linux/drivers/net/ethernet/intel/igb/igb_main.c
Jakub Kicinski 4d469ec8ec Merge branch '1GbE' of git://git.kernel.org/pub/scm/linux/kernel/git/tnguy/next-queue
Tony Nguyen says:

====================
1GbE Intel Wired LAN Driver Updates 2021-02-03

This series contains updates to igc, igb, e1000e, and e1000 drivers.

Sasha adds counting of good transmit packets and reporting of NVM version
and gPHY version in ethtool firmware version. Replaces the use of strlcpy
to the preferred strscpy. Fixes a typo that caused the wrong register to be
output. He also removes an unused function pointer, some unneeded defines,
and a non-applicable comment. All changes for igc.

Gal Hammer fixes a typo which caused the RDBAL register values to be
shown instead of TDBAL for igb.

Nick Lowe enables RSS support for i211 devices for igb.

Tom Rix fixes checkpatch warning by removing h from printk format
specifier for igb.

Kaixu Xia removes setting of a variable that is overwritten before next
use for e1000e.

Sudip Mukherjee removes an unneeded assignment for e1000.

* '1GbE' of git://git.kernel.org/pub/scm/linux/kernel/git/tnguy/next-queue:
  e1000: drop unneeded assignment in e1000_set_itr()
  e1000e: remove the redundant value assignment in e1000_update_nvm_checksum_spt
  igb: remove h from printk format specifier
  igb: Enable RSS for Intel I211 Ethernet Controller
  igb: fix TDBAL register show incorrect value
  igc: Fix TDBAL register show incorrect value
  igc: Remove unused FUNC_1 mask
  igc: Remove unused local receiver mask
  igc: Prefer strscpy over strlcpy
  igc: Expose the gPHY firmware version
  igc: Expose the NVM version
  igc: Add Host Good Packets Transmitted Count
  igc: Remove MULR mask define
  igc: Remove igc_set_fw_version comment
  igc: Clean up nvm_operations structure
====================

Link: https://lore.kernel.org/r/20210204004259.3662059-1-anthony.l.nguyen@intel.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-02-04 21:26:28 -08:00

9970 lines
266 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2007 - 2018 Intel Corporation. */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
#include <linux/slab.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
#include <linux/net_tstamp.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if.h>
#include <linux/if_vlan.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sctp.h>
#include <linux/if_ether.h>
#include <linux/aer.h>
#include <linux/prefetch.h>
#include <linux/bpf.h>
#include <linux/bpf_trace.h>
#include <linux/pm_runtime.h>
#include <linux/etherdevice.h>
#ifdef CONFIG_IGB_DCA
#include <linux/dca.h>
#endif
#include <linux/i2c.h>
#include "igb.h"
enum queue_mode {
QUEUE_MODE_STRICT_PRIORITY,
QUEUE_MODE_STREAM_RESERVATION,
};
enum tx_queue_prio {
TX_QUEUE_PRIO_HIGH,
TX_QUEUE_PRIO_LOW,
};
char igb_driver_name[] = "igb";
static const char igb_driver_string[] =
"Intel(R) Gigabit Ethernet Network Driver";
static const char igb_copyright[] =
"Copyright (c) 2007-2014 Intel Corporation.";
static const struct e1000_info *igb_info_tbl[] = {
[board_82575] = &e1000_82575_info,
};
static const struct pci_device_id igb_pci_tbl[] = {
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
/* required last entry */
{0, }
};
MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
static void igb_setup_mrqc(struct igb_adapter *);
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
static void igb_remove(struct pci_dev *pdev);
static int igb_sw_init(struct igb_adapter *);
int igb_open(struct net_device *);
int igb_close(struct net_device *);
static void igb_configure(struct igb_adapter *);
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
static void igb_set_rx_mode(struct net_device *);
static void igb_update_phy_info(struct timer_list *);
static void igb_watchdog(struct timer_list *);
static void igb_watchdog_task(struct work_struct *);
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
static void igb_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *stats);
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
static void igb_set_uta(struct igb_adapter *adapter, bool set);
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
static irqreturn_t igb_msix_ring(int irq, void *);
#ifdef CONFIG_IGB_DCA
static void igb_update_dca(struct igb_q_vector *);
static void igb_setup_dca(struct igb_adapter *);
#endif /* CONFIG_IGB_DCA */
static int igb_poll(struct napi_struct *, int);
static bool igb_clean_tx_irq(struct igb_q_vector *, int);
static int igb_clean_rx_irq(struct igb_q_vector *, int);
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
static void igb_reset_task(struct work_struct *);
static void igb_vlan_mode(struct net_device *netdev,
netdev_features_t features);
static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
static void igb_restore_vlan(struct igb_adapter *);
static void igb_rar_set_index(struct igb_adapter *, u32);
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
static void igb_flush_mac_table(struct igb_adapter *);
static int igb_available_rars(struct igb_adapter *, u8);
static void igb_set_default_mac_filter(struct igb_adapter *);
static int igb_uc_sync(struct net_device *, const unsigned char *);
static int igb_uc_unsync(struct net_device *, const unsigned char *);
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
int vf, u16 vlan, u8 qos, __be16 vlan_proto);
static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
bool setting);
static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
bool setting);
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
struct ifla_vf_info *ivi);
static void igb_check_vf_rate_limit(struct igb_adapter *);
static void igb_nfc_filter_exit(struct igb_adapter *adapter);
static void igb_nfc_filter_restore(struct igb_adapter *adapter);
#ifdef CONFIG_PCI_IOV
static int igb_vf_configure(struct igb_adapter *adapter, int vf);
static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
static int igb_disable_sriov(struct pci_dev *dev);
static int igb_pci_disable_sriov(struct pci_dev *dev);
#endif
static int igb_suspend(struct device *);
static int igb_resume(struct device *);
static int igb_runtime_suspend(struct device *dev);
static int igb_runtime_resume(struct device *dev);
static int igb_runtime_idle(struct device *dev);
static const struct dev_pm_ops igb_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
igb_runtime_idle)
};
static void igb_shutdown(struct pci_dev *);
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
#ifdef CONFIG_IGB_DCA
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
.notifier_call = igb_notify_dca,
.next = NULL,
.priority = 0
};
#endif
#ifdef CONFIG_PCI_IOV
static unsigned int max_vfs;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
#endif /* CONFIG_PCI_IOV */
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);
static const struct pci_error_handlers igb_err_handler = {
.error_detected = igb_io_error_detected,
.slot_reset = igb_io_slot_reset,
.resume = igb_io_resume,
};
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
static struct pci_driver igb_driver = {
.name = igb_driver_name,
.id_table = igb_pci_tbl,
.probe = igb_probe,
.remove = igb_remove,
#ifdef CONFIG_PM
.driver.pm = &igb_pm_ops,
#endif
.shutdown = igb_shutdown,
.sriov_configure = igb_pci_sriov_configure,
.err_handler = &igb_err_handler
};
MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL v2");
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
struct igb_reg_info {
u32 ofs;
char *name;
};
static const struct igb_reg_info igb_reg_info_tbl[] = {
/* General Registers */
{E1000_CTRL, "CTRL"},
{E1000_STATUS, "STATUS"},
{E1000_CTRL_EXT, "CTRL_EXT"},
/* Interrupt Registers */
{E1000_ICR, "ICR"},
/* RX Registers */
{E1000_RCTL, "RCTL"},
{E1000_RDLEN(0), "RDLEN"},
{E1000_RDH(0), "RDH"},
{E1000_RDT(0), "RDT"},
{E1000_RXDCTL(0), "RXDCTL"},
{E1000_RDBAL(0), "RDBAL"},
{E1000_RDBAH(0), "RDBAH"},
/* TX Registers */
{E1000_TCTL, "TCTL"},
{E1000_TDBAL(0), "TDBAL"},
{E1000_TDBAH(0), "TDBAH"},
{E1000_TDLEN(0), "TDLEN"},
{E1000_TDH(0), "TDH"},
{E1000_TDT(0), "TDT"},
{E1000_TXDCTL(0), "TXDCTL"},
{E1000_TDFH, "TDFH"},
{E1000_TDFT, "TDFT"},
{E1000_TDFHS, "TDFHS"},
{E1000_TDFPC, "TDFPC"},
/* List Terminator */
{}
};
/* igb_regdump - register printout routine */
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
int n = 0;
char rname[16];
u32 regs[8];
switch (reginfo->ofs) {
case E1000_RDLEN(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_RDLEN(n));
break;
case E1000_RDH(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_RDH(n));
break;
case E1000_RDT(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_RDT(n));
break;
case E1000_RXDCTL(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_RXDCTL(n));
break;
case E1000_RDBAL(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_RDBAL(n));
break;
case E1000_RDBAH(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_RDBAH(n));
break;
case E1000_TDBAL(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_TDBAL(n));
break;
case E1000_TDBAH(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_TDBAH(n));
break;
case E1000_TDLEN(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_TDLEN(n));
break;
case E1000_TDH(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_TDH(n));
break;
case E1000_TDT(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_TDT(n));
break;
case E1000_TXDCTL(0):
for (n = 0; n < 4; n++)
regs[n] = rd32(E1000_TXDCTL(n));
break;
default:
pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
return;
}
snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
regs[2], regs[3]);
}
/* igb_dump - Print registers, Tx-rings and Rx-rings */
static void igb_dump(struct igb_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
struct igb_reg_info *reginfo;
struct igb_ring *tx_ring;
union e1000_adv_tx_desc *tx_desc;
struct my_u0 { u64 a; u64 b; } *u0;
struct igb_ring *rx_ring;
union e1000_adv_rx_desc *rx_desc;
u32 staterr;
u16 i, n;
if (!netif_msg_hw(adapter))
return;
/* Print netdevice Info */
if (netdev) {
dev_info(&adapter->pdev->dev, "Net device Info\n");
pr_info("Device Name state trans_start\n");
pr_info("%-15s %016lX %016lX\n", netdev->name,
netdev->state, dev_trans_start(netdev));
}
/* Print Registers */
dev_info(&adapter->pdev->dev, "Register Dump\n");
pr_info(" Register Name Value\n");
for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
reginfo->name; reginfo++) {
igb_regdump(hw, reginfo);
}
/* Print TX Ring Summary */
if (!netdev || !netif_running(netdev))
goto exit;
dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
for (n = 0; n < adapter->num_tx_queues; n++) {
struct igb_tx_buffer *buffer_info;
tx_ring = adapter->tx_ring[n];
buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
n, tx_ring->next_to_use, tx_ring->next_to_clean,
(u64)dma_unmap_addr(buffer_info, dma),
dma_unmap_len(buffer_info, len),
buffer_info->next_to_watch,
(u64)buffer_info->time_stamp);
}
/* Print TX Rings */
if (!netif_msg_tx_done(adapter))
goto rx_ring_summary;
dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
/* Transmit Descriptor Formats
*
* Advanced Transmit Descriptor
* +--------------------------------------------------------------+
* 0 | Buffer Address [63:0] |
* +--------------------------------------------------------------+
* 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
* +--------------------------------------------------------------+
* 63 46 45 40 39 38 36 35 32 31 24 15 0
*/
for (n = 0; n < adapter->num_tx_queues; n++) {
tx_ring = adapter->tx_ring[n];
pr_info("------------------------------------\n");
pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
pr_info("------------------------------------\n");
pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
const char *next_desc;
struct igb_tx_buffer *buffer_info;
tx_desc = IGB_TX_DESC(tx_ring, i);
buffer_info = &tx_ring->tx_buffer_info[i];
u0 = (struct my_u0 *)tx_desc;
if (i == tx_ring->next_to_use &&
i == tx_ring->next_to_clean)
next_desc = " NTC/U";
else if (i == tx_ring->next_to_use)
next_desc = " NTU";
else if (i == tx_ring->next_to_clean)
next_desc = " NTC";
else
next_desc = "";
pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
i, le64_to_cpu(u0->a),
le64_to_cpu(u0->b),
(u64)dma_unmap_addr(buffer_info, dma),
dma_unmap_len(buffer_info, len),
buffer_info->next_to_watch,
(u64)buffer_info->time_stamp,
buffer_info->skb, next_desc);
if (netif_msg_pktdata(adapter) && buffer_info->skb)
print_hex_dump(KERN_INFO, "",
DUMP_PREFIX_ADDRESS,
16, 1, buffer_info->skb->data,
dma_unmap_len(buffer_info, len),
true);
}
}
/* Print RX Rings Summary */
rx_ring_summary:
dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
pr_info("Queue [NTU] [NTC]\n");
for (n = 0; n < adapter->num_rx_queues; n++) {
rx_ring = adapter->rx_ring[n];
pr_info(" %5d %5X %5X\n",
n, rx_ring->next_to_use, rx_ring->next_to_clean);
}
/* Print RX Rings */
if (!netif_msg_rx_status(adapter))
goto exit;
dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
/* Advanced Receive Descriptor (Read) Format
* 63 1 0
* +-----------------------------------------------------+
* 0 | Packet Buffer Address [63:1] |A0/NSE|
* +----------------------------------------------+------+
* 8 | Header Buffer Address [63:1] | DD |
* +-----------------------------------------------------+
*
*
* Advanced Receive Descriptor (Write-Back) Format
*
* 63 48 47 32 31 30 21 20 17 16 4 3 0
* +------------------------------------------------------+
* 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
* | Checksum Ident | | | | Type | Type |
* +------------------------------------------------------+
* 8 | VLAN Tag | Length | Extended Error | Extended Status |
* +------------------------------------------------------+
* 63 48 47 32 31 20 19 0
*/
for (n = 0; n < adapter->num_rx_queues; n++) {
rx_ring = adapter->rx_ring[n];
pr_info("------------------------------------\n");
pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
pr_info("------------------------------------\n");
pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
for (i = 0; i < rx_ring->count; i++) {
const char *next_desc;
struct igb_rx_buffer *buffer_info;
buffer_info = &rx_ring->rx_buffer_info[i];
rx_desc = IGB_RX_DESC(rx_ring, i);
u0 = (struct my_u0 *)rx_desc;
staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
if (i == rx_ring->next_to_use)
next_desc = " NTU";
else if (i == rx_ring->next_to_clean)
next_desc = " NTC";
else
next_desc = "";
if (staterr & E1000_RXD_STAT_DD) {
/* Descriptor Done */
pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
"RWB", i,
le64_to_cpu(u0->a),
le64_to_cpu(u0->b),
next_desc);
} else {
pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
"R ", i,
le64_to_cpu(u0->a),
le64_to_cpu(u0->b),
(u64)buffer_info->dma,
next_desc);
if (netif_msg_pktdata(adapter) &&
buffer_info->dma && buffer_info->page) {
print_hex_dump(KERN_INFO, "",
DUMP_PREFIX_ADDRESS,
16, 1,
page_address(buffer_info->page) +
buffer_info->page_offset,
igb_rx_bufsz(rx_ring), true);
}
}
}
}
exit:
return;
}
/**
* igb_get_i2c_data - Reads the I2C SDA data bit
* @data: opaque pointer to adapter struct
*
* Returns the I2C data bit value
**/
static int igb_get_i2c_data(void *data)
{
struct igb_adapter *adapter = (struct igb_adapter *)data;
struct e1000_hw *hw = &adapter->hw;
s32 i2cctl = rd32(E1000_I2CPARAMS);
return !!(i2cctl & E1000_I2C_DATA_IN);
}
/**
* igb_set_i2c_data - Sets the I2C data bit
* @data: pointer to hardware structure
* @state: I2C data value (0 or 1) to set
*
* Sets the I2C data bit
**/
static void igb_set_i2c_data(void *data, int state)
{
struct igb_adapter *adapter = (struct igb_adapter *)data;
struct e1000_hw *hw = &adapter->hw;
s32 i2cctl = rd32(E1000_I2CPARAMS);
if (state)
i2cctl |= E1000_I2C_DATA_OUT;
else
i2cctl &= ~E1000_I2C_DATA_OUT;
i2cctl &= ~E1000_I2C_DATA_OE_N;
i2cctl |= E1000_I2C_CLK_OE_N;
wr32(E1000_I2CPARAMS, i2cctl);
wrfl();
}
/**
* igb_set_i2c_clk - Sets the I2C SCL clock
* @data: pointer to hardware structure
* @state: state to set clock
*
* Sets the I2C clock line to state
**/
static void igb_set_i2c_clk(void *data, int state)
{
struct igb_adapter *adapter = (struct igb_adapter *)data;
struct e1000_hw *hw = &adapter->hw;
s32 i2cctl = rd32(E1000_I2CPARAMS);
if (state) {
i2cctl |= E1000_I2C_CLK_OUT;
i2cctl &= ~E1000_I2C_CLK_OE_N;
} else {
i2cctl &= ~E1000_I2C_CLK_OUT;
i2cctl &= ~E1000_I2C_CLK_OE_N;
}
wr32(E1000_I2CPARAMS, i2cctl);
wrfl();
}
/**
* igb_get_i2c_clk - Gets the I2C SCL clock state
* @data: pointer to hardware structure
*
* Gets the I2C clock state
**/
static int igb_get_i2c_clk(void *data)
{
struct igb_adapter *adapter = (struct igb_adapter *)data;
struct e1000_hw *hw = &adapter->hw;
s32 i2cctl = rd32(E1000_I2CPARAMS);
return !!(i2cctl & E1000_I2C_CLK_IN);
}
static const struct i2c_algo_bit_data igb_i2c_algo = {
.setsda = igb_set_i2c_data,
.setscl = igb_set_i2c_clk,
.getsda = igb_get_i2c_data,
.getscl = igb_get_i2c_clk,
.udelay = 5,
.timeout = 20,
};
/**
* igb_get_hw_dev - return device
* @hw: pointer to hardware structure
*
* used by hardware layer to print debugging information
**/
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
{
struct igb_adapter *adapter = hw->back;
return adapter->netdev;
}
/**
* igb_init_module - Driver Registration Routine
*
* igb_init_module is the first routine called when the driver is
* loaded. All it does is register with the PCI subsystem.
**/
static int __init igb_init_module(void)
{
int ret;
pr_info("%s\n", igb_driver_string);
pr_info("%s\n", igb_copyright);
#ifdef CONFIG_IGB_DCA
dca_register_notify(&dca_notifier);
#endif
ret = pci_register_driver(&igb_driver);
return ret;
}
module_init(igb_init_module);
/**
* igb_exit_module - Driver Exit Cleanup Routine
*
* igb_exit_module is called just before the driver is removed
* from memory.
**/
static void __exit igb_exit_module(void)
{
#ifdef CONFIG_IGB_DCA
dca_unregister_notify(&dca_notifier);
#endif
pci_unregister_driver(&igb_driver);
}
module_exit(igb_exit_module);
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
* igb_cache_ring_register - Descriptor ring to register mapping
* @adapter: board private structure to initialize
*
* Once we know the feature-set enabled for the device, we'll cache
* the register offset the descriptor ring is assigned to.
