[] = {
NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
NAND_OP_ADDR(1, &feature, NAND_COMMON_TIMING_NS(conf,
tADL_min)),
NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
NAND_COMMON_TIMING_NS(conf,
tWB_max)),
NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
0),
};
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
return nand_exec_op(chip, &op);
}
chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
chip->legacy.write_byte(chip, params[i]);
ret = chip->legacy.waitfunc(chip);
if (ret < 0)
return ret;
if (ret & NAND_STATUS_FAIL)
return -EIO;
return 0;
}
/**
* nand_get_features_op - Do a GET FEATURES operation
* @chip: The NAND chip
* @feature: feature id
* @data: 4 bytes of data
*
* This function sends a GET FEATURES command and waits for the NAND to be
* ready before returning.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
static int nand_get_features_op(struct nand_chip *chip, u8 feature,
void *data)
{
u8 *params = data, ddrbuf[ONFI_SUBFEATURE_PARAM_LEN * 2];
int i;
if (nand_has_exec_op(chip)) {
const struct nand_interface_config *conf =
nand_get_interface_config(chip);
struct nand_op_instr instrs[] = {
NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
NAND_OP_ADDR(1, &feature,
NAND_COMMON_TIMING_NS(conf, tWB_max)),
NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
NAND_COMMON_TIMING_NS(conf, tRR_min)),
NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
data, 0),
};
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
int ret;
/* GET_FEATURE data bytes are received twice in NV-DDR mode */
if (nand_interface_is_nvddr(conf)) {
instrs[3].ctx.data.len *= 2;
instrs[3].ctx.data.buf.in = ddrbuf;
}
ret = nand_exec_op(chip, &op);
if (nand_interface_is_nvddr(conf)) {
for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; i++)
params[i] = ddrbuf[i * 2];
}
return ret;
}
chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
params[i] = chip->legacy.read_byte(chip);
return 0;
}
static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
unsigned int delay_ns)
{
if (nand_has_exec_op(chip)) {
struct nand_op_instr instrs[] = {
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
PSEC_TO_NSEC(delay_ns)),
};
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
return nand_exec_op(chip, &op);
}
/* Apply delay or wait for ready/busy pin */
if (!chip->legacy.dev_ready)
udelay(chip->legacy.chip_delay);
else
nand_wait_ready(chip);
return 0;
}
/**
* nand_reset_op - Do a reset operation
* @chip: The NAND chip
*
* This function sends a RESET command and waits for the NAND to be ready
* before returning.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_reset_op(struct nand_chip *chip)
{
if (nand_has_exec_op(chip)) {
const struct nand_interface_config *conf =
nand_get_interface_config(chip);
struct nand_op_instr instrs[] = {
NAND_OP_CMD(NAND_CMD_RESET,
NAND_COMMON_TIMING_NS(conf, tWB_max)),
NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tRST_max),
0),
};
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
return nand_exec_op(chip, &op);
}
chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
return 0;
}
EXPORT_SYMBOL_GPL(nand_reset_op);
/**
* nand_read_data_op - Read data from the NAND
* @chip: The NAND chip
* @buf: buffer used to store the data
* @len: length of the buffer
* @force_8bit: force 8-bit bus access
* @check_only: do not actually run the command, only checks if the
* controller driver supports it
*
* This function does a raw data read on the bus. Usually used after launching
* another NAND operation like nand_read_page_op().
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
bool force_8bit, bool check_only)
{
if (!len || !buf)
return -EINVAL;
if (nand_has_exec_op(chip)) {
const struct nand_interface_config *conf =
nand_get_interface_config(chip);
struct nand_op_instr instrs[] = {
NAND_OP_DATA_IN(len, buf, 0),
};
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
u8 *ddrbuf = NULL;
int ret, i;
instrs[0].ctx.data.force_8bit = force_8bit;
/*
* Parameter payloads (ID, status, features, etc) do not go
* through the same pipeline as regular data, hence the
* force_8bit flag must be set and this also indicates that in
* case NV-DDR timings are being used the data will be received
* twice.
*/
if (force_8bit && nand_interface_is_nvddr(conf)) {
ddrbuf = kzalloc(len * 2, GFP_KERNEL);
if (!ddrbuf)
return -ENOMEM;
instrs[0].ctx.data.len *= 2;
instrs[0].ctx.data.buf.in = ddrbuf;
}
if (check_only) {
ret = nand_check_op(chip, &op);
kfree(ddrbuf);
return ret;
}
ret = nand_exec_op(chip, &op);
if (!ret && force_8bit && nand_interface_is_nvddr(conf)) {
u8 *dst = buf;
for (i = 0; i < len; i++)
dst[i] = ddrbuf[i * 2];
}
kfree(ddrbuf);
return ret;
}
if (check_only)
return 0;
if (force_8bit) {
u8 *p = buf;
unsigned int i;
for (i = 0; i < len; i++)
p[i] = chip->legacy.read_byte(chip);
} else {
chip->legacy.read_buf(chip, buf, len);
}
return 0;
}
EXPORT_SYMBOL_GPL(nand_read_data_op);
/**
* nand_write_data_op - Write data from the NAND
* @chip: The NAND chip
* @buf: buffer containing the data to send on the bus
* @len: length of the buffer
* @force_8bit: force 8-bit bus access
*
* This function does a raw data write on the bus. Usually used after launching
* another NAND operation like nand_write_page_begin_op().
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_write_data_op(struct nand_chip *chip, const void *buf,
unsigned int len, bool force_8bit)
{
if (!len || !buf)
return -EINVAL;
if (nand_has_exec_op(chip)) {
struct nand_op_instr instrs[] = {
NAND_OP_DATA_OUT(len, buf, 0),
};
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
instrs[0].ctx.data.force_8bit = force_8bit;
return nand_exec_op(chip, &op);
}
if (force_8bit) {
const u8 *p = buf;
unsigned int i;
for (i = 0; i < len; i++)
chip->legacy.write_byte(chip, p[i]);
} else {
chip->legacy.write_buf(chip, buf, len);
}
return 0;
}
EXPORT_SYMBOL_GPL(nand_write_data_op);
/**
* struct nand_op_parser_ctx - Context used by the parser
* @instrs: array of all the instructions that must be addressed
* @ninstrs: length of the @instrs array
* @subop: Sub-operation to be passed to the NAND controller
*
* This structure is used by the core to split NAND operations into
* sub-operations that can be handled by the NAND controller.
*/
struct nand_op_parser_ctx {
const struct nand_op_instr *instrs;
unsigned int ninstrs;
struct nand_subop subop;
};
/**
* nand_op_parser_must_split_instr - Checks if an instruction must be split
* @pat: the parser pattern element that matches @instr
* @instr: pointer to the instruction to check
* @start_offset: this is an in/out parameter. If @instr has already been
* split, then @start_offset is the offset from which to start
* (either an address cycle or an offset in the data buffer).
* Conversely, if the function returns true (ie. instr must be
* split), this parameter is updated to point to the first
* data/address cycle that has not been taken care of.
*
* Some NAND controllers are limited and cannot send X address cycles with a
* unique operation, or cannot read/write more than Y bytes at the same time.
* In this case, split the instruction that does not fit in a single
* controller-operation into two or more chunks.
*
* Returns true if the instruction must be split, false otherwise.
* The @start_offset parameter is also updated to the offset at which the next
* bundle of instruction must start (if an address or a data instruction).
*/
static bool
nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
const struct nand_op_instr *instr,
unsigned int *start_offset)
{
switch (pat->type) {
case NAND_OP_ADDR_INSTR:
if (!pat->ctx.addr.maxcycles)
break;
if (instr->ctx.addr.naddrs - *start_offset >
pat->ctx.addr.maxcycles) {
*start_offset += pat->ctx.addr.maxcycles;
return true;
}
break;
case NAND_OP_DATA_IN_INSTR:
case NAND_OP_DATA_OUT_INSTR:
if (!pat->ctx.data.maxlen)
break;
if (instr->ctx.data.len - *start_offset >
pat->ctx.data.maxlen) {
*start_offset += pat->ctx.data.maxlen;
return true;
}
break;
default:
break;
}
return false;
}
/**
* nand_op_parser_match_pat - Checks if a pattern matches the instructions
* remaining in the parser context
* @pat: the pattern to test
* @ctx: the parser context structure to match with the pattern @pat
*
* Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
* Returns true if this is the case, false ortherwise. When true is returned,
* @ctx->subop is updated with the set of instructions to be passed to the
* controller driver.
*/
static bool
nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
struct nand_op_parser_ctx *ctx)
{
unsigned int instr_offset = ctx->subop.first_instr_start_off;
const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
const struct nand_op_instr *instr = ctx->subop.instrs;
unsigned int i, ninstrs;
for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
/*
* The pattern instruction does not match the operation
* instruction. If the instruction is marked optional in the
* pattern definition, we skip the pattern element and continue
* to the next one. If the element is mandatory, there's no
* match and we can return false directly.
*/
if (instr->type != pat->elems[i].type) {
if (!pat->elems[i].optional)
return false;
continue;
}
/*
* Now check the pattern element constraints. If the pattern is
* not able to handle the whole instruction in a single step,
* we have to split it.
* The last_instr_end_off value comes back updated to point to
* the position where we have to split the instruction (the
* start of the next subop chunk).
*/
if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
&instr_offset)) {
ninstrs++;
i++;
break;
}
instr++;
ninstrs++;
instr_offset = 0;
}
/*
* This can happen if all instructions of a pattern are optional.
* Still, if there's not at least one instruction handled by this
* pattern, this is not a match, and we should try the next one (if
* any).
*/
if (!ninstrs)
return false;
/*
* We had a match on the pattern head, but the pattern may be longer
* than the instructions we're asked to execute. We need to make sure
* there's no mandatory elements in the pattern tail.
*/
for (; i < pat->nelems; i++) {
if (!pat->elems[i].optional)
return false;
}
/*
* We have a match: update the subop structure accordingly and return
* true.
*/
ctx->subop.ninstrs = ninstrs;
ctx->subop.last_instr_end_off = instr_offset;
return true;
}
#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
{
const struct nand_op_instr *instr;
char *prefix = " ";
unsigned int i;
pr_debug("executing subop (CS%d):\n", ctx->subop.cs);
for (i = 0; i < ctx->ninstrs; i++) {
instr = &ctx->instrs[i];
if (instr == &ctx->subop.instrs[0])
prefix = " ->";
nand_op_trace(prefix, instr);
if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
prefix = " ";
}
}
#else
static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
{
/* NOP */
}
#endif
static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
const struct nand_op_parser_ctx *b)
{
if (a->subop.ninstrs < b->subop.ninstrs)
return -1;
else if (a->subop.ninstrs > b->subop.ninstrs)
return 1;
if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
return -1;
else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
return 1;
return 0;
}
/**
* nand_op_parser_exec_op - exec_op parser
* @chip: the NAND chip
* @parser: patterns description provided by the controller driver
* @op: the NAND operation to address
* @check_only: when true, the function only checks if @op can be handled but
* does not execute the operation
*
* Helper function designed to ease integration of NAND controller drivers that
* only support a limited set of instruction sequences. The supported sequences
* are described in @parser, and the framework takes care of splitting @op into
* multiple sub-operations (if required) and pass them back to the ->exec()
* callback of the matching pattern if @check_only is set to false.
*
* NAND controller drivers should call this function from their own ->exec_op()
* implementation.
*
* Returns 0 on success, a negative error code otherwise. A failure can be
* caused by an unsupported operation (none of the supported patterns is able
* to handle the requested operation), or an error returned by one of the
* matching pattern->exec() hook.
*/
int nand_op_parser_exec_op(struct nand_chip *chip,
const struct nand_op_parser *parser,
const struct nand_operation *op, bool check_only)
{
struct nand_op_parser_ctx ctx = {
.subop.cs = op->cs,
.subop.instrs = op->instrs,
.instrs = op->instrs,
.ninstrs = op->ninstrs,
};
unsigned int i;
while (ctx.subop.instrs < op->instrs + op->ninstrs) {
const struct nand_op_parser_pattern *pattern;
struct nand_op_parser_ctx best_ctx;
int ret, best_pattern = -1;
for (i = 0; i < parser->npatterns; i++) {
struct nand_op_parser_ctx test_ctx = ctx;
pattern = &parser->patterns[i];
if (!nand_op_parser_match_pat(pattern, &test_ctx))
continue;
if (best_pattern >= 0 &&
nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
continue;
best_pattern = i;
best_ctx = test_ctx;
}
if (best_pattern < 0) {
pr_debug("->exec_op() parser: pattern not found!\n");
return -ENOTSUPP;
}
ctx = best_ctx;
nand_op_parser_trace(&ctx);
if (!check_only) {
pattern = &parser->patterns[best_pattern];
ret = pattern->exec(chip, &ctx.subop);
if (ret)
return ret;
}
/*
* Update the context structure by pointing to the start of the
* next subop.
*/
ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
if (ctx.subop.last_instr_end_off)
ctx.subop.instrs -= 1;
ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
}
return 0;
}
EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
static bool nand_instr_is_data(const struct nand_op_instr *instr)
{
return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
instr->type == NAND_OP_DATA_OUT_INSTR);
}
static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
unsigned int instr_idx)
{
return subop && instr_idx < subop->ninstrs;
}
static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
unsigned int instr_idx)
{
if (instr_idx)
return 0;
return subop->first_instr_start_off;
}
/**
* nand_subop_get_addr_start_off - Get the start offset in an address array
* @subop: The entire sub-operation
* @instr_idx: Index of the instruction inside the sub-operation
*
* During driver development, one could be tempted to directly use the
* ->addr.addrs field of address instructions. This is wrong as address
* instructions might be split.
*
* Given an address instruction, returns the offset of the first cycle to issue.
*/
unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
unsigned int instr_idx)
{
if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
return 0;
return nand_subop_get_start_off(subop, instr_idx);
}
EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
/**
* nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
* @subop: The entire sub-operation
* @instr_idx: Index of the instruction inside the sub-operation
*
* During driver development, one could be tempted to directly use the
* ->addr->naddrs field of a data instruction. This is wrong as instructions
* might be split.
