linux/tools/testing/selftests/bpf/progs/map_ptr_kern.c
Andrey Ignatov b1b53d413f selftests/bpf: Test access to bpf map pointer
Add selftests to test access to map pointers from bpf program for all
map types except struct_ops (that one would need additional work).

verifier test focuses mostly on scenarios that must be rejected.

prog_tests test focuses on accessing multiple fields both scalar and a
nested struct from bpf program and verifies that those fields have
expected values.

Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/139a6a17f8016491e39347849b951525335c6eb4.1592600985.git.rdna@fb.com
2020-06-22 22:22:59 +02:00

687 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2020 Facebook
#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>
#define LOOP_BOUND 0xf
#define MAX_ENTRIES 8
#define HALF_ENTRIES (MAX_ENTRIES >> 1)
_Static_assert(MAX_ENTRIES < LOOP_BOUND, "MAX_ENTRIES must be < LOOP_BOUND");
enum bpf_map_type g_map_type = BPF_MAP_TYPE_UNSPEC;
__u32 g_line = 0;
#define VERIFY_TYPE(type, func) ({ \
g_map_type = type; \
if (!func()) \
return 0; \
})
#define VERIFY(expr) ({ \
g_line = __LINE__; \
if (!(expr)) \
return 0; \
})
struct bpf_map_memory {
__u32 pages;
} __attribute__((preserve_access_index));
struct bpf_map {
enum bpf_map_type map_type;
__u32 key_size;
__u32 value_size;
__u32 max_entries;
__u32 id;
struct bpf_map_memory memory;
} __attribute__((preserve_access_index));
static inline int check_bpf_map_fields(struct bpf_map *map, __u32 key_size,
__u32 value_size, __u32 max_entries)
{
VERIFY(map->map_type == g_map_type);
VERIFY(map->key_size == key_size);
VERIFY(map->value_size == value_size);
VERIFY(map->max_entries == max_entries);
VERIFY(map->id > 0);
VERIFY(map->memory.pages > 0);
return 1;
}
static inline int check_bpf_map_ptr(struct bpf_map *indirect,
struct bpf_map *direct)
{
VERIFY(indirect->map_type == direct->map_type);
VERIFY(indirect->key_size == direct->key_size);
VERIFY(indirect->value_size == direct->value_size);
VERIFY(indirect->max_entries == direct->max_entries);
VERIFY(indirect->id == direct->id);
VERIFY(indirect->memory.pages == direct->memory.pages);
return 1;
}
static inline int check(struct bpf_map *indirect, struct bpf_map *direct,
__u32 key_size, __u32 value_size, __u32 max_entries)
{
VERIFY(check_bpf_map_ptr(indirect, direct));
VERIFY(check_bpf_map_fields(indirect, key_size, value_size,
max_entries));
return 1;
}
static inline int check_default(struct bpf_map *indirect,
struct bpf_map *direct)
{
VERIFY(check(indirect, direct, sizeof(__u32), sizeof(__u32),
MAX_ENTRIES));
return 1;
}
typedef struct {
int counter;
} atomic_t;
struct bpf_htab {
struct bpf_map map;
atomic_t count;
__u32 n_buckets;
__u32 elem_size;
} __attribute__((preserve_access_index));
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(map_flags, BPF_F_NO_PREALLOC); /* to test bpf_htab.count */
__uint(max_entries, MAX_ENTRIES);
__type(key, __u32);
__type(value, __u32);
} m_hash SEC(".maps");
static inline int check_hash(void)
{
struct bpf_htab *hash = (struct bpf_htab *)&m_hash;
struct bpf_map *map = (struct bpf_map *)&m_hash;
int i;
VERIFY(check_default(&hash->map, map));
VERIFY(hash->n_buckets == MAX_ENTRIES);
VERIFY(hash->elem_size == 64);
VERIFY(hash->count.counter == 0);
for (i = 0; i < HALF_ENTRIES; ++i) {
const __u32 key = i;
const __u32 val = 1;
