mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-24 14:54:49 +08:00
270450a1b6
It doesn't make sense to put "set" on its own line like that. Signed-off-by: Jonathan Neuschäfer <j.neuschaefer@gmx.net> Signed-off-by: Tudor Ambarus <tudor.ambarus@microchip.com> Acked-by: Pratyush Yadav <pratyush@kernel.org> Link: https://lore.kernel.org/r/20221101162906.990125-1-j.neuschaefer@gmx.net
1470 lines
42 KiB
C
1470 lines
42 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2005, Intec Automation Inc.
|
|
* Copyright (C) 2014, Freescale Semiconductor, Inc.
|
|
*/
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/mtd/spi-nor.h>
|
|
|
|
#include "core.h"
|
|
|
|
#define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb)
|
|
#define SFDP_PARAM_HEADER_PTP(p) \
|
|
(((p)->parameter_table_pointer[2] << 16) | \
|
|
((p)->parameter_table_pointer[1] << 8) | \
|
|
((p)->parameter_table_pointer[0] << 0))
|
|
#define SFDP_PARAM_HEADER_PARAM_LEN(p) ((p)->length * 4)
|
|
|
|
#define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */
|
|
#define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */
|
|
#define SFDP_4BAIT_ID 0xff84 /* 4-byte Address Instruction Table */
|
|
#define SFDP_PROFILE1_ID 0xff05 /* xSPI Profile 1.0 table. */
|
|
#define SFDP_SCCR_MAP_ID 0xff87 /*
|
|
* Status, Control and Configuration
|
|
* Register Map.
|
|
*/
|
|
|
|
#define SFDP_SIGNATURE 0x50444653U
|
|
|
|
struct sfdp_header {
|
|
u32 signature; /* Ox50444653U <=> "SFDP" */
|
|
u8 minor;
|
|
u8 major;
|
|
u8 nph; /* 0-base number of parameter headers */
|
|
u8 unused;
|
|
|
|
/* Basic Flash Parameter Table. */
|
|
struct sfdp_parameter_header bfpt_header;
|
|
};
|
|
|
|
/* Fast Read settings. */
|
|
struct sfdp_bfpt_read {
|
|
/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
|
|
u32 hwcaps;
|
|
|
|
/*
|
|
* The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
|
|
* whether the Fast Read x-y-z command is supported.
|
|
*/
|
|
u32 supported_dword;
|
|
u32 supported_bit;
|
|
|
|
/*
|
|
* The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
|
|
* encodes the op code, the number of mode clocks and the number of wait
|
|
* states to be used by Fast Read x-y-z command.
|
|
*/
|
|
u32 settings_dword;
|
|
u32 settings_shift;
|
|
|
|
/* The SPI protocol for this Fast Read x-y-z command. */
|
|
enum spi_nor_protocol proto;
|
|
};
|
|
|
|
struct sfdp_bfpt_erase {
|
|
/*
|
|
* The half-word at offset <shift> in DWORD <dword> encodes the
|
|
* op code and erase sector size to be used by Sector Erase commands.
|
|
*/
|
|
u32 dword;
|
|
u32 shift;
|
|
};
|
|
|
|
#define SMPT_CMD_ADDRESS_LEN_MASK GENMASK(23, 22)
|
|
#define SMPT_CMD_ADDRESS_LEN_0 (0x0UL << 22)
|
|
#define SMPT_CMD_ADDRESS_LEN_3 (0x1UL << 22)
|
|
#define SMPT_CMD_ADDRESS_LEN_4 (0x2UL << 22)
|
|
#define SMPT_CMD_ADDRESS_LEN_USE_CURRENT (0x3UL << 22)
|
|
|
|
#define SMPT_CMD_READ_DUMMY_MASK GENMASK(19, 16)
|
|
#define SMPT_CMD_READ_DUMMY_SHIFT 16
|
|
#define SMPT_CMD_READ_DUMMY(_cmd) \
|
|
(((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT)
|
|
#define SMPT_CMD_READ_DUMMY_IS_VARIABLE 0xfUL
|
|
|
|
#define SMPT_CMD_READ_DATA_MASK GENMASK(31, 24)
|
|
#define SMPT_CMD_READ_DATA_SHIFT 24
|
|
#define SMPT_CMD_READ_DATA(_cmd) \
|
|
(((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT)
|
|
|
|
#define SMPT_CMD_OPCODE_MASK GENMASK(15, 8)
|
|
#define SMPT_CMD_OPCODE_SHIFT 8
|
|
#define SMPT_CMD_OPCODE(_cmd) \
|
|
(((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT)
|
|
|
|
#define SMPT_MAP_REGION_COUNT_MASK GENMASK(23, 16)
|
|
#define SMPT_MAP_REGION_COUNT_SHIFT 16
|
|
#define SMPT_MAP_REGION_COUNT(_header) \
|
|
((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \
|
|
SMPT_MAP_REGION_COUNT_SHIFT) + 1)
|
|
|
|
#define SMPT_MAP_ID_MASK GENMASK(15, 8)
|
|
#define SMPT_MAP_ID_SHIFT 8
|
|
#define SMPT_MAP_ID(_header) \
|
|
(((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT)
|
|
|
|
#define SMPT_MAP_REGION_SIZE_MASK GENMASK(31, 8)
|
|
#define SMPT_MAP_REGION_SIZE_SHIFT 8
|
|
#define SMPT_MAP_REGION_SIZE(_region) \
|
|
(((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \
|
|
SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256)
|
|
|
|
#define SMPT_MAP_REGION_ERASE_TYPE_MASK GENMASK(3, 0)
|
|
#define SMPT_MAP_REGION_ERASE_TYPE(_region) \
|
|
((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK)
|
|
|
|
#define SMPT_DESC_TYPE_MAP BIT(1)
|
|
#define SMPT_DESC_END BIT(0)
|
|
|
|
#define SFDP_4BAIT_DWORD_MAX 2
|
|
|
|
struct sfdp_4bait {
|
|
/* The hardware capability. */
|
|
u32 hwcaps;
|
|
|
|
/*
|
|
* The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether
|
|
* the associated 4-byte address op code is supported.
|
|
*/
|
|
u32 supported_bit;
|
|
};
|
|
|
|
/**
|
|
* spi_nor_read_raw() - raw read of serial flash memory. read_opcode,
|
|
* addr_nbytes and read_dummy members of the struct spi_nor
|
|
* should be previously set.