**/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
int i = 0, j = 0;
u32 rbase_offset = adapter->vfs_allocated_count;
switch (adapter->hw.mac.type) {
case e1000_82576:
/* The queues are allocated for virtualization such that VF 0
* is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
* In order to avoid collision we start at the first free queue
* and continue consuming queues in the same sequence
*/
if (adapter->vfs_allocated_count) {
for (; i < adapter->rss_queues; i++)
adapter->rx_ring[i]->reg_idx = rbase_offset +
Q_IDX_82576(i);
}
fallthrough;
case e1000_82575:
case e1000_82580:
case e1000_i350:
case e1000_i354:
case e1000_i210:
case e1000_i211:
default:
for (; i < adapter->num_rx_queues; i++)
adapter->rx_ring[i]->reg_idx = rbase_offset + i;
for (; j < adapter->num_tx_queues; j++)
adapter->tx_ring[j]->reg_idx = rbase_offset + j;
break;
}
}
u32 igb_rd32(struct e1000_hw *hw, u32 reg)
{
struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
u32 value = 0;
if (E1000_REMOVED(hw_addr))
return ~value;
value = readl(&hw_addr[reg]);
/* reads should not return all F's */
if (!(~value) && (!reg || !(~readl(hw_addr)))) {
struct net_device *netdev = igb->netdev;
hw->hw_addr = NULL;
netdev_err(netdev, "PCIe link lost\n");
WARN(pci_device_is_present(igb->pdev),
"igb: Failed to read reg 0x%x!\n", reg);
}
return value;
}
/**
* igb_write_ivar - configure ivar for given MSI-X vector
* @hw: pointer to the HW structure
* @msix_vector: vector number we are allocating to a given ring
* @index: row index of IVAR register to write within IVAR table
* @offset: column offset of in IVAR, should be multiple of 8
*
* This function is intended to handle the writing of the IVAR register
* for adapters 82576 and newer. The IVAR table consists of 2 columns,
* each containing an cause allocation for an Rx and Tx ring, and a
* variable number of rows depending on the number of queues supported.
**/
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
int index, int offset)
{
u32 ivar = array_rd32(E1000_IVAR0, index);
/* clear any bits that are currently set */
ivar &= ~((u32)0xFF << offset);
/* write vector and valid bit */
ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
array_wr32(E1000_IVAR0, index, ivar);
}
#define IGB_N0_QUEUE -1
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
{
struct igb_adapter *adapter = q_vector->adapter;
struct e1000_hw *hw = &adapter->hw;
int rx_queue = IGB_N0_QUEUE;
int tx_queue = IGB_N0_QUEUE;
u32 msixbm = 0;
if (q_vector->rx.ring)
rx_queue = q_vector->rx.ring->reg_idx;
if (q_vector->tx.ring)
tx_queue = q_vector->tx.ring->reg_idx;
switch (hw->mac.type) {
case e1000_82575:
/* The 82575 assigns vectors using a bitmask, which matches the
* bitmask for the EICR/EIMS/EIMC registers. To assign one
* or more queues to a vector, we write the appropriate bits
* into the MSIXBM register for that vector.
*/
if (rx_queue > IGB_N0_QUEUE)
msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
if (tx_queue > IGB_N0_QUEUE)
msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
msixbm |= E1000_EIMS_OTHER;
array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
q_vector->eims_value = msixbm;
break;
case e1000_82576:
/* 82576 uses a table that essentially consists of 2 columns
* with 8 rows. The ordering is column-major so we use the
* lower 3 bits as the row index, and the 4th bit as the
* column offset.
*/
if (rx_queue > IGB_N0_QUEUE)
igb_write_ivar(hw, msix_vector,
rx_queue & 0x7,
(rx_queue & 0x8) << 1);
if (tx_queue > IGB_N0_QUEUE)
igb_write_ivar(hw, msix_vector,
tx_queue & 0x7,
((tx_queue & 0x8) << 1) + 8);
q_vector->eims_value = BIT(msix_vector);
break;
case e1000_82580:
case e1000_i350:
case e1000_i354:
case e1000_i210:
case e1000_i211:
/* On 82580 and newer adapters the scheme is similar to 82576
* however instead of ordering column-major we have things
* ordered row-major. So we traverse the table by using
* bit 0 as the column offset, and the remaining bits as the
* row index.
*/
if (rx_queue > IGB_N0_QUEUE)
igb_write_ivar(hw, msix_vector,
rx_queue >> 1,
(rx_queue & 0x1) << 4);
if (tx_queue > IGB_N0_QUEUE)
igb_write_ivar(hw, msix_vector,
tx_queue >> 1,
((tx_queue & 0x1) << 4) + 8);
q_vector->eims_value = BIT(msix_vector);
break;
default:
BUG();
break;
}
/* add q_vector eims value to global eims_enable_mask */
adapter->eims_enable_mask |= q_vector->eims_value;
/* configure q_vector to set itr on first interrupt */
q_vector->set_itr = 1;
}
/**
* igb_configure_msix - Configure MSI-X hardware
* @adapter: board private structure to initialize
*
* igb_configure_msix sets up the hardware to properly
* generate MSI-X interrupts.
**/
static void igb_configure_msix(struct igb_adapter *adapter)
{
u32 tmp;
int i, vector = 0;
struct e1000_hw *hw = &adapter->hw;
adapter->eims_enable_mask = 0;
/* set vector for other causes, i.e. link changes */
switch (hw->mac.type) {
case e1000_82575:
tmp = rd32(E1000_CTRL_EXT);
/* enable MSI-X PBA support*/
tmp |= E1000_CTRL_EXT_PBA_CLR;
/* Auto-Mask interrupts upon ICR read. */
tmp |= E1000_CTRL_EXT_EIAME;
tmp |= E1000_CTRL_EXT_IRCA;
wr32(E1000_CTRL_EXT, tmp);
/* enable msix_other interrupt */
array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
adapter->eims_other = E1000_EIMS_OTHER;
break;
case e1000_82576:
case e1000_82580:
case e1000_i350:
case e1000_i354:
case e1000_i210:
case e1000_i211:
/* Turn on MSI-X capability first, or our settings
* won't stick. And it will take days to debug.
*/
wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
E1000_GPIE_PBA | E1000_GPIE_EIAME |
E1000_GPIE_NSICR);
/* enable msix_other interrupt */
adapter->eims_other = BIT(vector);
tmp = (vector++ | E1000_IVAR_VALID) << 8;
wr32(E1000_IVAR_MISC, tmp);
break;
default:
/* do nothing, since nothing else supports MSI-X */
break;
} /* switch (hw->mac.type) */
adapter->eims_enable_mask |= adapter->eims_other;
for (i = 0; i < adapter->num_q_vectors; i++)
igb_assign_vector(adapter->q_vector[i], vector++);
wrfl();
}
/**
* igb_request_msix - Initialize MSI-X interrupts
* @adapter: board private structure to initialize
*
* igb_request_msix allocates MSI-X vectors and requests interrupts from the
* kernel.
**/
static int igb_request_msix(struct igb_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int i, err = 0, vector = 0, free_vector = 0;
err = request_irq(adapter->msix_entries[vector].vector,
igb_msix_other, 0, netdev->name, adapter);
if (err)
goto err_out;
for (i = 0; i < adapter->num_q_vectors; i++) {
struct igb_q_vector *q_vector = adapter->q_vector[i];
vector++;
q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
if (q_vector->rx.ring && q_vector->tx.ring)
sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
q_vector->rx.ring->queue_index);
else if (q_vector->tx.ring)
sprintf(q_vector->name, "%s-tx-%u", netdev->name,
q_vector->tx.ring->queue_index);
else if (q_vector->rx.ring)
sprintf(q_vector->name, "%s-rx-%u", netdev->name,
q_vector->rx.ring->queue_index);
else
sprintf(q_vector->name, "%s-unused", netdev->name);
err = request_irq(adapter->msix_entries[vector].vector,
igb_msix_ring, 0, q_vector->name,
q_vector);
if (err)
goto err_free;
}
igb_configure_msix(adapter);
return 0;
err_free:
/* free already assigned IRQs */
free_irq(adapter->msix_entries[free_vector++].vector, adapter);
vector--;
for (i = 0; i < vector; i++) {
free_irq(adapter->msix_entries[free_vector++].vector,
adapter->q_vector[i]);
}
err_out:
return err;
}
/**
* igb_free_q_vector - Free memory allocated for specific interrupt vector
* @adapter: board private structure to initialize
* @v_idx: Index of vector to be freed
*
* This function frees the memory allocated to the q_vector.
**/
static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
{
struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
adapter->q_vector[v_idx] = NULL;
/* igb_get_stats64() might access the rings on this vector,
* we must wait a grace period before freeing it.
*/
if (q_vector)
kfree_rcu(q_vector, rcu);
}
/**
* igb_reset_q_vector - Reset config for interrupt vector
* @adapter: board private structure to initialize
* @v_idx: Index of vector to be reset
*
* If NAPI is enabled it will delete any references to the
* NAPI struct. This is preparation for igb_free_q_vector.
**/
static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
{
struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
/* Coming from igb_set_interrupt_capability, the vectors are not yet
* allocated. So, q_vector is NULL so we should stop here.
*/
if (!q_vector)
return;
if (q_vector->tx.ring)
adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
if (q_vector->rx.ring)
adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
netif_napi_del(&q_vector->napi);
}
static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
int v_idx = adapter->num_q_vectors;
if (adapter->flags & IGB_FLAG_HAS_MSIX)
pci_disable_msix(adapter->pdev);
else if (adapter->flags & IGB_FLAG_HAS_MSI)
pci_disable_msi(adapter->pdev);
while (v_idx--)
igb_reset_q_vector(adapter, v_idx);
}
/**
* igb_free_q_vectors - Free memory allocated for interrupt vectors
* @adapter: board private structure to initialize
*
* This function frees the memory allocated to the q_vectors. In addition if
* NAPI is enabled it will delete any references to the NAPI struct prior
* to freeing the q_vector.
**/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
int v_idx = adapter->num_q_vectors;
adapter->num_tx_queues = 0;
adapter->num_rx_queues = 0;
adapter->num_q_vectors = 0;
while (v_idx--) {
igb_reset_q_vector(adapter, v_idx);
igb_free_q_vector(adapter, v_idx);
}
}
/**
* igb_clear_interrupt_scheme - reset the device to a state of no interrupts
* @adapter: board private structure to initialize
*
* This function resets the device so that it has 0 Rx queues, Tx queues, and
* MSI-X interrupts allocated.
*/
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
igb_free_q_vectors(adapter);
igb_reset_interrupt_capability(adapter);
}
/**
* igb_set_interrupt_capability - set MSI or MSI-X if supported
* @adapter: board private structure to initialize
* @msix: boolean value of MSIX capability
*
* Attempt to configure interrupts using the best available
* capabilities of the hardware and kernel.
**/
static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
{
int err;
int numvecs, i;
if (!msix)
goto msi_only;
adapter->flags |= IGB_FLAG_HAS_MSIX;
/* Number of supported queues. */
adapter->num_rx_queues = adapter->rss_queues;
if (adapter->vfs_allocated_count)
adapter->num_tx_queues = 1;
else
adapter->num_tx_queues = adapter->rss_queues;
/* start with one vector for every Rx queue */
numvecs = adapter->num_rx_queues;
/* if Tx handler is separate add 1 for every Tx queue */
if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
numvecs += adapter->num_tx_queues;
/* store the number of vectors reserved for queues */
adapter->num_q_vectors = numvecs;
/* add 1 vector for link status interrupts */
numvecs++;
for (i = 0; i < numvecs; i++)
adapter->msix_entries[i].entry = i;
err = pci_enable_msix_range(adapter->pdev,
adapter->msix_entries,
numvecs,
numvecs);
if (err > 0)
return;
igb_reset_interrupt_capability(adapter);
/* If we can't do MSI-X, try MSI */
msi_only:
adapter->flags &= ~IGB_FLAG_HAS_MSIX;
#ifdef CONFIG_PCI_IOV
/* disable SR-IOV for non MSI-X configurations */
if (adapter->vf_data) {
struct e1000_hw *hw = &adapter->hw;
/* disable iov and allow time for transactions to clear */
pci_disable_sriov(adapter->pdev);
msleep(500);
kfree(adapter->vf_mac_list);
adapter->vf_mac_list = NULL;
kfree(adapter->vf_data);
adapter->vf_data = NULL;
wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
wrfl();
msleep(100);
dev_info(&adapter->pdev->dev, "IOV Disabled\n");
}
#endif
adapter->vfs_allocated_count = 0;
adapter->rss_queues = 1;
adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
adapter->num_rx_queues = 1;
adapter->num_tx_queues = 1;
adapter->num_q_vectors = 1;
if (!pci_enable_msi(adapter->pdev))
adapter->flags |= IGB_FLAG_HAS_MSI;
}
static void igb_add_ring(struct igb_ring *ring,
struct igb_ring_container *head)
{
head->ring = ring;
head->count++;
}
/**
* igb_alloc_q_vector - Allocate memory for a single interrupt vector
* @adapter: board private structure to initialize
* @v_count: q_vectors allocated on adapter, used for ring interleaving
* @v_idx: index of vector in adapter struct
* @txr_count: total number of Tx rings to allocate
* @txr_idx: index of first Tx ring to allocate
* @rxr_count: total number of Rx rings to allocate
* @rxr_idx: index of first Rx ring to allocate
*
* We allocate one q_vector. If allocation fails we return -ENOMEM.
**/
static int igb_alloc_q_vector(struct igb_adapter *adapter,
int v_count, int v_idx,
int txr_count, int txr_idx,
int rxr_count, int rxr_idx)
{
struct igb_q_vector *q_vector;
struct igb_ring *ring;
int ring_count;
size_t size;
/* igb only supports 1 Tx and/or 1 Rx queue per vector */
if (txr_count > 1 || rxr_count > 1)
return -ENOMEM;
ring_count = txr_count + rxr_count;
size = struct_size(q_vector, ring, ring_count);
/* allocate q_vector and rings */
q_vector = adapter->q_vector[v_idx];
if (!q_vector) {
q_vector = kzalloc(size, GFP_KERNEL);
} else if (size > ksize(q_vector)) {
kfree_rcu(q_vector, rcu);
q_vector = kzalloc(size, GFP_KERNEL);
} else {
memset(q_vector, 0, size);
}
if (!q_vector)
return -ENOMEM;
/* initialize NAPI */
netif_napi_add(adapter->netdev, &q_vector->napi,
igb_poll, 64);
/* tie q_vector and adapter together */
adapter->q_vector[v_idx] = q_vector;
q_vector->adapter = adapter;
/* initialize work limits */
q_vector->tx.work_limit = adapter->tx_work_limit;
/* initialize ITR configuration */
q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
q_vector->itr_val = IGB_START_ITR;
/* initialize pointer to rings */
ring = q_vector->ring;
/* intialize ITR */
if (rxr_count) {
/* rx or rx/tx vector */
if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
q_vector->itr_val = adapter->rx_itr_setting;
} else {
/* tx only vector */
if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
q_vector->itr_val = adapter->tx_itr_setting;
}
if (txr_count) {
/* assign generic ring traits */
ring->dev = &adapter->pdev->dev;
ring->netdev = adapter->netdev;
/* configure backlink on ring */
ring->q_vector = q_vector;
/* update q_vector Tx values */
igb_add_ring(ring, &q_vector->tx);
/* For 82575, context index must be unique per ring. */
if (adapter->hw.mac.type == e1000_82575)
set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
/* apply Tx specific ring traits */
ring->count = adapter->tx_ring_count;
ring->queue_index = txr_idx;
ring->cbs_enable = false;
ring->idleslope = 0;
ring->sendslope = 0;
ring->hicredit = 0;
ring->locredit = 0;
u64_stats_init(&ring->tx_syncp);
u64_stats_init(&ring->tx_syncp2);
/* assign ring to adapter */
adapter->tx_ring[txr_idx] = ring;
/* push pointer to next ring */
ring++;
}
if (rxr_count) {
/* assign generic ring traits */
ring->dev = &adapter->pdev->dev;
ring->netdev = adapter->netdev;
/* configure backlink on ring */
ring->q_vector = q_vector;
/* update q_vector Rx values */
igb_add_ring(ring, &q_vector->rx);
/* set flag indicating ring supports SCTP checksum offload */
if (adapter->hw.mac.type >= e1000_82576)
set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
/* On i350, i354, i210, and i211, loopback VLAN packets
* have the tag byte-swapped.
*/
if (adapter->hw.mac.type >= e1000_i350)
set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
/* apply Rx specific ring traits */
ring->count = adapter->rx_ring_count;
ring->queue_index = rxr_idx;
u64_stats_init(&ring->rx_syncp);
/* assign ring to adapter */
adapter->rx_ring[rxr_idx] = ring;
}
return 0;
}
/**
* igb_alloc_q_vectors - Allocate memory for interrupt vectors
* @adapter: board private structure to initialize
*
* We allocate one q_vector per queue interrupt. If allocation fails we
* return -ENOMEM.
**/
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
{
int q_vectors = adapter->num_q_vectors;
int rxr_remaining = adapter->num_rx_queues;
int txr_remaining = adapter->num_tx_queues;
int rxr_idx = 0, txr_idx = 0, v_idx = 0;
int err;
if (q_vectors >= (rxr_remaining + txr_remaining)) {
for (; rxr_remaining; v_idx++) {
err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
0, 0, 1, rxr_idx);
if (err)
goto err_out;
/* update counts and index */
rxr_remaining--;
rxr_idx++;
}
}
for (; v_idx < q_vectors; v_idx++) {
int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
tqpv, txr_idx, rqpv, rxr_idx);
if (err)
goto err_out;
/* update counts and index */
rxr_remaining -= rqpv;
txr_remaining -= tqpv;
rxr_idx++;
txr_idx++;
}
return 0;
err_out:
adapter->num_tx_queues = 0;
adapter->num_rx_queues = 0;
adapter->num_q_vectors = 0;
while (v_idx--)
igb_free_q_vector(adapter, v_idx);
return -ENOMEM;
}
/**
* igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
* @adapter: board private structure to initialize
* @msix: boolean value of MSIX capability
*
* This function initializes the interrupts and allocates all of the queues.
**/
static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
{
struct pci_dev *pdev = adapter->pdev;
int err;
igb_set_interrupt_capability(adapter, msix);
err = igb_alloc_q_vectors(adapter);
if (err) {
dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
goto err_alloc_q_vectors;
}
igb_cache_ring_register(adapter);
return 0;
err_alloc_q_vectors:
igb_reset_interrupt_capability(adapter);
return err;
}
/**
* igb_request_irq - initialize interrupts
* @adapter: board private structure to initialize
*
* Attempts to configure interrupts using the best available
* capabilities of the hardware and kernel.