if (bpf_map_update_elem(hash, &key, &val, 0))
return 0;
}
VERIFY(hash->count.counter == HALF_ENTRIES);
return 1;
}
struct bpf_array {
struct bpf_map map;
__u32 elem_size;
} __attribute__((preserve_access_index));
struct {
__uint(type, BPF_MAP_TYPE_ARRAY);
__uint(max_entries, MAX_ENTRIES);
__type(key, __u32);
__type(value, __u32);
} m_array SEC(".maps");
static inline int check_array(void)
{
struct bpf_array *array = (struct bpf_array *)&m_array;
struct bpf_map *map = (struct bpf_map *)&m_array;
int i, n_lookups = 0, n_keys = 0;
VERIFY(check_default(&array->map, map));
VERIFY(array->elem_size == 8);
for (i = 0; i < array->map.max_entries && i < LOOP_BOUND; ++i) {
const __u32 key = i;
__u32 *val = bpf_map_lookup_elem(array, &key);
++n_lookups;
if (val)
++n_keys;
}
VERIFY(n_lookups == MAX_ENTRIES);
VERIFY(n_keys == MAX_ENTRIES);
return 1;
}
struct {
__uint(type, BPF_MAP_TYPE_PROG_ARRAY);
__uint(max_entries, MAX_ENTRIES);
__type(key, __u32);
__type(value, __u32);
} m_prog_array SEC(".maps");
static inline int check_prog_array(void)
{
struct bpf_array *prog_array = (struct bpf_array *)&m_prog_array;
struct bpf_map *map = (struct bpf_map *)&m_prog_array;
VERIFY(check_default(&prog_array->map, map));
return 1;
}
struct {
__uint(type, BPF_MAP_TYPE_PERF_EVENT_ARRAY);
__uint(max_entries, MAX_ENTRIES);
__type(key, __u32);
__type(value, __u32);
} m_perf_event_array SEC(".maps");
static inline int check_perf_event_array(void)
{
struct bpf_array *perf_event_array = (struct bpf_array *)&m_perf_event_array;
struct bpf_map *map = (struct bpf_map *)&m_perf_event_array;
VERIFY(check_default(&perf_event_array->map, map));
return 1;
}
struct {
__uint(type, BPF_MAP_TYPE_PERCPU_HASH);
__uint(max_entries, MAX_ENTRIES);
__type(key, __u32);
__type(value, __u32);
} m_percpu_hash SEC(".maps");
static inline int check_percpu_hash(void)
{
struct bpf_htab *percpu_hash = (struct bpf_htab *)&m_percpu_hash;
struct bpf_map *map = (struct bpf_map *)&m_percpu_hash;
VERIFY(check_default(&percpu_hash->map, map));
return 1;
}
struct {
__uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
__uint(max_entries, MAX_ENTRIES);
__type(key, __u32);
__type(value, __u32);
} m_percpu_array SEC(".maps");
static inline int check_percpu_array(void)
{
struct bpf_array *percpu_array = (struct bpf_array *)&m_percpu_array;
struct bpf_map *map = (struct bpf_map *)&m_percpu_array;
VERIFY(check_default(&percpu_array->map, map));
return 1;
}
struct bpf_stack_map {
struct bpf_map map;
} __attribute__((preserve_access_index));
struct {
__uint(type, BPF_MAP_TYPE_STACK_TRACE);
__uint(max_entries, MAX_ENTRIES);
__type(key, __u32);
__type(value, __u64);
} m_stack_trace SEC(".maps");
static inline int check_stack_trace(void)
{
struct bpf_stack_map *stack_trace =
(struct bpf_stack_map *)&m_stack_trace;
struct bpf_map *map = (struct bpf_map *)&m_stack_trace;
VERIFY(check(&stack_trace->map, map, sizeof(__u32), sizeof(__u64),
MAX_ENTRIES));
return 1;
}
struct {
__uint(type, BPF_MAP_TYPE_CGROUP_ARRAY);
__uint(max_entries, MAX_ENTRIES);
__type(key, __u32);
__type(value, __u32);
} m_cgroup_array SEC(".maps");
static inline int check_cgroup_array(void)
{
struct bpf_array *cgroup_array = (struct bpf_array *)&m_cgroup_array;
struct bpf_map *map = (struct bpf_map *)&m_cgroup_array;
VERIFY(check_default(&cgroup_array->map, map));
return 1;
}
struct {