*
* Given an address instruction, returns the number of address cycle to issue.
*/
unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
unsigned int instr_idx)
{
int start_off, end_off;
if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
return 0;
start_off = nand_subop_get_addr_start_off(subop, instr_idx);
if (instr_idx == subop->ninstrs - 1 &&
subop->last_instr_end_off)
end_off = subop->last_instr_end_off;
else
end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
return end_off - start_off;
}
EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
/**
* nand_subop_get_data_start_off - Get the start offset in a data array
* @subop: The entire sub-operation
* @instr_idx: Index of the instruction inside the sub-operation
*
* During driver development, one could be tempted to directly use the
* ->data->buf.{in,out} field of data instructions. This is wrong as data
* instructions might be split.
*
* Given a data instruction, returns the offset to start from.
*/
unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
unsigned int instr_idx)
{
if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
!nand_instr_is_data(&subop->instrs[instr_idx])))
return 0;
return nand_subop_get_start_off(subop, instr_idx);
}
EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
/**
* nand_subop_get_data_len - Get the number of bytes to retrieve
* @subop: The entire sub-operation
* @instr_idx: Index of the instruction inside the sub-operation
*
* During driver development, one could be tempted to directly use the
* ->data->len field of a data instruction. This is wrong as data instructions
* might be split.
*
* Returns the length of the chunk of data to send/receive.
*/
unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
unsigned int instr_idx)
{
int start_off = 0, end_off;
if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
!nand_instr_is_data(&subop->instrs[instr_idx])))
return 0;
start_off = nand_subop_get_data_start_off(subop, instr_idx);
if (instr_idx == subop->ninstrs - 1 &&
subop->last_instr_end_off)
end_off = subop->last_instr_end_off;
else
end_off = subop->instrs[instr_idx].ctx.data.len;
return end_off - start_off;
}
EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
/**
* nand_reset - Reset and initialize a NAND device
* @chip: The NAND chip
* @chipnr: Internal die id
*
* Save the timings data structure, then apply SDR timings mode 0 (see
* nand_reset_interface for details), do the reset operation, and apply
* back the previous timings.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_reset(struct nand_chip *chip, int chipnr)
{
int ret;
ret = nand_reset_interface(chip, chipnr);
if (ret)
return ret;
/*
* The CS line has to be released before we can apply the new NAND
* interface settings, hence this weird nand_select_target()
* nand_deselect_target() dance.
*/
nand_select_target(chip, chipnr);
ret = nand_reset_op(chip);
nand_deselect_target(chip);
if (ret)
return ret;
ret = nand_setup_interface(chip, chipnr);
if (ret)
return ret;
return 0;
}
EXPORT_SYMBOL_GPL(nand_reset);
/**
* nand_get_features - wrapper to perform a GET_FEATURE
* @chip: NAND chip info structure
* @addr: feature address
* @subfeature_param: the subfeature parameters, a four bytes array
*
* Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
* operation cannot be handled.
*/
int nand_get_features(struct nand_chip *chip, int addr,
u8 *subfeature_param)
{
if (!nand_supports_get_features(chip, addr))
return -ENOTSUPP;
if (chip->legacy.get_features)
return chip->legacy.get_features(chip, addr, subfeature_param);
return nand_get_features_op(chip, addr, subfeature_param);
}
/**
* nand_set_features - wrapper to perform a SET_FEATURE
* @chip: NAND chip info structure
* @addr: feature address
* @subfeature_param: the subfeature parameters, a four bytes array
*
* Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
* operation cannot be handled.
*/
int nand_set_features(struct nand_chip *chip, int addr,
u8 *subfeature_param)
{
if (!nand_supports_set_features(chip, addr))
return -ENOTSUPP;
if (chip->legacy.set_features)
return chip->legacy.set_features(chip, addr, subfeature_param);
return nand_set_features_op(chip, addr, subfeature_param);
}
/**
* nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
* @buf: buffer to test
* @len: buffer length
* @bitflips_threshold: maximum number of bitflips
*
* Check if a buffer contains only 0xff, which means the underlying region
* has been erased and is ready to be programmed.
* The bitflips_threshold specify the maximum number of bitflips before
* considering the region is not erased.
* Note: The logic of this function has been extracted from the memweight
* implementation, except that nand_check_erased_buf function exit before
* testing the whole buffer if the number of bitflips exceed the
* bitflips_threshold value.
*
* Returns a positive number of bitflips less than or equal to
* bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
* threshold.
*/
static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
{
const unsigned char *bitmap = buf;
int bitflips = 0;
int weight;
for (; len && ((uintptr_t)bitmap) % sizeof(long);
len--, bitmap++) {
weight = hweight8(*bitmap);
bitflips += BITS_PER_BYTE - weight;
if (unlikely(bitflips > bitflips_threshold))
return -EBADMSG;
}
for (; len >= sizeof(long);
len -= sizeof(long), bitmap += sizeof(long)) {
unsigned long d = *((unsigned long *)bitmap);
if (d == ~0UL)
continue;
weight = hweight_long(d);
bitflips += BITS_PER_LONG - weight;
if (unlikely(bitflips > bitflips_threshold))
return -EBADMSG;
}
for (; len > 0; len--, bitmap++) {
weight = hweight8(*bitmap);
bitflips += BITS_PER_BYTE - weight;
if (unlikely(bitflips > bitflips_threshold))
return -EBADMSG;
}
return bitflips;
}
/**
* nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
* 0xff data
* @data: data buffer to test
* @datalen: data length
* @ecc: ECC buffer
* @ecclen: ECC length
* @extraoob: extra OOB buffer
* @extraooblen: extra OOB length
* @bitflips_threshold: maximum number of bitflips
*
* Check if a data buffer and its associated ECC and OOB data contains only
* 0xff pattern, which means the underlying region has been erased and is
* ready to be programmed.
* The bitflips_threshold specify the maximum number of bitflips before
* considering the region as not erased.
*
* Note:
* 1/ ECC algorithms are working on pre-defined block sizes which are usually
* different from the NAND page size. When fixing bitflips, ECC engines will
* report the number of errors per chunk, and the NAND core infrastructure
* expect you to return the maximum number of bitflips for the whole page.
* This is why you should always use this function on a single chunk and
* not on the whole page. After checking each chunk you should update your
* max_bitflips value accordingly.
* 2/ When checking for bitflips in erased pages you should not only check
* the payload data but also their associated ECC data, because a user might
* have programmed almost all bits to 1 but a few. In this case, we
* shouldn't consider the chunk as erased, and checking ECC bytes prevent
* this case.
* 3/ The extraoob argument is optional, and should be used if some of your OOB
* data are protected by the ECC engine.
* It could also be used if you support subpages and want to attach some
* extra OOB data to an ECC chunk.
*
* Returns a positive number of bitflips less than or equal to
* bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
* threshold. In case of success, the passed buffers are filled with 0xff.
*/
int nand_check_erased_ecc_chunk(void *data, int datalen,
void *ecc, int ecclen,
void *extraoob, int extraooblen,
int bitflips_threshold)
{
int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
data_bitflips = nand_check_erased_buf(data, datalen,
bitflips_threshold);
if (data_bitflips < 0)
return data_bitflips;
bitflips_threshold -= data_bitflips;
ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
if (ecc_bitflips < 0)
return ecc_bitflips;
bitflips_threshold -= ecc_bitflips;
extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
bitflips_threshold);
if (extraoob_bitflips < 0)
return extraoob_bitflips;
if (data_bitflips)
memset(data, 0xff, datalen);
if (ecc_bitflips)
memset(ecc, 0xff, ecclen);
if (extraoob_bitflips)
memset(extraoob, 0xff, extraooblen);
return data_bitflips + ecc_bitflips + extraoob_bitflips;
}
EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
/**
* nand_read_page_raw_notsupp - dummy read raw page function
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* Returns -ENOTSUPP unconditionally.
*/
int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
return -ENOTSUPP;
}
/**
* nand_read_page_raw - [INTERN] read raw page data without ecc
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* Not for syndrome calculating ECC controllers, which use a special oob layout.
*/
int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
if (ret)
return ret;
if (oob_required) {
ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
false, false);
if (ret)
return ret;
}
return 0;
}
EXPORT_SYMBOL(nand_read_page_raw);
/**
* nand_monolithic_read_page_raw - Monolithic page read in raw mode
* @chip: NAND chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* This is a raw page read, ie. without any error detection/correction.
* Monolithic means we are requesting all the relevant data (main plus
* eventually OOB) to be loaded in the NAND cache and sent over the
* bus (from the NAND chip to the NAND controller) in a single
* operation. This is an alternative to nand_read_page_raw(), which
* first reads the main data, and if the OOB data is requested too,
* then reads more data on the bus.
*/
int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
unsigned int size = mtd->writesize;
u8 *read_buf = buf;
int ret;
if (oob_required) {
size += mtd->oobsize;
if (buf != chip->data_buf)
read_buf = nand_get_data_buf(chip);
}
ret = nand_read_page_op(chip, page, 0, read_buf, size);
if (ret)
return ret;
if (buf != chip->data_buf)
memcpy(buf, read_buf, mtd->writesize);
return 0;
}
EXPORT_SYMBOL(nand_monolithic_read_page_raw);
/**
* nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* We need a special oob layout and handling even when OOB isn't used.
*/
static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
uint8_t *oob = chip->oob_poi;
int steps, size, ret;
ret = nand_read_page_op(chip, page, 0, NULL, 0);
if (ret)
return ret;
for (steps = chip->ecc.steps; steps > 0; steps--) {
ret = nand_read_data_op(chip, buf, eccsize, false, false);
if (ret)
return ret;
buf += eccsize;
if (chip->ecc.prepad) {
ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
false, false);
if (ret)
return ret;
oob += chip->ecc.prepad;
}
ret = nand_read_data_op(chip, oob, eccbytes, false, false);
if (ret)
return ret;
oob += eccbytes;
if (chip->ecc.postpad) {
ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
false, false);
if (ret)
return ret;
oob += chip->ecc.postpad;
}
}
size = mtd->oobsize - (oob - chip->oob_poi);
if (size) {
ret = nand_read_data_op(chip, oob, size, false, false);
if (ret)
return ret;
}
return 0;
}
/**
* nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*/
static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int i, eccsize = chip->ecc.size, ret;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *p = buf;
uint8_t *ecc_calc = chip->ecc.calc_buf;
uint8_t *ecc_code = chip->ecc.code_buf;
unsigned int max_bitflips = 0;
chip->ecc.read_page_raw(chip, buf, 1, page);
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
chip->ecc.calculate(chip, p, &ecc_calc[i]);
ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
chip->ecc.total);
if (ret)
return ret;
eccsteps = chip->ecc.steps;
p = buf;
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat;
stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
return max_bitflips;
}
/**
* nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
* @chip: nand chip info structure
* @data_offs: offset of requested data within the page
* @readlen: data length
* @bufpoi: buffer to store read data
* @page: page number to read
*/
static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
uint32_t readlen, uint8_t *bufpoi, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int start_step, end_step, num_steps, ret;
uint8_t *p;
int data_col_addr, i, gaps = 0;
int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
int index, section = 0;
unsigned int max_bitflips = 0;
struct mtd_oob_region oobregion = { };
/* Column address within the page aligned to ECC size (256bytes) */
start_step = data_offs / chip->ecc.size;
end_step = (data_offs + readlen - 1) / chip->ecc.size;
num_steps = end_step - start_step + 1;
index = start_step * chip->ecc.bytes;
/* Data size aligned to ECC ecc.size */
datafrag_len = num_steps * chip->ecc.size;
eccfrag_len = num_steps * chip->ecc.bytes;
data_col_addr = start_step * chip->ecc.size;
/* If we read not a page aligned data */
p = bufpoi + data_col_addr;
ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
if (ret)
return ret;
/* Calculate ECC */
for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
/*
* The performance is faster if we position offsets according to
* ecc.pos. Let's make sure that there are no gaps in ECC positions.
*/
ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
if (ret)
return ret;
if (oobregion.length < eccfrag_len)
gaps = 1;
if (gaps) {
ret = nand_change_read_column_op(chip, mtd->writesize,
chip->oob_poi, mtd->oobsize,
false);
if (ret)
return ret;
} else {
/*
* Send the command to read the particular ECC bytes take care
* about buswidth alignment in read_buf.
*/
aligned_pos = oobregion.offset & ~(busw - 1);
aligned_len = eccfrag_len;
if (oobregion.offset & (busw - 1))
aligned_len++;
if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
(busw - 1))
aligned_len++;
ret = nand_change_read_column_op(chip,
mtd->writesize + aligned_pos,
&chip->oob_poi[aligned_pos],
aligned_len, false);
if (ret)
return ret;
}
ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
chip->oob_poi, index, eccfrag_len);
if (ret)
return ret;
p = bufpoi + data_col_addr;
for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
int stat;
stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
&chip->ecc.calc_buf[i]);
if (stat == -EBADMSG &&
(chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
/* check for empty pages with bitflips */
stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
&chip->ecc.code_buf[i],
chip->ecc.bytes,
NULL, 0,
chip->ecc.strength);
}
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
return max_bitflips;
}
/**
* nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* Not for syndrome calculating ECC controllers which need a special oob layout.
*/
static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int i, eccsize = chip->ecc.size, ret;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *p = buf;
uint8_t *ecc_calc = chip->ecc.calc_buf;
uint8_t *ecc_code = chip->ecc.code_buf;
unsigned int max_bitflips = 0;
ret = nand_read_page_op(chip, page, 0, NULL, 0);
if (ret)
return ret;
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
chip->ecc.hwctl(chip, NAND_ECC_READ);
ret = nand_read_data_op(chip, p, eccsize, false, false);
if (ret)
return ret;
chip->ecc.calculate(chip, p, &ecc_calc[i]);
}
ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
false);
if (ret)
return ret;
ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
chip->ecc.total);
if (ret)
return ret;
eccsteps = chip->ecc.steps;
p = buf;
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat;
stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
if (stat == -EBADMSG &&
(chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
/* check for empty pages with bitflips */
stat = nand_check_erased_ecc_chunk(p, eccsize,
&ecc_code[i], eccbytes,
NULL, 0,
chip->ecc.strength);
}
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
return max_bitflips;
}
/**
* nand_read_page_hwecc_oob_first - Hardware ECC page read with ECC
* data read from OOB area
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* Hardware ECC for large page chips, which requires the ECC data to be
* extracted from the OOB before the actual data is read.
