mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-07 22:34:18 +08:00
4df29d2b90
Temporary unsetting of the prefix page in memcpy_absolute() routine poses a risk of executing code path with unexpectedly disabled prefix page. This rework avoids the prefix page uninstalling and disabling of normal and machine check interrupts when accessing the absolute zero memory. Although memcpy_absolute() routine can access the whole memory, it is only used to update the absolute zero lowcore. This rework therefore introduces a new mechanism for the absolute zero lowcore access and scraps memcpy_absolute() routine for good. Instead, an area is reserved in the virtual memory that is used for the absolute lowcore access only. That area holds an array of 8KB virtual mappings - one per CPU. Whenever a CPU is brought online, the corresponding item is mapped to the real address of the previously installed prefix page. The absolute zero lowcore access works like this: a CPU calls the new primitive get_abs_lowcore() to obtain its 8KB mapping as a pointer to the struct lowcore. Virtual address references to that pointer get translated to the real addresses of the prefix page, which in turn gets swapped with the absolute zero memory addresses due to prefixing. Once the pointer is not needed it must be released with put_abs_lowcore() primitive: struct lowcore *abs_lc; unsigned long flags; abs_lc = get_abs_lowcore(&flags); abs_lc->... = ...; put_abs_lowcore(abs_lc, flags); To ensure the described mechanism works large segment- and region- table entries must be avoided for the 8KB mappings. Failure to do so results in usage of Region-Frame Absolute Address (RFAA) or Segment-Frame Absolute Address (SFAA) large page fields. In that case absolute addresses would be used to address the prefix page instead of the real ones and the prefixing would get bypassed. Reviewed-by: Heiko Carstens <hca@linux.ibm.com> Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
1310 lines
33 KiB
C
1310 lines
33 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* SMP related functions
|
|
*
|
|
* Copyright IBM Corp. 1999, 2012
|
|
* Author(s): Denis Joseph Barrow,
|
|
* Martin Schwidefsky <schwidefsky@de.ibm.com>,
|
|
*
|
|
* based on other smp stuff by
|
|
* (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
|
|
* (c) 1998 Ingo Molnar
|
|
*
|
|
* The code outside of smp.c uses logical cpu numbers, only smp.c does
|
|
* the translation of logical to physical cpu ids. All new code that
|
|
* operates on physical cpu numbers needs to go into smp.c.
|
|
*/
|
|
|
|
#define KMSG_COMPONENT "cpu"
|
|
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
|
|
|
|
#include <linux/workqueue.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/export.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/err.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irqflags.h>
|
|
#include <linux/irq_work.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sched/hotplug.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/crash_dump.h>
|
|
#include <linux/kprobes.h>
|
|
#include <asm/asm-offsets.h>
|
|
#include <asm/diag.h>
|
|
#include <asm/switch_to.h>
|
|
#include <asm/facility.h>
|
|
#include <asm/ipl.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/vtimer.h>
|
|
#include <asm/abs_lowcore.h>
|
|
#include <asm/sclp.h>
|
|
#include <asm/debug.h>
|
|
#include <asm/os_info.h>
|
|
#include <asm/sigp.h>
|
|
#include <asm/idle.h>
|
|
#include <asm/nmi.h>
|
|
#include <asm/stacktrace.h>
|
|
#include <asm/topology.h>
|
|
#include <asm/vdso.h>
|
|
#include "entry.h"
|
|
|
|
enum {
|
|
ec_schedule = 0,
|
|
ec_call_function_single,
|
|
ec_stop_cpu,
|
|
ec_mcck_pending,
|
|
ec_irq_work,
|
|
};
|
|
|
|
enum {
|
|
CPU_STATE_STANDBY,
|
|
CPU_STATE_CONFIGURED,
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct cpu *, cpu_device);
|
|
|
|
struct pcpu {
|
|
unsigned long ec_mask; /* bit mask for ec_xxx functions */
|
|
unsigned long ec_clk; /* sigp timestamp for ec_xxx */
|
|
signed char state; /* physical cpu state */
|
|
signed char polarization; /* physical polarization */
|
|
u16 address; /* physical cpu address */
|
|
};
|
|
|
|
static u8 boot_core_type;
|
|
static struct pcpu pcpu_devices[NR_CPUS];
|
|
|
|
unsigned int smp_cpu_mt_shift;
|
|
EXPORT_SYMBOL(smp_cpu_mt_shift);
|
|
|
|
unsigned int smp_cpu_mtid;
|
|
EXPORT_SYMBOL(smp_cpu_mtid);
|
|
|
|
#ifdef CONFIG_CRASH_DUMP
|
|
__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
|
|
#endif
|
|
|
|
static unsigned int smp_max_threads __initdata = -1U;
|
|
cpumask_t cpu_setup_mask;
|
|
|
|
static int __init early_nosmt(char *s)
|
|
{
|
|
smp_max_threads = 1;
|
|
return 0;
|
|
}
|
|
early_param("nosmt", early_nosmt);
|
|
|
|
static int __init early_smt(char *s)
|
|
{
|
|
get_option(&s, &smp_max_threads);
|
|
return 0;
|
|
}
|
|
early_param("smt", early_smt);
|
|
|
|
/*
|
|
* The smp_cpu_state_mutex must be held when changing the state or polarization
|
|
* member of a pcpu data structure within the pcpu_devices arreay.
|
|
*/
|
|
DEFINE_MUTEX(smp_cpu_state_mutex);
|
|
|
|
/*
|
|
* Signal processor helper functions.