|
|
* @nor: pointer to a 'struct spi_nor'
|
|
* @addr: offset in the serial flash memory
|
|
* @len: number of bytes to read
|
|
* @buf: buffer where the data is copied into (dma-safe memory)
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf)
|
|
{
|
|
ssize_t ret;
|
|
|
|
while (len) {
|
|
ret = spi_nor_read_data(nor, addr, len, buf);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (!ret || ret > len)
|
|
return -EIO;
|
|
|
|
buf += ret;
|
|
addr += ret;
|
|
len -= ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
|
|
* @nor: pointer to a 'struct spi_nor'
|
|
* @addr: offset in the SFDP area to start reading data from
|
|
* @len: number of bytes to read
|
|
* @buf: buffer where the SFDP data are copied into (dma-safe memory)
|
|
*
|
|
* Whatever the actual numbers of bytes for address and dummy cycles are
|
|
* for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
|
|
* followed by a 3-byte address and 8 dummy clock cycles.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
|
|
size_t len, void *buf)
|
|
{
|
|
u8 addr_nbytes, read_opcode, read_dummy;
|
|
int ret;
|
|
|
|
read_opcode = nor->read_opcode;
|
|
addr_nbytes = nor->addr_nbytes;
|
|
read_dummy = nor->read_dummy;
|
|
|
|
nor->read_opcode = SPINOR_OP_RDSFDP;
|
|
nor->addr_nbytes = 3;
|
|
nor->read_dummy = 8;
|
|
|
|
ret = spi_nor_read_raw(nor, addr, len, buf);
|
|
|
|
nor->read_opcode = read_opcode;
|
|
nor->addr_nbytes = addr_nbytes;
|
|
nor->read_dummy = read_dummy;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
|
|
* @nor: pointer to a 'struct spi_nor'
|
|
* @addr: offset in the SFDP area to start reading data from
|
|
* @len: number of bytes to read
|
|
* @buf: buffer where the SFDP data are copied into
|
|
*
|
|
* Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
|
|
* guaranteed to be dma-safe.
|
|
*
|
|
* Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
|
|
* otherwise.
|
|
*/
|
|
static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr,
|
|
size_t len, void *buf)
|
|
{
|
|
void *dma_safe_buf;
|
|
int ret;
|
|
|
|
dma_safe_buf = kmalloc(len, GFP_KERNEL);
|
|
if (!dma_safe_buf)
|
|
return -ENOMEM;
|
|
|
|
ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf);
|
|
memcpy(buf, dma_safe_buf, len);
|
|
kfree(dma_safe_buf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
|
|
u16 half,
|
|
enum spi_nor_protocol proto)
|
|
{
|
|
read->num_mode_clocks = (half >> 5) & 0x07;
|
|
read->num_wait_states = (half >> 0) & 0x1f;
|
|
read->opcode = (half >> 8) & 0xff;
|
|
read->proto = proto;
|
|
}
|
|
|
|
static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
|
|
/* Fast Read 1-1-2 */
|
|
{
|
|
SNOR_HWCAPS_READ_1_1_2,
|
|
BFPT_DWORD(1), BIT(16), /* Supported bit */
|
|
BFPT_DWORD(4), 0, /* Settings */
|
|
SNOR_PROTO_1_1_2,
|
|
},
|
|
|
|
/* Fast Read 1-2-2 */
|
|
{
|
|
SNOR_HWCAPS_READ_1_2_2,
|
|
BFPT_DWORD(1), BIT(20), /* Supported bit */
|
|
BFPT_DWORD(4), 16, /* Settings */
|
|
SNOR_PROTO_1_2_2,
|
|
},
|
|
|
|
/* Fast Read 2-2-2 */
|
|
{
|
|
SNOR_HWCAPS_READ_2_2_2,
|
|
BFPT_DWORD(5), BIT(0), /* Supported bit */
|
|
BFPT_DWORD(6), 16, /* Settings */
|
|
SNOR_PROTO_2_2_2,
|
|
},
|
|
|
|
/* Fast Read 1-1-4 */
|
|
{
|
|
SNOR_HWCAPS_READ_1_1_4,
|
|
BFPT_DWORD(1), BIT(22), /* Supported bit */
|
|
BFPT_DWORD(3), 16, /* Settings */
|
|
SNOR_PROTO_1_1_4,
|
|
},
|
|
|
|
/* Fast Read 1-4-4 */
|
|
{
|
|
SNOR_HWCAPS_READ_1_4_4,
|
|
BFPT_DWORD(1), BIT(21), /* Supported bit */
|
|
BFPT_DWORD(3), 0, /* Settings */
|
|
SNOR_PROTO_1_4_4,
|
|
},
|
|
|
|
/* Fast Read 4-4-4 */
|
|
{
|
|
SNOR_HWCAPS_READ_4_4_4,
|
|
BFPT_DWORD(5), BIT(4), /* Supported bit */
|
|
BFPT_DWORD(7), 16, /* Settings */
|
|
SNOR_PROTO_4_4_4,
|
|
},
|
|
};
|
|
|
|
static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
|
|
/* Erase Type 1 in DWORD8 bits[15:0] */
|
|
{BFPT_DWORD(8), 0},
|
|
|
|
/* Erase Type 2 in DWORD8 bits[31:16] */
|
|
{BFPT_DWORD(8), 16},
|
|
|
|
/* Erase Type 3 in DWORD9 bits[15:0] */
|
|
{BFPT_DWORD(9), 0},
|
|
|
|
/* Erase Type 4 in DWORD9 bits[31:16] */
|
|
{BFPT_DWORD(9), 16},
|
|
};
|
|
|
|
/**
|
|
* spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT
|
|
* @erase: pointer to a structure that describes a SPI NOR erase type
|
|
* @size: the size of the sector/block erased by the erase type
|
|
* @opcode: the SPI command op code to erase the sector/block
|
|
* @i: erase type index as sorted in the Basic Flash Parameter Table
|
|
*
|
|
* The supported Erase Types will be sorted at init in ascending order, with
|
|
* the smallest Erase Type size being the first member in the erase_type array
|
|
* of the spi_nor_erase_map structure. Save the Erase Type index as sorted in
|
|
* the Basic Flash Parameter Table since it will be used later on to
|
|
* synchronize with the supported Erase Types defined in SFDP optional tables.
|
|
*/
|
|
static void
|
|
spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase,
|
|
u32 size, u8 opcode, u8 i)
|
|
{
|
|
erase->idx = i;
|
|
spi_nor_set_erase_type(erase, size, opcode);
|
|
}
|
|
|
|
/**
|
|
* spi_nor_map_cmp_erase_type() - compare the map's erase types by size
|
|
* @l: member in the left half of the map's erase_type array
|
|
* @r: member in the right half of the map's erase_type array
|
|
*
|
|
* Comparison function used in the sort() call to sort in ascending order the
|
|
* map's erase types, the smallest erase type size being the first member in the
|
|
* sorted erase_type array.
|
|
*
|
|
* Return: the result of @l->size - @r->size
|
|
*/
|
|
static int spi_nor_map_cmp_erase_type(const void *l, const void *r)
|
|
{
|
|
const struct spi_nor_erase_type *left = l, *right = r;
|
|
|
|
return left->size - right->size;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_sort_erase_mask() - sort erase mask
|
|
* @map: the erase map of the SPI NOR
|
|
* @erase_mask: the erase type mask to be sorted
|
|
*
|
|
* Replicate the sort done for the map's erase types in BFPT: sort the erase
|
|
* mask in ascending order with the smallest erase type size starting from
|
|
* BIT(0) in the sorted erase mask.