**/
static int igb_request_irq(struct igb_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
int err = 0;
if (adapter->flags & IGB_FLAG_HAS_MSIX) {
err = igb_request_msix(adapter);
if (!err)
goto request_done;
/* fall back to MSI */
igb_free_all_tx_resources(adapter);
igb_free_all_rx_resources(adapter);
igb_clear_interrupt_scheme(adapter);
err = igb_init_interrupt_scheme(adapter, false);
if (err)
goto request_done;
igb_setup_all_tx_resources(adapter);
igb_setup_all_rx_resources(adapter);
igb_configure(adapter);
}
igb_assign_vector(adapter->q_vector[0], 0);
if (adapter->flags & IGB_FLAG_HAS_MSI) {
err = request_irq(pdev->irq, igb_intr_msi, 0,
netdev->name, adapter);
if (!err)
goto request_done;
/* fall back to legacy interrupts */
igb_reset_interrupt_capability(adapter);
adapter->flags &= ~IGB_FLAG_HAS_MSI;
}
err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
netdev->name, adapter);
if (err)
dev_err(&pdev->dev, "Error %d getting interrupt\n",
err);
request_done:
return err;
}
static void igb_free_irq(struct igb_adapter *adapter)
{
if (adapter->flags & IGB_FLAG_HAS_MSIX) {
int vector = 0, i;
free_irq(adapter->msix_entries[vector++].vector, adapter);
for (i = 0; i < adapter->num_q_vectors; i++)
free_irq(adapter->msix_entries[vector++].vector,
adapter->q_vector[i]);
} else {
free_irq(adapter->pdev->irq, adapter);
}
}
/**
* igb_irq_disable - Mask off interrupt generation on the NIC
* @adapter: board private structure
**/
static void igb_irq_disable(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
/* we need to be careful when disabling interrupts. The VFs are also
* mapped into these registers and so clearing the bits can cause
* issues on the VF drivers so we only need to clear what we set
*/
if (adapter->flags & IGB_FLAG_HAS_MSIX) {
u32 regval = rd32(E1000_EIAM);
wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
wr32(E1000_EIMC, adapter->eims_enable_mask);
regval = rd32(E1000_EIAC);
wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
}
wr32(E1000_IAM, 0);
wr32(E1000_IMC, ~0);
wrfl();
if (adapter->flags & IGB_FLAG_HAS_MSIX) {
int i;
for (i = 0; i < adapter->num_q_vectors; i++)
synchronize_irq(adapter->msix_entries[i].vector);
} else {
synchronize_irq(adapter->pdev->irq);
}
}
/**
* igb_irq_enable - Enable default interrupt generation settings
* @adapter: board private structure
**/
static void igb_irq_enable(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
if (adapter->flags & IGB_FLAG_HAS_MSIX) {
u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
u32 regval = rd32(E1000_EIAC);
wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
regval = rd32(E1000_EIAM);
wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
wr32(E1000_EIMS, adapter->eims_enable_mask);
if (adapter->vfs_allocated_count) {
wr32(E1000_MBVFIMR, 0xFF);
ims |= E1000_IMS_VMMB;
}
wr32(E1000_IMS, ims);
} else {
wr32(E1000_IMS, IMS_ENABLE_MASK |
E1000_IMS_DRSTA);
wr32(E1000_IAM, IMS_ENABLE_MASK |
E1000_IMS_DRSTA);
}
}
static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u16 pf_id = adapter->vfs_allocated_count;
u16 vid = adapter->hw.mng_cookie.vlan_id;
u16 old_vid = adapter->mng_vlan_id;
if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
/* add VID to filter table */
igb_vfta_set(hw, vid, pf_id, true, true);
adapter->mng_vlan_id = vid;
} else {
adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
}
if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
(vid != old_vid) &&
!test_bit(old_vid, adapter->active_vlans)) {
/* remove VID from filter table */
igb_vfta_set(hw, vid, pf_id, false, true);
}
}
/**
* igb_release_hw_control - release control of the h/w to f/w
* @adapter: address of board private structure
*
* igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that the
* driver is no longer loaded.
**/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl_ext;
/* Let firmware take over control of h/w */
ctrl_ext = rd32(E1000_CTRL_EXT);
wr32(E1000_CTRL_EXT,
ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}
/**
* igb_get_hw_control - get control of the h/w from f/w
* @adapter: address of board private structure
*
* igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that
* the driver is loaded.
**/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl_ext;
/* Let firmware know the driver has taken over */
ctrl_ext = rd32(E1000_CTRL_EXT);
wr32(E1000_CTRL_EXT,
ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}
static void enable_fqtss(struct igb_adapter *adapter, bool enable)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
WARN_ON(hw->mac.type != e1000_i210);
if (enable)
adapter->flags |= IGB_FLAG_FQTSS;
else
adapter->flags &= ~IGB_FLAG_FQTSS;
if (netif_running(netdev))
schedule_work(&adapter->reset_task);
}
static bool is_fqtss_enabled(struct igb_adapter *adapter)
{
return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
}
static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
enum tx_queue_prio prio)
{
u32 val;
WARN_ON(hw->mac.type != e1000_i210);
WARN_ON(queue < 0 || queue > 4);
val = rd32(E1000_I210_TXDCTL(queue));
if (prio == TX_QUEUE_PRIO_HIGH)
val |= E1000_TXDCTL_PRIORITY;
else
val &= ~E1000_TXDCTL_PRIORITY;
wr32(E1000_I210_TXDCTL(queue), val);
}
static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
{
u32 val;
WARN_ON(hw->mac.type != e1000_i210);
WARN_ON(queue < 0 || queue > 1);
val = rd32(E1000_I210_TQAVCC(queue));
if (mode == QUEUE_MODE_STREAM_RESERVATION)
val |= E1000_TQAVCC_QUEUEMODE;
else
val &= ~E1000_TQAVCC_QUEUEMODE;
wr32(E1000_I210_TQAVCC(queue), val);
}
static bool is_any_cbs_enabled(struct igb_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++) {
if (adapter->tx_ring[i]->cbs_enable)
return true;
}
return false;
}
static bool is_any_txtime_enabled(struct igb_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++) {
if (adapter->tx_ring[i]->launchtime_enable)
return true;
}
return false;
}
/**
* igb_config_tx_modes - Configure "Qav Tx mode" features on igb
* @adapter: pointer to adapter struct
* @queue: queue number
*
* Configure CBS and Launchtime for a given hardware queue.
* Parameters are retrieved from the correct Tx ring, so
* igb_save_cbs_params() and igb_save_txtime_params() should be used
* for setting those correctly prior to this function being called.
**/
static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
{
struct igb_ring *ring = adapter->tx_ring[queue];
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
u32 tqavcc, tqavctrl;
u16 value;
WARN_ON(hw->mac.type != e1000_i210);
WARN_ON(queue < 0 || queue > 1);
/* If any of the Qav features is enabled, configure queues as SR and
* with HIGH PRIO. If none is, then configure them with LOW PRIO and
* as SP.
*/
if (ring->cbs_enable || ring->launchtime_enable) {
set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
} else {
set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
}
/* If CBS is enabled, set DataTranARB and config its parameters. */
if (ring->cbs_enable || queue == 0) {
/* i210 does not allow the queue 0 to be in the Strict
* Priority mode while the Qav mode is enabled, so,
* instead of disabling strict priority mode, we give
* queue 0 the maximum of credits possible.
*
* See section 8.12.19 of the i210 datasheet, "Note:
* Queue0 QueueMode must be set to 1b when
* TransmitMode is set to Qav."
*/
if (queue == 0 && !ring->cbs_enable) {
/* max "linkspeed" idleslope in kbps */
ring->idleslope = 1000000;
ring->hicredit = ETH_FRAME_LEN;
}
/* Always set data transfer arbitration to credit-based
* shaper algorithm on TQAVCTRL if CBS is enabled for any of
* the queues.
*/
tqavctrl = rd32(E1000_I210_TQAVCTRL);
tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
wr32(E1000_I210_TQAVCTRL, tqavctrl);
/* According to i210 datasheet section 7.2.7.7, we should set
* the 'idleSlope' field from TQAVCC register following the
* equation:
*
* For 100 Mbps link speed:
*
* value = BW * 0x7735 * 0.2 (E1)
*
* For 1000Mbps link speed:
*
* value = BW * 0x7735 * 2 (E2)
*
* E1 and E2 can be merged into one equation as shown below.
* Note that 'link-speed' is in Mbps.
*
* value = BW * 0x7735 * 2 * link-speed
* -------------- (E3)
* 1000
*
* 'BW' is the percentage bandwidth out of full link speed
* which can be found with the following equation. Note that
* idleSlope here is the parameter from this function which
* is in kbps.
*
* BW = idleSlope
* ----------------- (E4)
* link-speed * 1000
*
* That said, we can come up with a generic equation to
* calculate the value we should set it TQAVCC register by
* replacing 'BW' in E3 by E4. The resulting equation is:
*
* value = idleSlope * 0x7735 * 2 * link-speed
* ----------------- -------------- (E5)
* link-speed * 1000 1000
*
* 'link-speed' is present in both sides of the fraction so
* it is canceled out. The final equation is the following:
*
* value = idleSlope * 61034
* ----------------- (E6)
* 1000000
*
* NOTE: For i210, given the above, we can see that idleslope
* is represented in 16.38431 kbps units by the value at
* the TQAVCC register (1Gbps / 61034), which reduces
* the granularity for idleslope increments.
* For instance, if you want to configure a 2576kbps
* idleslope, the value to be written on the register
* would have to be 157.23. If rounded down, you end
* up with less bandwidth available than originally
* required (~2572 kbps). If rounded up, you end up
* with a higher bandwidth (~2589 kbps). Below the
* approach we take is to always round up the
* calculated value, so the resulting bandwidth might
* be slightly higher for some configurations.
*/
value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
tqavcc = rd32(E1000_I210_TQAVCC(queue));
tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
tqavcc |= value;
wr32(E1000_I210_TQAVCC(queue), tqavcc);
wr32(E1000_I210_TQAVHC(queue),
0x80000000 + ring->hicredit * 0x7735);
} else {
/* Set idleSlope to zero. */
tqavcc = rd32(E1000_I210_TQAVCC(queue));
tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
wr32(E1000_I210_TQAVCC(queue), tqavcc);
/* Set hiCredit to zero. */
wr32(E1000_I210_TQAVHC(queue), 0);
/* If CBS is not enabled for any queues anymore, then return to
* the default state of Data Transmission Arbitration on
* TQAVCTRL.
*/
if (!is_any_cbs_enabled(adapter)) {
tqavctrl = rd32(E1000_I210_TQAVCTRL);
tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
wr32(E1000_I210_TQAVCTRL, tqavctrl);
}
}
/* If LaunchTime is enabled, set DataTranTIM. */
if (ring->launchtime_enable) {
/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
* for any of the SR queues, and configure fetchtime delta.
* XXX NOTE:
* - LaunchTime will be enabled for all SR queues.
* - A fixed offset can be added relative to the launch
* time of all packets if configured at reg LAUNCH_OS0.
* We are keeping it as 0 for now (default value).
*/
tqavctrl = rd32(E1000_I210_TQAVCTRL);
tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
E1000_TQAVCTRL_FETCHTIME_DELTA;
wr32(E1000_I210_TQAVCTRL, tqavctrl);
} else {
/* If Launchtime is not enabled for any SR queues anymore,
* then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
* effectively disabling Launchtime.
*/
if (!is_any_txtime_enabled(adapter)) {
tqavctrl = rd32(E1000_I210_TQAVCTRL);
tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
wr32(E1000_I210_TQAVCTRL, tqavctrl);
}
}
/* XXX: In i210 controller the sendSlope and loCredit parameters from
* CBS are not configurable by software so we don't do any 'controller
* configuration' in respect to these parameters.
*/
netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
ring->cbs_enable ? "enabled" : "disabled",
ring->launchtime_enable ? "enabled" : "disabled",
queue,
ring->idleslope, ring->sendslope,
ring->hicredit, ring->locredit);
}
static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
bool enable)
{
struct igb_ring *ring;
if (queue < 0 || queue > adapter->num_tx_queues)
return -EINVAL;
ring = adapter->tx_ring[queue];
ring->launchtime_enable = enable;
return 0;
}
static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
bool enable, int idleslope, int sendslope,
int hicredit, int locredit)
{
struct igb_ring *ring;
if (queue < 0 || queue > adapter->num_tx_queues)
return -EINVAL;
ring = adapter->tx_ring[queue];
ring->cbs_enable = enable;
ring->idleslope = idleslope;
ring->sendslope = sendslope;
ring->hicredit = hicredit;
ring->locredit = locredit;
return 0;
}
/**
* igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
* @adapter: pointer to adapter struct
*
* Configure TQAVCTRL register switching the controller's Tx mode
* if FQTSS mode is enabled or disabled. Additionally, will issue
* a call to igb_config_tx_modes() per queue so any previously saved
* Tx parameters are applied.
**/
static void igb_setup_tx_mode(struct igb_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
u32 val;
/* Only i210 controller supports changing the transmission mode. */
if (hw->mac.type != e1000_i210)
return;
if (is_fqtss_enabled(adapter)) {
int i, max_queue;
/* Configure TQAVCTRL register: set transmit mode to 'Qav',
* set data fetch arbitration to 'round robin', set SP_WAIT_SR
* so SP queues wait for SR ones.
*/
val = rd32(E1000_I210_TQAVCTRL);
val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
val &= ~E1000_TQAVCTRL_DATAFETCHARB;
wr32(E1000_I210_TQAVCTRL, val);
/* Configure Tx and Rx packet buffers sizes as described in
* i210 datasheet section 7.2.7.7.
*/
val = rd32(E1000_TXPBS);
val &= ~I210_TXPBSIZE_MASK;
val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
wr32(E1000_TXPBS, val);
val = rd32(E1000_RXPBS);
val &= ~I210_RXPBSIZE_MASK;
val |= I210_RXPBSIZE_PB_30KB;
wr32(E1000_RXPBS, val);
/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
* register should not exceed the buffer size programmed in
* TXPBS. The smallest buffer size programmed in TXPBS is 4kB
* so according to the datasheet we should set MAX_TPKT_SIZE to
* 4kB / 64.
*
* However, when we do so, no frame from queue 2 and 3 are
* transmitted. It seems the MAX_TPKT_SIZE should not be great
* or _equal_ to the buffer size programmed in TXPBS. For this
* reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
*/
val = (4096 - 1) / 64;
wr32(E1000_I210_DTXMXPKTSZ, val);
/* Since FQTSS mode is enabled, apply any CBS configuration
* previously set. If no previous CBS configuration has been
* done, then the initial configuration is applied, which means
* CBS is disabled.
*/
max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
adapter->num_tx_queues : I210_SR_QUEUES_NUM;
for (i = 0; i < max_queue; i++) {
igb_config_tx_modes(adapter, i);
}
} else {
wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
val = rd32(E1000_I210_TQAVCTRL);
/* According to Section 8.12.21, the other flags we've set when
* enabling FQTSS are not relevant when disabling FQTSS so we
* don't set they here.
*/
val &= ~E1000_TQAVCTRL_XMIT_MODE;
wr32(E1000_I210_TQAVCTRL, val);
}
netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
"enabled" : "disabled");
}
/**
* igb_configure - configure the hardware for RX and TX
* @adapter: private board structure
**/
static void igb_configure(struct igb_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int i;
igb_get_hw_control(adapter);
igb_set_rx_mode(netdev);
igb_setup_tx_mode(adapter);
igb_restore_vlan(adapter);
igb_setup_tctl(adapter);
igb_setup_mrqc(adapter);
igb_setup_rctl(adapter);
igb_nfc_filter_restore(adapter);
igb_configure_tx(adapter);
igb_configure_rx(adapter);
igb_rx_fifo_flush_82575(&adapter->hw);
/* call igb_desc_unused which always leaves
* at least 1 descriptor unused to make sure
* next_to_use != next_to_clean
*/
for (i = 0; i < adapter->num_rx_queues; i++) {
struct igb_ring *ring = adapter->rx_ring[i];
igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
}
}
/**
* igb_power_up_link - Power up the phy/serdes link
* @adapter: address of board private structure
**/
void igb_power_up_link(struct igb_adapter *adapter)
{
igb_reset_phy(&adapter->hw);
if (adapter->hw.phy.media_type == e1000_media_type_copper)
igb_power_up_phy_copper(&adapter->hw);
else
igb_power_up_serdes_link_82575(&adapter->hw);
igb_setup_link(&adapter->hw);
}
/**
* igb_power_down_link - Power down the phy/serdes link
* @adapter: address of board private structure
*/
static void igb_power_down_link(struct igb_adapter *adapter)
{
if (adapter->hw.phy.media_type == e1000_media_type_copper)
igb_power_down_phy_copper_82575(&adapter->hw);
else
igb_shutdown_serdes_link_82575(&adapter->hw);
}
/**
* Detect and switch function for Media Auto Sense
* @adapter: address of the board private structure
**/
static void igb_check_swap_media(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl_ext, connsw;
bool swap_now = false;
ctrl_ext = rd32(E1000_CTRL_EXT);
connsw = rd32(E1000_CONNSW);
/* need to live swap if current media is copper and we have fiber/serdes
* to go to.