|
|
*/
|
|
static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
|
|
{
|
|
int cc;
|
|
|
|
while (1) {
|
|
cc = __pcpu_sigp(addr, order, parm, NULL);
|
|
if (cc != SIGP_CC_BUSY)
|
|
return cc;
|
|
cpu_relax();
|
|
}
|
|
}
|
|
|
|
static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
|
|
{
|
|
int cc, retry;
|
|
|
|
for (retry = 0; ; retry++) {
|
|
cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
|
|
if (cc != SIGP_CC_BUSY)
|
|
break;
|
|
if (retry >= 3)
|
|
udelay(10);
|
|
}
|
|
return cc;
|
|
}
|
|
|
|
static inline int pcpu_stopped(struct pcpu *pcpu)
|
|
{
|
|
u32 status;
|
|
|
|
if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
|
|
0, &status) != SIGP_CC_STATUS_STORED)
|
|
return 0;
|
|
return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
|
|
}
|
|
|
|
static inline int pcpu_running(struct pcpu *pcpu)
|
|
{
|
|
if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
|
|
0, NULL) != SIGP_CC_STATUS_STORED)
|
|
return 1;
|
|
/* Status stored condition code is equivalent to cpu not running. */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Find struct pcpu by cpu address.
|
|
*/
|
|
static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_cpu(cpu, mask)
|
|
if (pcpu_devices[cpu].address == address)
|
|
return pcpu_devices + cpu;
|
|
return NULL;
|
|
}
|
|
|
|
static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
|
|
{
|
|
int order;
|
|
|
|
if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
|
|
return;
|
|
order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
|
|
pcpu->ec_clk = get_tod_clock_fast();
|
|
pcpu_sigp_retry(pcpu, order, 0);
|
|
}
|
|
|
|
static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
|
|
{
|
|
unsigned long async_stack, nodat_stack, mcck_stack;
|
|
struct lowcore *lc;
|
|
|
|
lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
|
|
nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
|
|
async_stack = stack_alloc();
|
|
mcck_stack = stack_alloc();
|
|
if (!lc || !nodat_stack || !async_stack || !mcck_stack)
|
|
goto out;
|
|
memcpy(lc, &S390_lowcore, 512);
|
|
memset((char *) lc + 512, 0, sizeof(*lc) - 512);
|
|
lc->async_stack = async_stack + STACK_INIT_OFFSET;
|
|
lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
|
|
lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
|
|
lc->cpu_nr = cpu;
|
|
lc->spinlock_lockval = arch_spin_lockval(cpu);
|
|
lc->spinlock_index = 0;
|
|
lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
|
|
lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
|
|
lc->preempt_count = PREEMPT_DISABLED;
|
|
if (nmi_alloc_mcesa(&lc->mcesad))
|
|
goto out;
|
|
if (abs_lowcore_map(cpu, lc, true))
|
|
goto out_mcesa;
|
|
lowcore_ptr[cpu] = lc;
|
|
pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
|
|
return 0;
|
|
|
|
out_mcesa:
|
|
nmi_free_mcesa(&lc->mcesad);
|
|
out:
|
|
stack_free(mcck_stack);
|
|
stack_free(async_stack);
|
|
free_pages(nodat_stack, THREAD_SIZE_ORDER);
|
|
free_pages((unsigned long) lc, LC_ORDER);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void pcpu_free_lowcore(struct pcpu *pcpu)
|
|
{
|
|
unsigned long async_stack, nodat_stack, mcck_stack;
|
|
struct lowcore *lc;
|
|
int cpu;
|
|
|
|
cpu = pcpu - pcpu_devices;
|
|
lc = lowcore_ptr[cpu];
|
|
nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
|
|
async_stack = lc->async_stack - STACK_INIT_OFFSET;
|
|
mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
|
|
pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
|
|
lowcore_ptr[cpu] = NULL;
|
|
abs_lowcore_unmap(cpu);
|
|
nmi_free_mcesa(&lc->mcesad);
|
|
stack_free(async_stack);
|
|
stack_free(mcck_stack);
|
|
free_pages(nodat_stack, THREAD_SIZE_ORDER);
|
|
free_pages((unsigned long) lc, LC_ORDER);
|
|
}
|
|
|
|
static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
|
|
{
|
|
struct lowcore *lc = lowcore_ptr[cpu];
|
|
|
|
cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
|
|
cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
|
|
lc->cpu_nr = cpu;
|
|
lc->restart_flags = RESTART_FLAG_CTLREGS;
|
|
lc->spinlock_lockval = arch_spin_lockval(cpu);
|
|
lc->spinlock_index = 0;
|
|
lc->percpu_offset = __per_cpu_offset[cpu];
|
|
lc->kernel_asce = S390_lowcore.kernel_asce;
|
|
lc->user_asce = s390_invalid_asce;
|
|
lc->machine_flags = S390_lowcore.machine_flags;
|
|
lc->user_timer = lc->system_timer =
|
|
lc->steal_timer = lc->avg_steal_timer = 0;
|
|
__ctl_store(lc->cregs_save_area, 0, 15);
|
|
lc->cregs_save_area[1] = lc->kernel_asce;
|
|
lc->cregs_save_area[7] = lc->user_asce;
|
|
save_access_regs((unsigned int *) lc->access_regs_save_area);
|
|
arch_spin_lock_setup(cpu);
|
|
}
|
|
|
|
static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
|
|
{
|
|
struct lowcore *lc;
|
|
int cpu;
|
|
|
|
cpu = pcpu - pcpu_devices;
|
|
lc = lowcore_ptr[cpu];
|
|
lc->kernel_stack = (unsigned long) task_stack_page(tsk)
|
|
+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
|
|
lc->current_task = (unsigned long) tsk;
|
|
lc->lpp = LPP_MAGIC;
|
|
lc->current_pid = tsk->pid;
|
|
lc->user_timer = tsk->thread.user_timer;
|
|
lc->guest_timer = tsk->thread.guest_timer;
|
|
lc->system_timer = tsk->thread.system_timer;
|
|
lc->hardirq_timer = tsk->thread.hardirq_timer;
|
|
lc->softirq_timer = tsk->thread.softirq_timer;
|
|
lc->steal_timer = 0;
|
|
}
|
|
|
|
static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
|
|
{
|
|
struct lowcore *lc;
|
|
int cpu;
|
|
|
|
cpu = pcpu - pcpu_devices;
|
|
lc = lowcore_ptr[cpu];
|
|
lc->restart_stack = lc->kernel_stack;
|
|
lc->restart_fn = (unsigned long) func;
|
|
lc->restart_data = (unsigned long) data;
|
|
lc->restart_source = -1U;
|
|
pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
|
|
}
|
|
|
|
typedef void (pcpu_delegate_fn)(void *);
|
|
|
|
/*
|
|
* Call function via PSW restart on pcpu and stop the current cpu.