|
|
*
|
|
* Return: sorted erase mask.
|
|
*/
|
|
static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask)
|
|
{
|
|
struct spi_nor_erase_type *erase_type = map->erase_type;
|
|
int i;
|
|
u8 sorted_erase_mask = 0;
|
|
|
|
if (!erase_mask)
|
|
return 0;
|
|
|
|
/* Replicate the sort done for the map's erase types. */
|
|
for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
|
|
if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx))
|
|
sorted_erase_mask |= BIT(i);
|
|
|
|
return sorted_erase_mask;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_regions_sort_erase_types() - sort erase types in each region
|
|
* @map: the erase map of the SPI NOR
|
|
*
|
|
* Function assumes that the erase types defined in the erase map are already
|
|
* sorted in ascending order, with the smallest erase type size being the first
|
|
* member in the erase_type array. It replicates the sort done for the map's
|
|
* erase types. Each region's erase bitmask will indicate which erase types are
|
|
* supported from the sorted erase types defined in the erase map.
|
|
* Sort the all region's erase type at init in order to speed up the process of
|
|
* finding the best erase command at runtime.
|
|
*/
|
|
static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map)
|
|
{
|
|
struct spi_nor_erase_region *region = map->regions;
|
|
u8 region_erase_mask, sorted_erase_mask;
|
|
|
|
while (region) {
|
|
region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
|
|
|
|
sorted_erase_mask = spi_nor_sort_erase_mask(map,
|
|
region_erase_mask);
|
|
|
|
/* Overwrite erase mask. */
|
|
region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) |
|
|
sorted_erase_mask;
|
|
|
|
region = spi_nor_region_next(region);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
|
|
* @nor: pointer to a 'struct spi_nor'
|
|
* @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing
|
|
* the Basic Flash Parameter Table length and version
|
|
*
|
|
* The Basic Flash Parameter Table is the main and only mandatory table as
|
|
* defined by the SFDP (JESD216) specification.
|
|
* It provides us with the total size (memory density) of the data array and
|
|
* the number of address bytes for Fast Read, Page Program and Sector Erase
|
|
* commands.
|
|
* For Fast READ commands, it also gives the number of mode clock cycles and
|
|
* wait states (regrouped in the number of dummy clock cycles) for each
|
|
* supported instruction op code.
|
|
* For Page Program, the page size is now available since JESD216 rev A, however
|
|
* the supported instruction op codes are still not provided.
|
|
* For Sector Erase commands, this table stores the supported instruction op
|
|
* codes and the associated sector sizes.
|
|
* Finally, the Quad Enable Requirements (QER) are also available since JESD216
|
|
* rev A. The QER bits encode the manufacturer dependent procedure to be
|
|
* executed to set the Quad Enable (QE) bit in some internal register of the
|
|
* Quad SPI memory. Indeed the QE bit, when it exists, must be set before
|
|
* sending any Quad SPI command to the memory. Actually, setting the QE bit
|
|
* tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
|
|
* and IO3 hence enabling 4 (Quad) I/O lines.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int spi_nor_parse_bfpt(struct spi_nor *nor,
|
|
const struct sfdp_parameter_header *bfpt_header)
|
|
{
|
|
struct spi_nor_flash_parameter *params = nor->params;
|
|
struct spi_nor_erase_map *map = ¶ms->erase_map;
|
|
struct spi_nor_erase_type *erase_type = map->erase_type;
|
|
struct sfdp_bfpt bfpt;
|
|
size_t len;
|
|
int i, cmd, err;
|
|
u32 addr, val;
|
|
u16 half;
|
|
u8 erase_mask;
|
|
|
|
/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
|
|
if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
|
|
return -EINVAL;
|
|
|
|
/* Read the Basic Flash Parameter Table. */
|
|
len = min_t(size_t, sizeof(bfpt),
|
|
bfpt_header->length * sizeof(u32));
|
|
addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
|
|
memset(&bfpt, 0, sizeof(bfpt));
|
|
err = spi_nor_read_sfdp_dma_unsafe(nor, addr, len, &bfpt);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
/* Fix endianness of the BFPT DWORDs. */
|
|
le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX);
|
|
|
|
/* Number of address bytes. */
|
|
switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
|
|
case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
|
|
case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4:
|
|
params->addr_nbytes = 3;
|
|
params->addr_mode_nbytes = 3;
|
|
break;
|
|
|
|
case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
|
|
params->addr_nbytes = 4;
|
|
params->addr_mode_nbytes = 4;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Flash Memory Density (in bits). */
|
|
val = bfpt.dwords[BFPT_DWORD(2)];
|
|
if (val & BIT(31)) {
|
|
val &= ~BIT(31);
|
|
|
|
/*
|
|
* Prevent overflows on params->size. Anyway, a NOR of 2^64
|
|
* bits is unlikely to exist so this error probably means
|
|
* the BFPT we are reading is corrupted/wrong.
|
|
*/
|
|
if (val > 63)
|
|
return -EINVAL;
|
|
|
|
params->size = 1ULL << val;
|
|
} else {
|
|
params->size = val + 1;
|
|
}
|
|
params->size >>= 3; /* Convert to bytes. */
|
|
|
|
/* Fast Read settings. */
|
|
for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
|
|
const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
|
|
struct spi_nor_read_command *read;
|
|
|
|
if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
|
|
params->hwcaps.mask &= ~rd->hwcaps;
|
|
continue;
|
|
}
|
|
|
|
params->hwcaps.mask |= rd->hwcaps;
|
|
cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
|
|
read = ¶ms->reads[cmd];
|
|
half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
|
|
spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
|
|
}
|
|
|
|
/*
|
|
* Sector Erase settings. Reinitialize the uniform erase map using the
|
|
* Erase Types defined in the bfpt table.
|
|
*/
|
|
erase_mask = 0;
|
|
memset(¶ms->erase_map, 0, sizeof(params->erase_map));
|
|
for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
|
|
const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
|
|
u32 erasesize;
|
|
u8 opcode;
|
|
|
|
half = bfpt.dwords[er->dword] >> er->shift;
|
|
erasesize = half & 0xff;
|
|
|
|
/* erasesize == 0 means this Erase Type is not supported. */
|
|
if (!erasesize)
|
|
continue;
|
|
|
|
erasesize = 1U << erasesize;
|
|
opcode = (half >> 8) & 0xff;
|
|
erase_mask |= BIT(i);
|
|
spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize,
|
|
opcode, i);
|
|
}
|
|
spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
|
|
/*
|
|
* Sort all the map's Erase Types in ascending order with the smallest
|
|
* erase size being the first member in the erase_type array.