*/
int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int i, eccsize = chip->ecc.size, ret;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *p = buf;
uint8_t *ecc_code = chip->ecc.code_buf;
unsigned int max_bitflips = 0;
/* Read the OOB area first */
ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
if (ret)
return ret;
/* Move read cursor to start of page */
ret = nand_change_read_column_op(chip, 0, NULL, 0, false);
if (ret)
return ret;
ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
chip->ecc.total);
if (ret)
return ret;
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat;
chip->ecc.hwctl(chip, NAND_ECC_READ);
ret = nand_read_data_op(chip, p, eccsize, false, false);
if (ret)
return ret;
stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
if (stat == -EBADMSG &&
(chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
/* check for empty pages with bitflips */
stat = nand_check_erased_ecc_chunk(p, eccsize,
&ecc_code[i],
eccbytes, NULL, 0,
chip->ecc.strength);
}
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
return max_bitflips;
}
EXPORT_SYMBOL_GPL(nand_read_page_hwecc_oob_first);
/**
* nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* The hw generator calculates the error syndrome automatically. Therefore we
* need a special oob layout and handling.
*/
static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int ret, i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
uint8_t *p = buf;
uint8_t *oob = chip->oob_poi;
unsigned int max_bitflips = 0;
ret = nand_read_page_op(chip, page, 0, NULL, 0);
if (ret)
return ret;
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat;
chip->ecc.hwctl(chip, NAND_ECC_READ);
ret = nand_read_data_op(chip, p, eccsize, false, false);
if (ret)
return ret;
if (chip->ecc.prepad) {
ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
false, false);
if (ret)
return ret;
oob += chip->ecc.prepad;
}
chip->ecc.hwctl(chip, NAND_ECC_READSYN);
ret = nand_read_data_op(chip, oob, eccbytes, false, false);
if (ret)
return ret;
stat = chip->ecc.correct(chip, p, oob, NULL);
oob += eccbytes;
if (chip->ecc.postpad) {
ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
false, false);
if (ret)
return ret;
oob += chip->ecc.postpad;
}
if (stat == -EBADMSG &&
(chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
/* check for empty pages with bitflips */
stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
oob - eccpadbytes,
eccpadbytes,
NULL, 0,
chip->ecc.strength);
}
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
/* Calculate remaining oob bytes */
i = mtd->oobsize - (oob - chip->oob_poi);
if (i) {
ret = nand_read_data_op(chip, oob, i, false, false);
if (ret)
return ret;
}
return max_bitflips;
}
/**
* nand_transfer_oob - [INTERN] Transfer oob to client buffer
* @chip: NAND chip object
* @oob: oob destination address
* @ops: oob ops structure
* @len: size of oob to transfer
*/
static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
struct mtd_oob_ops *ops, size_t len)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
switch (ops->mode) {
case MTD_OPS_PLACE_OOB:
case MTD_OPS_RAW:
memcpy(oob, chip->oob_poi + ops->ooboffs, len);
return oob + len;
case MTD_OPS_AUTO_OOB:
ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
ops->ooboffs, len);
BUG_ON(ret);
return oob + len;
default:
BUG();
}
return NULL;
}
static void rawnand_enable_cont_reads(struct nand_chip *chip, unsigned int page,
u32 readlen, int col)
{
struct mtd_info *mtd = nand_to_mtd(chip);
unsigned int first_page, last_page;
chip->cont_read.ongoing = false;
if (!chip->controller->supported_op.cont_read)
return;
/*
* Don't bother making any calculations if the length is too small.
* Side effect: avoids possible integer underflows below.
*/
if (readlen < (2 * mtd->writesize))
return;
/* Derive the page where continuous read should start (the first full page read) */
first_page = page;
if (col)
first_page++;
/* Derive the page where continuous read should stop (the last full page read) */
last_page = page + ((col + readlen) / mtd->writesize) - 1;
/* Configure and enable continuous read when suitable */
if (first_page < last_page) {
chip->cont_read.first_page = first_page;
chip->cont_read.last_page = last_page;
chip->cont_read.ongoing = true;
/* May reset the ongoing flag */
rawnand_cap_cont_reads(chip);
}
}
static void rawnand_cont_read_skip_first_page(struct nand_chip *chip, unsigned int page)
{
if (!chip->cont_read.ongoing || page != chip->cont_read.first_page)
return;
chip->cont_read.first_page++;
rawnand_cap_cont_reads(chip);
}
/**
* nand_setup_read_retry - [INTERN] Set the READ RETRY mode
* @chip: NAND chip object
* @retry_mode: the retry mode to use
*
* Some vendors supply a special command to shift the Vt threshold, to be used
* when there are too many bitflips in a page (i.e., ECC error). After setting
* a new threshold, the host should retry reading the page.
*/
static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
{
pr_debug("setting READ RETRY mode %d\n", retry_mode);
if (retry_mode >= chip->read_retries)
return -EINVAL;
if (!chip->ops.setup_read_retry)
return -EOPNOTSUPP;
return chip->ops.setup_read_retry(chip, retry_mode);
}
static void nand_wait_readrdy(struct nand_chip *chip)
{
const struct nand_interface_config *conf;
if (!(chip->options & NAND_NEED_READRDY))
return;
conf = nand_get_interface_config(chip);
WARN_ON(nand_wait_rdy_op(chip, NAND_COMMON_TIMING_MS(conf, tR_max), 0));
}
/**
* nand_do_read_ops - [INTERN] Read data with ECC
* @chip: NAND chip object
* @from: offset to read from
* @ops: oob ops structure
*
* Internal function. Called with chip held.
*/
static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
struct mtd_oob_ops *ops)
{
int chipnr, page, realpage, col, bytes, aligned, oob_required;
struct mtd_info *mtd = nand_to_mtd(chip);
int ret = 0;
uint32_t readlen = ops->len;
uint32_t oobreadlen = ops->ooblen;
uint32_t max_oobsize = mtd_oobavail(mtd, ops);
uint8_t *bufpoi, *oob, *buf;
int use_bounce_buf;
unsigned int max_bitflips = 0;
int retry_mode = 0;
bool ecc_fail = false;
/* Check if the region is secured */
if (nand_region_is_secured(chip, from, readlen))
return -EIO;
chipnr = (int)(from >> chip->chip_shift);
nand_select_target(chip, chipnr);
realpage = (int)(from >> chip->page_shift);
page = realpage & chip->pagemask;
col = (int)(from & (mtd->writesize - 1));
buf = ops->datbuf;
oob = ops->oobbuf;
oob_required = oob ? 1 : 0;
if (likely(ops->mode != MTD_OPS_RAW))
rawnand_enable_cont_reads(chip, page, readlen, col);
while (1) {
struct mtd_ecc_stats ecc_stats = mtd->ecc_stats;
bytes = min(mtd->writesize - col, readlen);
aligned = (bytes == mtd->writesize);
if (!aligned)
use_bounce_buf = 1;
else if (chip->options & NAND_USES_DMA)
use_bounce_buf = !virt_addr_valid(buf) ||
!IS_ALIGNED((unsigned long)buf,
chip->buf_align);
else
use_bounce_buf = 0;
/* Is the current page in the buffer? */
if (realpage != chip->pagecache.page || oob) {
bufpoi = use_bounce_buf ? chip->data_buf : buf;
if (use_bounce_buf && aligned)
pr_debug("%s: using read bounce buffer for buf@%p\n",
__func__, buf);
read_retry:
/*
* Now read the page into the buffer. Absent an error,
* the read methods return max bitflips per ecc step.
*/
if (unlikely(ops->mode == MTD_OPS_RAW))
ret = chip->ecc.read_page_raw(chip, bufpoi,
oob_required,
page);
else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
!oob)
ret = chip->ecc.read_subpage(chip, col, bytes,
bufpoi, page);
else
ret = chip->ecc.read_page(chip, bufpoi,
oob_required, page);
if (ret < 0) {
if (use_bounce_buf)
/* Invalidate page cache */
chip->pagecache.page = -1;
break;
}
/*
* Copy back the data in the initial buffer when reading
* partial pages or when a bounce buffer is required.
*/
if (use_bounce_buf) {
if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
!(mtd->ecc_stats.failed - ecc_stats.failed) &&
(ops->mode != MTD_OPS_RAW)) {
chip->pagecache.page = realpage;
chip->pagecache.bitflips = ret;
} else {
/* Invalidate page cache */
chip->pagecache.page = -1;
}
memcpy(buf, bufpoi + col, bytes);
}
if (unlikely(oob)) {
int toread = min(oobreadlen, max_oobsize);
if (toread) {
oob = nand_transfer_oob(chip, oob, ops,
toread);
oobreadlen -= toread;
}
}
nand_wait_readrdy(chip);
if (mtd->ecc_stats.failed - ecc_stats.failed) {
if (retry_mode + 1 < chip->read_retries) {
retry_mode++;
ret = nand_setup_read_retry(chip,
retry_mode);
if (ret < 0)
break;
/* Reset ecc_stats; retry */
mtd->ecc_stats = ecc_stats;
goto read_retry;
} else {
/* No more retry modes; real failure */
ecc_fail = true;
}
}
buf += bytes;
max_bitflips = max_t(unsigned int, max_bitflips, ret);
} else {
memcpy(buf, chip->data_buf + col, bytes);
buf += bytes;
max_bitflips = max_t(unsigned int, max_bitflips,
chip->pagecache.bitflips);
rawnand_cont_read_skip_first_page(chip, page);
}
readlen -= bytes;
/* Reset to retry mode 0 */
if (retry_mode) {
ret = nand_setup_read_retry(chip, 0);
if (ret < 0)
break;
retry_mode = 0;
}
if (!readlen)
break;
/* For subsequent reads align to page boundary */
col = 0;
/* Increment page address */
realpage++;
page = realpage & chip->pagemask;
/* Check, if we cross a chip boundary */
if (!page) {
chipnr++;
nand_deselect_target(chip);
nand_select_target(chip, chipnr);
}
}
nand_deselect_target(chip);
if (WARN_ON_ONCE(chip->cont_read.ongoing))
chip->cont_read.ongoing = false;
ops->retlen = ops->len - (size_t) readlen;
if (oob)
ops->oobretlen = ops->ooblen - oobreadlen;
if (ret < 0)
return ret;
if (ecc_fail)
return -EBADMSG;
return max_bitflips;
}
/**
* nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
* @chip: nand chip info structure
* @page: page number to read
*/
int nand_read_oob_std(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
}
EXPORT_SYMBOL(nand_read_oob_std);
/**
* nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
* with syndromes
* @chip: nand chip info structure
* @page: page number to read
*/
static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int length = mtd->oobsize;
int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
int eccsize = chip->ecc.size;
uint8_t *bufpoi = chip->oob_poi;
int i, toread, sndrnd = 0, pos, ret;
ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
if (ret)
return ret;
for (i = 0; i < chip->ecc.steps; i++) {
if (sndrnd) {
int ret;
pos = eccsize + i * (eccsize + chunk);
if (mtd->writesize > 512)
ret = nand_change_read_column_op(chip, pos,
NULL, 0,
false);
else
ret = nand_read_page_op(chip, page, pos, NULL,
0);
if (ret)
return ret;
} else
sndrnd = 1;
toread = min_t(int, length, chunk);
ret = nand_read_data_op(chip, bufpoi, toread, false, false);
if (ret)
return ret;
bufpoi += toread;
length -= toread;
}
if (length > 0) {
ret = nand_read_data_op(chip, bufpoi, length, false, false);
if (ret)
return ret;
}
return 0;
}
/**
* nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
* @chip: nand chip info structure
* @page: page number to write
*/
int nand_write_oob_std(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
mtd->oobsize);
}
EXPORT_SYMBOL(nand_write_oob_std);
/**
* nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
* with syndrome - only for large page flash
* @chip: nand chip info structure
* @page: page number to write
*/
static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
int eccsize = chip->ecc.size, length = mtd->oobsize;
int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
const uint8_t *bufpoi = chip->oob_poi;
/*
* data-ecc-data-ecc ... ecc-oob
* or
* data-pad-ecc-pad-data-pad .... ecc-pad-oob
*/
if (!chip->ecc.prepad && !chip->ecc.postpad) {
pos = steps * (eccsize + chunk);
steps = 0;
} else
pos = eccsize;
ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
if (ret)
return ret;
for (i = 0; i < steps; i++) {
if (sndcmd) {
if (mtd->writesize <= 512) {
uint32_t fill = 0xFFFFFFFF;
len = eccsize;
while (len > 0) {
int num = min_t(int, len, 4);
ret = nand_write_data_op(chip, &fill,
num, false);
if (ret)
return ret;
len -= num;
}
} else {
pos = eccsize + i * (eccsize + chunk);
ret = nand_change_write_column_op(chip, pos,
NULL, 0,
false);
if (ret)
return ret;
}
} else
sndcmd = 1;
len = min_t(int, length, chunk);
ret = nand_write_data_op(chip, bufpoi, len, false);
if (ret)
return ret;
bufpoi += len;
length -= len;
}
if (length > 0) {
ret = nand_write_data_op(chip, bufpoi, length, false);
if (ret)
return ret;
}
return nand_prog_page_end_op(chip);
}
/**
* nand_do_read_oob - [INTERN] NAND read out-of-band
* @chip: NAND chip object
* @from: offset to read from
* @ops: oob operations description structure
*
* NAND read out-of-band data from the spare area.