__uint(type, BPF_MAP_TYPE_LRU_HASH);
__uint(max_entries, MAX_ENTRIES);
__type(key, __u32);
__type(value, __u32);
} m_lru_hash SEC(".maps");
static inline int check_lru_hash(void)
{
struct bpf_htab *lru_hash = (struct bpf_htab *)&m_lru_hash;
struct bpf_map *map = (struct bpf_map *)&m_lru_hash;
VERIFY(check_default(&lru_hash->map, map));
return 1;
}
struct {
__uint(type, BPF_MAP_TYPE_LRU_PERCPU_HASH);
__uint(max_entries, MAX_ENTRIES);
__type(key, __u32);
__type(value, __u32);
} m_lru_percpu_hash SEC(".maps");
static inline int check_lru_percpu_hash(void)
{
struct bpf_htab *lru_percpu_hash = (struct bpf_htab *)&m_lru_percpu_hash;
struct bpf_map *map = (struct bpf_map *)&m_lru_percpu_hash;
VERIFY(check_default(&lru_percpu_hash->map, map));
return 1;
}
struct lpm_trie {
struct bpf_map map;
} __attribute__((preserve_access_index));
struct lpm_key {
struct bpf_lpm_trie_key trie_key;
__u32 data;
};
struct {
__uint(type, BPF_MAP_TYPE_LPM_TRIE);
__uint(map_flags, BPF_F_NO_PREALLOC);
__uint(max_entries, MAX_ENTRIES);
__type(key, struct lpm_key);
__type(value, __u32);
} m_lpm_trie SEC(".maps");
static inline int check_lpm_trie(void)
{
struct lpm_trie *lpm_trie = (struct lpm_trie *)&m_lpm_trie;
struct bpf_map *map = (struct bpf_map *)&m_lpm_trie;
VERIFY(check(&lpm_trie->map, map, sizeof(struct lpm_key), sizeof(__u32),
MAX_ENTRIES));
return 1;
}
struct inner_map {
__uint(type, BPF_MAP_TYPE_ARRAY);
__uint(max_entries, 1);
__type(key, __u32);
__type(value, __u32);
} inner_map SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_ARRAY_OF_MAPS);
__uint(max_entries, MAX_ENTRIES);
__type(key, __u32);
__type(value, __u32);
__array(values, struct {
__uint(type, BPF_MAP_TYPE_ARRAY);
__uint(max_entries, 1);
__type(key, __u32);
__type(value, __u32);
});
} m_array_of_maps SEC(".maps") = {
.values = { (void *)&inner_map, 0, 0, 0, 0, 0, 0, 0, 0 },
};
static inline int check_array_of_maps(void)
{
struct bpf_array *array_of_maps = (struct bpf_array *)&m_array_of_maps;
struct bpf_map *map = (struct bpf_map *)&m_array_of_maps;
VERIFY(check_default(&array_of_maps->map, map));
return 1;
}
struct {
__uint(type, BPF_MAP_TYPE_HASH_OF_MAPS);
__uint(max_entries, MAX_ENTRIES);
__type(key, __u32);
__type(value, __u32);
__array(values, struct inner_map);
} m_hash_of_maps SEC(".maps") = {
.values = {
[2] = &inner_map,
},
};
static inline int check_hash_of_maps(void)
{
struct bpf_htab *hash_of_maps = (struct bpf_htab *)&m_hash_of_maps;
struct bpf_map *map = (struct bpf_map *)&m_hash_of_maps;
VERIFY(check_default(&hash_of_maps->map, map));
return 1;
}
struct bpf_dtab {
struct bpf_map map;
} __attribute__((preserve_access_index));
struct {
__uint(type, BPF_MAP_TYPE_DEVMAP);
__uint(max_entries, MAX_ENTRIES);
__type(key, __u32);
__type(value, __u32);
} m_devmap SEC(".maps");
static inline int check_devmap(void)
{
struct bpf_dtab *devmap = (struct bpf_dtab *)&m_devmap;
struct bpf_map *map = (struct bpf_map *)&m_devmap;
VERIFY(check_default(&devmap->map, map));
return 1;
}
struct bpf_stab {
struct bpf_map map;
} __attribute__((preserve_access_index));
struct {
__uint(type, BPF_MAP_TYPE_SOCKMAP);
__uint(max_entries, MAX_ENTRIES);
__type(key, __u32);
__type(value, __u32);
} m_sockmap SEC(".maps");
static inline int check_sockmap(void)
{
struct bpf_stab *sockmap = (struct bpf_stab *)&m_sockmap;
struct bpf_map *map = (struct bpf_map *)&m_sockmap;
VERIFY(check_default(&sockmap->map, map));