|
|
*/
|
|
sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]),
|
|
spi_nor_map_cmp_erase_type, NULL);
|
|
/*
|
|
* Sort the erase types in the uniform region in order to update the
|
|
* uniform_erase_type bitmask. The bitmask will be used later on when
|
|
* selecting the uniform erase.
|
|
*/
|
|
spi_nor_regions_sort_erase_types(map);
|
|
map->uniform_erase_type = map->uniform_region.offset &
|
|
SNOR_ERASE_TYPE_MASK;
|
|
|
|
/* Stop here if not JESD216 rev A or later. */
|
|
if (bfpt_header->length == BFPT_DWORD_MAX_JESD216)
|
|
return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
|
|
|
|
/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
|
|
val = bfpt.dwords[BFPT_DWORD(11)];
|
|
val &= BFPT_DWORD11_PAGE_SIZE_MASK;
|
|
val >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
|
|
params->page_size = 1U << val;
|
|
|
|
/* Quad Enable Requirements. */
|
|
switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
|
|
case BFPT_DWORD15_QER_NONE:
|
|
params->quad_enable = NULL;
|
|
break;
|
|
|
|
case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
|
|
/*
|
|
* Writing only one byte to the Status Register has the
|
|
* side-effect of clearing Status Register 2.
|
|
*/
|
|
case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
|
|
/*
|
|
* Read Configuration Register (35h) instruction is not
|
|
* supported.
|
|
*/
|
|
nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR;
|
|
params->quad_enable = spi_nor_sr2_bit1_quad_enable;
|
|
break;
|
|
|
|
case BFPT_DWORD15_QER_SR1_BIT6:
|
|
nor->flags &= ~SNOR_F_HAS_16BIT_SR;
|
|
params->quad_enable = spi_nor_sr1_bit6_quad_enable;
|
|
break;
|
|
|
|
case BFPT_DWORD15_QER_SR2_BIT7:
|
|
nor->flags &= ~SNOR_F_HAS_16BIT_SR;
|
|
params->quad_enable = spi_nor_sr2_bit7_quad_enable;
|
|
break;
|
|
|
|
case BFPT_DWORD15_QER_SR2_BIT1:
|
|
/*
|
|
* JESD216 rev B or later does not specify if writing only one
|
|
* byte to the Status Register clears or not the Status
|
|
* Register 2, so let's be cautious and keep the default
|
|
* assumption of a 16-bit Write Status (01h) command.
|
|
*/
|
|
nor->flags |= SNOR_F_HAS_16BIT_SR;
|
|
|
|
params->quad_enable = spi_nor_sr2_bit1_quad_enable;
|
|
break;
|
|
|
|
default:
|
|
dev_dbg(nor->dev, "BFPT QER reserved value used\n");
|
|
break;
|
|
}
|
|
|
|
/* Soft Reset support. */
|
|
if (bfpt.dwords[BFPT_DWORD(16)] & BFPT_DWORD16_SWRST_EN_RST)
|
|
nor->flags |= SNOR_F_SOFT_RESET;
|
|
|
|
/* Stop here if not JESD216 rev C or later. */
|
|
if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B)
|
|
return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
|
|
|
|
/* 8D-8D-8D command extension. */
|
|
switch (bfpt.dwords[BFPT_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) {
|
|
case BFPT_DWORD18_CMD_EXT_REP:
|
|
nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
|
|
break;
|
|
|
|
case BFPT_DWORD18_CMD_EXT_INV:
|
|
nor->cmd_ext_type = SPI_NOR_EXT_INVERT;
|
|
break;
|
|
|
|
case BFPT_DWORD18_CMD_EXT_RES:
|
|
dev_dbg(nor->dev, "Reserved command extension used\n");
|
|
break;
|
|
|
|
case BFPT_DWORD18_CMD_EXT_16B:
|
|
dev_dbg(nor->dev, "16-bit opcodes not supported\n");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
|
|
}
|
|
|
|
/**
|
|
* spi_nor_smpt_addr_nbytes() - return the number of address bytes used in the
|
|
* configuration detection command.
|
|
* @nor: pointer to a 'struct spi_nor'
|
|
* @settings: configuration detection command descriptor, dword1
|
|
*/
|
|
static u8 spi_nor_smpt_addr_nbytes(const struct spi_nor *nor, const u32 settings)
|
|
{
|
|
switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) {
|
|
case SMPT_CMD_ADDRESS_LEN_0:
|
|
return 0;
|
|
case SMPT_CMD_ADDRESS_LEN_3:
|
|
return 3;
|
|
case SMPT_CMD_ADDRESS_LEN_4:
|
|
return 4;
|
|
case SMPT_CMD_ADDRESS_LEN_USE_CURRENT:
|
|
default:
|
|
return nor->params->addr_mode_nbytes;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* spi_nor_smpt_read_dummy() - return the configuration detection command read
|
|
* latency, in clock cycles.
|
|
* @nor: pointer to a 'struct spi_nor'
|
|
* @settings: configuration detection command descriptor, dword1
|
|
*
|
|
* Return: the number of dummy cycles for an SMPT read
|
|
*/
|
|
static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings)
|
|
{
|
|
u8 read_dummy = SMPT_CMD_READ_DUMMY(settings);
|
|
|
|
if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE)
|
|
return nor->read_dummy;
|
|
return read_dummy;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_get_map_in_use() - get the configuration map in use
|
|
* @nor: pointer to a 'struct spi_nor'
|
|
* @smpt: pointer to the sector map parameter table
|
|
* @smpt_len: sector map parameter table length
|
|
*
|
|
* Return: pointer to the map in use, ERR_PTR(-errno) otherwise.
|
|
*/
|
|
static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt,
|
|
u8 smpt_len)
|
|
{
|
|
const u32 *ret;
|
|
u8 *buf;
|
|
u32 addr;
|
|
int err;
|
|
u8 i;
|
|
u8 addr_nbytes, read_opcode, read_dummy;
|
|
u8 read_data_mask, map_id;
|
|
|
|
/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
|
|
buf = kmalloc(sizeof(*buf), GFP_KERNEL);
|
|
if (!buf)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
addr_nbytes = nor->addr_nbytes;
|
|
read_dummy = nor->read_dummy;
|
|
read_opcode = nor->read_opcode;
|
|
|
|
map_id = 0;
|
|
/* Determine if there are any optional Detection Command Descriptors */
|
|
for (i = 0; i < smpt_len; i += 2) {
|
|
if (smpt[i] & SMPT_DESC_TYPE_MAP)
|
|
break;
|
|
|
|
read_data_mask = SMPT_CMD_READ_DATA(smpt[i]);
|
|
nor->addr_nbytes = spi_nor_smpt_addr_nbytes(nor, smpt[i]);
|
|
nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]);
|
|
nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]);
|
|
addr = smpt[i + 1];
|
|
|
|
err = spi_nor_read_raw(nor, addr, 1, buf);
|
|
if (err) {
|
|
ret = ERR_PTR(err);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Build an index value that is used to select the Sector Map
|
|
* Configuration that is currently in use.