|
|
*/
|
|
static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
|
|
{
|
|
func(data); /* should not return */
|
|
}
|
|
|
|
static void pcpu_delegate(struct pcpu *pcpu,
|
|
pcpu_delegate_fn *func,
|
|
void *data, unsigned long stack)
|
|
{
|
|
struct lowcore *lc, *abs_lc;
|
|
unsigned int source_cpu;
|
|
unsigned long flags;
|
|
|
|
lc = lowcore_ptr[pcpu - pcpu_devices];
|
|
source_cpu = stap();
|
|
__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
|
|
if (pcpu->address == source_cpu) {
|
|
call_on_stack(2, stack, void, __pcpu_delegate,
|
|
pcpu_delegate_fn *, func, void *, data);
|
|
}
|
|
/* Stop target cpu (if func returns this stops the current cpu). */
|
|
pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
|
|
/* Restart func on the target cpu and stop the current cpu. */
|
|
if (lc) {
|
|
lc->restart_stack = stack;
|
|
lc->restart_fn = (unsigned long)func;
|
|
lc->restart_data = (unsigned long)data;
|
|
lc->restart_source = source_cpu;
|
|
} else {
|
|
abs_lc = get_abs_lowcore(&flags);
|
|
abs_lc->restart_stack = stack;
|
|
abs_lc->restart_fn = (unsigned long)func;
|
|
abs_lc->restart_data = (unsigned long)data;
|
|
abs_lc->restart_source = source_cpu;
|
|
put_abs_lowcore(abs_lc, flags);
|
|
}
|
|
__bpon();
|
|
asm volatile(
|
|
"0: sigp 0,%0,%2 # sigp restart to target cpu\n"
|
|
" brc 2,0b # busy, try again\n"
|
|
"1: sigp 0,%1,%3 # sigp stop to current cpu\n"
|
|
" brc 2,1b # busy, try again\n"
|
|
: : "d" (pcpu->address), "d" (source_cpu),
|
|
"K" (SIGP_RESTART), "K" (SIGP_STOP)
|
|
: "0", "1", "cc");
|
|
for (;;) ;
|
|
}
|
|
|
|
/*
|
|
* Enable additional logical cpus for multi-threading.
|
|
*/
|
|
static int pcpu_set_smt(unsigned int mtid)
|
|
{
|
|
int cc;
|
|
|
|
if (smp_cpu_mtid == mtid)
|
|
return 0;
|
|
cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
|
|
if (cc == 0) {
|
|
smp_cpu_mtid = mtid;
|
|
smp_cpu_mt_shift = 0;
|
|
while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
|
|
smp_cpu_mt_shift++;
|
|
pcpu_devices[0].address = stap();
|
|
}
|
|
return cc;
|
|
}
|
|
|
|
/*
|
|
* Call function on an online CPU.
|
|
*/
|
|
void smp_call_online_cpu(void (*func)(void *), void *data)
|
|
{
|
|
struct pcpu *pcpu;
|
|
|
|
/* Use the current cpu if it is online. */
|
|
pcpu = pcpu_find_address(cpu_online_mask, stap());
|
|
if (!pcpu)
|
|
/* Use the first online cpu. */
|
|
pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
|
|
pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
|
|
}
|
|
|
|
/*
|
|
* Call function on the ipl CPU.
|
|
*/
|
|
void smp_call_ipl_cpu(void (*func)(void *), void *data)
|
|
{
|
|
struct lowcore *lc = lowcore_ptr[0];
|
|
|
|
if (pcpu_devices[0].address == stap())
|
|
lc = &S390_lowcore;
|
|
|
|
pcpu_delegate(&pcpu_devices[0], func, data,
|
|
lc->nodat_stack);
|
|
}
|
|
|
|
int smp_find_processor_id(u16 address)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_present_cpu(cpu)
|
|
if (pcpu_devices[cpu].address == address)
|
|
return cpu;
|
|
return -1;
|
|
}
|
|
|
|
void schedule_mcck_handler(void)
|
|
{
|
|
pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
|
|
}
|
|
|
|
bool notrace arch_vcpu_is_preempted(int cpu)
|
|
{
|
|
if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
|
|
return false;
|
|
if (pcpu_running(pcpu_devices + cpu))
|
|
return false;
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(arch_vcpu_is_preempted);
|
|
|
|
void notrace smp_yield_cpu(int cpu)
|
|
{
|
|
if (!MACHINE_HAS_DIAG9C)
|
|
return;
|
|
diag_stat_inc_norecursion(DIAG_STAT_X09C);
|
|
asm volatile("diag %0,0,0x9c"
|
|
: : "d" (pcpu_devices[cpu].address));
|
|
}
|
|
EXPORT_SYMBOL_GPL(smp_yield_cpu);
|
|
|
|
/*
|
|
* Send cpus emergency shutdown signal. This gives the cpus the
|
|
* opportunity to complete outstanding interrupts.