*/
if ((hw->phy.media_type == e1000_media_type_copper) &&
(!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
swap_now = true;
} else if ((hw->phy.media_type != e1000_media_type_copper) &&
!(connsw & E1000_CONNSW_SERDESD)) {
/* copper signal takes time to appear */
if (adapter->copper_tries < 4) {
adapter->copper_tries++;
connsw |= E1000_CONNSW_AUTOSENSE_CONF;
wr32(E1000_CONNSW, connsw);
return;
} else {
adapter->copper_tries = 0;
if ((connsw & E1000_CONNSW_PHYSD) &&
(!(connsw & E1000_CONNSW_PHY_PDN))) {
swap_now = true;
connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
wr32(E1000_CONNSW, connsw);
}
}
}
if (!swap_now)
return;
switch (hw->phy.media_type) {
case e1000_media_type_copper:
netdev_info(adapter->netdev,
"MAS: changing media to fiber/serdes\n");
ctrl_ext |=
E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
adapter->flags |= IGB_FLAG_MEDIA_RESET;
adapter->copper_tries = 0;
break;
case e1000_media_type_internal_serdes:
case e1000_media_type_fiber:
netdev_info(adapter->netdev,
"MAS: changing media to copper\n");
ctrl_ext &=
~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
adapter->flags |= IGB_FLAG_MEDIA_RESET;
break;
default:
/* shouldn't get here during regular operation */
netdev_err(adapter->netdev,
"AMS: Invalid media type found, returning\n");
break;
}
wr32(E1000_CTRL_EXT, ctrl_ext);
}
/**
* igb_up - Open the interface and prepare it to handle traffic
* @adapter: board private structure
**/
int igb_up(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
int i;
/* hardware has been reset, we need to reload some things */
igb_configure(adapter);
clear_bit(__IGB_DOWN, &adapter->state);
for (i = 0; i < adapter->num_q_vectors; i++)
napi_enable(&(adapter->q_vector[i]->napi));
if (adapter->flags & IGB_FLAG_HAS_MSIX)
igb_configure_msix(adapter);
else
igb_assign_vector(adapter->q_vector[0], 0);
/* Clear any pending interrupts. */
rd32(E1000_TSICR);
rd32(E1000_ICR);
igb_irq_enable(adapter);
/* notify VFs that reset has been completed */
if (adapter->vfs_allocated_count) {
u32 reg_data = rd32(E1000_CTRL_EXT);
reg_data |= E1000_CTRL_EXT_PFRSTD;
wr32(E1000_CTRL_EXT, reg_data);
}
netif_tx_start_all_queues(adapter->netdev);
/* start the watchdog. */
hw->mac.get_link_status = 1;
schedule_work(&adapter->watchdog_task);
if ((adapter->flags & IGB_FLAG_EEE) &&
(!hw->dev_spec._82575.eee_disable))
adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
return 0;
}
void igb_down(struct igb_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
u32 tctl, rctl;
int i;
/* signal that we're down so the interrupt handler does not
* reschedule our watchdog timer
*/
set_bit(__IGB_DOWN, &adapter->state);
/* disable receives in the hardware */
rctl = rd32(E1000_RCTL);
wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
/* flush and sleep below */
igb_nfc_filter_exit(adapter);
netif_carrier_off(netdev);
netif_tx_stop_all_queues(netdev);
/* disable transmits in the hardware */
tctl = rd32(E1000_TCTL);
tctl &= ~E1000_TCTL_EN;
wr32(E1000_TCTL, tctl);
/* flush both disables and wait for them to finish */
wrfl();
usleep_range(10000, 11000);
igb_irq_disable(adapter);
adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
for (i = 0; i < adapter->num_q_vectors; i++) {
if (adapter->q_vector[i]) {
napi_synchronize(&adapter->q_vector[i]->napi);
napi_disable(&adapter->q_vector[i]->napi);
}
}
del_timer_sync(&adapter->watchdog_timer);
del_timer_sync(&adapter->phy_info_timer);
/* record the stats before reset*/
spin_lock(&adapter->stats64_lock);
igb_update_stats(adapter);
spin_unlock(&adapter->stats64_lock);
adapter->link_speed = 0;
adapter->link_duplex = 0;
if (!pci_channel_offline(adapter->pdev))
igb_reset(adapter);
/* clear VLAN promisc flag so VFTA will be updated if necessary */
adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
igb_clean_all_tx_rings(adapter);
igb_clean_all_rx_rings(adapter);
#ifdef CONFIG_IGB_DCA
/* since we reset the hardware DCA settings were cleared */
igb_setup_dca(adapter);
#endif
}
void igb_reinit_locked(struct igb_adapter *adapter)
{
while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
usleep_range(1000, 2000);
igb_down(adapter);
igb_up(adapter);
clear_bit(__IGB_RESETTING, &adapter->state);
}
/** igb_enable_mas - Media Autosense re-enable after swap
*
* @adapter: adapter struct
**/
static void igb_enable_mas(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 connsw = rd32(E1000_CONNSW);
/* configure for SerDes media detect */
if ((hw->phy.media_type == e1000_media_type_copper) &&
(!(connsw & E1000_CONNSW_SERDESD))) {
connsw |= E1000_CONNSW_ENRGSRC;
connsw |= E1000_CONNSW_AUTOSENSE_EN;
wr32(E1000_CONNSW, connsw);
wrfl();
}
}
void igb_reset(struct igb_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
struct e1000_hw *hw = &adapter->hw;
struct e1000_mac_info *mac = &hw->mac;
struct e1000_fc_info *fc = &hw->fc;
u32 pba, hwm;
/* Repartition Pba for greater than 9k mtu
* To take effect CTRL.RST is required.
*/
switch (mac->type) {
case e1000_i350:
case e1000_i354:
case e1000_82580:
pba = rd32(E1000_RXPBS);
pba = igb_rxpbs_adjust_82580(pba);
break;
case e1000_82576:
pba = rd32(E1000_RXPBS);
pba &= E1000_RXPBS_SIZE_MASK_82576;
break;
case e1000_82575:
case e1000_i210:
case e1000_i211:
default:
pba = E1000_PBA_34K;
break;
}
if (mac->type == e1000_82575) {
u32 min_rx_space, min_tx_space, needed_tx_space;
/* write Rx PBA so that hardware can report correct Tx PBA */
wr32(E1000_PBA, pba);
/* To maintain wire speed transmits, the Tx FIFO should be
* large enough to accommodate two full transmit packets,
* rounded up to the next 1KB and expressed in KB. Likewise,
* the Rx FIFO should be large enough to accommodate at least
* one full receive packet and is similarly rounded up and
* expressed in KB.
*/
min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
/* The Tx FIFO also stores 16 bytes of information about the Tx
* but don't include Ethernet FCS because hardware appends it.
* We only need to round down to the nearest 512 byte block
* count since the value we care about is 2 frames, not 1.
*/
min_tx_space = adapter->max_frame_size;
min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
/* upper 16 bits has Tx packet buffer allocation size in KB */
needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
/* If current Tx allocation is less than the min Tx FIFO size,
* and the min Tx FIFO size is less than the current Rx FIFO
* allocation, take space away from current Rx allocation.
*/
if (needed_tx_space < pba) {
pba -= needed_tx_space;
/* if short on Rx space, Rx wins and must trump Tx
* adjustment
*/
if (pba < min_rx_space)
pba = min_rx_space;
}
/* adjust PBA for jumbo frames */
wr32(E1000_PBA, pba);
}
/* flow control settings
* The high water mark must be low enough to fit one full frame
* after transmitting the pause frame. As such we must have enough
* space to allow for us to complete our current transmit and then
* receive the frame that is in progress from the link partner.
* Set it to:
* - the full Rx FIFO size minus one full Tx plus one full Rx frame
*/
hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
fc->low_water = fc->high_water - 16;
fc->pause_time = 0xFFFF;
fc->send_xon = 1;
fc->current_mode = fc->requested_mode;
/* disable receive for all VFs and wait one second */
if (adapter->vfs_allocated_count) {
int i;
for (i = 0 ; i < adapter->vfs_allocated_count; i++)
adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
/* ping all the active vfs to let them know we are going down */
igb_ping_all_vfs(adapter);
/* disable transmits and receives */
wr32(E1000_VFRE, 0);
wr32(E1000_VFTE, 0);
}
/* Allow time for pending master requests to run */
hw->mac.ops.reset_hw(hw);
wr32(E1000_WUC, 0);
if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
/* need to resetup here after media swap */
adapter->ei.get_invariants(hw);
adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
}
if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
(adapter->flags & IGB_FLAG_MAS_ENABLE)) {
igb_enable_mas(adapter);
}
if (hw->mac.ops.init_hw(hw))
dev_err(&pdev->dev, "Hardware Error\n");
/* RAR registers were cleared during init_hw, clear mac table */
igb_flush_mac_table(adapter);
__dev_uc_unsync(adapter->netdev, NULL);
/* Recover default RAR entry */
igb_set_default_mac_filter(adapter);
/* Flow control settings reset on hardware reset, so guarantee flow
* control is off when forcing speed.
*/
if (!hw->mac.autoneg)
igb_force_mac_fc(hw);
igb_init_dmac(adapter, pba);
#ifdef CONFIG_IGB_HWMON
/* Re-initialize the thermal sensor on i350 devices. */
if (!test_bit(__IGB_DOWN, &adapter->state)) {
if (mac->type == e1000_i350 && hw->bus.func == 0) {
/* If present, re-initialize the external thermal sensor
* interface.
*/
if (adapter->ets)
mac->ops.init_thermal_sensor_thresh(hw);
}
}
#endif
/* Re-establish EEE setting */
if (hw->phy.media_type == e1000_media_type_copper) {
switch (mac->type) {
case e1000_i350:
case e1000_i210:
case e1000_i211:
igb_set_eee_i350(hw, true, true);
break;
case e1000_i354:
igb_set_eee_i354(hw, true, true);
break;
default:
break;
}
}
if (!netif_running(adapter->netdev))
igb_power_down_link(adapter);
igb_update_mng_vlan(adapter);
/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
/* Re-enable PTP, where applicable. */
if (adapter->ptp_flags & IGB_PTP_ENABLED)
igb_ptp_reset(adapter);
igb_get_phy_info(hw);
}
static netdev_features_t igb_fix_features(struct net_device *netdev,
netdev_features_t features)
{
/* Since there is no support for separate Rx/Tx vlan accel
* enable/disable make sure Tx flag is always in same state as Rx.
*/
if (features & NETIF_F_HW_VLAN_CTAG_RX)
features |= NETIF_F_HW_VLAN_CTAG_TX;
else
features &= ~NETIF_F_HW_VLAN_CTAG_TX;
return features;
}
static int igb_set_features(struct net_device *netdev,
netdev_features_t features)
{
netdev_features_t changed = netdev->features ^ features;
struct igb_adapter *adapter = netdev_priv(netdev);
if (changed & NETIF_F_HW_VLAN_CTAG_RX)
igb_vlan_mode(netdev, features);
if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
return 0;
if (!(features & NETIF_F_NTUPLE)) {
struct hlist_node *node2;
struct igb_nfc_filter *rule;
spin_lock(&adapter->nfc_lock);
hlist_for_each_entry_safe(rule, node2,
&adapter->nfc_filter_list, nfc_node) {
igb_erase_filter(adapter, rule);
hlist_del(&rule->nfc_node);
kfree(rule);
}
spin_unlock(&adapter->nfc_lock);
adapter->nfc_filter_count = 0;
}
netdev->features = features;
if (netif_running(netdev))
igb_reinit_locked(adapter);
else
igb_reset(adapter);
return 1;
}
static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
struct net_device *dev,
const unsigned char *addr, u16 vid,
u16 flags,
struct netlink_ext_ack *extack)
{
/* guarantee we can provide a unique filter for the unicast address */
if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
struct igb_adapter *adapter = netdev_priv(dev);
int vfn = adapter->vfs_allocated_count;
if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
return -ENOMEM;
}
return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
}
#define IGB_MAX_MAC_HDR_LEN 127
#define IGB_MAX_NETWORK_HDR_LEN 511
static netdev_features_t
igb_features_check(struct sk_buff *skb, struct net_device *dev,
netdev_features_t features)
{
unsigned int network_hdr_len, mac_hdr_len;
/* Make certain the headers can be described by a context descriptor */
mac_hdr_len = skb_network_header(skb) - skb->data;
if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
return features & ~(NETIF_F_HW_CSUM |
NETIF_F_SCTP_CRC |
NETIF_F_GSO_UDP_L4 |
NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_TSO |
NETIF_F_TSO6);
network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
return features & ~(NETIF_F_HW_CSUM |
NETIF_F_SCTP_CRC |
NETIF_F_GSO_UDP_L4 |
NETIF_F_TSO |
NETIF_F_TSO6);
/* We can only support IPV4 TSO in tunnels if we can mangle the
* inner IP ID field, so strip TSO if MANGLEID is not supported.
*/
if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
features &= ~NETIF_F_TSO;
return features;
}
static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
{
if (!is_fqtss_enabled(adapter)) {
enable_fqtss(adapter, true);
return;
}
igb_config_tx_modes(adapter, queue);
if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
enable_fqtss(adapter, false);
}
static int igb_offload_cbs(struct igb_adapter *adapter,
struct tc_cbs_qopt_offload *qopt)
{
struct e1000_hw *hw = &adapter->hw;
int err;
/* CBS offloading is only supported by i210 controller. */
if (hw->mac.type != e1000_i210)
return -EOPNOTSUPP;
/* CBS offloading is only supported by queue 0 and queue 1. */
if (qopt->queue < 0 || qopt->queue > 1)
return -EINVAL;
err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
qopt->idleslope, qopt->sendslope,
qopt->hicredit, qopt->locredit);
if (err)
return err;
igb_offload_apply(adapter, qopt->queue);
return 0;
}
#define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
#define VLAN_PRIO_FULL_MASK (0x07)
static int igb_parse_cls_flower(struct igb_adapter *adapter,
struct flow_cls_offload *f,
int traffic_class,
struct igb_nfc_filter *input)
{
struct flow_rule *rule = flow_cls_offload_flow_rule(f);
struct flow_dissector *dissector = rule->match.dissector;
struct netlink_ext_ack *extack = f->common.extack;
if (dissector->used_keys &
~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
BIT(FLOW_DISSECTOR_KEY_CONTROL) |
BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
BIT(FLOW_DISSECTOR_KEY_VLAN))) {
NL_SET_ERR_MSG_MOD(extack,
"Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
return -EOPNOTSUPP;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
struct flow_match_eth_addrs match;
flow_rule_match_eth_addrs(rule, &match);
if (!is_zero_ether_addr(match.mask->dst)) {
if (!is_broadcast_ether_addr(match.mask->dst)) {
NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
return -EINVAL;
}
input->filter.match_flags |=
IGB_FILTER_FLAG_DST_MAC_ADDR;
ether_addr_copy(input->filter.dst_addr, match.key->dst);
}
if (!is_zero_ether_addr(match.mask->src)) {
if (!is_broadcast_ether_addr(match.mask->src)) {
NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
return -EINVAL;
}
input->filter.match_flags |=
IGB_FILTER_FLAG_SRC_MAC_ADDR;
ether_addr_copy(input->filter.src_addr, match.key->src);
}
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
struct flow_match_basic match;
flow_rule_match_basic(rule, &match);
if (match.mask->n_proto) {
if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
return -EINVAL;
}
input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
input->filter.etype = match.key->n_proto;
}
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
struct flow_match_vlan match;
flow_rule_match_vlan(rule, &match);
if (match.mask->vlan_priority) {
if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
return -EINVAL;
}
input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
input->filter.vlan_tci = match.key->vlan_priority;
}
}
input->action = traffic_class;
input->cookie = f->cookie;
return 0;
}
static int igb_configure_clsflower(struct igb_adapter *adapter,
struct flow_cls_offload *cls_flower)
{
struct netlink_ext_ack *extack = cls_flower->common.extack;
struct igb_nfc_filter *filter, *f;
int err, tc;
tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
if (tc < 0) {
NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
return -EINVAL;
}
filter = kzalloc(sizeof(*filter), GFP_KERNEL);
if (!filter)
return -ENOMEM;
err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
if (err < 0)
goto err_parse;
spin_lock(&adapter->nfc_lock);
hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
err = -EEXIST;
NL_SET_ERR_MSG_MOD(extack,
"This filter is already set in ethtool");
goto err_locked;
}
}
hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
err = -EEXIST;
NL_SET_ERR_MSG_MOD(extack,
"This filter is already set in cls_flower");
goto err_locked;
}
}
err = igb_add_filter(adapter, filter);
if (err < 0) {
NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
goto err_locked;
}
hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
spin_unlock(&adapter->nfc_lock);
return 0;
err_locked:
spin_unlock(&adapter->nfc_lock);
err_parse:
kfree(filter);
return err;
}
static int igb_delete_clsflower(struct igb_adapter *adapter,
struct flow_cls_offload *cls_flower)
{
struct igb_nfc_filter *filter;
int err;
spin_lock(&adapter->nfc_lock);
hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
if (filter->cookie == cls_flower->cookie)
break;
if (!filter) {
err = -ENOENT;
goto out;
}
err = igb_erase_filter(adapter, filter);
if (err < 0)
goto out;
hlist_del(&filter->nfc_node);
kfree(filter);
out:
spin_unlock(&adapter->nfc_lock);
return err;
}
static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
struct flow_cls_offload *cls_flower)
{
switch (cls_flower->command) {
case FLOW_CLS_REPLACE:
return igb_configure_clsflower(adapter, cls_flower);
case FLOW_CLS_DESTROY:
return igb_delete_clsflower(adapter, cls_flower);
case FLOW_CLS_STATS:
return -EOPNOTSUPP;
default:
return -EOPNOTSUPP;
}
}
static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
void *cb_priv)
{
struct igb_adapter *adapter = cb_priv;
if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
return -EOPNOTSUPP;
switch (type) {
case TC_SETUP_CLSFLOWER:
return igb_setup_tc_cls_flower(adapter, type_data);
default:
return -EOPNOTSUPP;
}
}
static int igb_offload_txtime(struct igb_adapter *adapter,
struct tc_etf_qopt_offload *qopt)
{
struct e1000_hw *hw = &adapter->hw;
int err;
/* Launchtime offloading is only supported by i210 controller. */
if (hw->mac.type != e1000_i210)
return -EOPNOTSUPP;
/* Launchtime offloading is only supported by queues 0 and 1. */
if (qopt->queue < 0 || qopt->queue > 1)
return -EINVAL;
err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
if (err)
return err;
igb_offload_apply(adapter, qopt->queue);
return 0;
}
static LIST_HEAD(igb_block_cb_list);
static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
void *type_data)
{
struct igb_adapter *adapter = netdev_priv(dev);
switch (type) {
case TC_SETUP_QDISC_CBS:
return igb_offload_cbs(adapter, type_data);
case TC_SETUP_BLOCK:
return flow_block_cb_setup_simple(type_data,
&igb_block_cb_list,
igb_setup_tc_block_cb,
adapter, adapter, true);
case TC_SETUP_QDISC_ETF:
return igb_offload_txtime(adapter, type_data);
default:
return -EOPNOTSUPP;
}
}
static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
{
int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
struct igb_adapter *adapter = netdev_priv(dev);
struct bpf_prog *prog = bpf->prog, *old_prog;
bool running = netif_running(dev);
bool need_reset;
/* verify igb ring attributes are sufficient for XDP */
for (i = 0; i < adapter->num_rx_queues; i++) {
struct igb_ring *ring = adapter->rx_ring[i];
if (frame_size > igb_rx_bufsz(ring)) {
NL_SET_ERR_MSG_MOD(bpf->extack,
"The RX buffer size is too small for the frame size");
netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
igb_rx_bufsz(ring), frame_size);
return -EINVAL;
}
}
old_prog = xchg(&adapter->xdp_prog, prog);
need_reset = (!!prog != !!old_prog);
/* device is up and bpf is added/removed, must setup the RX queues */
if (need_reset && running) {
igb_close(dev);
} else {
for (i = 0; i < adapter->num_rx_queues; i++)
(void)xchg(&adapter->rx_ring[i]->xdp_prog,
adapter->xdp_prog);
}
if (old_prog)
bpf_prog_put(old_prog);
/* bpf is just replaced, RXQ and MTU are already setup */
if (!need_reset)
return 0;
if (running)
igb_open(dev);
return 0;
}
static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
{
switch (xdp->command) {
case XDP_SETUP_PROG:
return igb_xdp_setup(dev, xdp);
default:
return -EINVAL;
}
}
static void igb_xdp_ring_update_tail(struct igb_ring *ring)
{
/* Force memory writes to complete before letting h/w know there
* are new descriptors to fetch.
*/
wmb();
writel(ring->next_to_use, ring->tail);
}
static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
{
unsigned int r_idx = smp_processor_id();
if (r_idx >= adapter->num_tx_queues)
r_idx = r_idx % adapter->num_tx_queues;
return adapter->tx_ring[r_idx];
}
static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
{
struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
int cpu = smp_processor_id();
struct igb_ring *tx_ring;
struct netdev_queue *nq;
u32 ret;
if (unlikely(!xdpf))
return IGB_XDP_CONSUMED;
/* During program transitions its possible adapter->xdp_prog is assigned
* but ring has not been configured yet. In this case simply abort xmit.
*/
tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
if (unlikely(!tx_ring))
return IGB_XDP_CONSUMED;
nq = txring_txq(tx_ring);
__netif_tx_lock(nq, cpu);
/* Avoid transmit queue timeout since we share it with the slow path */
nq->trans_start = jiffies;
ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
__netif_tx_unlock(nq);
return ret;
}
static int igb_xdp_xmit(struct net_device *dev, int n,
struct xdp_frame **frames, u32 flags)
{
struct igb_adapter *adapter = netdev_priv(dev);
int cpu = smp_processor_id();
struct igb_ring *tx_ring;
struct netdev_queue *nq;
int drops = 0;
int i;
if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
return -ENETDOWN;
if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
return -EINVAL;
/* During program transitions its possible adapter->xdp_prog is assigned
* but ring has not been configured yet. In this case simply abort xmit.