|
|
*/
|
|
map_id = map_id << 1 | !!(*buf & read_data_mask);
|
|
}
|
|
|
|
/*
|
|
* If command descriptors are provided, they always precede map
|
|
* descriptors in the table. There is no need to start the iteration
|
|
* over smpt array all over again.
|
|
*
|
|
* Find the matching configuration map.
|
|
*/
|
|
ret = ERR_PTR(-EINVAL);
|
|
while (i < smpt_len) {
|
|
if (SMPT_MAP_ID(smpt[i]) == map_id) {
|
|
ret = smpt + i;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If there are no more configuration map descriptors and no
|
|
* configuration ID matched the configuration identifier, the
|
|
* sector address map is unknown.
|
|
*/
|
|
if (smpt[i] & SMPT_DESC_END)
|
|
break;
|
|
|
|
/* increment the table index to the next map */
|
|
i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1;
|
|
}
|
|
|
|
/* fall through */
|
|
out:
|
|
kfree(buf);
|
|
nor->addr_nbytes = addr_nbytes;
|
|
nor->read_dummy = read_dummy;
|
|
nor->read_opcode = read_opcode;
|
|
return ret;
|
|
}
|
|
|
|
static void spi_nor_region_mark_end(struct spi_nor_erase_region *region)
|
|
{
|
|
region->offset |= SNOR_LAST_REGION;
|
|
}
|
|
|
|
static void spi_nor_region_mark_overlay(struct spi_nor_erase_region *region)
|
|
{
|
|
region->offset |= SNOR_OVERLAID_REGION;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_region_check_overlay() - set overlay bit when the region is overlaid
|
|
* @region: pointer to a structure that describes a SPI NOR erase region
|
|
* @erase: pointer to a structure that describes a SPI NOR erase type
|
|
* @erase_type: erase type bitmask
|
|
*/
|
|
static void
|
|
spi_nor_region_check_overlay(struct spi_nor_erase_region *region,
|
|
const struct spi_nor_erase_type *erase,
|
|
const u8 erase_type)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
|
|
if (!(erase[i].size && erase_type & BIT(erase[i].idx)))
|
|
continue;
|
|
if (region->size & erase[i].size_mask) {
|
|
spi_nor_region_mark_overlay(region);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map
|
|
* @nor: pointer to a 'struct spi_nor'
|
|
* @smpt: pointer to the sector map parameter table
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor,
|
|
const u32 *smpt)
|
|
{
|
|
struct spi_nor_erase_map *map = &nor->params->erase_map;
|
|
struct spi_nor_erase_type *erase = map->erase_type;
|
|
struct spi_nor_erase_region *region;
|
|
u64 offset;
|
|
u32 region_count;
|
|
int i, j;
|
|
u8 uniform_erase_type, save_uniform_erase_type;
|
|
u8 erase_type, regions_erase_type;
|
|
|
|
region_count = SMPT_MAP_REGION_COUNT(*smpt);
|
|
/*
|
|
* The regions will be freed when the driver detaches from the
|
|
* device.
|
|
*/
|
|
region = devm_kcalloc(nor->dev, region_count, sizeof(*region),
|
|
GFP_KERNEL);
|
|
if (!region)
|
|
return -ENOMEM;
|
|
map->regions = region;
|
|
|
|
uniform_erase_type = 0xff;
|
|
regions_erase_type = 0;
|
|
offset = 0;
|
|
/* Populate regions. */
|
|
for (i = 0; i < region_count; i++) {
|
|
j = i + 1; /* index for the region dword */
|
|
region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]);
|
|
erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]);
|
|
region[i].offset = offset | erase_type;
|
|
|
|
spi_nor_region_check_overlay(®ion[i], erase, erase_type);
|
|
|
|
/*
|
|
* Save the erase types that are supported in all regions and
|
|
* can erase the entire flash memory.
|
|
*/
|
|
uniform_erase_type &= erase_type;
|
|
|
|
/*
|
|
* regions_erase_type mask will indicate all the erase types
|
|
* supported in this configuration map.
|
|
*/
|
|
regions_erase_type |= erase_type;
|
|
|
|
offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) +
|
|
region[i].size;
|
|
}
|
|
spi_nor_region_mark_end(®ion[i - 1]);
|
|
|
|
save_uniform_erase_type = map->uniform_erase_type;
|
|
map->uniform_erase_type = spi_nor_sort_erase_mask(map,
|
|
uniform_erase_type);
|
|
|
|
if (!regions_erase_type) {
|
|
/*
|
|
* Roll back to the previous uniform_erase_type mask, SMPT is
|
|
* broken.
|
|
*/
|
|
map->uniform_erase_type = save_uniform_erase_type;
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* BFPT advertises all the erase types supported by all the possible
|
|
* map configurations. Mask out the erase types that are not supported
|
|
* by the current map configuration.
|
|
*/
|
|
for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
|
|
if (!(regions_erase_type & BIT(erase[i].idx)))
|
|
spi_nor_set_erase_type(&erase[i], 0, 0xFF);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_parse_smpt() - parse Sector Map Parameter Table
|
|
* @nor: pointer to a 'struct spi_nor'
|
|
* @smpt_header: sector map parameter table header
|
|
*
|
|
* This table is optional, but when available, we parse it to identify the
|
|
* location and size of sectors within the main data array of the flash memory
|
|
* device and to identify which Erase Types are supported by each sector.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int spi_nor_parse_smpt(struct spi_nor *nor,
|
|
const struct sfdp_parameter_header *smpt_header)
|
|
{
|
|
const u32 *sector_map;
|
|
u32 *smpt;
|
|
size_t len;
|
|
u32 addr;
|
|
int ret;
|
|
|
|
/* Read the Sector Map Parameter Table. */
|
|
len = smpt_header->length * sizeof(*smpt);
|
|
smpt = kmalloc(len, GFP_KERNEL);
|
|
if (!smpt)
|
|
return -ENOMEM;
|
|
|
|
addr = SFDP_PARAM_HEADER_PTP(smpt_header);
|
|
ret = spi_nor_read_sfdp(nor, addr, len, smpt);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* Fix endianness of the SMPT DWORDs. */
|
|
le32_to_cpu_array(smpt, smpt_header->length);
|
|
|
|
sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length);
|
|
if (IS_ERR(sector_map)) {
|
|
ret = PTR_ERR(sector_map);
|
|
goto out;
|
|
}
|
|
|
|
ret = spi_nor_init_non_uniform_erase_map(nor, sector_map);
|
|
if (ret)
|
|
goto out;
|
|
|
|
spi_nor_regions_sort_erase_types(&nor->params->erase_map);
|
|
/* fall through */
|
|
out:
|
|
kfree(smpt);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table
|
|
* @nor: pointer to a 'struct spi_nor'.