|
|
*/
|
|
void notrace smp_emergency_stop(void)
|
|
{
|
|
static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
|
|
static cpumask_t cpumask;
|
|
u64 end;
|
|
int cpu;
|
|
|
|
arch_spin_lock(&lock);
|
|
cpumask_copy(&cpumask, cpu_online_mask);
|
|
cpumask_clear_cpu(smp_processor_id(), &cpumask);
|
|
|
|
end = get_tod_clock() + (1000000UL << 12);
|
|
for_each_cpu(cpu, &cpumask) {
|
|
struct pcpu *pcpu = pcpu_devices + cpu;
|
|
set_bit(ec_stop_cpu, &pcpu->ec_mask);
|
|
while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
|
|
0, NULL) == SIGP_CC_BUSY &&
|
|
get_tod_clock() < end)
|
|
cpu_relax();
|
|
}
|
|
while (get_tod_clock() < end) {
|
|
for_each_cpu(cpu, &cpumask)
|
|
if (pcpu_stopped(pcpu_devices + cpu))
|
|
cpumask_clear_cpu(cpu, &cpumask);
|
|
if (cpumask_empty(&cpumask))
|
|
break;
|
|
cpu_relax();
|
|
}
|
|
arch_spin_unlock(&lock);
|
|
}
|
|
NOKPROBE_SYMBOL(smp_emergency_stop);
|
|
|
|
/*
|
|
* Stop all cpus but the current one.
|
|
*/
|
|
void smp_send_stop(void)
|
|
{
|
|
int cpu;
|
|
|
|
/* Disable all interrupts/machine checks */
|
|
__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
|
|
trace_hardirqs_off();
|
|
|
|
debug_set_critical();
|
|
|
|
if (oops_in_progress)
|
|
smp_emergency_stop();
|
|
|
|
/* stop all processors */
|
|
for_each_online_cpu(cpu) {
|
|
if (cpu == smp_processor_id())
|
|
continue;
|
|
pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
|
|
while (!pcpu_stopped(pcpu_devices + cpu))
|
|
cpu_relax();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is the main routine where commands issued by other
|
|
* cpus are handled.
|
|
*/
|
|
static void smp_handle_ext_call(void)
|
|
{
|
|
unsigned long bits;
|
|
|
|
/* handle bit signal external calls */
|
|
bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
|
|
if (test_bit(ec_stop_cpu, &bits))
|
|
smp_stop_cpu();
|
|
if (test_bit(ec_schedule, &bits))
|
|
scheduler_ipi();
|
|
if (test_bit(ec_call_function_single, &bits))
|
|
generic_smp_call_function_single_interrupt();
|
|
if (test_bit(ec_mcck_pending, &bits))
|
|
__s390_handle_mcck();
|
|
if (test_bit(ec_irq_work, &bits))
|
|
irq_work_run();
|
|
}
|
|
|
|
static void do_ext_call_interrupt(struct ext_code ext_code,
|
|
unsigned int param32, unsigned long param64)
|
|
{
|
|
inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
|
|
smp_handle_ext_call();
|
|
}
|
|
|
|
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_cpu(cpu, mask)
|
|
pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
|
|
}
|
|
|
|
void arch_send_call_function_single_ipi(int cpu)
|
|
{
|
|
pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
|
|
}
|
|
|
|
/*
|
|
* this function sends a 'reschedule' IPI to another CPU.
|
|
* it goes straight through and wastes no time serializing
|
|
* anything. Worst case is that we lose a reschedule ...
|
|
*/
|
|
void smp_send_reschedule(int cpu)
|
|
{
|
|
pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
|
|
}
|
|
|
|
#ifdef CONFIG_IRQ_WORK
|
|
void arch_irq_work_raise(void)
|
|
{
|
|
pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* parameter area for the set/clear control bit callbacks
|
|
*/
|
|
struct ec_creg_mask_parms {
|
|
unsigned long orval;
|
|
unsigned long andval;
|
|
int cr;
|
|
};
|
|
|
|
/*
|
|
* callback for setting/clearing control bits
|
|
*/
|
|
static void smp_ctl_bit_callback(void *info)
|
|
{
|
|
struct ec_creg_mask_parms *pp = info;
|
|
unsigned long cregs[16];
|
|
|
|
__ctl_store(cregs, 0, 15);
|
|
cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
|
|
__ctl_load(cregs, 0, 15);
|
|
}
|
|
|
|
static DEFINE_SPINLOCK(ctl_lock);
|
|
|
|
void smp_ctl_set_clear_bit(int cr, int bit, bool set)
|
|
{
|
|
struct ec_creg_mask_parms parms = { .cr = cr, };
|
|
struct lowcore *abs_lc;
|
|
unsigned long flags;
|
|
u64 ctlreg;
|
|
|
|
if (set) {
|
|
parms.orval = 1UL << bit;
|
|
parms.andval = -1UL;
|
|
} else {
|
|
parms.orval = 0;
|
|
parms.andval = ~(1UL << bit);
|
|
}
|
|
spin_lock(&ctl_lock);
|
|
abs_lc = get_abs_lowcore(&flags);
|
|
ctlreg = abs_lc->cregs_save_area[cr];
|
|
ctlreg = (ctlreg & parms.andval) | parms.orval;
|
|
abs_lc->cregs_save_area[cr] = ctlreg;
|
|
put_abs_lowcore(abs_lc, flags);
|
|
spin_unlock(&ctl_lock);
|
|
on_each_cpu(smp_ctl_bit_callback, &parms, 1);
|
|
}
|
|
EXPORT_SYMBOL(smp_ctl_set_clear_bit);
|
|
|
|
#ifdef CONFIG_CRASH_DUMP
|
|
|
|
int smp_store_status(int cpu)
|
|
{
|
|
struct lowcore *lc;
|
|
struct pcpu *pcpu;
|
|
unsigned long pa;
|
|
|
|
pcpu = pcpu_devices + cpu;
|
|
lc = lowcore_ptr[cpu];
|
|
pa = __pa(&lc->floating_pt_save_area);
|
|
if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
|
|
pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
|
|
return -EIO;
|
|
if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
|
|
return 0;
|
|
pa = lc->mcesad & MCESA_ORIGIN_MASK;
|
|
if (MACHINE_HAS_GS)
|
|
pa |= lc->mcesad & MCESA_LC_MASK;
|
|
if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
|
|
pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
|
|
return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Collect CPU state of the previous, crashed system.