return 1;
}
struct bpf_cpu_map {
struct bpf_map map;
} __attribute__((preserve_access_index));
struct {
__uint(type, BPF_MAP_TYPE_CPUMAP);
__uint(max_entries, MAX_ENTRIES);
__type(key, __u32);
__type(value, __u32);
} m_cpumap SEC(".maps");
static inline int check_cpumap(void)
{
struct bpf_cpu_map *cpumap = (struct bpf_cpu_map *)&m_cpumap;
struct bpf_map *map = (struct bpf_map *)&m_cpumap;
VERIFY(check_default(&cpumap->map, map));
return 1;
}
struct xsk_map {
struct bpf_map map;
} __attribute__((preserve_access_index));
struct {
__uint(type, BPF_MAP_TYPE_XSKMAP);
__uint(max_entries, MAX_ENTRIES);
__type(key, __u32);
__type(value, __u32);
} m_xskmap SEC(".maps");
static inline int check_xskmap(void)
{
struct xsk_map *xskmap = (struct xsk_map *)&m_xskmap;
struct bpf_map *map = (struct bpf_map *)&m_xskmap;
VERIFY(check_default(&xskmap->map, map));
return 1;
}
struct bpf_shtab {
struct bpf_map map;
} __attribute__((preserve_access_index));
struct {
__uint(type, BPF_MAP_TYPE_SOCKHASH);
__uint(max_entries, MAX_ENTRIES);
__type(key, __u32);
__type(value, __u32);
} m_sockhash SEC(".maps");
static inline int check_sockhash(void)
{
struct bpf_shtab *sockhash = (struct bpf_shtab *)&m_sockhash;
struct bpf_map *map = (struct bpf_map *)&m_sockhash;
VERIFY(check_default(&sockhash->map, map));
return 1;
}
struct bpf_cgroup_storage_map {
struct bpf_map map;
} __attribute__((preserve_access_index));
struct {
__uint(type, BPF_MAP_TYPE_CGROUP_STORAGE);
__type(key, struct bpf_cgroup_storage_key);
__type(value, __u32);
} m_cgroup_storage SEC(".maps");
static inline int check_cgroup_storage(void)
{
struct bpf_cgroup_storage_map *cgroup_storage =
(struct bpf_cgroup_storage_map *)&m_cgroup_storage;
struct bpf_map *map = (struct bpf_map *)&m_cgroup_storage;
VERIFY(check(&cgroup_storage->map, map,
sizeof(struct bpf_cgroup_storage_key), sizeof(__u32), 0));
return 1;
}
struct reuseport_array {
struct bpf_map map;
} __attribute__((preserve_access_index));
struct {
__uint(type, BPF_MAP_TYPE_REUSEPORT_SOCKARRAY);
__uint(max_entries, MAX_ENTRIES);
__type(key, __u32);
__type(value, __u32);
} m_reuseport_sockarray SEC(".maps");
static inline int check_reuseport_sockarray(void)
{
struct reuseport_array *reuseport_sockarray =
(struct reuseport_array *)&m_reuseport_sockarray;
struct bpf_map *map = (struct bpf_map *)&m_reuseport_sockarray;
VERIFY(check_default(&reuseport_sockarray->map, map));
return 1;
}
struct {
__uint(type, BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
__type(key, struct bpf_cgroup_storage_key);
__type(value, __u32);
} m_percpu_cgroup_storage SEC(".maps");
static inline int check_percpu_cgroup_storage(void)
{
struct bpf_cgroup_storage_map *percpu_cgroup_storage =
(struct bpf_cgroup_storage_map *)&m_percpu_cgroup_storage;
struct bpf_map *map = (struct bpf_map *)&m_percpu_cgroup_storage;
VERIFY(check(&percpu_cgroup_storage->map, map,
sizeof(struct bpf_cgroup_storage_key), sizeof(__u32), 0));
return 1;
}
struct bpf_queue_stack {
struct bpf_map map;
} __attribute__((preserve_access_index));
struct {
__uint(type, BPF_MAP_TYPE_QUEUE);
__uint(max_entries, MAX_ENTRIES);
__type(value, __u32);
} m_queue SEC(".maps");
static inline int check_queue(void)
{
struct bpf_queue_stack *queue = (struct bpf_queue_stack *)&m_queue;
struct bpf_map *map = (struct bpf_map *)&m_queue;