*/
static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
struct mtd_oob_ops *ops)
{
struct mtd_info *mtd = nand_to_mtd(chip);
unsigned int max_bitflips = 0;
int page, realpage, chipnr;
struct mtd_ecc_stats stats;
int readlen = ops->ooblen;
int len;
uint8_t *buf = ops->oobbuf;
int ret = 0;
pr_debug("%s: from = 0x%08Lx, len = %i\n",
__func__, (unsigned long long)from, readlen);
/* Check if the region is secured */
if (nand_region_is_secured(chip, from, readlen))
return -EIO;
stats = mtd->ecc_stats;
len = mtd_oobavail(mtd, ops);
chipnr = (int)(from >> chip->chip_shift);
nand_select_target(chip, chipnr);
/* Shift to get page */
realpage = (int)(from >> chip->page_shift);
page = realpage & chip->pagemask;
while (1) {
if (ops->mode == MTD_OPS_RAW)
ret = chip->ecc.read_oob_raw(chip, page);
else
ret = chip->ecc.read_oob(chip, page);
if (ret < 0)
break;
len = min(len, readlen);
buf = nand_transfer_oob(chip, buf, ops, len);
nand_wait_readrdy(chip);
max_bitflips = max_t(unsigned int, max_bitflips, ret);
readlen -= len;
if (!readlen)
break;
/* Increment page address */
realpage++;
page = realpage & chip->pagemask;
/* Check, if we cross a chip boundary */
if (!page) {
chipnr++;
nand_deselect_target(chip);
nand_select_target(chip, chipnr);
}
}
nand_deselect_target(chip);
ops->oobretlen = ops->ooblen - readlen;
if (ret < 0)
return ret;
if (mtd->ecc_stats.failed - stats.failed)
return -EBADMSG;
return max_bitflips;
}
/**
* nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
* @mtd: MTD device structure
* @from: offset to read from
* @ops: oob operation description structure
*
* NAND read data and/or out-of-band data.
*/
static int nand_read_oob(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct mtd_ecc_stats old_stats;
int ret;
ops->retlen = 0;
if (ops->mode != MTD_OPS_PLACE_OOB &&
ops->mode != MTD_OPS_AUTO_OOB &&
ops->mode != MTD_OPS_RAW)
return -ENOTSUPP;
nand_get_device(chip);
old_stats = mtd->ecc_stats;
if (!ops->datbuf)
ret = nand_do_read_oob(chip, from, ops);
else
ret = nand_do_read_ops(chip, from, ops);
if (ops->stats) {
ops->stats->uncorrectable_errors +=
mtd->ecc_stats.failed - old_stats.failed;
ops->stats->corrected_bitflips +=
mtd->ecc_stats.corrected - old_stats.corrected;
}
nand_release_device(chip);
return ret;
}
/**
* nand_write_page_raw_notsupp - dummy raw page write function
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
*
* Returns -ENOTSUPP unconditionally.
*/
int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
int oob_required, int page)
{
return -ENOTSUPP;
}
/**
* nand_write_page_raw - [INTERN] raw page write function
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
*
* Not for syndrome calculating ECC controllers, which use a special oob layout.
*/
int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
if (ret)
return ret;
if (oob_required) {
ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
false);
if (ret)
return ret;
}
return nand_prog_page_end_op(chip);
}
EXPORT_SYMBOL(nand_write_page_raw);
/**
* nand_monolithic_write_page_raw - Monolithic page write in raw mode
* @chip: NAND chip info structure
* @buf: data buffer to write
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
*
* This is a raw page write, ie. without any error detection/correction.
* Monolithic means we are requesting all the relevant data (main plus
* eventually OOB) to be sent over the bus and effectively programmed
* into the NAND chip arrays in a single operation. This is an
* alternative to nand_write_page_raw(), which first sends the main
* data, then eventually send the OOB data by latching more data
* cycles on the NAND bus, and finally sends the program command to
* synchronyze the NAND chip cache.
*/
int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
unsigned int size = mtd->writesize;
u8 *write_buf = (u8 *)buf;
if (oob_required) {
size += mtd->oobsize;
if (buf != chip->data_buf) {
write_buf = nand_get_data_buf(chip);
memcpy(write_buf, buf, mtd->writesize);
}
}
return nand_prog_page_op(chip, page, 0, write_buf, size);
}
EXPORT_SYMBOL(nand_monolithic_write_page_raw);
/**
* nand_write_page_raw_syndrome - [INTERN] raw page write function
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
*
* We need a special oob layout and handling even when ECC isn't checked.
*/
static int nand_write_page_raw_syndrome(struct nand_chip *chip,
const uint8_t *buf, int oob_required,
int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
uint8_t *oob = chip->oob_poi;
int steps, size, ret;
ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
if (ret)
return ret;
for (steps = chip->ecc.steps; steps > 0; steps--) {
ret = nand_write_data_op(chip, buf, eccsize, false);
if (ret)
return ret;
buf += eccsize;
if (chip->ecc.prepad) {
ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
false);
if (ret)
return ret;
oob += chip->ecc.prepad;
}
ret = nand_write_data_op(chip, oob, eccbytes, false);
if (ret)
return ret;
oob += eccbytes;
if (chip->ecc.postpad) {
ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
false);
if (ret)
return ret;
oob += chip->ecc.postpad;
}
}
size = mtd->oobsize - (oob - chip->oob_poi);
if (size) {
ret = nand_write_data_op(chip, oob, size, false);
if (ret)
return ret;
}
return nand_prog_page_end_op(chip);
}
/**
* nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
*/
static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int i, eccsize = chip->ecc.size, ret;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *ecc_calc = chip->ecc.calc_buf;
const uint8_t *p = buf;
/* Software ECC calculation */
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
chip->ecc.calculate(chip, p, &ecc_calc[i]);
ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
chip->ecc.total);
if (ret)
return ret;
return chip->ecc.write_page_raw(chip, buf, 1, page);
}
/**
* nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
*/
static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int i, eccsize = chip->ecc.size, ret;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *ecc_calc = chip->ecc.calc_buf;
const uint8_t *p = buf;
ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
if (ret)
return ret;
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
chip->ecc.hwctl(chip, NAND_ECC_WRITE);
ret = nand_write_data_op(chip, p, eccsize, false);
if (ret)
return ret;
chip->ecc.calculate(chip, p, &ecc_calc[i]);
}
ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
chip->ecc.total);
if (ret)
return ret;
ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
if (ret)
return ret;
return nand_prog_page_end_op(chip);
}
/**
* nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
* @chip: nand chip info structure
* @offset: column address of subpage within the page
* @data_len: data length
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
*/
static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
uint32_t data_len, const uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
uint8_t *oob_buf = chip->oob_poi;
uint8_t *ecc_calc = chip->ecc.calc_buf;
int ecc_size = chip->ecc.size;
int ecc_bytes = chip->ecc.bytes;
int ecc_steps = chip->ecc.steps;
uint32_t start_step = offset / ecc_size;
uint32_t end_step = (offset + data_len - 1) / ecc_size;
int oob_bytes = mtd->oobsize / ecc_steps;
int step, ret;
ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
if (ret)
return ret;
for (step = 0; step < ecc_steps; step++) {
/* configure controller for WRITE access */
chip->ecc.hwctl(chip, NAND_ECC_WRITE);
/* write data (untouched subpages already masked by 0xFF) */
ret = nand_write_data_op(chip, buf, ecc_size, false);
if (ret)
return ret;
/* mask ECC of un-touched subpages by padding 0xFF */
if ((step < start_step) || (step > end_step))
memset(ecc_calc, 0xff, ecc_bytes);
else
chip->ecc.calculate(chip, buf, ecc_calc);
/* mask OOB of un-touched subpages by padding 0xFF */
/* if oob_required, preserve OOB metadata of written subpage */
if (!oob_required || (step < start_step) || (step > end_step))
memset(oob_buf, 0xff, oob_bytes);
buf += ecc_size;
ecc_calc += ecc_bytes;
oob_buf += oob_bytes;
}
/* copy calculated ECC for whole page to chip->buffer->oob */
/* this include masked-value(0xFF) for unwritten subpages */
ecc_calc = chip->ecc.calc_buf;
ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
chip->ecc.total);
if (ret)
return ret;
/* write OOB buffer to NAND device */
ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
if (ret)
return ret;
return nand_prog_page_end_op(chip);
}
/**
* nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
*
* The hw generator calculates the error syndrome automatically. Therefore we
* need a special oob layout and handling.
*/
static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
const uint8_t *p = buf;
uint8_t *oob = chip->oob_poi;
int ret;
ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
if (ret)
return ret;
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
chip->ecc.hwctl(chip, NAND_ECC_WRITE);
ret = nand_write_data_op(chip, p, eccsize, false);
if (ret)
return ret;
if (chip->ecc.prepad) {
ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
false);
if (ret)
return ret;
oob += chip->ecc.prepad;
}
chip->ecc.calculate(chip, p, oob);
ret = nand_write_data_op(chip, oob, eccbytes, false);
if (ret)
return ret;
oob += eccbytes;
if (chip->ecc.postpad) {
ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
false);
if (ret)
return ret;
oob += chip->ecc.postpad;
}
}
/* Calculate remaining oob bytes */
i = mtd->oobsize - (oob - chip->oob_poi);
if (i) {
ret = nand_write_data_op(chip, oob, i, false);
if (ret)
return ret;
}
return nand_prog_page_end_op(chip);
}
/**
* nand_write_page - write one page
* @chip: NAND chip descriptor
* @offset: address offset within the page
* @data_len: length of actual data to be written
* @buf: the data to write
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
* @raw: use _raw version of write_page
*/
static int nand_write_page(struct nand_chip *chip, uint32_t offset,
int data_len, const uint8_t *buf, int oob_required,
int page, int raw)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int status, subpage;
if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
chip->ecc.write_subpage)
subpage = offset || (data_len < mtd->writesize);
else
subpage = 0;
if (unlikely(raw))
status = chip->ecc.write_page_raw(chip, buf, oob_required,
page);
else if (subpage)
status = chip->ecc.write_subpage(chip, offset, data_len, buf,
oob_required, page);
else
status = chip->ecc.write_page(chip, buf, oob_required, page);
if (status < 0)
return status;
return 0;
}
#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
/**
* nand_do_write_ops - [INTERN] NAND write with ECC
* @chip: NAND chip object
* @to: offset to write to
* @ops: oob operations description structure
*
* NAND write with ECC.
*/
static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
struct mtd_oob_ops *ops)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int chipnr, realpage, page, column;
uint32_t writelen = ops->len;
uint32_t oobwritelen = ops->ooblen;
uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
uint8_t *oob = ops->oobbuf;
uint8_t *buf = ops->datbuf;
int ret;
int oob_required = oob ? 1 : 0;
ops->retlen = 0;
if (!writelen)
return 0;
/* Reject writes, which are not page aligned */
if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
pr_notice("%s: attempt to write non page aligned data\n",
__func__);
return -EINVAL;
}
/* Check if the region is secured */
if (nand_region_is_secured(chip, to, writelen))
return -EIO;
column = to & (mtd->writesize - 1);
chipnr = (int)(to >> chip->chip_shift);
nand_select_target(chip, chipnr);
/* Check, if it is write protected */
if (nand_check_wp(chip)) {
ret = -EIO;
goto err_out;
}
realpage = (int)(to >> chip->page_shift);
page = realpage & chip->pagemask;
/* Invalidate the page cache, when we write to the cached page */
if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
chip->pagecache.page = -1;
/* Don't allow multipage oob writes with offset */
if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
ret = -EINVAL;
goto err_out;
}
while (1) {
int bytes = mtd->writesize;
uint8_t *wbuf = buf;
int use_bounce_buf;
int part_pagewr = (column || writelen < mtd->writesize);
if (part_pagewr)
use_bounce_buf = 1;
else if (chip->options & NAND_USES_DMA)
use_bounce_buf = !virt_addr_valid(buf) ||
!IS_ALIGNED((unsigned long)buf,
chip->buf_align);
else
use_bounce_buf = 0;
/*
* Copy the data from the initial buffer when doing partial page
* writes or when a bounce buffer is required.
*/
if (use_bounce_buf) {
pr_debug("%s: using write bounce buffer for buf@%p\n",
__func__, buf);
if (part_pagewr)
bytes = min_t(int, bytes - column, writelen);
wbuf = nand_get_data_buf(chip);
memset(wbuf, 0xff, mtd->writesize);
memcpy(&wbuf[column], buf, bytes);
}
if (unlikely(oob)) {
size_t len = min(oobwritelen, oobmaxlen);
oob = nand_fill_oob(chip, oob, len, ops);
oobwritelen -= len;
} else {
/* We still need to erase leftover OOB data */
memset(chip->oob_poi, 0xff, mtd->oobsize);
}
ret = nand_write_page(chip, column, bytes, wbuf,
oob_required, page,
(ops->mode == MTD_OPS_RAW));
if (ret)
break;
writelen -= bytes;
if (!writelen)
break;
column = 0;
buf += bytes;
realpage++;
page = realpage & chip->pagemask;
/* Check, if we cross a chip boundary */
if (!page) {
chipnr++;
nand_deselect_target(chip);
nand_select_target(chip, chipnr);
}
}
ops->retlen = ops->len - writelen;
if (unlikely(oob))
ops->oobretlen = ops->ooblen;
err_out:
nand_deselect_target(chip);
return ret;
}
/**
* panic_nand_write - [MTD Interface] NAND write with ECC
* @mtd: MTD device structure
* @to: offset to write to
* @len: number of bytes to write
* @retlen: pointer to variable to store the number of written bytes
* @buf: the data to write
*
* NAND write with ECC. Used when performing writes in interrupt context, this
* may for example be called by mtdoops when writing an oops while in panic.