|
|
* There are four cases:
|
|
* 1) standard zfcp/nvme dump
|
|
* condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
|
|
* The state for all CPUs except the boot CPU needs to be collected
|
|
* with sigp stop-and-store-status. The boot CPU state is located in
|
|
* the absolute lowcore of the memory stored in the HSA. The zcore code
|
|
* will copy the boot CPU state from the HSA.
|
|
* 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
|
|
* condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
|
|
* The state for all CPUs except the boot CPU needs to be collected
|
|
* with sigp stop-and-store-status. The firmware or the boot-loader
|
|
* stored the registers of the boot CPU in the absolute lowcore in the
|
|
* memory of the old system.
|
|
* 3) kdump and the old kernel did not store the CPU state,
|
|
* or stand-alone kdump for DASD
|
|
* condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
|
|
* The state for all CPUs except the boot CPU needs to be collected
|
|
* with sigp stop-and-store-status. The kexec code or the boot-loader
|
|
* stored the registers of the boot CPU in the memory of the old system.
|
|
* 4) kdump and the old kernel stored the CPU state
|
|
* condition: OLDMEM_BASE != NULL && is_kdump_kernel()
|
|
* This case does not exist for s390 anymore, setup_arch explicitly
|
|
* deactivates the elfcorehdr= kernel parameter
|
|
*/
|
|
static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
|
|
bool is_boot_cpu, __vector128 *vxrs)
|
|
{
|
|
if (is_boot_cpu)
|
|
vxrs = boot_cpu_vector_save_area;
|
|
else
|
|
__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(vxrs));
|
|
save_area_add_vxrs(sa, vxrs);
|
|
}
|
|
|
|
static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
|
|
bool is_boot_cpu, void *regs)
|
|
{
|
|
if (is_boot_cpu)
|
|
copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
|
|
else
|
|
__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(regs));
|
|
save_area_add_regs(sa, regs);
|
|
}
|
|
|
|
void __init smp_save_dump_cpus(void)
|
|
{
|
|
int addr, boot_cpu_addr, max_cpu_addr;
|
|
struct save_area *sa;
|
|
bool is_boot_cpu;
|
|
void *page;
|
|
|
|
if (!(oldmem_data.start || is_ipl_type_dump()))
|
|
/* No previous system present, normal boot. */
|
|
return;
|
|
/* Allocate a page as dumping area for the store status sigps */
|
|
page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
|
|
if (!page)
|
|
panic("ERROR: Failed to allocate %lx bytes below %lx\n",
|
|
PAGE_SIZE, 1UL << 31);
|
|
|
|
/* Set multi-threading state to the previous system. */
|
|
pcpu_set_smt(sclp.mtid_prev);
|
|
boot_cpu_addr = stap();
|
|
max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
|
|
for (addr = 0; addr <= max_cpu_addr; addr++) {
|
|
if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
|
|
SIGP_CC_NOT_OPERATIONAL)
|
|
continue;
|
|
is_boot_cpu = (addr == boot_cpu_addr);
|
|
/* Allocate save area */
|
|
sa = save_area_alloc(is_boot_cpu);
|
|
if (!sa)
|
|
panic("could not allocate memory for save area\n");
|
|
if (MACHINE_HAS_VX)
|
|
/* Get the vector registers */
|
|
smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
|
|
/*
|
|
* For a zfcp/nvme dump OLDMEM_BASE == NULL and the registers
|
|
* of the boot CPU are stored in the HSA. To retrieve
|
|
* these registers an SCLP request is required which is
|
|
* done by drivers/s390/char/zcore.c:init_cpu_info()
|
|
*/
|
|
if (!is_boot_cpu || oldmem_data.start)
|
|
/* Get the CPU registers */
|
|
smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
|
|
}
|
|
memblock_free(page, PAGE_SIZE);
|
|
diag_amode31_ops.diag308_reset();
|
|
pcpu_set_smt(0);
|
|
}
|
|
#endif /* CONFIG_CRASH_DUMP */
|
|
|
|
void smp_cpu_set_polarization(int cpu, int val)
|
|
{
|
|
pcpu_devices[cpu].polarization = val;
|
|
}
|
|
|
|
int smp_cpu_get_polarization(int cpu)
|
|
{
|
|
return pcpu_devices[cpu].polarization;
|
|
}
|
|
|
|
int smp_cpu_get_cpu_address(int cpu)
|
|
{
|
|
return pcpu_devices[cpu].address;
|
|
}
|
|
|
|
static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
|
|
{
|
|
static int use_sigp_detection;
|
|
int address;
|
|
|
|
if (use_sigp_detection || sclp_get_core_info(info, early)) {
|
|
use_sigp_detection = 1;
|
|
for (address = 0;
|
|
address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
|
|
address += (1U << smp_cpu_mt_shift)) {
|
|
if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
|
|
SIGP_CC_NOT_OPERATIONAL)
|
|
continue;
|
|
info->core[info->configured].core_id =
|
|
address >> smp_cpu_mt_shift;
|
|
info->configured++;
|
|
}
|
|
info->combined = info->configured;
|
|
}
|
|
}
|
|
|
|
static int smp_add_present_cpu(int cpu);
|
|
|
|
static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
|
|
bool configured, bool early)
|
|
{
|
|
struct pcpu *pcpu;
|
|
int cpu, nr, i;
|
|
u16 address;
|
|
|
|
nr = 0;
|
|
if (sclp.has_core_type && core->type != boot_core_type)
|
|
return nr;
|
|
cpu = cpumask_first(avail);
|
|
address = core->core_id << smp_cpu_mt_shift;
|
|
for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
|
|
if (pcpu_find_address(cpu_present_mask, address + i))
|
|
continue;
|
|
pcpu = pcpu_devices + cpu;
|
|
pcpu->address = address + i;
|
|
if (configured)
|
|
pcpu->state = CPU_STATE_CONFIGURED;
|
|
else
|
|
pcpu->state = CPU_STATE_STANDBY;
|
|
smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
|
|
set_cpu_present(cpu, true);
|
|
if (!early && smp_add_present_cpu(cpu) != 0)
|
|
set_cpu_present(cpu, false);
|
|
else
|
|
nr++;
|
|
cpumask_clear_cpu(cpu, avail);
|
|
cpu = cpumask_next(cpu, avail);
|
|
}
|
|
return nr;
|
|
}
|
|
|
|
static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
|
|
{
|
|
struct sclp_core_entry *core;
|
|
static cpumask_t avail;
|
|
bool configured;
|
|
u16 core_id;
|
|
int nr, i;
|
|
|
|
cpus_read_lock();
|
|
mutex_lock(&smp_cpu_state_mutex);
|
|
nr = 0;
|
|
cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
|
|
/*
|
|
* Add IPL core first (which got logical CPU number 0) to make sure
|
|
* that all SMT threads get subsequent logical CPU numbers.