VERIFY(check(&queue->map, map, 0, sizeof(__u32), MAX_ENTRIES));
return 1;
}
struct {
__uint(type, BPF_MAP_TYPE_STACK);
__uint(max_entries, MAX_ENTRIES);
__type(value, __u32);
} m_stack SEC(".maps");
static inline int check_stack(void)
{
struct bpf_queue_stack *stack = (struct bpf_queue_stack *)&m_stack;
struct bpf_map *map = (struct bpf_map *)&m_stack;
VERIFY(check(&stack->map, map, 0, sizeof(__u32), MAX_ENTRIES));
return 1;
}
struct bpf_sk_storage_map {
struct bpf_map map;
} __attribute__((preserve_access_index));
struct {
__uint(type, BPF_MAP_TYPE_SK_STORAGE);
__uint(map_flags, BPF_F_NO_PREALLOC);
__type(key, __u32);
__type(value, __u32);
} m_sk_storage SEC(".maps");
static inline int check_sk_storage(void)
{
struct bpf_sk_storage_map *sk_storage =
(struct bpf_sk_storage_map *)&m_sk_storage;
struct bpf_map *map = (struct bpf_map *)&m_sk_storage;
VERIFY(check(&sk_storage->map, map, sizeof(__u32), sizeof(__u32), 0));
return 1;
}
struct {
__uint(type, BPF_MAP_TYPE_DEVMAP_HASH);
__uint(max_entries, MAX_ENTRIES);
__type(key, __u32);
__type(value, __u32);
} m_devmap_hash SEC(".maps");
static inline int check_devmap_hash(void)
{
struct bpf_dtab *devmap_hash = (struct bpf_dtab *)&m_devmap_hash;
struct bpf_map *map = (struct bpf_map *)&m_devmap_hash;
VERIFY(check_default(&devmap_hash->map, map));
return 1;
}
struct bpf_ringbuf_map {
struct bpf_map map;
} __attribute__((preserve_access_index));
struct {
__uint(type, BPF_MAP_TYPE_RINGBUF);
__uint(max_entries, 1 << 12);
} m_ringbuf SEC(".maps");
static inline int check_ringbuf(void)
{
struct bpf_ringbuf_map *ringbuf = (struct bpf_ringbuf_map *)&m_ringbuf;
struct bpf_map *map = (struct bpf_map *)&m_ringbuf;
VERIFY(check(&ringbuf->map, map, 0, 0, 1 << 12));
return 1;
}
SEC("cgroup_skb/egress")
int cg_skb(void *ctx)
{
VERIFY_TYPE(BPF_MAP_TYPE_HASH, check_hash);
VERIFY_TYPE(BPF_MAP_TYPE_ARRAY, check_array);
VERIFY_TYPE(BPF_MAP_TYPE_PROG_ARRAY, check_prog_array);
VERIFY_TYPE(BPF_MAP_TYPE_PERF_EVENT_ARRAY, check_perf_event_array);
VERIFY_TYPE(BPF_MAP_TYPE_PERCPU_HASH, check_percpu_hash);
VERIFY_TYPE(BPF_MAP_TYPE_PERCPU_ARRAY, check_percpu_array);
VERIFY_TYPE(BPF_MAP_TYPE_STACK_TRACE, check_stack_trace);
VERIFY_TYPE(BPF_MAP_TYPE_CGROUP_ARRAY, check_cgroup_array);
VERIFY_TYPE(BPF_MAP_TYPE_LRU_HASH, check_lru_hash);
VERIFY_TYPE(BPF_MAP_TYPE_LRU_PERCPU_HASH, check_lru_percpu_hash);
VERIFY_TYPE(BPF_MAP_TYPE_LPM_TRIE, check_lpm_trie);
VERIFY_TYPE(BPF_MAP_TYPE_ARRAY_OF_MAPS, check_array_of_maps);
VERIFY_TYPE(BPF_MAP_TYPE_HASH_OF_MAPS, check_hash_of_maps);
VERIFY_TYPE(BPF_MAP_TYPE_DEVMAP, check_devmap);
VERIFY_TYPE(BPF_MAP_TYPE_SOCKMAP, check_sockmap);
VERIFY_TYPE(BPF_MAP_TYPE_CPUMAP, check_cpumap);
VERIFY_TYPE(BPF_MAP_TYPE_XSKMAP, check_xskmap);
VERIFY_TYPE(BPF_MAP_TYPE_SOCKHASH, check_sockhash);
VERIFY_TYPE(BPF_MAP_TYPE_CGROUP_STORAGE, check_cgroup_storage);
VERIFY_TYPE(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
check_reuseport_sockarray);
VERIFY_TYPE(BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE,
check_percpu_cgroup_storage);
VERIFY_TYPE(BPF_MAP_TYPE_QUEUE, check_queue);
VERIFY_TYPE(BPF_MAP_TYPE_STACK, check_stack);
VERIFY_TYPE(BPF_MAP_TYPE_SK_STORAGE, check_sk_storage);
VERIFY_TYPE(BPF_MAP_TYPE_DEVMAP_HASH, check_devmap_hash);
VERIFY_TYPE(BPF_MAP_TYPE_RINGBUF, check_ringbuf);
return 1;
}
__u32 _version SEC("version") = 1;
char _license[] SEC("license") = "GPL";