*/
static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const uint8_t *buf)
{
struct nand_chip *chip = mtd_to_nand(mtd);
int chipnr = (int)(to >> chip->chip_shift);
struct mtd_oob_ops ops;
int ret;
nand_select_target(chip, chipnr);
/* Wait for the device to get ready */
panic_nand_wait(chip, 400);
memset(&ops, 0, sizeof(ops));
ops.len = len;
ops.datbuf = (uint8_t *)buf;
ops.mode = MTD_OPS_PLACE_OOB;
ret = nand_do_write_ops(chip, to, &ops);
*retlen = ops.retlen;
return ret;
}
/**
* nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
* @mtd: MTD device structure
* @to: offset to write to
* @ops: oob operation description structure
*/
static int nand_write_oob(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
struct nand_chip *chip = mtd_to_nand(mtd);
int ret = 0;
ops->retlen = 0;
nand_get_device(chip);
switch (ops->mode) {
case MTD_OPS_PLACE_OOB:
case MTD_OPS_AUTO_OOB:
case MTD_OPS_RAW:
break;
default:
goto out;
}
if (!ops->datbuf)
ret = nand_do_write_oob(chip, to, ops);
else
ret = nand_do_write_ops(chip, to, ops);
out:
nand_release_device(chip);
return ret;
}
/**
* nand_erase - [MTD Interface] erase block(s)
* @mtd: MTD device structure
* @instr: erase instruction
*
* Erase one ore more blocks.
*/
static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
{
return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
}
/**
* nand_erase_nand - [INTERN] erase block(s)
* @chip: NAND chip object
* @instr: erase instruction
* @allowbbt: allow erasing the bbt area
*
* Erase one ore more blocks.
*/
int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
int allowbbt)
{
int page, pages_per_block, ret, chipnr;
loff_t len;
pr_debug("%s: start = 0x%012llx, len = %llu\n",
__func__, (unsigned long long)instr->addr,
(unsigned long long)instr->len);
if (check_offs_len(chip, instr->addr, instr->len))
return -EINVAL;
/* Check if the region is secured */
if (nand_region_is_secured(chip, instr->addr, instr->len))
return -EIO;
/* Grab the lock and see if the device is available */
nand_get_device(chip);
/* Shift to get first page */
page = (int)(instr->addr >> chip->page_shift);
chipnr = (int)(instr->addr >> chip->chip_shift);
/* Calculate pages in each block */
pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
/* Select the NAND device */
nand_select_target(chip, chipnr);
/* Check, if it is write protected */
if (nand_check_wp(chip)) {
pr_debug("%s: device is write protected!\n",
__func__);
ret = -EIO;
goto erase_exit;
}
/* Loop through the pages */
len = instr->len;
while (len) {
loff_t ofs = (loff_t)page << chip->page_shift;
/* Check if we have a bad block, we do not erase bad blocks! */
if (nand_block_checkbad(chip, ((loff_t) page) <<
chip->page_shift, allowbbt)) {
pr_warn("%s: attempt to erase a bad block at 0x%08llx\n",
__func__, (unsigned long long)ofs);
ret = -EIO;
goto erase_exit;
}
/*
* Invalidate the page cache, if we erase the block which
* contains the current cached page.
*/
if (page <= chip->pagecache.page && chip->pagecache.page <
(page + pages_per_block))
chip->pagecache.page = -1;
ret = nand_erase_op(chip, (page & chip->pagemask) >>
(chip->phys_erase_shift - chip->page_shift));
if (ret) {
pr_debug("%s: failed erase, page 0x%08x\n",
__func__, page);
instr->fail_addr = ofs;
goto erase_exit;
}
/* Increment page address and decrement length */
len -= (1ULL << chip->phys_erase_shift);
page += pages_per_block;
/* Check, if we cross a chip boundary */
if (len && !(page & chip->pagemask)) {
chipnr++;
nand_deselect_target(chip);
nand_select_target(chip, chipnr);
}
}
ret = 0;
erase_exit:
/* Deselect and wake up anyone waiting on the device */
nand_deselect_target(chip);
nand_release_device(chip);
/* Return more or less happy */
return ret;
}
/**
* nand_sync - [MTD Interface] sync
* @mtd: MTD device structure
*
* Sync is actually a wait for chip ready function.
*/
static void nand_sync(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
pr_debug("%s: called\n", __func__);
/* Grab the lock and see if the device is available */
nand_get_device(chip);
/* Release it and go back */
nand_release_device(chip);
}
/**
* nand_block_isbad - [MTD Interface] Check if block at offset is bad
* @mtd: MTD device structure
* @offs: offset relative to mtd start
*/
static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
{
struct nand_chip *chip = mtd_to_nand(mtd);
int chipnr = (int)(offs >> chip->chip_shift);
int ret;
/* Select the NAND device */
nand_get_device(chip);
nand_select_target(chip, chipnr);
ret = nand_block_checkbad(chip, offs, 0);
nand_deselect_target(chip);
nand_release_device(chip);
return ret;
}
/**
* nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
* @mtd: MTD device structure
* @ofs: offset relative to mtd start
*/
static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
int ret;
ret = nand_block_isbad(mtd, ofs);
if (ret) {
/* If it was bad already, return success and do nothing */
if (ret > 0)
return 0;
return ret;
}
return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
}
/**
* nand_suspend - [MTD Interface] Suspend the NAND flash
* @mtd: MTD device structure
*
* Returns 0 for success or negative error code otherwise.
*/
static int nand_suspend(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
int ret = 0;
mutex_lock(&chip->lock);
if (chip->ops.suspend)
ret = chip->ops.suspend(chip);
if (!ret)
chip->suspended = 1;
mutex_unlock(&chip->lock);
return ret;
}
/**
* nand_resume - [MTD Interface] Resume the NAND flash
* @mtd: MTD device structure
*/
static void nand_resume(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
mutex_lock(&chip->lock);
if (chip->suspended) {
if (chip->ops.resume)
chip->ops.resume(chip);
chip->suspended = 0;
} else {
pr_err("%s called for a chip which is not in suspended state\n",
__func__);
}
mutex_unlock(&chip->lock);
wake_up_all(&chip->resume_wq);
}
/**
* nand_shutdown - [MTD Interface] Finish the current NAND operation and
* prevent further operations
* @mtd: MTD device structure
*/
static void nand_shutdown(struct mtd_info *mtd)
{
nand_suspend(mtd);
}
/**
* nand_lock - [MTD Interface] Lock the NAND flash
* @mtd: MTD device structure
* @ofs: offset byte address
* @len: number of bytes to lock (must be a multiple of block/page size)
*/
static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (!chip->ops.lock_area)
return -ENOTSUPP;
return chip->ops.lock_area(chip, ofs, len);
}
/**
* nand_unlock - [MTD Interface] Unlock the NAND flash
* @mtd: MTD device structure
* @ofs: offset byte address
* @len: number of bytes to unlock (must be a multiple of block/page size)
*/
static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (!chip->ops.unlock_area)
return -ENOTSUPP;
return chip->ops.unlock_area(chip, ofs, len);
}
/* Set default functions */
static void nand_set_defaults(struct nand_chip *chip)
{
/* If no controller is provided, use the dummy, legacy one. */
if (!chip->controller) {
chip->controller = &chip->legacy.dummy_controller;
nand_controller_init(chip->controller);
}
nand_legacy_set_defaults(chip);
if (!chip->buf_align)
chip->buf_align = 1;
}
/* Sanitize ONFI strings so we can safely print them */
void sanitize_string(uint8_t *s, size_t len)
{
ssize_t i;
/* Null terminate */
s[len - 1] = 0;
/* Remove non printable chars */
for (i = 0; i < len - 1; i++) {
if (s[i] < ' ' || s[i] > 127)
s[i] = '?';
}
/* Remove trailing spaces */
strim(s);
}
/*
* nand_id_has_period - Check if an ID string has a given wraparound period
* @id_data: the ID string
* @arrlen: the length of the @id_data array
* @period: the period of repitition
*
* Check if an ID string is repeated within a given sequence of bytes at
* specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
* period of 3). This is a helper function for nand_id_len(). Returns non-zero
* if the repetition has a period of @period; otherwise, returns zero.
*/
static int nand_id_has_period(u8 *id_data, int arrlen, int period)
{
int i, j;
for (i = 0; i < period; i++)
for (j = i + period; j < arrlen; j += period)
if (id_data[i] != id_data[j])
return 0;
return 1;
}
/*
* nand_id_len - Get the length of an ID string returned by CMD_READID
* @id_data: the ID string
* @arrlen: the length of the @id_data array
* Returns the length of the ID string, according to known wraparound/trailing
* zero patterns. If no pattern exists, returns the length of the array.
*/
static int nand_id_len(u8 *id_data, int arrlen)
{
int last_nonzero, period;
/* Find last non-zero byte */
for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
if (id_data[last_nonzero])
break;
/* All zeros */
if (last_nonzero < 0)
return 0;
/* Calculate wraparound period */
for (period = 1; period < arrlen; period++)
if (nand_id_has_period(id_data, arrlen, period))
break;
/* There's a repeated pattern */
if (period < arrlen)
return period;
/* There are trailing zeros */
if (last_nonzero < arrlen - 1)
return last_nonzero + 1;
/* No pattern detected */
return arrlen;
}
/* Extract the bits of per cell from the 3rd byte of the extended ID */
static int nand_get_bits_per_cell(u8 cellinfo)
{
int bits;
bits = cellinfo & NAND_CI_CELLTYPE_MSK;
bits >>= NAND_CI_CELLTYPE_SHIFT;
return bits + 1;
}
/*
* Many new NAND share similar device ID codes, which represent the size of the
* chip. The rest of the parameters must be decoded according to generic or
* manufacturer-specific "extended ID" decoding patterns.
*/
void nand_decode_ext_id(struct nand_chip *chip)
{
struct nand_memory_organization *memorg;
struct mtd_info *mtd = nand_to_mtd(chip);
int extid;
u8 *id_data = chip->id.data;
memorg = nanddev_get_memorg(&chip->base);
/* The 3rd id byte holds MLC / multichip data */
memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
/* The 4th id byte is the important one */
extid = id_data[3];
/* Calc pagesize */
memorg->pagesize = 1024 << (extid & 0x03);
mtd->writesize = memorg->pagesize;
extid >>= 2;
/* Calc oobsize */
memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
mtd->oobsize = memorg->oobsize;
extid >>= 2;
/* Calc blocksize. Blocksize is multiples of 64KiB */
memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
memorg->pagesize;
mtd->erasesize = (64 * 1024) << (extid & 0x03);
extid >>= 2;
/* Get buswidth information */
if (extid & 0x1)
chip->options |= NAND_BUSWIDTH_16;
}
EXPORT_SYMBOL_GPL(nand_decode_ext_id);
/*
* Old devices have chip data hardcoded in the device ID table. nand_decode_id
* decodes a matching ID table entry and assigns the MTD size parameters for
* the chip.
*/
static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct nand_memory_organization *memorg;
memorg = nanddev_get_memorg(&chip->base);
memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
mtd->erasesize = type->erasesize;
memorg->pagesize = type->pagesize;
mtd->writesize = memorg->pagesize;
memorg->oobsize = memorg->pagesize / 32;
mtd->oobsize = memorg->oobsize;
/* All legacy ID NAND are small-page, SLC */
memorg->bits_per_cell = 1;
}
/*
* Set the bad block marker/indicator (BBM/BBI) patterns according to some
* heuristic patterns using various detected parameters (e.g., manufacturer,
* page size, cell-type information).
*/
static void nand_decode_bbm_options(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
/* Set the bad block position */
if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
chip->badblockpos = NAND_BBM_POS_LARGE;
else
chip->badblockpos = NAND_BBM_POS_SMALL;
}
static inline bool is_full_id_nand(struct nand_flash_dev *type)
{
return type->id_len;
}
static bool find_full_id_nand(struct nand_chip *chip,
struct nand_flash_dev *type)
{
struct nand_device *base = &chip->base;
struct nand_ecc_props requirements;
struct mtd_info *mtd = nand_to_mtd(chip);
struct nand_memory_organization *memorg;
u8 *id_data = chip->id.data;
memorg = nanddev_get_memorg(&chip->base);
if (!strncmp(type->id, id_data, type->id_len)) {
memorg->pagesize = type->pagesize;
mtd->writesize = memorg->pagesize;
memorg->pages_per_eraseblock = type->erasesize /
type->pagesize;
mtd->erasesize = type->erasesize;
memorg->oobsize = type->oobsize;
mtd->oobsize = memorg->oobsize;
memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
memorg->eraseblocks_per_lun =
DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
memorg->pagesize *
memorg->pages_per_eraseblock);
chip->options |= type->options;
requirements.strength = NAND_ECC_STRENGTH(type);
requirements.step_size = NAND_ECC_STEP(type);
nanddev_set_ecc_requirements(base, &requirements);
chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
if (!chip->parameters.model)
return false;
return true;
}
return false;
}
/*
* Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
* compliant and does not have a full-id or legacy-id entry in the nand_ids
* table.
*/
static void nand_manufacturer_detect(struct nand_chip *chip)
{
/*
* Try manufacturer detection if available and use
* nand_decode_ext_id() otherwise.
*/
if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
chip->manufacturer.desc->ops->detect) {
struct nand_memory_organization *memorg;
memorg = nanddev_get_memorg(&chip->base);
/* The 3rd id byte holds MLC / multichip data */
memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
chip->manufacturer.desc->ops->detect(chip);
} else {
nand_decode_ext_id(chip);
}
}
/*
* Manufacturer initialization. This function is called for all NANDs including
* ONFI and JEDEC compliant ones.
* Manufacturer drivers should put all their specific initialization code in
* their ->init() hook.
*/
static int nand_manufacturer_init(struct nand_chip *chip)
{
if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
!chip->manufacturer.desc->ops->init)
return 0;
return chip->manufacturer.desc->ops->init(chip);
}
/*
* Manufacturer cleanup. This function is called for all NANDs including
* ONFI and JEDEC compliant ones.
* Manufacturer drivers should put all their specific cleanup code in their
* ->cleanup() hook.