|
|
*/
|
|
if (early) {
|
|
core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
|
|
for (i = 0; i < info->configured; i++) {
|
|
core = &info->core[i];
|
|
if (core->core_id == core_id) {
|
|
nr += smp_add_core(core, &avail, true, early);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
for (i = 0; i < info->combined; i++) {
|
|
configured = i < info->configured;
|
|
nr += smp_add_core(&info->core[i], &avail, configured, early);
|
|
}
|
|
mutex_unlock(&smp_cpu_state_mutex);
|
|
cpus_read_unlock();
|
|
return nr;
|
|
}
|
|
|
|
void __init smp_detect_cpus(void)
|
|
{
|
|
unsigned int cpu, mtid, c_cpus, s_cpus;
|
|
struct sclp_core_info *info;
|
|
u16 address;
|
|
|
|
/* Get CPU information */
|
|
info = memblock_alloc(sizeof(*info), 8);
|
|
if (!info)
|
|
panic("%s: Failed to allocate %zu bytes align=0x%x\n",
|
|
__func__, sizeof(*info), 8);
|
|
smp_get_core_info(info, 1);
|
|
/* Find boot CPU type */
|
|
if (sclp.has_core_type) {
|
|
address = stap();
|
|
for (cpu = 0; cpu < info->combined; cpu++)
|
|
if (info->core[cpu].core_id == address) {
|
|
/* The boot cpu dictates the cpu type. */
|
|
boot_core_type = info->core[cpu].type;
|
|
break;
|
|
}
|
|
if (cpu >= info->combined)
|
|
panic("Could not find boot CPU type");
|
|
}
|
|
|
|
/* Set multi-threading state for the current system */
|
|
mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
|
|
mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
|
|
pcpu_set_smt(mtid);
|
|
|
|
/* Print number of CPUs */
|
|
c_cpus = s_cpus = 0;
|
|
for (cpu = 0; cpu < info->combined; cpu++) {
|
|
if (sclp.has_core_type &&
|
|
info->core[cpu].type != boot_core_type)
|
|
continue;
|
|
if (cpu < info->configured)
|
|
c_cpus += smp_cpu_mtid + 1;
|
|
else
|
|
s_cpus += smp_cpu_mtid + 1;
|
|
}
|
|
pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
|
|
|
|
/* Add CPUs present at boot */
|
|
__smp_rescan_cpus(info, true);
|
|
memblock_free(info, sizeof(*info));
|
|
}
|
|
|
|
/*
|
|
* Activate a secondary processor.
|
|
*/
|
|
static void smp_start_secondary(void *cpuvoid)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
S390_lowcore.last_update_clock = get_tod_clock();
|
|
S390_lowcore.restart_stack = (unsigned long)restart_stack;
|
|
S390_lowcore.restart_fn = (unsigned long)do_restart;
|
|
S390_lowcore.restart_data = 0;
|
|
S390_lowcore.restart_source = -1U;
|
|
S390_lowcore.restart_flags = 0;
|
|
restore_access_regs(S390_lowcore.access_regs_save_area);
|
|
cpu_init();
|
|
rcu_cpu_starting(cpu);
|
|
init_cpu_timer();
|
|
vtime_init();
|
|
vdso_getcpu_init();
|
|
pfault_init();
|
|
cpumask_set_cpu(cpu, &cpu_setup_mask);
|
|
update_cpu_masks();
|
|
notify_cpu_starting(cpu);
|
|
if (topology_cpu_dedicated(cpu))
|
|
set_cpu_flag(CIF_DEDICATED_CPU);
|
|
else
|
|
clear_cpu_flag(CIF_DEDICATED_CPU);
|
|
set_cpu_online(cpu, true);
|
|
inc_irq_stat(CPU_RST);
|
|
local_irq_enable();
|
|
cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
|
|
}
|
|
|
|
/* Upping and downing of CPUs */
|
|
int __cpu_up(unsigned int cpu, struct task_struct *tidle)
|
|
{
|
|
struct pcpu *pcpu = pcpu_devices + cpu;
|
|
int rc;
|
|
|
|
if (pcpu->state != CPU_STATE_CONFIGURED)
|
|
return -EIO;
|
|
if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
|
|
SIGP_CC_ORDER_CODE_ACCEPTED)
|
|
return -EIO;
|
|
|
|
rc = pcpu_alloc_lowcore(pcpu, cpu);
|
|
if (rc)
|
|
return rc;
|
|
pcpu_prepare_secondary(pcpu, cpu);
|
|
pcpu_attach_task(pcpu, tidle);
|
|
pcpu_start_fn(pcpu, smp_start_secondary, NULL);
|
|
/* Wait until cpu puts itself in the online & active maps */
|
|
while (!cpu_online(cpu))
|
|
cpu_relax();
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int setup_possible_cpus __initdata;
|
|
|
|
static int __init _setup_possible_cpus(char *s)
|
|
{
|
|
get_option(&s, &setup_possible_cpus);
|
|
return 0;
|
|
}
|
|
early_param("possible_cpus", _setup_possible_cpus);
|
|
|
|
int __cpu_disable(void)
|
|
{
|
|
unsigned long cregs[16];
|
|
int cpu;
|
|
|
|
/* Handle possible pending IPIs */
|
|
smp_handle_ext_call();
|
|
cpu = smp_processor_id();
|
|
set_cpu_online(cpu, false);
|
|
cpumask_clear_cpu(cpu, &cpu_setup_mask);
|
|
update_cpu_masks();
|
|
/* Disable pseudo page faults on this cpu. */
|
|
pfault_fini();
|
|
/* Disable interrupt sources via control register. */
|
|
__ctl_store(cregs, 0, 15);
|
|
cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */
|
|
cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */
|
|