*/
tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
if (unlikely(!tx_ring))
return -ENXIO;
nq = txring_txq(tx_ring);
__netif_tx_lock(nq, cpu);
/* Avoid transmit queue timeout since we share it with the slow path */
nq->trans_start = jiffies;
for (i = 0; i < n; i++) {
struct xdp_frame *xdpf = frames[i];
int err;
err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
if (err != IGB_XDP_TX) {
xdp_return_frame_rx_napi(xdpf);
drops++;
}
}
__netif_tx_unlock(nq);
if (unlikely(flags & XDP_XMIT_FLUSH))
igb_xdp_ring_update_tail(tx_ring);
return n - drops;
}
static const struct net_device_ops igb_netdev_ops = {
.ndo_open = igb_open,
.ndo_stop = igb_close,
.ndo_start_xmit = igb_xmit_frame,
.ndo_get_stats64 = igb_get_stats64,
.ndo_set_rx_mode = igb_set_rx_mode,
.ndo_set_mac_address = igb_set_mac,
.ndo_change_mtu = igb_change_mtu,
.ndo_do_ioctl = igb_ioctl,
.ndo_tx_timeout = igb_tx_timeout,
.ndo_validate_addr = eth_validate_addr,
.ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
.ndo_set_vf_mac = igb_ndo_set_vf_mac,
.ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
.ndo_set_vf_rate = igb_ndo_set_vf_bw,
.ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
.ndo_set_vf_trust = igb_ndo_set_vf_trust,
.ndo_get_vf_config = igb_ndo_get_vf_config,
.ndo_fix_features = igb_fix_features,
.ndo_set_features = igb_set_features,
.ndo_fdb_add = igb_ndo_fdb_add,
.ndo_features_check = igb_features_check,
.ndo_setup_tc = igb_setup_tc,
.ndo_bpf = igb_xdp,
.ndo_xdp_xmit = igb_xdp_xmit,
};
/**
* igb_set_fw_version - Configure version string for ethtool
* @adapter: adapter struct
**/
void igb_set_fw_version(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_fw_version fw;
igb_get_fw_version(hw, &fw);
switch (hw->mac.type) {
case e1000_i210:
case e1000_i211:
if (!(igb_get_flash_presence_i210(hw))) {
snprintf(adapter->fw_version,
sizeof(adapter->fw_version),
"%2d.%2d-%d",
fw.invm_major, fw.invm_minor,
fw.invm_img_type);
break;
}
fallthrough;
default:
/* if option is rom valid, display its version too */
if (fw.or_valid) {
snprintf(adapter->fw_version,
sizeof(adapter->fw_version),
"%d.%d, 0x%08x, %d.%d.%d",
fw.eep_major, fw.eep_minor, fw.etrack_id,
fw.or_major, fw.or_build, fw.or_patch);
/* no option rom */
} else if (fw.etrack_id != 0X0000) {
snprintf(adapter->fw_version,
sizeof(adapter->fw_version),
"%d.%d, 0x%08x",
fw.eep_major, fw.eep_minor, fw.etrack_id);
} else {
snprintf(adapter->fw_version,
sizeof(adapter->fw_version),
"%d.%d.%d",
fw.eep_major, fw.eep_minor, fw.eep_build);
}
break;
}
}
/**
* igb_init_mas - init Media Autosense feature if enabled in the NVM
*
* @adapter: adapter struct
**/
static void igb_init_mas(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u16 eeprom_data;
hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
switch (hw->bus.func) {
case E1000_FUNC_0:
if (eeprom_data & IGB_MAS_ENABLE_0) {
adapter->flags |= IGB_FLAG_MAS_ENABLE;
netdev_info(adapter->netdev,
"MAS: Enabling Media Autosense for port %d\n",
hw->bus.func);
}
break;
case E1000_FUNC_1:
if (eeprom_data & IGB_MAS_ENABLE_1) {
adapter->flags |= IGB_FLAG_MAS_ENABLE;
netdev_info(adapter->netdev,
"MAS: Enabling Media Autosense for port %d\n",
hw->bus.func);
}
break;
case E1000_FUNC_2:
if (eeprom_data & IGB_MAS_ENABLE_2) {
adapter->flags |= IGB_FLAG_MAS_ENABLE;
netdev_info(adapter->netdev,
"MAS: Enabling Media Autosense for port %d\n",
hw->bus.func);
}
break;
case E1000_FUNC_3:
if (eeprom_data & IGB_MAS_ENABLE_3) {
adapter->flags |= IGB_FLAG_MAS_ENABLE;
netdev_info(adapter->netdev,
"MAS: Enabling Media Autosense for port %d\n",
hw->bus.func);
}
break;
default:
/* Shouldn't get here */
netdev_err(adapter->netdev,
"MAS: Invalid port configuration, returning\n");
break;
}
}
/**
* igb_init_i2c - Init I2C interface
* @adapter: pointer to adapter structure
**/
static s32 igb_init_i2c(struct igb_adapter *adapter)
{
s32 status = 0;
/* I2C interface supported on i350 devices */
if (adapter->hw.mac.type != e1000_i350)
return 0;
/* Initialize the i2c bus which is controlled by the registers.
* This bus will use the i2c_algo_bit structue that implements
* the protocol through toggling of the 4 bits in the register.
*/
adapter->i2c_adap.owner = THIS_MODULE;
adapter->i2c_algo = igb_i2c_algo;
adapter->i2c_algo.data = adapter;
adapter->i2c_adap.algo_data = &adapter->i2c_algo;
adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
strlcpy(adapter->i2c_adap.name, "igb BB",
sizeof(adapter->i2c_adap.name));
status = i2c_bit_add_bus(&adapter->i2c_adap);
return status;
}
/**
* igb_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in igb_pci_tbl
*
* Returns 0 on success, negative on failure
*
* igb_probe initializes an adapter identified by a pci_dev structure.
* The OS initialization, configuring of the adapter private structure,
* and a hardware reset occur.
**/
static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct net_device *netdev;
struct igb_adapter *adapter;
struct e1000_hw *hw;
u16 eeprom_data = 0;
s32 ret_val;
static int global_quad_port_a; /* global quad port a indication */
const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
int err, pci_using_dac;
u8 part_str[E1000_PBANUM_LENGTH];
/* Catch broken hardware that put the wrong VF device ID in
* the PCIe SR-IOV capability.
*/
if (pdev->is_virtfn) {
WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
pci_name(pdev), pdev->vendor, pdev->device);
return -EINVAL;
}
err = pci_enable_device_mem(pdev);
if (err)
return err;
pci_using_dac = 0;
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (!err) {
pci_using_dac = 1;
} else {
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (err) {
dev_err(&pdev->dev,
"No usable DMA configuration, aborting\n");
goto err_dma;
}
}
err = pci_request_mem_regions(pdev, igb_driver_name);
if (err)
goto err_pci_reg;
pci_enable_pcie_error_reporting(pdev);
pci_set_master(pdev);
pci_save_state(pdev);
err = -ENOMEM;
netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
IGB_MAX_TX_QUEUES);
if (!netdev)
goto err_alloc_etherdev;
SET_NETDEV_DEV(netdev, &pdev->dev);
pci_set_drvdata(pdev, netdev);
adapter = netdev_priv(netdev);
adapter->netdev = netdev;
adapter->pdev = pdev;
hw = &adapter->hw;
hw->back = adapter;
adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
err = -EIO;
adapter->io_addr = pci_iomap(pdev, 0, 0);
if (!adapter->io_addr)
goto err_ioremap;
/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
hw->hw_addr = adapter->io_addr;
netdev->netdev_ops = &igb_netdev_ops;
igb_set_ethtool_ops(netdev);
netdev->watchdog_timeo = 5 * HZ;
strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
netdev->mem_start = pci_resource_start(pdev, 0);
netdev->mem_end = pci_resource_end(pdev, 0);
/* PCI config space info */
hw->vendor_id = pdev->vendor;
hw->device_id = pdev->device;
hw->revision_id = pdev->revision;
hw->subsystem_vendor_id = pdev->subsystem_vendor;
hw->subsystem_device_id = pdev->subsystem_device;
/* Copy the default MAC, PHY and NVM function pointers */
memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
/* Initialize skew-specific constants */
err = ei->get_invariants(hw);
if (err)
goto err_sw_init;
/* setup the private structure */
err = igb_sw_init(adapter);
if (err)
goto err_sw_init;
igb_get_bus_info_pcie(hw);
hw->phy.autoneg_wait_to_complete = false;
/* Copper options */
if (hw->phy.media_type == e1000_media_type_copper) {
hw->phy.mdix = AUTO_ALL_MODES;
hw->phy.disable_polarity_correction = false;
hw->phy.ms_type = e1000_ms_hw_default;
}
if (igb_check_reset_block(hw))
dev_info(&pdev->dev,
"PHY reset is blocked due to SOL/IDER session.\n");
/* features is initialized to 0 in allocation, it might have bits
* set by igb_sw_init so we should use an or instead of an
* assignment.
*/
netdev->features |= NETIF_F_SG |
NETIF_F_TSO |
NETIF_F_TSO6 |
NETIF_F_RXHASH |
NETIF_F_RXCSUM |
NETIF_F_HW_CSUM;
if (hw->mac.type >= e1000_82576)
netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
if (hw->mac.type >= e1000_i350)
netdev->features |= NETIF_F_HW_TC;
#define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
NETIF_F_GSO_GRE_CSUM | \
NETIF_F_GSO_IPXIP4 | \
NETIF_F_GSO_IPXIP6 | \
NETIF_F_GSO_UDP_TUNNEL | \
NETIF_F_GSO_UDP_TUNNEL_CSUM)
netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
/* copy netdev features into list of user selectable features */
netdev->hw_features |= netdev->features |
NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_RXALL;
if (hw->mac.type >= e1000_i350)
netdev->hw_features |= NETIF_F_NTUPLE;
if (pci_using_dac)
netdev->features |= NETIF_F_HIGHDMA;
netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
netdev->mpls_features |= NETIF_F_HW_CSUM;
netdev->hw_enc_features |= netdev->vlan_features;
/* set this bit last since it cannot be part of vlan_features */
netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_HW_VLAN_CTAG_TX;
netdev->priv_flags |= IFF_SUPP_NOFCS;
netdev->priv_flags |= IFF_UNICAST_FLT;
/* MTU range: 68 - 9216 */
netdev->min_mtu = ETH_MIN_MTU;
netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
/* before reading the NVM, reset the controller to put the device in a
* known good starting state
*/
hw->mac.ops.reset_hw(hw);
/* make sure the NVM is good , i211/i210 parts can have special NVM
* that doesn't contain a checksum
*/
switch (hw->mac.type) {
case e1000_i210:
case e1000_i211:
if (igb_get_flash_presence_i210(hw)) {
if (hw->nvm.ops.validate(hw) < 0) {
dev_err(&pdev->dev,
"The NVM Checksum Is Not Valid\n");
err = -EIO;
goto err_eeprom;
}
}
break;
default:
if (hw->nvm.ops.validate(hw) < 0) {
dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
err = -EIO;
goto err_eeprom;
}
break;
}
if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
/* copy the MAC address out of the NVM */
if (hw->mac.ops.read_mac_addr(hw))
dev_err(&pdev->dev, "NVM Read Error\n");
}
memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
if (!is_valid_ether_addr(netdev->dev_addr)) {
dev_err(&pdev->dev, "Invalid MAC Address\n");
err = -EIO;
goto err_eeprom;
}
igb_set_default_mac_filter(adapter);
/* get firmware version for ethtool -i */
igb_set_fw_version(adapter);
/* configure RXPBSIZE and TXPBSIZE */
if (hw->mac.type == e1000_i210) {
wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
}
timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
INIT_WORK(&adapter->reset_task, igb_reset_task);
INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
/* Initialize link properties that are user-changeable */
adapter->fc_autoneg = true;
hw->mac.autoneg = true;
hw->phy.autoneg_advertised = 0x2f;
hw->fc.requested_mode = e1000_fc_default;
hw->fc.current_mode = e1000_fc_default;
igb_validate_mdi_setting(hw);
/* By default, support wake on port A */
if (hw->bus.func == 0)
adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
/* Check the NVM for wake support on non-port A ports */
if (hw->mac.type >= e1000_82580)
hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
&eeprom_data);
else if (hw->bus.func == 1)
hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
if (eeprom_data & IGB_EEPROM_APME)
adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
/* now that we have the eeprom settings, apply the special cases where
* the eeprom may be wrong or the board simply won't support wake on
* lan on a particular port
*/
switch (pdev->device) {
case E1000_DEV_ID_82575GB_QUAD_COPPER:
adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
break;
case E1000_DEV_ID_82575EB_FIBER_SERDES:
case E1000_DEV_ID_82576_FIBER:
case E1000_DEV_ID_82576_SERDES:
/* Wake events only supported on port A for dual fiber
* regardless of eeprom setting
*/
if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
break;
case E1000_DEV_ID_82576_QUAD_COPPER:
case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
/* if quad port adapter, disable WoL on all but port A */
if (global_quad_port_a != 0)
adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
else
adapter->flags |= IGB_FLAG_QUAD_PORT_A;
/* Reset for multiple quad port adapters */
if (++global_quad_port_a == 4)
global_quad_port_a = 0;
break;
default:
/* If the device can't wake, don't set software support */
if (!device_can_wakeup(&adapter->pdev->dev))
adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
}
/* initialize the wol settings based on the eeprom settings */
if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
adapter->wol |= E1000_WUFC_MAG;
/* Some vendors want WoL disabled by default, but still supported */
if ((hw->mac.type == e1000_i350) &&
(pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
adapter->wol = 0;
}
/* Some vendors want the ability to Use the EEPROM setting as
* enable/disable only, and not for capability
*/
if (((hw->mac.type == e1000_i350) ||
(hw->mac.type == e1000_i354)) &&
(pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
adapter->wol = 0;
}
if (hw->mac.type == e1000_i350) {
if (((pdev->subsystem_device == 0x5001) ||
(pdev->subsystem_device == 0x5002)) &&
(hw->bus.func == 0)) {
adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
adapter->wol = 0;
}
if (pdev->subsystem_device == 0x1F52)
adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
}
device_set_wakeup_enable(&adapter->pdev->dev,
adapter->flags & IGB_FLAG_WOL_SUPPORTED);
/* reset the hardware with the new settings */
igb_reset(adapter);
/* Init the I2C interface */
err = igb_init_i2c(adapter);
if (err) {
dev_err(&pdev->dev, "failed to init i2c interface\n");
goto err_eeprom;
}
/* let the f/w know that the h/w is now under the control of the
* driver.
*/
igb_get_hw_control(adapter);
strcpy(netdev->name, "eth%d");
err = register_netdev(netdev);
if (err)
goto err_register;
/* carrier off reporting is important to ethtool even BEFORE open */
netif_carrier_off(netdev);
#ifdef CONFIG_IGB_DCA
if (dca_add_requester(&pdev->dev) == 0) {
adapter->flags |= IGB_FLAG_DCA_ENABLED;
dev_info(&pdev->dev, "DCA enabled\n");
igb_setup_dca(adapter);
}
#endif
#ifdef CONFIG_IGB_HWMON
/* Initialize the thermal sensor on i350 devices. */
if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
u16 ets_word;
/* Read the NVM to determine if this i350 device supports an
* external thermal sensor.
*/
hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
if (ets_word != 0x0000 && ets_word != 0xFFFF)
adapter->ets = true;
else
adapter->ets = false;
if (igb_sysfs_init(adapter))
dev_err(&pdev->dev,
"failed to allocate sysfs resources\n");
} else {
adapter->ets = false;
}
#endif
/* Check if Media Autosense is enabled */
adapter->ei = *ei;
if (hw->dev_spec._82575.mas_capable)
igb_init_mas(adapter);
/* do hw tstamp init after resetting */
igb_ptp_init(adapter);
dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
/* print bus type/speed/width info, not applicable to i354 */
if (hw->mac.type != e1000_i354) {
dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
netdev->name,
((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
(hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
"unknown"),
((hw->bus.width == e1000_bus_width_pcie_x4) ?
"Width x4" :
(hw->bus.width == e1000_bus_width_pcie_x2) ?
"Width x2" :
(hw->bus.width == e1000_bus_width_pcie_x1) ?
"Width x1" : "unknown"), netdev->dev_addr);
}
if ((hw->mac.type == e1000_82576 &&
rd32(E1000_EECD) & E1000_EECD_PRES) ||
(hw->mac.type >= e1000_i210 ||
igb_get_flash_presence_i210(hw))) {
ret_val = igb_read_part_string(hw, part_str,
E1000_PBANUM_LENGTH);
} else {
ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
}
if (ret_val)
strcpy(part_str, "Unknown");
dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
dev_info(&pdev->dev,
"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
adapter->num_rx_queues, adapter->num_tx_queues);
if (hw->phy.media_type == e1000_media_type_copper) {
switch (hw->mac.type) {
case e1000_i350:
case e1000_i210:
case e1000_i211:
/* Enable EEE for internal copper PHY devices */
err = igb_set_eee_i350(hw, true, true);
if ((!err) &&
(!hw->dev_spec._82575.eee_disable)) {
adapter->eee_advert =
MDIO_EEE_100TX | MDIO_EEE_1000T;
adapter->flags |= IGB_FLAG_EEE;
}
break;
case e1000_i354:
if ((rd32(E1000_CTRL_EXT) &
E1000_CTRL_EXT_LINK_MODE_SGMII)) {
err = igb_set_eee_i354(hw, true, true);
if ((!err) &&
(!hw->dev_spec._82575.eee_disable)) {
adapter->eee_advert =
MDIO_EEE_100TX | MDIO_EEE_1000T;
adapter->flags |= IGB_FLAG_EEE;
}
}
break;
default:
break;
}
}
dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
pm_runtime_put_noidle(&pdev->dev);
return 0;
err_register:
igb_release_hw_control(adapter);
memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
err_eeprom:
if (!igb_check_reset_block(hw))
igb_reset_phy(hw);
if (hw->flash_address)
iounmap(hw->flash_address);
err_sw_init:
kfree(adapter->mac_table);
kfree(adapter->shadow_vfta);
igb_clear_interrupt_scheme(adapter);
#ifdef CONFIG_PCI_IOV
igb_disable_sriov(pdev);
#endif
pci_iounmap(pdev, adapter->io_addr);
err_ioremap:
free_netdev(netdev);
err_alloc_etherdev:
pci_release_mem_regions(pdev);
err_pci_reg:
err_dma:
pci_disable_device(pdev);
return err;
}
#ifdef CONFIG_PCI_IOV
static int igb_disable_sriov(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
/* reclaim resources allocated to VFs */
if (adapter->vf_data) {
/* disable iov and allow time for transactions to clear */
if (pci_vfs_assigned(pdev)) {
dev_warn(&pdev->dev,
"Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
return -EPERM;
} else {
pci_disable_sriov(pdev);
msleep(500);
}
kfree(adapter->vf_mac_list);
adapter->vf_mac_list = NULL;
kfree(adapter->vf_data);
adapter->vf_data = NULL;
adapter->vfs_allocated_count = 0;
wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
wrfl();
msleep(100);
dev_info(&pdev->dev, "IOV Disabled\n");
/* Re-enable DMA Coalescing flag since IOV is turned off */
adapter->flags |= IGB_FLAG_DMAC;
}
return 0;
}
static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
int old_vfs = pci_num_vf(pdev);
struct vf_mac_filter *mac_list;
int err = 0;
int num_vf_mac_filters, i;
if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
err = -EPERM;
goto out;
}
if (!num_vfs)
goto out;
if (old_vfs) {
dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
old_vfs, max_vfs);
adapter->vfs_allocated_count = old_vfs;
} else
adapter->vfs_allocated_count = num_vfs;
adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
sizeof(struct vf_data_storage), GFP_KERNEL);
/* if allocation failed then we do not support SR-IOV */
if (!adapter->vf_data) {
adapter->vfs_allocated_count = 0;
err = -ENOMEM;
goto out;
}
/* Due to the limited number of RAR entries calculate potential
* number of MAC filters available for the VFs. Reserve entries
* for PF default MAC, PF MAC filters and at least one RAR entry
* for each VF for VF MAC.