*/
static void nand_manufacturer_cleanup(struct nand_chip *chip)
{
/* Release manufacturer private data */
if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
chip->manufacturer.desc->ops->cleanup)
chip->manufacturer.desc->ops->cleanup(chip);
}
static const char *
nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc)
{
return manufacturer_desc ? manufacturer_desc->name : "Unknown";
}
static void rawnand_check_data_only_read_support(struct nand_chip *chip)
{
/* Use an arbitrary size for the check */
if (!nand_read_data_op(chip, NULL, SZ_512, true, true))
chip->controller->supported_op.data_only_read = 1;
}
static void rawnand_early_check_supported_ops(struct nand_chip *chip)
{
/* The supported_op fields should not be set by individual drivers */
WARN_ON_ONCE(chip->controller->supported_op.data_only_read);
if (!nand_has_exec_op(chip))
return;
rawnand_check_data_only_read_support(chip);
}
static void rawnand_check_cont_read_support(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
if (!chip->parameters.supports_read_cache)
return;
if (chip->read_retries)
return;
if (!nand_lp_exec_cont_read_page_op(chip, 0, 0, NULL,
mtd->writesize, true))
chip->controller->supported_op.cont_read = 1;
}
static void rawnand_late_check_supported_ops(struct nand_chip *chip)
{
/* The supported_op fields should not be set by individual drivers */
WARN_ON_ONCE(chip->controller->supported_op.cont_read);
/*
* Too many devices do not support sequential cached reads with on-die
* ECC correction enabled, so in this case refuse to perform the
* automation.
*/
if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE)
return;
if (!nand_has_exec_op(chip))
return;
/*
* For now, continuous reads can only be used with the core page helpers.
* This can be extended later.
*/
if (!(chip->ecc.read_page == nand_read_page_hwecc ||
chip->ecc.read_page == nand_read_page_syndrome ||
chip->ecc.read_page == nand_read_page_swecc))
return;
rawnand_check_cont_read_support(chip);
}
/*
* Get the flash and manufacturer id and lookup if the type is supported.
*/
static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
{
const struct nand_manufacturer_desc *manufacturer_desc;
struct mtd_info *mtd = nand_to_mtd(chip);
struct nand_memory_organization *memorg;
int busw, ret;
u8 *id_data = chip->id.data;
u8 maf_id, dev_id;
u64 targetsize;
/*
* Let's start by initializing memorg fields that might be left
* unassigned by the ID-based detection logic.
*/
memorg = nanddev_get_memorg(&chip->base);
memorg->planes_per_lun = 1;
memorg->luns_per_target = 1;
/*
* Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
* after power-up.
*/
ret = nand_reset(chip, 0);
if (ret)
return ret;
/* Select the device */
nand_select_target(chip, 0);
rawnand_early_check_supported_ops(chip);
/* Send the command for reading device ID */
ret = nand_readid_op(chip, 0, id_data, 2);
if (ret)
return ret;
/* Read manufacturer and device IDs */
maf_id = id_data[0];
dev_id = id_data[1];
/*
* Try again to make sure, as some systems the bus-hold or other
* interface concerns can cause random data which looks like a
* possibly credible NAND flash to appear. If the two results do
* not match, ignore the device completely.
*/
/* Read entire ID string */
ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
if (ret)
return ret;
if (id_data[0] != maf_id || id_data[1] != dev_id) {
pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
maf_id, dev_id, id_data[0], id_data[1]);
return -ENODEV;
}
chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
/* Try to identify manufacturer */
manufacturer_desc = nand_get_manufacturer_desc(maf_id);
chip->manufacturer.desc = manufacturer_desc;
if (!type)
type = nand_flash_ids;
/*
* Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
* override it.
* This is required to make sure initial NAND bus width set by the
* NAND controller driver is coherent with the real NAND bus width
* (extracted by auto-detection code).
*/
busw = chip->options & NAND_BUSWIDTH_16;
/*
* The flag is only set (never cleared), reset it to its default value
* before starting auto-detection.
*/
chip->options &= ~NAND_BUSWIDTH_16;
for (; type->name != NULL; type++) {
if (is_full_id_nand(type)) {
if (find_full_id_nand(chip, type))
goto ident_done;
} else if (dev_id == type->dev_id) {
break;
}
}
if (!type->name || !type->pagesize) {
/* Check if the chip is ONFI compliant */
ret = nand_onfi_detect(chip);
if (ret < 0)
return ret;
else if (ret)
goto ident_done;
/* Check if the chip is JEDEC compliant */
ret = nand_jedec_detect(chip);
if (ret < 0)
return ret;
else if (ret)
goto ident_done;
}
if (!type->name)
return -ENODEV;
chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
if (!chip->parameters.model)
return -ENOMEM;
if (!type->pagesize)
nand_manufacturer_detect(chip);
else
nand_decode_id(chip, type);
/* Get chip options */
chip->options |= type->options;
memorg->eraseblocks_per_lun =
DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
memorg->pagesize *
memorg->pages_per_eraseblock);
ident_done:
if (!mtd->name)
mtd->name = chip->parameters.model;
if (chip->options & NAND_BUSWIDTH_AUTO) {
WARN_ON(busw & NAND_BUSWIDTH_16);
nand_set_defaults(chip);
} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
/*
* Check, if buswidth is correct. Hardware drivers should set
* chip correct!
*/
pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
maf_id, dev_id);
pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
mtd->name);
pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
(chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
ret = -EINVAL;
goto free_detect_allocation;
}
nand_decode_bbm_options(chip);
/* Calculate the address shift from the page size */
chip->page_shift = ffs(mtd->writesize) - 1;
/* Convert chipsize to number of pages per chip -1 */
targetsize = nanddev_target_size(&chip->base);
chip->pagemask = (targetsize >> chip->page_shift) - 1;
chip->bbt_erase_shift = chip->phys_erase_shift =
ffs(mtd->erasesize) - 1;
if (targetsize & 0xffffffff)
chip->chip_shift = ffs((unsigned)targetsize) - 1;
else {
chip->chip_shift = ffs((unsigned)(targetsize >> 32));
chip->chip_shift += 32 - 1;
}
if (chip->chip_shift - chip->page_shift > 16)
chip->options |= NAND_ROW_ADDR_3;
chip->badblockbits = 8;
nand_legacy_adjust_cmdfunc(chip);
pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
maf_id, dev_id);
pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
chip->parameters.model);
pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
(int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
return 0;
free_detect_allocation:
kfree(chip->parameters.model);
return ret;
}
static enum nand_ecc_engine_type
of_get_rawnand_ecc_engine_type_legacy(struct device_node *np)
{
enum nand_ecc_legacy_mode {
NAND_ECC_INVALID,
NAND_ECC_NONE,
NAND_ECC_SOFT,
NAND_ECC_SOFT_BCH,
NAND_ECC_HW,
NAND_ECC_HW_SYNDROME,
NAND_ECC_ON_DIE,
};
const char * const nand_ecc_legacy_modes[] = {
[NAND_ECC_NONE] = "none",
[NAND_ECC_SOFT] = "soft",
[NAND_ECC_SOFT_BCH] = "soft_bch",
[NAND_ECC_HW] = "hw",
[NAND_ECC_HW_SYNDROME] = "hw_syndrome",
[NAND_ECC_ON_DIE] = "on-die",
};
enum nand_ecc_legacy_mode eng_type;
const char *pm;
int err;
err = of_property_read_string(np, "nand-ecc-mode", &pm);
if (err)
return NAND_ECC_ENGINE_TYPE_INVALID;
for (eng_type = NAND_ECC_NONE;
eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) {
if (!strcasecmp(pm, nand_ecc_legacy_modes[eng_type])) {
switch (eng_type) {
case NAND_ECC_NONE:
return NAND_ECC_ENGINE_TYPE_NONE;
case NAND_ECC_SOFT:
case NAND_ECC_SOFT_BCH:
return NAND_ECC_ENGINE_TYPE_SOFT;
case NAND_ECC_HW:
case NAND_ECC_HW_SYNDROME:
return NAND_ECC_ENGINE_TYPE_ON_HOST;
case NAND_ECC_ON_DIE:
return NAND_ECC_ENGINE_TYPE_ON_DIE;
default:
break;
}
}
}
return NAND_ECC_ENGINE_TYPE_INVALID;
}
static enum nand_ecc_placement
of_get_rawnand_ecc_placement_legacy(struct device_node *np)
{
const char *pm;
int err;
err = of_property_read_string(np, "nand-ecc-mode", &pm);
if (!err) {
if (!strcasecmp(pm, "hw_syndrome"))
return NAND_ECC_PLACEMENT_INTERLEAVED;
}
return NAND_ECC_PLACEMENT_UNKNOWN;
}
static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np)
{
const char *pm;
int err;
err = of_property_read_string(np, "nand-ecc-mode", &pm);
if (!err) {
if (!strcasecmp(pm, "soft"))
return NAND_ECC_ALGO_HAMMING;
else if (!strcasecmp(pm, "soft_bch"))
return NAND_ECC_ALGO_BCH;
}
return NAND_ECC_ALGO_UNKNOWN;
}
static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip)
{
struct device_node *dn = nand_get_flash_node(chip);
struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf;
if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(dn);
if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN)
user_conf->algo = of_get_rawnand_ecc_algo_legacy(dn);
if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN)
user_conf->placement = of_get_rawnand_ecc_placement_legacy(dn);
}
static int of_get_nand_bus_width(struct nand_chip *chip)
{
struct device_node *dn = nand_get_flash_node(chip);
u32 val;
int ret;
ret = of_property_read_u32(dn, "nand-bus-width", &val);
if (ret == -EINVAL)
/* Buswidth defaults to 8 if the property does not exist .*/
return 0;
else if (ret)
return ret;
if (val == 16)
chip->options |= NAND_BUSWIDTH_16;
else if (val != 8)
return -EINVAL;
return 0;
}
static int of_get_nand_secure_regions(struct nand_chip *chip)
{
struct device_node *dn = nand_get_flash_node(chip);
struct property *prop;
int nr_elem, i, j;
/* Only proceed if the "secure-regions" property is present in DT */
prop = of_find_property(dn, "secure-regions", NULL);
if (!prop)
return 0;
nr_elem = of_property_count_elems_of_size(dn, "secure-regions", sizeof(u64));
if (nr_elem <= 0)
return nr_elem;
chip->nr_secure_regions = nr_elem / 2;
chip->secure_regions = kcalloc(chip->nr_secure_regions, sizeof(*chip->secure_regions),
GFP_KERNEL);
if (!chip->secure_regions)
return -ENOMEM;
for (i = 0, j = 0; i < chip->nr_secure_regions; i++, j += 2) {
of_property_read_u64_index(dn, "secure-regions", j,
&chip->secure_regions[i].offset);
of_property_read_u64_index(dn, "secure-regions", j + 1,
&chip->secure_regions[i].size);
}
return 0;
}
/**
* rawnand_dt_parse_gpio_cs - Parse the gpio-cs property of a controller
* @dev: Device that will be parsed. Also used for managed allocations.
* @cs_array: Array of GPIO desc pointers allocated on success
* @ncs_array: Number of entries in @cs_array updated on success.
* @return 0 on success, an error otherwise.
*/
int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array,
unsigned int *ncs_array)
{
struct gpio_desc **descs;
int ndescs, i;
ndescs = gpiod_count(dev, "cs");
if (ndescs < 0) {
dev_dbg(dev, "No valid cs-gpios property\n");
return 0;
}
descs = devm_kcalloc(dev, ndescs, sizeof(*descs), GFP_KERNEL);
if (!descs)
return -ENOMEM;
for (i = 0; i < ndescs; i++) {
descs[i] = gpiod_get_index_optional(dev, "cs", i,
GPIOD_OUT_HIGH);
if (IS_ERR(descs[i]))
return PTR_ERR(descs[i]);
}
*ncs_array = ndescs;
*cs_array = descs;
return 0;
}
EXPORT_SYMBOL(rawnand_dt_parse_gpio_cs);
static int rawnand_dt_init(struct nand_chip *chip)
{
struct nand_device *nand = mtd_to_nanddev(nand_to_mtd(chip));
struct device_node *dn = nand_get_flash_node(chip);
int ret;
if (!dn)
return 0;
ret = of_get_nand_bus_width(chip);
if (ret)
return ret;
if (of_property_read_bool(dn, "nand-is-boot-medium"))
chip->options |= NAND_IS_BOOT_MEDIUM;
if (of_property_read_bool(dn, "nand-on-flash-bbt"))
chip->bbt_options |= NAND_BBT_USE_FLASH;
of_get_nand_ecc_user_config(nand);
of_get_nand_ecc_legacy_user_config(chip);
/*
* If neither the user nor the NAND controller have requested a specific
* ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST.
*/
nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
/*
* Use the user requested engine type, unless there is none, in this
* case default to the NAND controller choice, otherwise fallback to
* the raw NAND default one.
*/
if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID)
chip->ecc.engine_type = nand->ecc.user_conf.engine_type;
if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
chip->ecc.engine_type = nand->ecc.defaults.engine_type;
chip->ecc.placement = nand->ecc.user_conf.placement;
chip->ecc.algo = nand->ecc.user_conf.algo;
chip->ecc.strength = nand->ecc.user_conf.strength;
chip->ecc.size = nand->ecc.user_conf.step_size;
return 0;
}
/**
* nand_scan_ident - Scan for the NAND device
* @chip: NAND chip object
* @maxchips: number of chips to scan for
* @table: alternative NAND ID table
*
* This is the first phase of the normal nand_scan() function. It reads the
* flash ID and sets up MTD fields accordingly.