cregs[14] &= ~0x1f000000UL; /* disable most machine checks */
|
|
__ctl_load(cregs, 0, 15);
|
|
clear_cpu_flag(CIF_NOHZ_DELAY);
|
|
return 0;
|
|
}
|
|
|
|
void __cpu_die(unsigned int cpu)
|
|
{
|
|
struct pcpu *pcpu;
|
|
|
|
/* Wait until target cpu is down */
|
|
pcpu = pcpu_devices + cpu;
|
|
while (!pcpu_stopped(pcpu))
|
|
cpu_relax();
|
|
pcpu_free_lowcore(pcpu);
|
|
cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
|
|
cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
|
|
}
|
|
|
|
void __noreturn cpu_die(void)
|
|
{
|
|
idle_task_exit();
|
|
__bpon();
|
|
pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
|
|
for (;;) ;
|
|
}
|
|
|
|
void __init smp_fill_possible_mask(void)
|
|
{
|
|
unsigned int possible, sclp_max, cpu;
|
|
|
|
sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
|
|
sclp_max = min(smp_max_threads, sclp_max);
|
|
sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
|
|
possible = setup_possible_cpus ?: nr_cpu_ids;
|
|
possible = min(possible, sclp_max);
|
|
for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
|
|
set_cpu_possible(cpu, true);
|
|
}
|
|
|
|
void __init smp_prepare_cpus(unsigned int max_cpus)
|
|
{
|
|
/* request the 0x1201 emergency signal external interrupt */
|
|
if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
|
|
panic("Couldn't request external interrupt 0x1201");
|
|
/* request the 0x1202 external call external interrupt */
|
|
if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
|
|
panic("Couldn't request external interrupt 0x1202");
|
|
}
|
|
|
|
void __init smp_prepare_boot_cpu(void)
|
|
{
|
|
struct pcpu *pcpu = pcpu_devices;
|
|
|
|
WARN_ON(!cpu_present(0) || !cpu_online(0));
|
|
pcpu->state = CPU_STATE_CONFIGURED;
|
|
S390_lowcore.percpu_offset = __per_cpu_offset[0];
|
|
smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
|
|
}
|
|
|
|
void __init smp_setup_processor_id(void)
|
|
{
|
|
pcpu_devices[0].address = stap();
|
|
S390_lowcore.cpu_nr = 0;
|
|
S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
|
|
S390_lowcore.spinlock_index = 0;
|
|
}
|
|
|
|
/*
|
|
* the frequency of the profiling timer can be changed
|
|
* by writing a multiplier value into /proc/profile.
|
|
*
|
|
* usually you want to run this on all CPUs ;)
|
|
*/
|
|
int setup_profiling_timer(unsigned int multiplier)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t cpu_configure_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
ssize_t count;
|
|
|
|
mutex_lock(&smp_cpu_state_mutex);
|
|
count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
|
|
mutex_unlock(&smp_cpu_state_mutex);
|
|
return count;
|
|
}
|
|
|
|
static ssize_t cpu_configure_store(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct pcpu *pcpu;
|
|
int cpu, val, rc, i;
|
|
char delim;
|
|
|
|
if (sscanf(buf, "%d %c", &val, &delim) != 1)
|
|
return -EINVAL;
|
|
if (val != 0 && val != 1)
|
|
return -EINVAL;
|
|
cpus_read_lock();
|
|
mutex_lock(&smp_cpu_state_mutex);
|
|
rc = -EBUSY;
|
|
/* disallow configuration changes of online cpus and cpu 0 */
|
|
cpu = dev->id;
|
|
cpu = smp_get_base_cpu(cpu);
|
|
if (cpu == 0)
|
|
goto out;
|
|
for (i = 0; i <= smp_cpu_mtid; i++)
|
|
if (cpu_online(cpu + i))
|
|
goto out;
|
|
pcpu = pcpu_devices + cpu;
|
|
rc = 0;
|
|
switch (val) {
|
|
case 0:
|
|
if (pcpu->state != CPU_STATE_CONFIGURED)
|
|
break;
|
|
rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
|
|
if (rc)
|
|
break;
|
|
for (i = 0; i <= smp_cpu_mtid; i++) {
|
|
if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
|
|
continue;
|
|
pcpu[i].state = CPU_STATE_STANDBY;
|
|
smp_cpu_set_polarization(cpu + i,
|
|
POLARIZATION_UNKNOWN);
|
|
}
|
|
topology_expect_change();
|
|
break;
|
|
case 1:
|
|
if (pcpu->state != CPU_STATE_STANDBY)
|
|
break;
|
|
rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
|
|
if (rc)
|
|
break;
|
|
for (i = 0; i <= smp_cpu_mtid; i++) {
|
|
if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
|
|
continue;
|
|
pcpu[i].state = CPU_STATE_CONFIGURED;
|
|
smp_cpu_set_polarization(cpu + i,
|
|
POLARIZATION_UNKNOWN);
|
|
}
|
|
topology_expect_change();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
out:
|
|
mutex_unlock(&smp_cpu_state_mutex);
|
|
cpus_read_unlock();
|
|
return rc ? rc : count;
|
|
}
|
|
static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
|
|
|
|
static ssize_t show_cpu_address(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
|
|
}
|
|
static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
|
|
|