*/
num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
(1 + IGB_PF_MAC_FILTERS_RESERVED +
adapter->vfs_allocated_count);
adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
sizeof(struct vf_mac_filter),
GFP_KERNEL);
mac_list = adapter->vf_mac_list;
INIT_LIST_HEAD(&adapter->vf_macs.l);
if (adapter->vf_mac_list) {
/* Initialize list of VF MAC filters */
for (i = 0; i < num_vf_mac_filters; i++) {
mac_list->vf = -1;
mac_list->free = true;
list_add(&mac_list->l, &adapter->vf_macs.l);
mac_list++;
}
} else {
/* If we could not allocate memory for the VF MAC filters
* we can continue without this feature but warn user.
*/
dev_err(&pdev->dev,
"Unable to allocate memory for VF MAC filter list\n");
}
/* only call pci_enable_sriov() if no VFs are allocated already */
if (!old_vfs) {
err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
if (err)
goto err_out;
}
dev_info(&pdev->dev, "%d VFs allocated\n",
adapter->vfs_allocated_count);
for (i = 0; i < adapter->vfs_allocated_count; i++)
igb_vf_configure(adapter, i);
/* DMA Coalescing is not supported in IOV mode. */
adapter->flags &= ~IGB_FLAG_DMAC;
goto out;
err_out:
kfree(adapter->vf_mac_list);
adapter->vf_mac_list = NULL;
kfree(adapter->vf_data);
adapter->vf_data = NULL;
adapter->vfs_allocated_count = 0;
out:
return err;
}
#endif
/**
* igb_remove_i2c - Cleanup I2C interface
* @adapter: pointer to adapter structure
**/
static void igb_remove_i2c(struct igb_adapter *adapter)
{
/* free the adapter bus structure */
i2c_del_adapter(&adapter->i2c_adap);
}
/**
* igb_remove - Device Removal Routine
* @pdev: PCI device information struct
*
* igb_remove is called by the PCI subsystem to alert the driver
* that it should release a PCI device. The could be caused by a
* Hot-Plug event, or because the driver is going to be removed from
* memory.
**/
static void igb_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
pm_runtime_get_noresume(&pdev->dev);
#ifdef CONFIG_IGB_HWMON
igb_sysfs_exit(adapter);
#endif
igb_remove_i2c(adapter);
igb_ptp_stop(adapter);
/* The watchdog timer may be rescheduled, so explicitly
* disable watchdog from being rescheduled.
*/
set_bit(__IGB_DOWN, &adapter->state);
del_timer_sync(&adapter->watchdog_timer);
del_timer_sync(&adapter->phy_info_timer);
cancel_work_sync(&adapter->reset_task);
cancel_work_sync(&adapter->watchdog_task);
#ifdef CONFIG_IGB_DCA
if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
dev_info(&pdev->dev, "DCA disabled\n");
dca_remove_requester(&pdev->dev);
adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
}
#endif
/* Release control of h/w to f/w. If f/w is AMT enabled, this
* would have already happened in close and is redundant.
*/
igb_release_hw_control(adapter);
#ifdef CONFIG_PCI_IOV
igb_disable_sriov(pdev);
#endif
unregister_netdev(netdev);
igb_clear_interrupt_scheme(adapter);
pci_iounmap(pdev, adapter->io_addr);
if (hw->flash_address)
iounmap(hw->flash_address);
pci_release_mem_regions(pdev);
kfree(adapter->mac_table);
kfree(adapter->shadow_vfta);
free_netdev(netdev);
pci_disable_pcie_error_reporting(pdev);
pci_disable_device(pdev);
}
/**
* igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
* @adapter: board private structure to initialize
*
* This function initializes the vf specific data storage and then attempts to
* allocate the VFs. The reason for ordering it this way is because it is much
* mor expensive time wise to disable SR-IOV than it is to allocate and free
* the memory for the VFs.
**/
static void igb_probe_vfs(struct igb_adapter *adapter)
{
#ifdef CONFIG_PCI_IOV
struct pci_dev *pdev = adapter->pdev;
struct e1000_hw *hw = &adapter->hw;
/* Virtualization features not supported on i210 family. */
if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
return;
/* Of the below we really only want the effect of getting
* IGB_FLAG_HAS_MSIX set (if available), without which
* igb_enable_sriov() has no effect.
*/
igb_set_interrupt_capability(adapter, true);
igb_reset_interrupt_capability(adapter);
pci_sriov_set_totalvfs(pdev, 7);
igb_enable_sriov(pdev, max_vfs);
#endif /* CONFIG_PCI_IOV */
}
unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
unsigned int max_rss_queues;
/* Determine the maximum number of RSS queues supported. */
switch (hw->mac.type) {
case e1000_i211:
max_rss_queues = IGB_MAX_RX_QUEUES_I211;
break;
case e1000_82575:
case e1000_i210:
max_rss_queues = IGB_MAX_RX_QUEUES_82575;
break;
case e1000_i350:
/* I350 cannot do RSS and SR-IOV at the same time */
if (!!adapter->vfs_allocated_count) {
max_rss_queues = 1;
break;
}
fallthrough;
case e1000_82576:
if (!!adapter->vfs_allocated_count) {
max_rss_queues = 2;
break;
}
fallthrough;
case e1000_82580:
case e1000_i354:
default:
max_rss_queues = IGB_MAX_RX_QUEUES;
break;
}
return max_rss_queues;
}
static void igb_init_queue_configuration(struct igb_adapter *adapter)
{
u32 max_rss_queues;
max_rss_queues = igb_get_max_rss_queues(adapter);
adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
igb_set_flag_queue_pairs(adapter, max_rss_queues);
}
void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
const u32 max_rss_queues)
{
struct e1000_hw *hw = &adapter->hw;
/* Determine if we need to pair queues. */
switch (hw->mac.type) {
case e1000_82575:
case e1000_i211:
/* Device supports enough interrupts without queue pairing. */
break;
case e1000_82576:
case e1000_82580:
case e1000_i350:
case e1000_i354:
case e1000_i210:
default:
/* If rss_queues > half of max_rss_queues, pair the queues in
* order to conserve interrupts due to limited supply.
*/
if (adapter->rss_queues > (max_rss_queues / 2))
adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
else
adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
break;
}
}
/**
* igb_sw_init - Initialize general software structures (struct igb_adapter)
* @adapter: board private structure to initialize
*
* igb_sw_init initializes the Adapter private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
**/
static int igb_sw_init(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
/* set default ring sizes */
adapter->tx_ring_count = IGB_DEFAULT_TXD;
adapter->rx_ring_count = IGB_DEFAULT_RXD;
/* set default ITR values */
adapter->rx_itr_setting = IGB_DEFAULT_ITR;
adapter->tx_itr_setting = IGB_DEFAULT_ITR;
/* set default work limits */
adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
spin_lock_init(&adapter->nfc_lock);
spin_lock_init(&adapter->stats64_lock);
#ifdef CONFIG_PCI_IOV
switch (hw->mac.type) {
case e1000_82576:
case e1000_i350:
if (max_vfs > 7) {
dev_warn(&pdev->dev,
"Maximum of 7 VFs per PF, using max\n");
max_vfs = adapter->vfs_allocated_count = 7;
} else
adapter->vfs_allocated_count = max_vfs;
if (adapter->vfs_allocated_count)
dev_warn(&pdev->dev,
"Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
break;
default:
break;
}
#endif /* CONFIG_PCI_IOV */
/* Assume MSI-X interrupts, will be checked during IRQ allocation */
adapter->flags |= IGB_FLAG_HAS_MSIX;
adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
sizeof(struct igb_mac_addr),
GFP_KERNEL);
if (!adapter->mac_table)
return -ENOMEM;
igb_probe_vfs(adapter);
igb_init_queue_configuration(adapter);
/* Setup and initialize a copy of the hw vlan table array */
adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
GFP_KERNEL);
if (!adapter->shadow_vfta)
return -ENOMEM;
/* This call may decrease the number of queues */
if (igb_init_interrupt_scheme(adapter, true)) {
dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
return -ENOMEM;
}
/* Explicitly disable IRQ since the NIC can be in any state. */
igb_irq_disable(adapter);
if (hw->mac.type >= e1000_i350)
adapter->flags &= ~IGB_FLAG_DMAC;
set_bit(__IGB_DOWN, &adapter->state);
return 0;
}
/**
* igb_open - Called when a network interface is made active
* @netdev: network interface device structure
* @resuming: indicates whether we are in a resume call
*
* Returns 0 on success, negative value on failure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog timer is started,
* and the stack is notified that the interface is ready.
**/
static int __igb_open(struct net_device *netdev, bool resuming)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev;
int err;
int i;
/* disallow open during test */
if (test_bit(__IGB_TESTING, &adapter->state)) {
WARN_ON(resuming);
return -EBUSY;
}
if (!resuming)
pm_runtime_get_sync(&pdev->dev);
netif_carrier_off(netdev);
/* allocate transmit descriptors */
err = igb_setup_all_tx_resources(adapter);
if (err)
goto err_setup_tx;
/* allocate receive descriptors */
err = igb_setup_all_rx_resources(adapter);
if (err)
goto err_setup_rx;
igb_power_up_link(adapter);
/* before we allocate an interrupt, we must be ready to handle it.
* Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
* as soon as we call pci_request_irq, so we have to setup our
* clean_rx handler before we do so.
*/
igb_configure(adapter);
err = igb_request_irq(adapter);
if (err)
goto err_req_irq;
/* Notify the stack of the actual queue counts. */
err = netif_set_real_num_tx_queues(adapter->netdev,
adapter->num_tx_queues);
if (err)
goto err_set_queues;
err = netif_set_real_num_rx_queues(adapter->netdev,
adapter->num_rx_queues);
if (err)
goto err_set_queues;
/* From here on the code is the same as igb_up() */
clear_bit(__IGB_DOWN, &adapter->state);
for (i = 0; i < adapter->num_q_vectors; i++)
napi_enable(&(adapter->q_vector[i]->napi));
/* Clear any pending interrupts. */
rd32(E1000_TSICR);
rd32(E1000_ICR);
igb_irq_enable(adapter);
/* notify VFs that reset has been completed */
if (adapter->vfs_allocated_count) {
u32 reg_data = rd32(E1000_CTRL_EXT);
reg_data |= E1000_CTRL_EXT_PFRSTD;
wr32(E1000_CTRL_EXT, reg_data);
}
netif_tx_start_all_queues(netdev);
if (!resuming)
pm_runtime_put(&pdev->dev);
/* start the watchdog. */
hw->mac.get_link_status = 1;
schedule_work(&adapter->watchdog_task);
return 0;
err_set_queues:
igb_free_irq(adapter);
err_req_irq:
igb_release_hw_control(adapter);
igb_power_down_link(adapter);
igb_free_all_rx_resources(adapter);
err_setup_rx:
igb_free_all_tx_resources(adapter);
err_setup_tx:
igb_reset(adapter);
if (!resuming)
pm_runtime_put(&pdev->dev);
return err;
}
int igb_open(struct net_device *netdev)
{
return __igb_open(netdev, false);
}
/**
* igb_close - Disables a network interface
* @netdev: network interface device structure
* @suspending: indicates we are in a suspend call
*
* Returns 0, this is not allowed to fail
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the driver's control, but
* needs to be disabled. A global MAC reset is issued to stop the
* hardware, and all transmit and receive resources are freed.
**/
static int __igb_close(struct net_device *netdev, bool suspending)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct pci_dev *pdev = adapter->pdev;
WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
if (!suspending)
pm_runtime_get_sync(&pdev->dev);
igb_down(adapter);
igb_free_irq(adapter);
igb_free_all_tx_resources(adapter);
igb_free_all_rx_resources(adapter);
if (!suspending)
pm_runtime_put_sync(&pdev->dev);
return 0;
}
int igb_close(struct net_device *netdev)
{
if (netif_device_present(netdev) || netdev->dismantle)
return __igb_close(netdev, false);
return 0;
}
/**
* igb_setup_tx_resources - allocate Tx resources (Descriptors)
* @tx_ring: tx descriptor ring (for a specific queue) to setup
*
* Return 0 on success, negative on failure
**/
int igb_setup_tx_resources(struct igb_ring *tx_ring)
{
struct device *dev = tx_ring->dev;
int size;
size = sizeof(struct igb_tx_buffer) * tx_ring->count;
tx_ring->tx_buffer_info = vmalloc(size);
if (!tx_ring->tx_buffer_info)
goto err;
/* round up to nearest 4K */
tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
tx_ring->size = ALIGN(tx_ring->size, 4096);
tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
&tx_ring->dma, GFP_KERNEL);
if (!tx_ring->desc)
goto err;
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
return 0;
err:
vfree(tx_ring->tx_buffer_info);
tx_ring->tx_buffer_info = NULL;
dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
return -ENOMEM;
}
/**
* igb_setup_all_tx_resources - wrapper to allocate Tx resources
* (Descriptors) for all queues
* @adapter: board private structure
*
* Return 0 on success, negative on failure
**/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
int i, err = 0;
for (i = 0; i < adapter->num_tx_queues; i++) {
err = igb_setup_tx_resources(adapter->tx_ring[i]);
if (err) {
dev_err(&pdev->dev,
"Allocation for Tx Queue %u failed\n", i);
for (i--; i >= 0; i--)
igb_free_tx_resources(adapter->tx_ring[i]);
break;
}
}
return err;
}
/**
* igb_setup_tctl - configure the transmit control registers
* @adapter: Board private structure
**/
void igb_setup_tctl(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 tctl;
/* disable queue 0 which is enabled by default on 82575 and 82576 */
wr32(E1000_TXDCTL(0), 0);
/* Program the Transmit Control Register */
tctl = rd32(E1000_TCTL);
tctl &= ~E1000_TCTL_CT;
tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
igb_config_collision_dist(hw);
/* Enable transmits */
tctl |= E1000_TCTL_EN;
wr32(E1000_TCTL, tctl);
}
/**
* igb_configure_tx_ring - Configure transmit ring after Reset
* @adapter: board private structure
* @ring: tx ring to configure
*
* Configure a transmit ring after a reset.
**/
void igb_configure_tx_ring(struct igb_adapter *adapter,
struct igb_ring *ring)
{
struct e1000_hw *hw = &adapter->hw;
u32 txdctl = 0;
u64 tdba = ring->dma;
int reg_idx = ring->reg_idx;
wr32(E1000_TDLEN(reg_idx),
ring->count * sizeof(union e1000_adv_tx_desc));
wr32(E1000_TDBAL(reg_idx),
tdba & 0x00000000ffffffffULL);
wr32(E1000_TDBAH(reg_idx), tdba >> 32);
ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
wr32(E1000_TDH(reg_idx), 0);
writel(0, ring->tail);
txdctl |= IGB_TX_PTHRESH;
txdctl |= IGB_TX_HTHRESH << 8;
txdctl |= IGB_TX_WTHRESH << 16;
/* reinitialize tx_buffer_info */
memset(ring->tx_buffer_info, 0,
sizeof(struct igb_tx_buffer) * ring->count);
txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
wr32(E1000_TXDCTL(reg_idx), txdctl);
}
/**
* igb_configure_tx - Configure transmit Unit after Reset
* @adapter: board private structure
*
* Configure the Tx unit of the MAC after a reset.
**/
static void igb_configure_tx(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
int i;
/* disable the queues */
for (i = 0; i < adapter->num_tx_queues; i++)
wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
wrfl();
usleep_range(10000, 20000);
for (i = 0; i < adapter->num_tx_queues; i++)
igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
}
/**
* igb_setup_rx_resources - allocate Rx resources (Descriptors)
* @rx_ring: Rx descriptor ring (for a specific queue) to setup
*
* Returns 0 on success, negative on failure
**/
int igb_setup_rx_resources(struct igb_ring *rx_ring)
{
struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
struct device *dev = rx_ring->dev;
int size;
size = sizeof(struct igb_rx_buffer) * rx_ring->count;
rx_ring->rx_buffer_info = vmalloc(size);
if (!rx_ring->rx_buffer_info)
goto err;
/* Round up to nearest 4K */
rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
rx_ring->size = ALIGN(rx_ring->size, 4096);
rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
&rx_ring->dma, GFP_KERNEL);
if (!rx_ring->desc)
goto err;
rx_ring->next_to_alloc = 0;
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
rx_ring->xdp_prog = adapter->xdp_prog;
/* XDP RX-queue info */
if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
rx_ring->queue_index, 0) < 0)
goto err;
return 0;
err:
vfree(rx_ring->rx_buffer_info);
rx_ring->rx_buffer_info = NULL;
dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
return -ENOMEM;
}
/**
* igb_setup_all_rx_resources - wrapper to allocate Rx resources
* (Descriptors) for all queues
* @adapter: board private structure
*
* Return 0 on success, negative on failure
**/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
int i, err = 0;
for (i = 0; i < adapter->num_rx_queues; i++) {
err = igb_setup_rx_resources(adapter->rx_ring[i]);
if (err) {
dev_err(&pdev->dev,
"Allocation for Rx Queue %u failed\n", i);
for (i--; i >= 0; i--)
igb_free_rx_resources(adapter->rx_ring[i]);
break;
}
}
return err;
}
/**
* igb_setup_mrqc - configure the multiple receive queue control registers
* @adapter: Board private structure
**/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 mrqc, rxcsum;
u32 j, num_rx_queues;
u32 rss_key[10];
netdev_rss_key_fill(rss_key, sizeof(rss_key));
for (j = 0; j < 10; j++)
wr32(E1000_RSSRK(j), rss_key[j]);
num_rx_queues = adapter->rss_queues;
switch (hw->mac.type) {
case e1000_82576:
/* 82576 supports 2 RSS queues for SR-IOV */
if (adapter->vfs_allocated_count)
num_rx_queues = 2;
break;
default:
break;
}
if (adapter->rss_indir_tbl_init != num_rx_queues) {
for (j = 0; j < IGB_RETA_SIZE; j++)
adapter->rss_indir_tbl[j] =
(j * num_rx_queues) / IGB_RETA_SIZE;
adapter->rss_indir_tbl_init = num_rx_queues;
}
igb_write_rss_indir_tbl(adapter);
/* Disable raw packet checksumming so that RSS hash is placed in
* descriptor on writeback. No need to enable TCP/UDP/IP checksum
* offloads as they are enabled by default
*/
rxcsum = rd32(E1000_RXCSUM);
rxcsum |= E1000_RXCSUM_PCSD;
if (adapter->hw.mac.type >= e1000_82576)
/* Enable Receive Checksum Offload for SCTP */
rxcsum |= E1000_RXCSUM_CRCOFL;
/* Don't need to set TUOFL or IPOFL, they default to 1 */
wr32(E1000_RXCSUM, rxcsum);
/* Generate RSS hash based on packet types, TCP/UDP
* port numbers and/or IPv4/v6 src and dst addresses
*/
mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
E1000_MRQC_RSS_FIELD_IPV4_TCP |
E1000_MRQC_RSS_FIELD_IPV6 |
E1000_MRQC_RSS_FIELD_IPV6_TCP |
E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
/* If VMDq is enabled then we set the appropriate mode for that, else
* we default to RSS so that an RSS hash is calculated per packet even
* if we are only using one queue
*/
if (adapter->vfs_allocated_count) {
if (hw->mac.type > e1000_82575) {
/* Set the default pool for the PF's first queue */
u32 vtctl = rd32(E1000_VT_CTL);
vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
E1000_VT_CTL_DISABLE_DEF_POOL);
vtctl |= adapter->vfs_allocated_count <<
E1000_VT_CTL_DEFAULT_POOL_SHIFT;
wr32(E1000_VT_CTL, vtctl);
}
if (adapter->rss_queues > 1)
mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
else
mrqc |= E1000_MRQC_ENABLE_VMDQ;
} else {
mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
}
igb_vmm_control(adapter);
wr32(E1000_MRQC, mrqc);
}
/**
* igb_setup_rctl - configure the receive control registers
* @adapter: Board private structure
**/
void igb_setup_rctl(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 rctl;
rctl = rd32(E1000_RCTL);
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
/* enable stripping of CRC. It's unlikely this will break BMC
* redirection as it did with e1000. Newer features require
* that the HW strips the CRC.