*
* This helper used to be called directly from controller drivers that needed
* to tweak some ECC-related parameters before nand_scan_tail(). This separation
* prevented dynamic allocations during this phase which was unconvenient and
* as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
*/
static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
struct nand_flash_dev *table)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct nand_memory_organization *memorg;
int nand_maf_id, nand_dev_id;
unsigned int i;
int ret;
memorg = nanddev_get_memorg(&chip->base);
/* Assume all dies are deselected when we enter nand_scan_ident(). */
chip->cur_cs = -1;
mutex_init(&chip->lock);
init_waitqueue_head(&chip->resume_wq);
/* Enforce the right timings for reset/detection */
chip->current_interface_config = nand_get_reset_interface_config();
ret = rawnand_dt_init(chip);
if (ret)
return ret;
if (!mtd->name && mtd->dev.parent)
mtd->name = dev_name(mtd->dev.parent);
/* Set the default functions */
nand_set_defaults(chip);
ret = nand_legacy_check_hooks(chip);
if (ret)
return ret;
memorg->ntargets = maxchips;
/* Read the flash type */
ret = nand_detect(chip, table);
if (ret) {
if (!(chip->options & NAND_SCAN_SILENT_NODEV))
pr_warn("No NAND device found\n");
nand_deselect_target(chip);
return ret;
}
nand_maf_id = chip->id.data[0];
nand_dev_id = chip->id.data[1];
nand_deselect_target(chip);
/* Check for a chip array */
for (i = 1; i < maxchips; i++) {
u8 id[2];
/* See comment in nand_get_flash_type for reset */
ret = nand_reset(chip, i);
if (ret)
break;
nand_select_target(chip, i);
/* Send the command for reading device ID */
ret = nand_readid_op(chip, 0, id, sizeof(id));
if (ret)
break;
/* Read manufacturer and device IDs */
if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
nand_deselect_target(chip);
break;
}
nand_deselect_target(chip);
}
if (i > 1)
pr_info("%d chips detected\n", i);
/* Store the number of chips and calc total size for mtd */
memorg->ntargets = i;
mtd->size = i * nanddev_target_size(&chip->base);
return 0;
}
static void nand_scan_ident_cleanup(struct nand_chip *chip)
{
kfree(chip->parameters.model);
kfree(chip->parameters.onfi);
}
int rawnand_sw_hamming_init(struct nand_chip *chip)
{
struct nand_ecc_sw_hamming_conf *engine_conf;
struct nand_device *base = &chip->base;
int ret;
base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING;
base->ecc.user_conf.strength = chip->ecc.strength;
base->ecc.user_conf.step_size = chip->ecc.size;
ret = nand_ecc_sw_hamming_init_ctx(base);
if (ret)
return ret;
engine_conf = base->ecc.ctx.priv;
if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER)
engine_conf->sm_order = true;
chip->ecc.size = base->ecc.ctx.conf.step_size;
chip->ecc.strength = base->ecc.ctx.conf.strength;
chip->ecc.total = base->ecc.ctx.total;
chip->ecc.steps = nanddev_get_ecc_nsteps(base);
chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
return 0;
}
EXPORT_SYMBOL(rawnand_sw_hamming_init);
int rawnand_sw_hamming_calculate(struct nand_chip *chip,
const unsigned char *buf,
unsigned char *code)
{
struct nand_device *base = &chip->base;
return nand_ecc_sw_hamming_calculate(base, buf, code);
}
EXPORT_SYMBOL(rawnand_sw_hamming_calculate);
int rawnand_sw_hamming_correct(struct nand_chip *chip,
unsigned char *buf,
unsigned char *read_ecc,
unsigned char *calc_ecc)
{
struct nand_device *base = &chip->base;
return nand_ecc_sw_hamming_correct(base, buf, read_ecc, calc_ecc);
}
EXPORT_SYMBOL(rawnand_sw_hamming_correct);
void rawnand_sw_hamming_cleanup(struct nand_chip *chip)
{
struct nand_device *base = &chip->base;
nand_ecc_sw_hamming_cleanup_ctx(base);
}
EXPORT_SYMBOL(rawnand_sw_hamming_cleanup);
int rawnand_sw_bch_init(struct nand_chip *chip)
{
struct nand_device *base = &chip->base;
const struct nand_ecc_props *ecc_conf = nanddev_get_ecc_conf(base);
int ret;
base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH;
base->ecc.user_conf.step_size = chip->ecc.size;
base->ecc.user_conf.strength = chip->ecc.strength;
ret = nand_ecc_sw_bch_init_ctx(base);
if (ret)
return ret;
chip->ecc.size = ecc_conf->step_size;
chip->ecc.strength = ecc_conf->strength;
chip->ecc.total = base->ecc.ctx.total;
chip->ecc.steps = nanddev_get_ecc_nsteps(base);
chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
return 0;
}
EXPORT_SYMBOL(rawnand_sw_bch_init);
static int rawnand_sw_bch_calculate(struct nand_chip *chip,
const unsigned char *buf,
unsigned char *code)
{
struct nand_device *base = &chip->base;
return nand_ecc_sw_bch_calculate(base, buf, code);
}
int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
unsigned char *read_ecc, unsigned char *calc_ecc)
{
struct nand_device *base = &chip->base;
return nand_ecc_sw_bch_correct(base, buf, read_ecc, calc_ecc);
}
EXPORT_SYMBOL(rawnand_sw_bch_correct);
void rawnand_sw_bch_cleanup(struct nand_chip *chip)
{
struct nand_device *base = &chip->base;
nand_ecc_sw_bch_cleanup_ctx(base);
}
EXPORT_SYMBOL(rawnand_sw_bch_cleanup);
static int nand_set_ecc_on_host_ops(struct nand_chip *chip)
{
struct nand_ecc_ctrl *ecc = &chip->ecc;
switch (ecc->placement) {
case NAND_ECC_PLACEMENT_UNKNOWN:
case NAND_ECC_PLACEMENT_OOB:
/* Use standard hwecc read page function? */
if (!ecc->read_page)
ecc->read_page = nand_read_page_hwecc;
if (!ecc->write_page)
ecc->write_page = nand_write_page_hwecc;
if (!ecc->read_page_raw)
ecc->read_page_raw = nand_read_page_raw;
if (!ecc->write_page_raw)
ecc->write_page_raw = nand_write_page_raw;
if (!ecc->read_oob)
ecc->read_oob = nand_read_oob_std;
if (!ecc->write_oob)
ecc->write_oob = nand_write_oob_std;
if (!ecc->read_subpage)
ecc->read_subpage = nand_read_subpage;
if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
ecc->write_subpage = nand_write_subpage_hwecc;
fallthrough;
case NAND_ECC_PLACEMENT_INTERLEAVED:
if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
(!ecc->read_page ||
ecc->read_page == nand_read_page_hwecc ||
!ecc->write_page ||
ecc->write_page == nand_write_page_hwecc)) {
WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
return -EINVAL;
}
/* Use standard syndrome read/write page function? */
if (!ecc->read_page)
ecc->read_page = nand_read_page_syndrome;
if (!ecc->write_page)
ecc->write_page = nand_write_page_syndrome;
if (!ecc->read_page_raw)
ecc->read_page_raw = nand_read_page_raw_syndrome;
if (!ecc->write_page_raw)
ecc->write_page_raw = nand_write_page_raw_syndrome;
if (!ecc->read_oob)
ecc->read_oob = nand_read_oob_syndrome;
if (!ecc->write_oob)
ecc->write_oob = nand_write_oob_syndrome;
break;
default:
pr_warn("Invalid NAND_ECC_PLACEMENT %d\n",
ecc->placement);
return -EINVAL;
}
return 0;
}
static int nand_set_ecc_soft_ops(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct nand_device *nanddev = mtd_to_nanddev(mtd);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int ret;
if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT))
return -EINVAL;
switch (ecc->algo) {
case NAND_ECC_ALGO_HAMMING:
ecc->calculate = rawnand_sw_hamming_calculate;
ecc->correct = rawnand_sw_hamming_correct;
ecc->read_page = nand_read_page_swecc;
ecc->read_subpage = nand_read_subpage;
ecc->write_page = nand_write_page_swecc;
if (!ecc->read_page_raw)
ecc->read_page_raw = nand_read_page_raw;
if (!ecc->write_page_raw)
ecc->write_page_raw = nand_write_page_raw;
ecc->read_oob = nand_read_oob_std;
ecc->write_oob = nand_write_oob_std;
if (!ecc->size)
ecc->size = 256;
ecc->bytes = 3;
ecc->strength = 1;
if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
ret = rawnand_sw_hamming_init(chip);
if (ret) {
WARN(1, "Hamming ECC initialization failed!\n");
return ret;
}
return 0;
case NAND_ECC_ALGO_BCH:
if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
return -EINVAL;
}
ecc->calculate = rawnand_sw_bch_calculate;
ecc->correct = rawnand_sw_bch_correct;
ecc->read_page = nand_read_page_swecc;
ecc->read_subpage = nand_read_subpage;
ecc->write_page = nand_write_page_swecc;
if (!ecc->read_page_raw)
ecc->read_page_raw = nand_read_page_raw;
if (!ecc->write_page_raw)
ecc->write_page_raw = nand_write_page_raw;
ecc->read_oob = nand_read_oob_std;
ecc->write_oob = nand_write_oob_std;
/*
* We can only maximize ECC config when the default layout is
* used, otherwise we don't know how many bytes can really be
* used.
*/
if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH &&
mtd->ooblayout != nand_get_large_page_ooblayout())
nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH;
ret = rawnand_sw_bch_init(chip);
if (ret) {
WARN(1, "BCH ECC initialization failed!\n");
return ret;
}
return 0;
default:
WARN(1, "Unsupported ECC algorithm!\n");
return -EINVAL;
}
}
/**
* nand_check_ecc_caps - check the sanity of preset ECC settings
* @chip: nand chip info structure
* @caps: ECC caps info structure
* @oobavail: OOB size that the ECC engine can use
*
* When ECC step size and strength are already set, check if they are supported
* by the controller and the calculated ECC bytes fit within the chip's OOB.
* On success, the calculated ECC bytes is set.
*/
static int
nand_check_ecc_caps(struct nand_chip *chip,
const struct nand_ecc_caps *caps, int oobavail)
{
struct mtd_info *mtd = nand_to_mtd(chip);
const struct nand_ecc_step_info *stepinfo;
int preset_step = chip->ecc.size;
int preset_strength = chip->ecc.strength;
int ecc_bytes, nsteps = mtd->writesize / preset_step;
int i, j;
for (i = 0; i < caps->nstepinfos; i++) {
stepinfo = &caps->stepinfos[i];
if (stepinfo->stepsize != preset_step)
continue;
for (j = 0; j < stepinfo->nstrengths; j++) {
if (stepinfo->strengths[j] != preset_strength)
continue;
ecc_bytes = caps->calc_ecc_bytes(preset_step,
preset_strength);
if (WARN_ON_ONCE(ecc_bytes < 0))
return ecc_bytes;
if (ecc_bytes * nsteps > oobavail) {
pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
preset_step, preset_strength);
return -ENOSPC;
}
chip->ecc.bytes = ecc_bytes;
return 0;
}
}
pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
preset_step, preset_strength);
return -ENOTSUPP;
}
/**
* nand_match_ecc_req - meet the chip's requirement with least ECC bytes
* @chip: nand chip info structure
* @caps: ECC engine caps info structure
* @oobavail: OOB size that the ECC engine can use
*
* If a chip's ECC requirement is provided, try to meet it with the least
* number of ECC bytes (i.e. with the largest number of OOB-free bytes).
* On success, the chosen ECC settings are set.
*/
static int
nand_match_ecc_req(struct nand_chip *chip,
const struct nand_ecc_caps *caps, int oobavail)
{
const struct nand_ecc_props *requirements =
nanddev_get_ecc_requirements(&chip->base);
struct mtd_info *mtd = nand_to_mtd(chip);
const struct nand_ecc_step_info *stepinfo;
int req_step = requirements->step_size;
int req_strength = requirements->strength;
int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
int best_step = 0, best_strength = 0, best_ecc_bytes = 0;
int best_ecc_bytes_total = INT_MAX;
int i, j;
/* No information provided by the NAND chip */
if (!req_step || !req_strength)
return -ENOTSUPP;
/* number of correctable bits the chip requires in a page */
req_corr = mtd->writesize / req_step * req_strength;
for (i = 0; i < caps->nstepinfos; i++) {
stepinfo = &caps->stepinfos[i];
step_size = stepinfo->stepsize;
for (j = 0; j < stepinfo->nstrengths; j++) {
strength = stepinfo->strengths[j];
/*
* If both step size and strength are smaller than the
* chip's requirement, it is not easy to compare the
* resulted reliability.
*/
if (step_size < req_step && strength < req_strength)
continue;
if (mtd->writesize % step_size)
continue;
nsteps = mtd->writesize / step_size;
ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
if (WARN_ON_ONCE(ecc_bytes < 0))
continue;
ecc_bytes_total = ecc_bytes * nsteps;
if (ecc_bytes_total > oobavail ||
strength * nsteps < req_corr)
continue;
/*
* We assume the best is to meet the chip's requrement
* with the least number of ECC bytes.
*/
if (ecc_bytes_total < best_ecc_bytes_total) {
best_ecc_bytes_total = ecc_bytes_total;
best_step = step_size;
best_strength = strength;
best_ecc_bytes = ecc_bytes;
}
}
}
if (best_ecc_bytes_total == INT_MAX)
return -ENOTSUPP;
chip->ecc.size = best_step;
chip->ecc.strength = best_strength;
chip->ecc.bytes = best_ecc_bytes;
return 0;
}
/**
* nand_maximize_ecc - choose the max ECC strength available
* @chip: nand chip info structure
* @caps: ECC engine caps info structure
* @oobavail: OOB size that the ECC engine can use
*
* Choose the max ECC strength that is supported on the controller, and can fit
* within the chip's OOB. On success, the chosen ECC settings are set.