|
|
* @param_header: pointer to the 'struct sfdp_parameter_header' describing
|
|
* the 4-Byte Address Instruction Table length and version.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int spi_nor_parse_4bait(struct spi_nor *nor,
|
|
const struct sfdp_parameter_header *param_header)
|
|
{
|
|
static const struct sfdp_4bait reads[] = {
|
|
{ SNOR_HWCAPS_READ, BIT(0) },
|
|
{ SNOR_HWCAPS_READ_FAST, BIT(1) },
|
|
{ SNOR_HWCAPS_READ_1_1_2, BIT(2) },
|
|
{ SNOR_HWCAPS_READ_1_2_2, BIT(3) },
|
|
{ SNOR_HWCAPS_READ_1_1_4, BIT(4) },
|
|
{ SNOR_HWCAPS_READ_1_4_4, BIT(5) },
|
|
{ SNOR_HWCAPS_READ_1_1_1_DTR, BIT(13) },
|
|
{ SNOR_HWCAPS_READ_1_2_2_DTR, BIT(14) },
|
|
{ SNOR_HWCAPS_READ_1_4_4_DTR, BIT(15) },
|
|
};
|
|
static const struct sfdp_4bait programs[] = {
|
|
{ SNOR_HWCAPS_PP, BIT(6) },
|
|
{ SNOR_HWCAPS_PP_1_1_4, BIT(7) },
|
|
{ SNOR_HWCAPS_PP_1_4_4, BIT(8) },
|
|
};
|
|
static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = {
|
|
{ 0u /* not used */, BIT(9) },
|
|
{ 0u /* not used */, BIT(10) },
|
|
{ 0u /* not used */, BIT(11) },
|
|
{ 0u /* not used */, BIT(12) },
|
|
};
|
|
struct spi_nor_flash_parameter *params = nor->params;
|
|
struct spi_nor_pp_command *params_pp = params->page_programs;
|
|
struct spi_nor_erase_map *map = ¶ms->erase_map;
|
|
struct spi_nor_erase_type *erase_type = map->erase_type;
|
|
u32 *dwords;
|
|
size_t len;
|
|
u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask;
|
|
int i, ret;
|
|
|
|
if (param_header->major != SFDP_JESD216_MAJOR ||
|
|
param_header->length < SFDP_4BAIT_DWORD_MAX)
|
|
return -EINVAL;
|
|
|
|
/* Read the 4-byte Address Instruction Table. */
|
|
len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX;
|
|
|
|
/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
|
|
dwords = kmalloc(len, GFP_KERNEL);
|
|
if (!dwords)
|
|
return -ENOMEM;
|
|
|
|
addr = SFDP_PARAM_HEADER_PTP(param_header);
|
|
ret = spi_nor_read_sfdp(nor, addr, len, dwords);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* Fix endianness of the 4BAIT DWORDs. */
|
|
le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX);
|
|
|
|
/*
|
|
* Compute the subset of (Fast) Read commands for which the 4-byte
|
|
* version is supported.
|
|
*/
|
|
discard_hwcaps = 0;
|
|
read_hwcaps = 0;
|
|
for (i = 0; i < ARRAY_SIZE(reads); i++) {
|
|
const struct sfdp_4bait *read = &reads[i];
|
|
|
|
discard_hwcaps |= read->hwcaps;
|
|
if ((params->hwcaps.mask & read->hwcaps) &&
|
|
(dwords[0] & read->supported_bit))
|
|
read_hwcaps |= read->hwcaps;
|
|
}
|
|
|
|
/*
|
|
* Compute the subset of Page Program commands for which the 4-byte
|
|
* version is supported.
|
|
*/
|
|
pp_hwcaps = 0;
|
|
for (i = 0; i < ARRAY_SIZE(programs); i++) {
|
|
const struct sfdp_4bait *program = &programs[i];
|
|
|
|
/*
|
|
* The 4 Byte Address Instruction (Optional) Table is the only
|
|
* SFDP table that indicates support for Page Program Commands.
|
|
* Bypass the params->hwcaps.mask and consider 4BAIT the biggest
|
|
* authority for specifying Page Program support.
|
|
*/
|
|
discard_hwcaps |= program->hwcaps;
|
|
if (dwords[0] & program->supported_bit)
|
|
pp_hwcaps |= program->hwcaps;
|
|
}
|
|
|
|
/*
|
|
* Compute the subset of Sector Erase commands for which the 4-byte
|
|
* version is supported.
|
|
*/
|
|
erase_mask = 0;
|
|
for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
|
|
const struct sfdp_4bait *erase = &erases[i];
|
|
|
|
if (dwords[0] & erase->supported_bit)
|
|
erase_mask |= BIT(i);
|
|
}
|
|
|
|
/* Replicate the sort done for the map's erase types in BFPT. */
|
|
erase_mask = spi_nor_sort_erase_mask(map, erase_mask);
|
|
|
|
/*
|
|
* We need at least one 4-byte op code per read, program and erase
|
|
* operation; the .read(), .write() and .erase() hooks share the
|
|
* nor->addr_nbytes value.
|
|
*/
|
|
if (!read_hwcaps || !pp_hwcaps || !erase_mask)
|
|
goto out;
|
|
|
|
/*
|
|
* Discard all operations from the 4-byte instruction set which are
|
|
* not supported by this memory.
|
|
*/
|
|
params->hwcaps.mask &= ~discard_hwcaps;
|
|
params->hwcaps.mask |= (read_hwcaps | pp_hwcaps);
|
|
|
|
/* Use the 4-byte address instruction set. */
|
|
for (i = 0; i < SNOR_CMD_READ_MAX; i++) {
|
|
struct spi_nor_read_command *read_cmd = ¶ms->reads[i];
|
|
|
|
read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode);
|
|
}
|
|
|
|
/* 4BAIT is the only SFDP table that indicates page program support. */
|
|
if (pp_hwcaps & SNOR_HWCAPS_PP) {
|
|
spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP],
|
|
SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
|
|
/*
|
|
* Since xSPI Page Program opcode is backward compatible with
|
|
* Legacy SPI, use Legacy SPI opcode there as well.
|
|
*/
|
|
spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_8_8_8_DTR],
|
|
SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
|
|
}
|
|
if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4)
|
|
spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_1_4],
|
|
SPINOR_OP_PP_1_1_4_4B,
|
|
SNOR_PROTO_1_1_4);
|
|
if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4)
|
|
spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_4_4],
|
|
SPINOR_OP_PP_1_4_4_4B,
|
|
SNOR_PROTO_1_4_4);
|
|
|
|
for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
|
|
if (erase_mask & BIT(i))
|
|
erase_type[i].opcode = (dwords[1] >>
|
|
erase_type[i].idx * 8) & 0xFF;
|
|
else
|
|
spi_nor_set_erase_type(&erase_type[i], 0u, 0xFF);
|
|
}
|
|
|
|
/*
|
|
* We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes()
|
|
* later because we already did the conversion to 4byte opcodes. Also,
|
|
* this latest function implements a legacy quirk for the erase size of
|
|
* Spansion memory. However this quirk is no longer needed with new
|
|
* SFDP compliant memories.