*/
rctl |= E1000_RCTL_SECRC;
/* disable store bad packets and clear size bits. */
rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
/* enable LPE to allow for reception of jumbo frames */
rctl |= E1000_RCTL_LPE;
/* disable queue 0 to prevent tail write w/o re-config */
wr32(E1000_RXDCTL(0), 0);
/* Attention!!! For SR-IOV PF driver operations you must enable
* queue drop for all VF and PF queues to prevent head of line blocking
* if an un-trusted VF does not provide descriptors to hardware.
*/
if (adapter->vfs_allocated_count) {
/* set all queue drop enable bits */
wr32(E1000_QDE, ALL_QUEUES);
}
/* This is useful for sniffing bad packets. */
if (adapter->netdev->features & NETIF_F_RXALL) {
/* UPE and MPE will be handled by normal PROMISC logic
* in e1000e_set_rx_mode
*/
rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
E1000_RCTL_BAM | /* RX All Bcast Pkts */
E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
* and that breaks VLANs.
*/
}
wr32(E1000_RCTL, rctl);
}
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
int vfn)
{
struct e1000_hw *hw = &adapter->hw;
u32 vmolr;
if (size > MAX_JUMBO_FRAME_SIZE)
size = MAX_JUMBO_FRAME_SIZE;
vmolr = rd32(E1000_VMOLR(vfn));
vmolr &= ~E1000_VMOLR_RLPML_MASK;
vmolr |= size | E1000_VMOLR_LPE;
wr32(E1000_VMOLR(vfn), vmolr);
return 0;
}
static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
int vfn, bool enable)
{
struct e1000_hw *hw = &adapter->hw;
u32 val, reg;
if (hw->mac.type < e1000_82576)
return;
if (hw->mac.type == e1000_i350)
reg = E1000_DVMOLR(vfn);
else
reg = E1000_VMOLR(vfn);
val = rd32(reg);
if (enable)
val |= E1000_VMOLR_STRVLAN;
else
val &= ~(E1000_VMOLR_STRVLAN);
wr32(reg, val);
}
static inline void igb_set_vmolr(struct igb_adapter *adapter,
int vfn, bool aupe)
{
struct e1000_hw *hw = &adapter->hw;
u32 vmolr;
/* This register exists only on 82576 and newer so if we are older then
* we should exit and do nothing
*/
if (hw->mac.type < e1000_82576)
return;
vmolr = rd32(E1000_VMOLR(vfn));
if (aupe)
vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
else
vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
/* clear all bits that might not be set */
vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
/* for VMDq only allow the VFs and pool 0 to accept broadcast and
* multicast packets
*/
if (vfn <= adapter->vfs_allocated_count)
vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
wr32(E1000_VMOLR(vfn), vmolr);
}
/**
* igb_setup_srrctl - configure the split and replication receive control
* registers
* @adapter: Board private structure
* @ring: receive ring to be configured
**/
void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
{
struct e1000_hw *hw = &adapter->hw;
int reg_idx = ring->reg_idx;
u32 srrctl = 0;
srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
if (ring_uses_large_buffer(ring))
srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
else
srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
if (hw->mac.type >= e1000_82580)
srrctl |= E1000_SRRCTL_TIMESTAMP;
/* Only set Drop Enable if VFs allocated, or we are supporting multiple
* queues and rx flow control is disabled
*/
if (adapter->vfs_allocated_count ||
(!(hw->fc.current_mode & e1000_fc_rx_pause) &&
adapter->num_rx_queues > 1))
srrctl |= E1000_SRRCTL_DROP_EN;
wr32(E1000_SRRCTL(reg_idx), srrctl);
}
/**
* igb_configure_rx_ring - Configure a receive ring after Reset
* @adapter: board private structure
* @ring: receive ring to be configured
*
* Configure the Rx unit of the MAC after a reset.
**/
void igb_configure_rx_ring(struct igb_adapter *adapter,
struct igb_ring *ring)
{
struct e1000_hw *hw = &adapter->hw;
union e1000_adv_rx_desc *rx_desc;
u64 rdba = ring->dma;
int reg_idx = ring->reg_idx;
u32 rxdctl = 0;
xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
MEM_TYPE_PAGE_SHARED, NULL));
/* disable the queue */
wr32(E1000_RXDCTL(reg_idx), 0);
/* Set DMA base address registers */
wr32(E1000_RDBAL(reg_idx),
rdba & 0x00000000ffffffffULL);
wr32(E1000_RDBAH(reg_idx), rdba >> 32);
wr32(E1000_RDLEN(reg_idx),
ring->count * sizeof(union e1000_adv_rx_desc));
/* initialize head and tail */
ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
wr32(E1000_RDH(reg_idx), 0);
writel(0, ring->tail);
/* set descriptor configuration */
igb_setup_srrctl(adapter, ring);
/* set filtering for VMDQ pools */
igb_set_vmolr(adapter, reg_idx & 0x7, true);
rxdctl |= IGB_RX_PTHRESH;
rxdctl |= IGB_RX_HTHRESH << 8;
rxdctl |= IGB_RX_WTHRESH << 16;
/* initialize rx_buffer_info */
memset(ring->rx_buffer_info, 0,
sizeof(struct igb_rx_buffer) * ring->count);
/* initialize Rx descriptor 0 */
rx_desc = IGB_RX_DESC(ring, 0);
rx_desc->wb.upper.length = 0;
/* enable receive descriptor fetching */
rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
wr32(E1000_RXDCTL(reg_idx), rxdctl);
}
static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
struct igb_ring *rx_ring)
{
/* set build_skb and buffer size flags */
clear_ring_build_skb_enabled(rx_ring);
clear_ring_uses_large_buffer(rx_ring);
if (adapter->flags & IGB_FLAG_RX_LEGACY)
return;
set_ring_build_skb_enabled(rx_ring);
#if (PAGE_SIZE < 8192)
if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
return;
set_ring_uses_large_buffer(rx_ring);
#endif
}
/**
* igb_configure_rx - Configure receive Unit after Reset
* @adapter: board private structure
*
* Configure the Rx unit of the MAC after a reset.
**/
static void igb_configure_rx(struct igb_adapter *adapter)
{
int i;
/* set the correct pool for the PF default MAC address in entry 0 */
igb_set_default_mac_filter(adapter);
/* Setup the HW Rx Head and Tail Descriptor Pointers and
* the Base and Length of the Rx Descriptor Ring
*/
for (i = 0; i < adapter->num_rx_queues; i++) {
struct igb_ring *rx_ring = adapter->rx_ring[i];
igb_set_rx_buffer_len(adapter, rx_ring);
igb_configure_rx_ring(adapter, rx_ring);
}
}
/**
* igb_free_tx_resources - Free Tx Resources per Queue
* @tx_ring: Tx descriptor ring for a specific queue
*
* Free all transmit software resources
**/
void igb_free_tx_resources(struct igb_ring *tx_ring)
{
igb_clean_tx_ring(tx_ring);
vfree(tx_ring->tx_buffer_info);
tx_ring->tx_buffer_info = NULL;
/* if not set, then don't free */
if (!tx_ring->desc)
return;
dma_free_coherent(tx_ring->dev, tx_ring->size,
tx_ring->desc, tx_ring->dma);
tx_ring->desc = NULL;
}
/**
* igb_free_all_tx_resources - Free Tx Resources for All Queues
* @adapter: board private structure
*
* Free all transmit software resources
**/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++)
if (adapter->tx_ring[i])
igb_free_tx_resources(adapter->tx_ring[i]);
}
/**
* igb_clean_tx_ring - Free Tx Buffers
* @tx_ring: ring to be cleaned
**/
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
{
u16 i = tx_ring->next_to_clean;
struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
while (i != tx_ring->next_to_use) {
union e1000_adv_tx_desc *eop_desc, *tx_desc;
/* Free all the Tx ring sk_buffs */
dev_kfree_skb_any(tx_buffer->skb);
/* unmap skb header data */
dma_unmap_single(tx_ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
/* check for eop_desc to determine the end of the packet */
eop_desc = tx_buffer->next_to_watch;
tx_desc = IGB_TX_DESC(tx_ring, i);
/* unmap remaining buffers */
while (tx_desc != eop_desc) {
tx_buffer++;
tx_desc++;
i++;
if (unlikely(i == tx_ring->count)) {
i = 0;
tx_buffer = tx_ring->tx_buffer_info;
tx_desc = IGB_TX_DESC(tx_ring, 0);
}
/* unmap any remaining paged data */
if (dma_unmap_len(tx_buffer, len))
dma_unmap_page(tx_ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
}
/* move us one more past the eop_desc for start of next pkt */
tx_buffer++;
i++;
if (unlikely(i == tx_ring->count)) {
i = 0;
tx_buffer = tx_ring->tx_buffer_info;
}
}
/* reset BQL for queue */
netdev_tx_reset_queue(txring_txq(tx_ring));
/* reset next_to_use and next_to_clean */
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
}
/**
* igb_clean_all_tx_rings - Free Tx Buffers for all queues
* @adapter: board private structure
**/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++)
if (adapter->tx_ring[i])
igb_clean_tx_ring(adapter->tx_ring[i]);
}
/**
* igb_free_rx_resources - Free Rx Resources
* @rx_ring: ring to clean the resources from
*
* Free all receive software resources
**/
void igb_free_rx_resources(struct igb_ring *rx_ring)
{
igb_clean_rx_ring(rx_ring);
rx_ring->xdp_prog = NULL;
xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
vfree(rx_ring->rx_buffer_info);
rx_ring->rx_buffer_info = NULL;
/* if not set, then don't free */
if (!rx_ring->desc)
return;
dma_free_coherent(rx_ring->dev, rx_ring->size,
rx_ring->desc, rx_ring->dma);
rx_ring->desc = NULL;
}
/**
* igb_free_all_rx_resources - Free Rx Resources for All Queues
* @adapter: board private structure
*
* Free all receive software resources
**/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_rx_queues; i++)
if (adapter->rx_ring[i])
igb_free_rx_resources(adapter->rx_ring[i]);
}
/**
* igb_clean_rx_ring - Free Rx Buffers per Queue
* @rx_ring: ring to free buffers from
**/
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
{
u16 i = rx_ring->next_to_clean;
dev_kfree_skb(rx_ring->skb);
rx_ring->skb = NULL;
/* Free all the Rx ring sk_buffs */
while (i != rx_ring->next_to_alloc) {
struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
/* Invalidate cache lines that may have been written to by
* device so that we avoid corrupting memory.
*/
dma_sync_single_range_for_cpu(rx_ring->dev,
buffer_info->dma,
buffer_info->page_offset,
igb_rx_bufsz(rx_ring),
DMA_FROM_DEVICE);
/* free resources associated with mapping */
dma_unmap_page_attrs(rx_ring->dev,
buffer_info->dma,
igb_rx_pg_size(rx_ring),
DMA_FROM_DEVICE,
IGB_RX_DMA_ATTR);
__page_frag_cache_drain(buffer_info->page,
buffer_info->pagecnt_bias);
i++;
if (i == rx_ring->count)
i = 0;
}
rx_ring->next_to_alloc = 0;
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
}
/**
* igb_clean_all_rx_rings - Free Rx Buffers for all queues
* @adapter: board private structure
**/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_rx_queues; i++)
if (adapter->rx_ring[i])
igb_clean_rx_ring(adapter->rx_ring[i]);
}
/**
* igb_set_mac - Change the Ethernet Address of the NIC
* @netdev: network interface device structure
* @p: pointer to an address structure
*
* Returns 0 on success, negative on failure
**/
static int igb_set_mac(struct net_device *netdev, void *p)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
/* set the correct pool for the new PF MAC address in entry 0 */
igb_set_default_mac_filter(adapter);
return 0;
}
/**
* igb_write_mc_addr_list - write multicast addresses to MTA
* @netdev: network interface device structure
*
* Writes multicast address list to the MTA hash table.
* Returns: -ENOMEM on failure
* 0 on no addresses written
* X on writing X addresses to MTA
**/
static int igb_write_mc_addr_list(struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct netdev_hw_addr *ha;
u8 *mta_list;
int i;
if (netdev_mc_empty(netdev)) {
/* nothing to program, so clear mc list */
igb_update_mc_addr_list(hw, NULL, 0);
igb_restore_vf_multicasts(adapter);
return 0;
}
mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
if (!mta_list)
return -ENOMEM;
/* The shared function expects a packed array of only addresses. */
i = 0;
netdev_for_each_mc_addr(ha, netdev)
memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
igb_update_mc_addr_list(hw, mta_list, i);
kfree(mta_list);
return netdev_mc_count(netdev);
}
static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 i, pf_id;
switch (hw->mac.type) {
case e1000_i210:
case e1000_i211:
case e1000_i350:
/* VLAN filtering needed for VLAN prio filter */
if (adapter->netdev->features & NETIF_F_NTUPLE)
break;
fallthrough;
case e1000_82576:
case e1000_82580:
case e1000_i354:
/* VLAN filtering needed for pool filtering */
if (adapter->vfs_allocated_count)
break;
fallthrough;
default:
return 1;
}
/* We are already in VLAN promisc, nothing to do */
if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
return 0;
if (!adapter->vfs_allocated_count)
goto set_vfta;
/* Add PF to all active pools */
pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
u32 vlvf = rd32(E1000_VLVF(i));
vlvf |= BIT(pf_id);
wr32(E1000_VLVF(i), vlvf);
}
set_vfta:
/* Set all bits in the VLAN filter table array */
for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
hw->mac.ops.write_vfta(hw, i, ~0U);
/* Set flag so we don't redo unnecessary work */
adapter->flags |= IGB_FLAG_VLAN_PROMISC;
return 0;
}
#define VFTA_BLOCK_SIZE 8
static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
{
struct e1000_hw *hw = &adapter->hw;
u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
u32 vid_start = vfta_offset * 32;
u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
u32 i, vid, word, bits, pf_id;
/* guarantee that we don't scrub out management VLAN */
vid = adapter->mng_vlan_id;
if (vid >= vid_start && vid < vid_end)
vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
if (!adapter->vfs_allocated_count)
goto set_vfta;
pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
u32 vlvf = rd32(E1000_VLVF(i));
/* pull VLAN ID from VLVF */
vid = vlvf & VLAN_VID_MASK;
/* only concern ourselves with a certain range */
if (vid < vid_start || vid >= vid_end)
continue;
if (vlvf & E1000_VLVF_VLANID_ENABLE) {
/* record VLAN ID in VFTA */
vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
/* if PF is part of this then continue */
if (test_bit(vid, adapter->active_vlans))
continue;
}
/* remove PF from the pool */
bits = ~BIT(pf_id);
bits &= rd32(E1000_VLVF(i));
wr32(E1000_VLVF(i), bits);
}
set_vfta:
/* extract values from active_vlans and write back to VFTA */
for (i = VFTA_BLOCK_SIZE; i--;) {
vid = (vfta_offset + i) * 32;
word = vid / BITS_PER_LONG;
bits = vid % BITS_PER_LONG;
vfta[i] |= adapter->active_vlans[word] >> bits;
hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
}
}
static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
{
u32 i;
/* We are not in VLAN promisc, nothing to do */
if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
return;
/* Set flag so we don't redo unnecessary work */
adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
igb_scrub_vfta(adapter, i);
}
/**
* igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
* @netdev: network interface device structure
*
* The set_rx_mode entry point is called whenever the unicast or multicast
* address lists or the network interface flags are updated. This routine is
* responsible for configuring the hardware for proper unicast, multicast,
* promiscuous mode, and all-multi behavior.