*/
static int
nand_maximize_ecc(struct nand_chip *chip,
const struct nand_ecc_caps *caps, int oobavail)
{
struct mtd_info *mtd = nand_to_mtd(chip);
const struct nand_ecc_step_info *stepinfo;
int step_size, strength, nsteps, ecc_bytes, corr;
int best_corr = 0;
int best_step = 0;
int best_strength = 0, best_ecc_bytes = 0;
int i, j;
for (i = 0; i < caps->nstepinfos; i++) {
stepinfo = &caps->stepinfos[i];
step_size = stepinfo->stepsize;
/* If chip->ecc.size is already set, respect it */
if (chip->ecc.size && step_size != chip->ecc.size)
continue;
for (j = 0; j < stepinfo->nstrengths; j++) {
strength = stepinfo->strengths[j];
if (mtd->writesize % step_size)
continue;
nsteps = mtd->writesize / step_size;
ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
if (WARN_ON_ONCE(ecc_bytes < 0))
continue;
if (ecc_bytes * nsteps > oobavail)
continue;
corr = strength * nsteps;
/*
* If the number of correctable bits is the same,
* bigger step_size has more reliability.
*/
if (corr > best_corr ||
(corr == best_corr && step_size > best_step)) {
best_corr = corr;
best_step = step_size;
best_strength = strength;
best_ecc_bytes = ecc_bytes;
}
}
}
if (!best_corr)
return -ENOTSUPP;
chip->ecc.size = best_step;
chip->ecc.strength = best_strength;
chip->ecc.bytes = best_ecc_bytes;
return 0;
}
/**
* nand_ecc_choose_conf - Set the ECC strength and ECC step size
* @chip: nand chip info structure
* @caps: ECC engine caps info structure
* @oobavail: OOB size that the ECC engine can use
*
* Choose the ECC configuration according to following logic.
*
* 1. If both ECC step size and ECC strength are already set (usually by DT)
* then check if it is supported by this controller.
* 2. If the user provided the nand-ecc-maximize property, then select maximum
* ECC strength.
* 3. Otherwise, try to match the ECC step size and ECC strength closest
* to the chip's requirement. If available OOB size can't fit the chip
* requirement then fallback to the maximum ECC step size and ECC strength.
*
* On success, the chosen ECC settings are set.
*/
int nand_ecc_choose_conf(struct nand_chip *chip,
const struct nand_ecc_caps *caps, int oobavail)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct nand_device *nanddev = mtd_to_nanddev(mtd);
if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
return -EINVAL;
if (chip->ecc.size && chip->ecc.strength)
return nand_check_ecc_caps(chip, caps, oobavail);
if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
return nand_maximize_ecc(chip, caps, oobavail);
if (!nand_match_ecc_req(chip, caps, oobavail))
return 0;
return nand_maximize_ecc(chip, caps, oobavail);
}
EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
{
struct nand_chip *chip = container_of(nand, struct nand_chip,
base);
unsigned int eb = nanddev_pos_to_row(nand, pos);
int ret;
eb >>= nand->rowconv.eraseblock_addr_shift;
nand_select_target(chip, pos->target);
ret = nand_erase_op(chip, eb);
nand_deselect_target(chip);
return ret;
}
static int rawnand_markbad(struct nand_device *nand,
const struct nand_pos *pos)
{
struct nand_chip *chip = container_of(nand, struct nand_chip,
base);
return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
}
static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
{
struct nand_chip *chip = container_of(nand, struct nand_chip,
base);
int ret;
nand_select_target(chip, pos->target);
ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
nand_deselect_target(chip);
return ret;
}
static const struct nand_ops rawnand_ops = {
.erase = rawnand_erase,
.markbad = rawnand_markbad,
.isbad = rawnand_isbad,
};
/**
* nand_scan_tail - Scan for the NAND device
* @chip: NAND chip object
*
* This is the second phase of the normal nand_scan() function. It fills out
* all the uninitialized function pointers with the defaults and scans for a
* bad block table if appropriate.
*/
static int nand_scan_tail(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int ret, i;
/* New bad blocks should be marked in OOB, flash-based BBT, or both */
if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
!(chip->bbt_options & NAND_BBT_USE_FLASH))) {
return -EINVAL;
}
chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
if (!chip->data_buf)
return -ENOMEM;
/*
* FIXME: some NAND manufacturer drivers expect the first die to be
* selected when manufacturer->init() is called. They should be fixed
* to explictly select the relevant die when interacting with the NAND
* chip.
*/
nand_select_target(chip, 0);
ret = nand_manufacturer_init(chip);
nand_deselect_target(chip);
if (ret)
goto err_free_buf;
/* Set the internal oob buffer location, just after the page data */
chip->oob_poi = chip->data_buf + mtd->writesize;
/*
* If no default placement scheme is given, select an appropriate one.
*/
if (!mtd->ooblayout &&
!(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
ecc->algo == NAND_ECC_ALGO_BCH) &&
!(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
ecc->algo == NAND_ECC_ALGO_HAMMING)) {
switch (mtd->oobsize) {
case 8:
case 16:
mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout());
break;
case 64:
case 128:
mtd_set_ooblayout(mtd,
nand_get_large_page_hamming_ooblayout());
break;
default:
/*
* Expose the whole OOB area to users if ECC_NONE
* is passed. We could do that for all kind of
* ->oobsize, but we must keep the old large/small
* page with ECC layout when ->oobsize <= 128 for
* compatibility reasons.
*/
if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) {
mtd_set_ooblayout(mtd,
nand_get_large_page_ooblayout());
break;
}
WARN(1, "No oob scheme defined for oobsize %d\n",
mtd->oobsize);
ret = -EINVAL;
goto err_nand_manuf_cleanup;
}
}
/*
* Check ECC mode, default to software if 3byte/512byte hardware ECC is
* selected and we have 256 byte pagesize fallback to software ECC
*/
switch (ecc->engine_type) {
case NAND_ECC_ENGINE_TYPE_ON_HOST:
ret = nand_set_ecc_on_host_ops(chip);
if (ret)
goto err_nand_manuf_cleanup;
if (mtd->writesize >= ecc->size) {
if (!ecc->strength) {
WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
ret = -EINVAL;
goto err_nand_manuf_cleanup;
}
break;
}
pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
ecc->size, mtd->writesize);
ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
ecc->algo = NAND_ECC_ALGO_HAMMING;
fallthrough;
case NAND_ECC_ENGINE_TYPE_SOFT:
ret = nand_set_ecc_soft_ops(chip);
if (ret)
goto err_nand_manuf_cleanup;
break;
case NAND_ECC_ENGINE_TYPE_ON_DIE:
if (!ecc->read_page || !ecc->write_page) {
WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
ret = -EINVAL;
goto err_nand_manuf_cleanup;
}
if (!ecc->read_oob)
ecc->read_oob = nand_read_oob_std;
if (!ecc->write_oob)
ecc->write_oob = nand_write_oob_std;
break;
case NAND_ECC_ENGINE_TYPE_NONE:
pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n");
ecc->read_page = nand_read_page_raw;
ecc->write_page = nand_write_page_raw;
ecc->read_oob = nand_read_oob_std;
ecc->read_page_raw = nand_read_page_raw;
ecc->write_page_raw = nand_write_page_raw;
ecc->write_oob = nand_write_oob_std;
ecc->size = mtd->writesize;
ecc->bytes = 0;
ecc->strength = 0;
break;
default:
WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type);
ret = -EINVAL;
goto err_nand_manuf_cleanup;
}
if (ecc->correct || ecc->calculate) {
ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
if (!ecc->calc_buf || !ecc->code_buf) {
ret = -ENOMEM;
goto err_nand_manuf_cleanup;
}
}
/* For many systems, the standard OOB write also works for raw */
if (!ecc->read_oob_raw)
ecc->read_oob_raw = ecc->read_oob;
if (!ecc->write_oob_raw)
ecc->write_oob_raw = ecc->write_oob;
/* propagate ecc info to mtd_info */
mtd->ecc_strength = ecc->strength;
mtd->ecc_step_size = ecc->size;
/*
* Set the number of read / write steps for one page depending on ECC
* mode.
*/
if (!ecc->steps)
ecc->steps = mtd->writesize / ecc->size;
if (ecc->steps * ecc->size != mtd->writesize) {
WARN(1, "Invalid ECC parameters\n");
ret = -EINVAL;
goto err_nand_manuf_cleanup;
}
if (!ecc->total) {
ecc->total = ecc->steps * ecc->bytes;
chip->base.ecc.ctx.total = ecc->total;
}
if (ecc->total > mtd->oobsize) {
WARN(1, "Total number of ECC bytes exceeded oobsize\n");
ret = -EINVAL;
goto err_nand_manuf_cleanup;
}
/*
* The number of bytes available for a client to place data into
* the out of band area.
*/
ret = mtd_ooblayout_count_freebytes(mtd);
if (ret < 0)
ret = 0;
mtd->oobavail = ret;
/* ECC sanity check: warn if it's too weak */
if (!nand_ecc_is_strong_enough(&chip->base))
pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n",
mtd->name, chip->ecc.strength, chip->ecc.size,
nanddev_get_ecc_requirements(&chip->base)->strength,
nanddev_get_ecc_requirements(&chip->base)->step_size);
/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
switch (ecc->steps) {
case 2:
mtd->subpage_sft = 1;
break;
case 4:
case 8:
case 16:
mtd->subpage_sft = 2;
break;
}
}
chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
/* Invalidate the pagebuffer reference */
chip->pagecache.page = -1;
/* Large page NAND with SOFT_ECC should support subpage reads */
switch (ecc->engine_type) {
case NAND_ECC_ENGINE_TYPE_SOFT:
if (chip->page_shift > 9)
chip->options |= NAND_SUBPAGE_READ;
break;
default:
break;
}
ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
if (ret)
goto err_nand_manuf_cleanup;
/* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
if (chip->options & NAND_ROM)
mtd->flags = MTD_CAP_ROM;
/* Fill in remaining MTD driver data */
mtd->_erase = nand_erase;
mtd->_point = NULL;
mtd->_unpoint = NULL;
mtd->_panic_write = panic_nand_write;
mtd->_read_oob = nand_read_oob;
mtd->_write_oob = nand_write_oob;
mtd->_sync = nand_sync;
mtd->_lock = nand_lock;
mtd->_unlock = nand_unlock;
mtd->_suspend = nand_suspend;
mtd->_resume = nand_resume;
mtd->_reboot = nand_shutdown;
mtd->_block_isreserved = nand_block_isreserved;
mtd->_block_isbad = nand_block_isbad;
mtd->_block_markbad = nand_block_markbad;
mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
/*
* Initialize bitflip_threshold to its default prior scan_bbt() call.
* scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
* properly set.
*/
if (!mtd->bitflip_threshold)
mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
/* Find the fastest data interface for this chip */
ret = nand_choose_interface_config(chip);
if (ret)
goto err_nanddev_cleanup;
/* Enter fastest possible mode on all dies. */
for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
ret = nand_setup_interface(chip, i);
if (ret)
goto err_free_interface_config;
}
rawnand_late_check_supported_ops(chip);
/*
* Look for secure regions in the NAND chip. These regions are supposed
* to be protected by a secure element like Trustzone. So the read/write
* accesses to these regions will be blocked in the runtime by this
* driver.
*/
ret = of_get_nand_secure_regions(chip);
if (ret)
goto err_free_interface_config;
/* Check, if we should skip the bad block table scan */
if (chip->options & NAND_SKIP_BBTSCAN)
return 0;
/* Build bad block table */
ret = nand_create_bbt(chip);
if (ret)
goto err_free_secure_regions;
return 0;
err_free_secure_regions:
kfree(chip->secure_regions);
err_free_interface_config:
kfree(chip->best_interface_config);
err_nanddev_cleanup:
nanddev_cleanup(&chip->base);
err_nand_manuf_cleanup:
nand_manufacturer_cleanup(chip);
err_free_buf:
kfree(chip->data_buf);
kfree(ecc->code_buf);
kfree(ecc->calc_buf);
return ret;
}
static int nand_attach(struct nand_chip *chip)
{
if (chip->controller->ops && chip->controller->ops->attach_chip)
return chip->controller->ops->attach_chip(chip);
return 0;
}
static void nand_detach(struct nand_chip *chip)
{
if (chip->controller->ops && chip->controller->ops->detach_chip)
chip->controller->ops->detach_chip(chip);
}
/**
* nand_scan_with_ids - [NAND Interface] Scan for the NAND device
* @chip: NAND chip object
* @maxchips: number of chips to scan for.
* @ids: optional flash IDs table
*
* This fills out all the uninitialized function pointers with the defaults.
* The flash ID is read and the mtd/chip structures are filled with the
* appropriate values.
*/
int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
struct nand_flash_dev *ids)
{
int ret;
if (!maxchips)
return -EINVAL;
ret = nand_scan_ident(chip, maxchips, ids);
if (ret)
return ret;
ret = nand_attach(chip);
if (ret)
goto cleanup_ident;
ret = nand_scan_tail(chip);
if (ret)
goto detach_chip;
return 0;
detach_chip:
nand_detach(chip);
cleanup_ident:
nand_scan_ident_cleanup(chip);
return ret;
}
EXPORT_SYMBOL(nand_scan_with_ids);
/**
* nand_cleanup - [NAND Interface] Free resources held by the NAND device
* @chip: NAND chip object
*/
void nand_cleanup(struct nand_chip *chip)
{
if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) {
if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
rawnand_sw_hamming_cleanup(chip);
else if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
rawnand_sw_bch_cleanup(chip);
}
nanddev_cleanup(&chip->base);
/* Free secure regions data */
kfree(chip->secure_regions);
/* Free bad block table memory */
kfree(chip->bbt);
kfree(chip->data_buf);
kfree(chip->ecc.code_buf);
kfree(chip->ecc.calc_buf);
/* Free bad block descriptor memory */
if (chip->badblock_pattern && chip->badblock_pattern->options
& NAND_BBT_DYNAMICSTRUCT)
kfree(chip->badblock_pattern);
/* Free the data interface */
kfree(chip->best_interface_config);
/* Free manufacturer priv data. */
nand_manufacturer_cleanup(chip);
/* Free controller specific allocations after chip identification */
nand_detach(chip);
/* Free identification phase allocations */
nand_scan_ident_cleanup(chip);
}
EXPORT_SYMBOL_GPL(nand_cleanup);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
MODULE_DESCRIPTION("Generic NAND flash driver code");