|
|
*/
|
|
params->addr_nbytes = 4;
|
|
nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT;
|
|
|
|
/* fall through */
|
|
out:
|
|
kfree(dwords);
|
|
return ret;
|
|
}
|
|
|
|
#define PROFILE1_DWORD1_RDSR_ADDR_BYTES BIT(29)
|
|
#define PROFILE1_DWORD1_RDSR_DUMMY BIT(28)
|
|
#define PROFILE1_DWORD1_RD_FAST_CMD GENMASK(15, 8)
|
|
#define PROFILE1_DWORD4_DUMMY_200MHZ GENMASK(11, 7)
|
|
#define PROFILE1_DWORD5_DUMMY_166MHZ GENMASK(31, 27)
|
|
#define PROFILE1_DWORD5_DUMMY_133MHZ GENMASK(21, 17)
|
|
#define PROFILE1_DWORD5_DUMMY_100MHZ GENMASK(11, 7)
|
|
|
|
/**
|
|
* spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table
|
|
* @nor: pointer to a 'struct spi_nor'
|
|
* @profile1_header: pointer to the 'struct sfdp_parameter_header' describing
|
|
* the Profile 1.0 Table length and version.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int spi_nor_parse_profile1(struct spi_nor *nor,
|
|
const struct sfdp_parameter_header *profile1_header)
|
|
{
|
|
u32 *dwords, addr;
|
|
size_t len;
|
|
int ret;
|
|
u8 dummy, opcode;
|
|
|
|
len = profile1_header->length * sizeof(*dwords);
|
|
dwords = kmalloc(len, GFP_KERNEL);
|
|
if (!dwords)
|
|
return -ENOMEM;
|
|
|
|
addr = SFDP_PARAM_HEADER_PTP(profile1_header);
|
|
ret = spi_nor_read_sfdp(nor, addr, len, dwords);
|
|
if (ret)
|
|
goto out;
|
|
|
|
le32_to_cpu_array(dwords, profile1_header->length);
|
|
|
|
/* Get 8D-8D-8D fast read opcode and dummy cycles. */
|
|
opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, dwords[0]);
|
|
|
|
/* Set the Read Status Register dummy cycles and dummy address bytes. */
|
|
if (dwords[0] & PROFILE1_DWORD1_RDSR_DUMMY)
|
|
nor->params->rdsr_dummy = 8;
|
|
else
|
|
nor->params->rdsr_dummy = 4;
|
|
|
|
if (dwords[0] & PROFILE1_DWORD1_RDSR_ADDR_BYTES)
|
|
nor->params->rdsr_addr_nbytes = 4;
|
|
else
|
|
nor->params->rdsr_addr_nbytes = 0;
|
|
|
|
/*
|
|
* We don't know what speed the controller is running at. Find the
|
|
* dummy cycles for the fastest frequency the flash can run at to be
|
|
* sure we are never short of dummy cycles. A value of 0 means the
|
|
* frequency is not supported.
|
|
*
|
|
* Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let
|
|
* flashes set the correct value if needed in their fixup hooks.
|
|
*/
|
|
dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, dwords[3]);
|
|
if (!dummy)
|
|
dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ, dwords[4]);
|
|
if (!dummy)
|
|
dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ, dwords[4]);
|
|
if (!dummy)
|
|
dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ, dwords[4]);
|
|
if (!dummy)
|
|
dev_dbg(nor->dev,
|
|
"Can't find dummy cycles from Profile 1.0 table\n");
|
|
|
|
/* Round up to an even value to avoid tripping controllers up. */
|
|
dummy = round_up(dummy, 2);
|
|
|
|
/* Update the fast read settings. */
|
|
nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
|
|
spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],
|
|
0, dummy, opcode,
|
|
SNOR_PROTO_8_8_8_DTR);
|
|
|
|
/*
|
|
* Page Program is "Required Command" in the xSPI Profile 1.0. Update
|
|
* the params->hwcaps.mask here.
|
|
*/
|
|
nor->params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
|
|
|
|
out:
|
|
kfree(dwords);
|
|
return ret;
|
|
}
|
|
|
|
#define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE BIT(31)
|
|
|
|
/**
|
|
* spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register
|
|
* Map.
|
|
* @nor: pointer to a 'struct spi_nor'
|
|
* @sccr_header: pointer to the 'struct sfdp_parameter_header' describing
|
|
* the SCCR Map table length and version.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int spi_nor_parse_sccr(struct spi_nor *nor,
|
|
const struct sfdp_parameter_header *sccr_header)
|
|
{
|
|
u32 *dwords, addr;
|
|
size_t len;
|
|
int ret;
|
|
|
|
len = sccr_header->length * sizeof(*dwords);
|
|
dwords = kmalloc(len, GFP_KERNEL);
|
|
if (!dwords)
|
|
return -ENOMEM;
|
|
|
|
addr = SFDP_PARAM_HEADER_PTP(sccr_header);
|
|
ret = spi_nor_read_sfdp(nor, addr, len, dwords);
|
|
if (ret)
|
|
goto out;
|
|
|
|
le32_to_cpu_array(dwords, sccr_header->length);
|
|
|
|
if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE, dwords[22]))
|
|
nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
|
|
|
|
out:
|
|
kfree(dwords);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
|
|
* after SFDP has been parsed. Called only for flashes that define JESD216 SFDP
|
|
* tables.
|
|
* @nor: pointer to a 'struct spi_nor'
|
|
*
|
|
* Used to tweak various flash parameters when information provided by the SFDP
|
|
* tables are wrong.
|
|
*/
|
|
static void spi_nor_post_sfdp_fixups(struct spi_nor *nor)
|
|
{
|
|
if (nor->manufacturer && nor->manufacturer->fixups &&
|
|
nor->manufacturer->fixups->post_sfdp)
|
|
nor->manufacturer->fixups->post_sfdp(nor);
|
|
|
|
if (nor->info->fixups && nor->info->fixups->post_sfdp)
|
|
nor->info->fixups->post_sfdp(nor);
|
|
}
|
|
|
|
/**
|
|
* spi_nor_check_sfdp_signature() - check for a valid SFDP signature
|
|
* @nor: pointer to a 'struct spi_nor'
|
|
*
|
|
* Used to detect if the flash supports the RDSFDP command as well as the
|
|
* presence of a valid SFDP table.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
int spi_nor_check_sfdp_signature(struct spi_nor *nor)
|
|
{
|
|
u32 signature;
|
|
int err;
|
|
|
|
/* Get the SFDP header. */
|
|
err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(signature),
|
|
&signature);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
/* Check the SFDP signature. */
|
|
if (le32_to_cpu(signature) != SFDP_SIGNATURE)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
|
|
* @nor: pointer to a 'struct spi_nor'
|
|
*
|
|
* The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
|
|
* specification. This is a standard which tends to supported by almost all
|
|
* (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
|
|
* runtime the main parameters needed to perform basic SPI flash operations such
|
|
* as Fast Read, Page Program or Sector Erase commands.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
int spi_nor_parse_sfdp(struct spi_nor *nor)
|
|
{
|
|
const struct sfdp_parameter_header *param_header, *bfpt_header;
|
|
struct sfdp_parameter_header *param_headers = NULL;
|
|
struct sfdp_header header;
|
|
struct device *dev = nor->dev;
|
|
struct sfdp *sfdp;
|
|
size_t sfdp_size;
|
|
size_t psize;
|
|
int i, err;
|
|
|
|
/* Get the SFDP header. */
|
|
err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
/* Check the SFDP header version. */
|
|
if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
|
|
header.major != SFDP_JESD216_MAJOR)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Verify that the first and only mandatory parameter header is a
|
|
* Basic Flash Parameter Table header as specified in JESD216.