|
static struct attribute *cpu_common_attrs[] = {
|
|
&dev_attr_configure.attr,
|
|
&dev_attr_address.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group cpu_common_attr_group = {
|
|
.attrs = cpu_common_attrs,
|
|
};
|
|
|
|
static struct attribute *cpu_online_attrs[] = {
|
|
&dev_attr_idle_count.attr,
|
|
&dev_attr_idle_time_us.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group cpu_online_attr_group = {
|
|
.attrs = cpu_online_attrs,
|
|
};
|
|
|
|
static int smp_cpu_online(unsigned int cpu)
|
|
{
|
|
struct device *s = &per_cpu(cpu_device, cpu)->dev;
|
|
|
|
return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
|
|
}
|
|
|
|
static int smp_cpu_pre_down(unsigned int cpu)
|
|
{
|
|
struct device *s = &per_cpu(cpu_device, cpu)->dev;
|
|
|
|
sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
|
|
return 0;
|
|
}
|
|
|
|
static int smp_add_present_cpu(int cpu)
|
|
{
|
|
struct device *s;
|
|
struct cpu *c;
|
|
int rc;
|
|
|
|
c = kzalloc(sizeof(*c), GFP_KERNEL);
|
|
if (!c)
|
|
return -ENOMEM;
|
|
per_cpu(cpu_device, cpu) = c;
|
|
s = &c->dev;
|
|
c->hotpluggable = 1;
|
|
rc = register_cpu(c, cpu);
|
|
if (rc)
|
|
goto out;
|
|
rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
|
|
if (rc)
|
|
goto out_cpu;
|
|
rc = topology_cpu_init(c);
|
|
if (rc)
|
|
goto out_topology;
|
|
return 0;
|
|
|
|
out_topology:
|
|
sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
|
|
out_cpu:
|
|
unregister_cpu(c);
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
int __ref smp_rescan_cpus(void)
|
|
{
|
|
struct sclp_core_info *info;
|
|
int nr;
|
|
|
|
info = kzalloc(sizeof(*info), GFP_KERNEL);
|
|
if (!info)
|
|
return -ENOMEM;
|
|
smp_get_core_info(info, 0);
|
|
nr = __smp_rescan_cpus(info, false);
|
|
kfree(info);
|
|
if (nr)
|
|
topology_schedule_update();
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t __ref rescan_store(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf,
|
|
size_t count)
|
|
{
|
|
int rc;
|
|
|
|
rc = lock_device_hotplug_sysfs();
|
|
if (rc)
|
|
return rc;
|
|
rc = smp_rescan_cpus();
|
|
unlock_device_hotplug();
|
|
return rc ? rc : count;
|
|
}
|
|
static DEVICE_ATTR_WO(rescan);
|
|
|
|
static int __init s390_smp_init(void)
|
|
{
|
|
int cpu, rc = 0;
|
|
|
|
rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
|
|
if (rc)
|
|
return rc;
|
|
for_each_present_cpu(cpu) {
|
|
rc = smp_add_present_cpu(cpu);
|
|
if (rc)
|
|
goto out;
|
|
}
|
|
|
|
rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
|
|
smp_cpu_online, smp_cpu_pre_down);
|
|
rc = rc <= 0 ? rc : 0;
|
|
out:
|
|
return rc;
|
|
}
|
|
subsys_initcall(s390_smp_init);
|
|
|
|
static __always_inline void set_new_lowcore(struct lowcore *lc)
|
|
{
|
|
union register_pair dst, src;
|
|
u32 pfx;
|
|
|
|
src.even = (unsigned long) &S390_lowcore;
|
|
src.odd = sizeof(S390_lowcore);
|
|
dst.even = (unsigned long) lc;
|
|
dst.odd = sizeof(*lc);
|
|
pfx = __pa(lc);
|
|
|
|
asm volatile(
|
|
" mvcl %[dst],%[src]\n"
|
|
" spx %[pfx]\n"
|
|
: [dst] "+&d" (dst.pair), [src] "+&d" (src.pair)
|
|
: [pfx] "Q" (pfx)
|
|
: "memory", "cc");
|
|
}
|
|
|
|
int __init smp_reinit_ipl_cpu(void)
|
|
{
|
|
unsigned long async_stack, nodat_stack, mcck_stack;
|
|
struct lowcore *lc, *lc_ipl;
|
|
unsigned long flags, cr0;
|
|
u64 mcesad;
|
|
|
|
lc_ipl = lowcore_ptr[0];
|
|
lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
|
|
nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
|
|
async_stack = stack_alloc();
|
|
mcck_stack = stack_alloc();
|
|
if (!lc || !nodat_stack || !async_stack || !mcck_stack || nmi_alloc_mcesa(&mcesad))
|
|
panic("Couldn't allocate memory");
|
|
|
|
local_irq_save(flags);
|
|
local_mcck_disable();
|
|
set_new_lowcore(lc);
|
|
S390_lowcore.nodat_stack = nodat_stack + STACK_INIT_OFFSET;
|
|
S390_lowcore.async_stack = async_stack + STACK_INIT_OFFSET;
|
|
S390_lowcore.mcck_stack = mcck_stack + STACK_INIT_OFFSET;
|
|
__ctl_store(cr0, 0, 0);
|
|
__ctl_clear_bit(0, 28); /* disable lowcore protection */
|
|
S390_lowcore.mcesad = mcesad;
|
|
__ctl_load(cr0, 0, 0);
|
|
if (abs_lowcore_map(0, lc, false))
|
|
panic("Couldn't remap absolute lowcore");
|
|
lowcore_ptr[0] = lc;
|
|
local_mcck_enable();
|
|
local_irq_restore(flags);
|
|
|
|
free_pages(lc_ipl->async_stack - STACK_INIT_OFFSET, THREAD_SIZE_ORDER);
|
|
memblock_free_late(__pa(lc_ipl->mcck_stack - STACK_INIT_OFFSET), THREAD_SIZE);
|
|
memblock_free_late(__pa(lc_ipl), sizeof(*lc_ipl));
|
|
|
|
return 0;
|
|
}
|