|
|
*/
|
|
bfpt_header = &header.bfpt_header;
|
|
if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
|
|
bfpt_header->major != SFDP_JESD216_MAJOR)
|
|
return -EINVAL;
|
|
|
|
sfdp_size = SFDP_PARAM_HEADER_PTP(bfpt_header) +
|
|
SFDP_PARAM_HEADER_PARAM_LEN(bfpt_header);
|
|
|
|
/*
|
|
* Allocate memory then read all parameter headers with a single
|
|
* Read SFDP command. These parameter headers will actually be parsed
|
|
* twice: a first time to get the latest revision of the basic flash
|
|
* parameter table, then a second time to handle the supported optional
|
|
* tables.
|
|
* Hence we read the parameter headers once for all to reduce the
|
|
* processing time. Also we use kmalloc() instead of devm_kmalloc()
|
|
* because we don't need to keep these parameter headers: the allocated
|
|
* memory is always released with kfree() before exiting this function.
|
|
*/
|
|
if (header.nph) {
|
|
psize = header.nph * sizeof(*param_headers);
|
|
|
|
param_headers = kmalloc(psize, GFP_KERNEL);
|
|
if (!param_headers)
|
|
return -ENOMEM;
|
|
|
|
err = spi_nor_read_sfdp(nor, sizeof(header),
|
|
psize, param_headers);
|
|
if (err < 0) {
|
|
dev_dbg(dev, "failed to read SFDP parameter headers\n");
|
|
goto exit;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Cache the complete SFDP data. It is not (easily) possible to fetch
|
|
* SFDP after probe time and we need it for the sysfs access.
|
|
*/
|
|
for (i = 0; i < header.nph; i++) {
|
|
param_header = ¶m_headers[i];
|
|
sfdp_size = max_t(size_t, sfdp_size,
|
|
SFDP_PARAM_HEADER_PTP(param_header) +
|
|
SFDP_PARAM_HEADER_PARAM_LEN(param_header));
|
|
}
|
|
|
|
/*
|
|
* Limit the total size to a reasonable value to avoid allocating too
|
|
* much memory just of because the flash returned some insane values.
|
|
*/
|
|
if (sfdp_size > PAGE_SIZE) {
|
|
dev_dbg(dev, "SFDP data (%zu) too big, truncating\n",
|
|
sfdp_size);
|
|
sfdp_size = PAGE_SIZE;
|
|
}
|
|
|
|
sfdp = devm_kzalloc(dev, sizeof(*sfdp), GFP_KERNEL);
|
|
if (!sfdp) {
|
|
err = -ENOMEM;
|
|
goto exit;
|
|
}
|
|
|
|
/*
|
|
* The SFDP is organized in chunks of DWORDs. Thus, in theory, the
|
|
* sfdp_size should be a multiple of DWORDs. But in case a flash
|
|
* is not spec compliant, make sure that we have enough space to store
|
|
* the complete SFDP data.
|
|
*/
|
|
sfdp->num_dwords = DIV_ROUND_UP(sfdp_size, sizeof(*sfdp->dwords));
|
|
sfdp->dwords = devm_kcalloc(dev, sfdp->num_dwords,
|
|
sizeof(*sfdp->dwords), GFP_KERNEL);
|
|
if (!sfdp->dwords) {
|
|
err = -ENOMEM;
|
|
devm_kfree(dev, sfdp);
|
|
goto exit;
|
|
}
|
|
|
|
err = spi_nor_read_sfdp(nor, 0, sfdp_size, sfdp->dwords);
|
|
if (err < 0) {
|
|
dev_dbg(dev, "failed to read SFDP data\n");
|
|
devm_kfree(dev, sfdp->dwords);
|
|
devm_kfree(dev, sfdp);
|
|
goto exit;
|
|
}
|
|
|
|
nor->sfdp = sfdp;
|
|
|
|
/*
|
|
* Check other parameter headers to get the latest revision of
|
|
* the basic flash parameter table.
|
|
*/
|
|
for (i = 0; i < header.nph; i++) {
|
|
param_header = ¶m_headers[i];
|
|
|
|
if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
|
|
param_header->major == SFDP_JESD216_MAJOR &&
|
|
(param_header->minor > bfpt_header->minor ||
|
|
(param_header->minor == bfpt_header->minor &&
|
|
param_header->length > bfpt_header->length)))
|
|
bfpt_header = param_header;
|
|
}
|
|
|
|
err = spi_nor_parse_bfpt(nor, bfpt_header);
|
|
if (err)
|
|
goto exit;
|
|
|
|
/* Parse optional parameter tables. */
|
|
for (i = 0; i < header.nph; i++) {
|
|
param_header = ¶m_headers[i];
|
|
|
|
switch (SFDP_PARAM_HEADER_ID(param_header)) {
|
|
case SFDP_SECTOR_MAP_ID:
|
|
err = spi_nor_parse_smpt(nor, param_header);
|
|
break;
|
|
|
|
case SFDP_4BAIT_ID:
|
|
err = spi_nor_parse_4bait(nor, param_header);
|
|
break;
|
|
|
|
case SFDP_PROFILE1_ID:
|
|
err = spi_nor_parse_profile1(nor, param_header);
|
|
break;
|
|
|
|
case SFDP_SCCR_MAP_ID:
|
|
err = spi_nor_parse_sccr(nor, param_header);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (err) {
|
|
dev_warn(dev, "Failed to parse optional parameter table: %04x\n",
|
|
SFDP_PARAM_HEADER_ID(param_header));
|
|
/*
|
|
* Let's not drop all information we extracted so far
|
|
* if optional table parsers fail. In case of failing,
|
|
* each optional parser is responsible to roll back to
|
|
* the previously known spi_nor data.
|
|
*/
|
|
err = 0;
|
|
}
|
|
}
|
|
|
|
spi_nor_post_sfdp_fixups(nor);
|
|
exit:
|
|
kfree(param_headers);
|
|
return err;
|
|
}
|