**/
static void igb_set_rx_mode(struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
unsigned int vfn = adapter->vfs_allocated_count;
u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
int count;
/* Check for Promiscuous and All Multicast modes */
if (netdev->flags & IFF_PROMISC) {
rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
vmolr |= E1000_VMOLR_MPME;
/* enable use of UTA filter to force packets to default pool */
if (hw->mac.type == e1000_82576)
vmolr |= E1000_VMOLR_ROPE;
} else {
if (netdev->flags & IFF_ALLMULTI) {
rctl |= E1000_RCTL_MPE;
vmolr |= E1000_VMOLR_MPME;
} else {
/* Write addresses to the MTA, if the attempt fails
* then we should just turn on promiscuous mode so
* that we can at least receive multicast traffic
*/
count = igb_write_mc_addr_list(netdev);
if (count < 0) {
rctl |= E1000_RCTL_MPE;
vmolr |= E1000_VMOLR_MPME;
} else if (count) {
vmolr |= E1000_VMOLR_ROMPE;
}
}
}
/* Write addresses to available RAR registers, if there is not
* sufficient space to store all the addresses then enable
* unicast promiscuous mode
*/
if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
rctl |= E1000_RCTL_UPE;
vmolr |= E1000_VMOLR_ROPE;
}
/* enable VLAN filtering by default */
rctl |= E1000_RCTL_VFE;
/* disable VLAN filtering for modes that require it */
if ((netdev->flags & IFF_PROMISC) ||
(netdev->features & NETIF_F_RXALL)) {
/* if we fail to set all rules then just clear VFE */
if (igb_vlan_promisc_enable(adapter))
rctl &= ~E1000_RCTL_VFE;
} else {
igb_vlan_promisc_disable(adapter);
}
/* update state of unicast, multicast, and VLAN filtering modes */
rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
E1000_RCTL_VFE);
wr32(E1000_RCTL, rctl);
#if (PAGE_SIZE < 8192)
if (!adapter->vfs_allocated_count) {
if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
rlpml = IGB_MAX_FRAME_BUILD_SKB;
}
#endif
wr32(E1000_RLPML, rlpml);
/* In order to support SR-IOV and eventually VMDq it is necessary to set
* the VMOLR to enable the appropriate modes. Without this workaround
* we will have issues with VLAN tag stripping not being done for frames
* that are only arriving because we are the default pool
*/
if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
return;
/* set UTA to appropriate mode */
igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
vmolr |= rd32(E1000_VMOLR(vfn)) &
~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
/* enable Rx jumbo frames, restrict as needed to support build_skb */
vmolr &= ~E1000_VMOLR_RLPML_MASK;
#if (PAGE_SIZE < 8192)
if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
vmolr |= IGB_MAX_FRAME_BUILD_SKB;
else
#endif
vmolr |= MAX_JUMBO_FRAME_SIZE;
vmolr |= E1000_VMOLR_LPE;
wr32(E1000_VMOLR(vfn), vmolr);
igb_restore_vf_multicasts(adapter);
}
static void igb_check_wvbr(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 wvbr = 0;
switch (hw->mac.type) {
case e1000_82576:
case e1000_i350:
wvbr = rd32(E1000_WVBR);
if (!wvbr)
return;
break;
default:
break;
}
adapter->wvbr |= wvbr;
}
#define IGB_STAGGERED_QUEUE_OFFSET 8
static void igb_spoof_check(struct igb_adapter *adapter)
{
int j;
if (!adapter->wvbr)
return;
for (j = 0; j < adapter->vfs_allocated_count; j++) {
if (adapter->wvbr & BIT(j) ||
adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
dev_warn(&adapter->pdev->dev,
"Spoof event(s) detected on VF %d\n", j);
adapter->wvbr &=
~(BIT(j) |
BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
}
}
}
/* Need to wait a few seconds after link up to get diagnostic information from
* the phy
*/
static void igb_update_phy_info(struct timer_list *t)
{
struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
igb_get_phy_info(&adapter->hw);
}
/**
* igb_has_link - check shared code for link and determine up/down
* @adapter: pointer to driver private info
**/
bool igb_has_link(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
bool link_active = false;
/* get_link_status is set on LSC (link status) interrupt or
* rx sequence error interrupt. get_link_status will stay
* false until the e1000_check_for_link establishes link
* for copper adapters ONLY
*/
switch (hw->phy.media_type) {
case e1000_media_type_copper:
if (!hw->mac.get_link_status)
return true;
fallthrough;
case e1000_media_type_internal_serdes:
hw->mac.ops.check_for_link(hw);
link_active = !hw->mac.get_link_status;
break;
default:
case e1000_media_type_unknown:
break;
}
if (((hw->mac.type == e1000_i210) ||
(hw->mac.type == e1000_i211)) &&
(hw->phy.id == I210_I_PHY_ID)) {
if (!netif_carrier_ok(adapter->netdev)) {
adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
adapter->link_check_timeout = jiffies;
}
}
return link_active;
}
static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
{
bool ret = false;
u32 ctrl_ext, thstat;
/* check for thermal sensor event on i350 copper only */
if (hw->mac.type == e1000_i350) {
thstat = rd32(E1000_THSTAT);
ctrl_ext = rd32(E1000_CTRL_EXT);
if ((hw->phy.media_type == e1000_media_type_copper) &&
!(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
ret = !!(thstat & event);
}
return ret;
}
/**
* igb_check_lvmmc - check for malformed packets received
* and indicated in LVMMC register
* @adapter: pointer to adapter
**/
static void igb_check_lvmmc(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 lvmmc;
lvmmc = rd32(E1000_LVMMC);
if (lvmmc) {
if (unlikely(net_ratelimit())) {
netdev_warn(adapter->netdev,
"malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
lvmmc);
}
}
}
/**
* igb_watchdog - Timer Call-back
* @t: pointer to timer_list containing our private info pointer
**/
static void igb_watchdog(struct timer_list *t)
{
struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
/* Do the rest outside of interrupt context */
schedule_work(&adapter->watchdog_task);
}
static void igb_watchdog_task(struct work_struct *work)
{
struct igb_adapter *adapter = container_of(work,
struct igb_adapter,
watchdog_task);
struct e1000_hw *hw = &adapter->hw;
struct e1000_phy_info *phy = &hw->phy;
struct net_device *netdev = adapter->netdev;
u32 link;
int i;
u32 connsw;
u16 phy_data, retry_count = 20;
link = igb_has_link(adapter);
if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
else
link = false;
}
/* Force link down if we have fiber to swap to */
if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
if (hw->phy.media_type == e1000_media_type_copper) {
connsw = rd32(E1000_CONNSW);
if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
link = 0;
}
}
if (link) {
/* Perform a reset if the media type changed. */
if (hw->dev_spec._82575.media_changed) {
hw->dev_spec._82575.media_changed = false;
adapter->flags |= IGB_FLAG_MEDIA_RESET;
igb_reset(adapter);
}
/* Cancel scheduled suspend requests. */
pm_runtime_resume(netdev->dev.parent);
if (!netif_carrier_ok(netdev)) {
u32 ctrl;
hw->mac.ops.get_speed_and_duplex(hw,
&adapter->link_speed,
&adapter->link_duplex);
ctrl = rd32(E1000_CTRL);
/* Links status message must follow this format */
netdev_info(netdev,
"igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
netdev->name,
adapter->link_speed,
adapter->link_duplex == FULL_DUPLEX ?
"Full" : "Half",
(ctrl & E1000_CTRL_TFCE) &&
(ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
(ctrl & E1000_CTRL_RFCE) ? "RX" :
(ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
/* disable EEE if enabled */
if ((adapter->flags & IGB_FLAG_EEE) &&
(adapter->link_duplex == HALF_DUPLEX)) {
dev_info(&adapter->pdev->dev,
"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
adapter->hw.dev_spec._82575.eee_disable = true;
adapter->flags &= ~IGB_FLAG_EEE;
}
/* check if SmartSpeed worked */
igb_check_downshift(hw);
if (phy->speed_downgraded)
netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
/* check for thermal sensor event */
if (igb_thermal_sensor_event(hw,
E1000_THSTAT_LINK_THROTTLE))
netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
/* adjust timeout factor according to speed/duplex */
adapter->tx_timeout_factor = 1;
switch (adapter->link_speed) {
case SPEED_10:
adapter->tx_timeout_factor = 14;
break;
case SPEED_100:
/* maybe add some timeout factor ? */
break;
}
if (adapter->link_speed != SPEED_1000)
goto no_wait;
/* wait for Remote receiver status OK */
retry_read_status:
if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
&phy_data)) {
if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
retry_count) {
msleep(100);
retry_count--;
goto retry_read_status;
} else if (!retry_count) {
dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
}
} else {
dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
}
no_wait:
netif_carrier_on(netdev);
igb_ping_all_vfs(adapter);
igb_check_vf_rate_limit(adapter);
/* link state has changed, schedule phy info update */
if (!test_bit(__IGB_DOWN, &adapter->state))
mod_timer(&adapter->phy_info_timer,
round_jiffies(jiffies + 2 * HZ));
}
} else {
if (netif_carrier_ok(netdev)) {
adapter->link_speed = 0;
adapter->link_duplex = 0;
/* check for thermal sensor event */
if (igb_thermal_sensor_event(hw,
E1000_THSTAT_PWR_DOWN)) {
netdev_err(netdev, "The network adapter was stopped because it overheated\n");
}
/* Links status message must follow this format */
netdev_info(netdev, "igb: %s NIC Link is Down\n",
netdev->name);
netif_carrier_off(netdev);
igb_ping_all_vfs(adapter);
/* link state has changed, schedule phy info update */
if (!test_bit(__IGB_DOWN, &adapter->state))
mod_timer(&adapter->phy_info_timer,
round_jiffies(jiffies + 2 * HZ));
/* link is down, time to check for alternate media */
if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
igb_check_swap_media(adapter);
if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
schedule_work(&adapter->reset_task);
/* return immediately */
return;
}
}
pm_schedule_suspend(netdev->dev.parent,
MSEC_PER_SEC * 5);
/* also check for alternate media here */
} else if (!netif_carrier_ok(netdev) &&
(adapter->flags & IGB_FLAG_MAS_ENABLE)) {
igb_check_swap_media(adapter);
if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
schedule_work(&adapter->reset_task);
/* return immediately */
return;
}
}
}
spin_lock(&adapter->stats64_lock);
igb_update_stats(adapter);
spin_unlock(&adapter->stats64_lock);
for (i = 0; i < adapter->num_tx_queues; i++) {
struct igb_ring *tx_ring = adapter->tx_ring[i];
if (!netif_carrier_ok(netdev)) {
/* We've lost link, so the controller stops DMA,
* but we've got queued Tx work that's never going
* to get done, so reset controller to flush Tx.
* (Do the reset outside of interrupt context).
*/
if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
adapter->tx_timeout_count++;
schedule_work(&adapter->reset_task);
/* return immediately since reset is imminent */
return;
}
}
/* Force detection of hung controller every watchdog period */
set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
}
/* Cause software interrupt to ensure Rx ring is cleaned */
if (adapter->flags & IGB_FLAG_HAS_MSIX) {
u32 eics = 0;
for (i = 0; i < adapter->num_q_vectors; i++)
eics |= adapter->q_vector[i]->eims_value;
wr32(E1000_EICS, eics);
} else {
wr32(E1000_ICS, E1000_ICS_RXDMT0);
}
igb_spoof_check(adapter);
igb_ptp_rx_hang(adapter);
igb_ptp_tx_hang(adapter);
/* Check LVMMC register on i350/i354 only */
if ((adapter->hw.mac.type == e1000_i350) ||
(adapter->hw.mac.type == e1000_i354))
igb_check_lvmmc(adapter);
/* Reset the timer */
if (!test_bit(__IGB_DOWN, &adapter->state)) {
if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
mod_timer(&adapter->watchdog_timer,
round_jiffies(jiffies + HZ));
else
mod_timer(&adapter->watchdog_timer,
round_jiffies(jiffies + 2 * HZ));
}
}
enum latency_range {
lowest_latency = 0,
low_latency = 1,
bulk_latency = 2,
latency_invalid = 255
};
/**
* igb_update_ring_itr - update the dynamic ITR value based on packet size
* @q_vector: pointer to q_vector
*
* Stores a new ITR value based on strictly on packet size. This
* algorithm is less sophisticated than that used in igb_update_itr,
* due to the difficulty of synchronizing statistics across multiple
* receive rings. The divisors and thresholds used by this function
* were determined based on theoretical maximum wire speed and testing
* data, in order to minimize response time while increasing bulk
* throughput.
* This functionality is controlled by ethtool's coalescing settings.
* NOTE: This function is called only when operating in a multiqueue
* receive environment.
**/
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
{
int new_val = q_vector->itr_val;
int avg_wire_size = 0;
struct igb_adapter *adapter = q_vector->adapter;
unsigned int packets;
/* For non-gigabit speeds, just fix the interrupt rate at 4000
* ints/sec - ITR timer value of 120 ticks.
*/
if (adapter->link_speed != SPEED_1000) {
new_val = IGB_4K_ITR;
goto set_itr_val;
}
packets = q_vector->rx.total_packets;
if (packets)
avg_wire_size = q_vector->rx.total_bytes / packets;
packets = q_vector->tx.total_packets;
if (packets)
avg_wire_size = max_t(u32, avg_wire_size,
q_vector->tx.total_bytes / packets);
/* if avg_wire_size isn't set no work was done */
if (!avg_wire_size)
goto clear_counts;
/* Add 24 bytes to size to account for CRC, preamble, and gap */
avg_wire_size += 24;
/* Don't starve jumbo frames */
avg_wire_size = min(avg_wire_size, 3000);
/* Give a little boost to mid-size frames */
if ((avg_wire_size > 300) && (avg_wire_size < 1200))
new_val = avg_wire_size / 3;
else
new_val = avg_wire_size / 2;
/* conservative mode (itr 3) eliminates the lowest_latency setting */
if (new_val < IGB_20K_ITR &&
((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
(!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
new_val = IGB_20K_ITR;
set_itr_val:
if (new_val != q_vector->itr_val) {
q_vector->itr_val = new_val;
q_vector->set_itr = 1;
}
clear_counts:
q_vector->rx.total_bytes = 0;
q_vector->rx.total_packets = 0;
q_vector->tx.total_bytes = 0;
q_vector->tx.total_packets = 0;
}
/**
* igb_update_itr - update the dynamic ITR value based on statistics
* @q_vector: pointer to q_vector
* @ring_container: ring info to update the itr for
*
* Stores a new ITR value based on packets and byte
* counts during the last interrupt. The advantage of per interrupt
* computation is faster updates and more accurate ITR for the current
* traffic pattern. Constants in this function were computed
* based on theoretical maximum wire speed and thresholds were set based
* on testing data as well as attempting to minimize response time
* while increasing bulk throughput.
* This functionality is controlled by ethtool's coalescing settings.
* NOTE: These calculations are only valid when operating in a single-
* queue environment.
**/
static void igb_update_itr(struct igb_q_vector *q_vector,
struct igb_ring_container *ring_container)
{
unsigned int packets = ring_container->total_packets;
unsigned int bytes = ring_container->total_bytes;
u8 itrval = ring_container->itr;
/* no packets, exit with status unchanged */
if (packets == 0)
return;
switch (itrval) {
case lowest_latency:
/* handle TSO and jumbo frames */
if (bytes/packets > 8000)
itrval = bulk_latency;
else if ((packets < 5) && (bytes > 512))
itrval = low_latency;
break;
case low_latency: /* 50 usec aka 20000 ints/s */
if (bytes > 10000) {
/* this if handles the TSO accounting */
if (bytes/packets > 8000)
itrval = bulk_latency;
else if ((packets < 10) || ((bytes/packets) > 1200))
itrval = bulk_latency;
else if ((packets > 35))
itrval = lowest_latency;
} else if (bytes/packets > 2000) {
itrval = bulk_latency;
} else if (packets <= 2 && bytes < 512) {
itrval = lowest_latency;
}
break;
case bulk_latency: /* 250 usec aka 4000 ints/s */
if (bytes > 25000) {
if (packets > 35)
itrval = low_latency;
} else if (bytes < 1500) {
itrval = low_latency;
}
break;
}
/* clear work counters since we have the values we need */
ring_container->total_bytes = 0;
ring_container->total_packets = 0;
/* write updated itr to ring container */
ring_container->itr = itrval;
}
static void igb_set_itr(struct igb_q_vector *q_vector)
{
struct igb_adapter *adapter = q_vector->adapter;
u32 new_itr = q_vector->itr_val;
u8 current_itr = 0;
/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
if (adapter->link_speed != SPEED_1000) {
current_itr = 0;
new_itr = IGB_4K_ITR;
goto set_itr_now;
}
igb_update_itr(q_vector, &q_vector->tx);
igb_update_itr(q_vector, &q_vector->rx);
current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
/* conservative mode (itr 3) eliminates the lowest_latency setting */
if (current_itr == lowest_latency &&
((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
(!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
current_itr = low_latency;
switch (current_itr) {
/* counts and packets in update_itr are dependent on these numbers */
case lowest_latency:
new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
break;
case low_latency:
new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
break;
case bulk_latency:
new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
break;
default:
break;
}
set_itr_now:
if (new_itr != q_vector->itr_val) {
/* this attempts to bias the interrupt rate towards Bulk
* by adding intermediate steps when interrupt rate is
* increasing
*/
new_itr = new_itr > q_vector->itr_val ?
max((new_itr * q_vector->itr_val) /
(new_itr + (q_vector->itr_val >> 2)),
new_itr) : new_itr;
/* Don't write the value here; it resets the adapter's
* internal timer, and causes us to delay far longer than
* we should between interrupts. Instead, we write the ITR
* value at the beginning of the next interrupt so the timing
* ends up being correct.
*/
q_vector->itr_val = new_itr;
q_vector->set_itr = 1;
}
}
static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
struct igb_tx_buffer *first,
u32 vlan_macip_lens, u32 type_tucmd,
u32 mss_l4len_idx)
{
struct e1000_adv_tx_context_desc *context_desc;
u16 i = tx_ring->next_to_use;
struct timespec64 ts;
context_desc = IGB_TX_CTXTDESC(tx_ring, i);
i++;
tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
/* set bits to identify this as an advanced context descriptor */
type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
/* For 82575, context index must be unique per ring. */
if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
mss_l4len_idx |= tx_ring->reg_idx << 4;
context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
/* We assume there is always a valid tx time available. Invalid times
* should have been handled by the upper layers.
*/
if (tx_ring->launchtime_enable) {
ts = ktime_to_timespec64(first->skb->tstamp);
first->skb->tstamp = ktime_set(0, 0);
context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
} else {
context_desc->seqnum_seed = 0;
}
}
static int igb_tso(struct igb_ring *tx_ring,
struct igb_tx_buffer *first,
u8 *hdr_len)
{
u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
struct sk_buff *skb = first->skb;
union {
struct iphdr *v4;
struct ipv6hdr *v6;
unsigned char *hdr;
} ip;
union {
struct tcphdr *tcp;
struct udphdr *udp;
unsigned char *hdr;
} l4;
u32 paylen, l4_offset;
int err;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
if (!skb_is_gso(skb))
return 0;
err = skb_cow_head(skb, 0);
if (err < 0)
return err;
ip.hdr = skb_network_header(skb);
l4.hdr = skb_checksum_start(skb);
/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
/* initialize outer IP header fields */
if (ip.v4->version == 4) {
unsigned char *csum_start = skb_checksum_start(skb);
unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
/* IP header will have to cancel out any data that
* is not a part of the outer IP header
*/
ip.v4->check = csum_fold(csum_partial(trans_start,
csum_start - trans_start,
0));
type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
ip.v4->tot_len = 0;
first->tx_flags |= IGB_TX_FLAGS_TSO |
IGB_TX_FLAGS_CSUM |
IGB_TX_FLAGS_IPV4;
} else {
ip.v6->payload_len = 0;
first->tx_flags |= IGB_TX_FLAGS_TSO |
IGB_TX_FLAGS_CSUM;
}
/* determine offset of inner transport header */
l4_offset = l4.hdr - skb->data;
/* remove payload length from inner checksum */
paylen = skb->len - l4_offset;
if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
/* compute length of segmentation header */
*hdr_len = (l4.tcp->doff * 4) + l4_offset;
csum_replace_by_diff(&l4.tcp->check,
(__force __wsum)htonl(paylen));
} else {
/* compute length of segmentation header */
*hdr_len = sizeof(*l4.udp) + l4_offset;
csum_replace_by_diff(&l4.udp->check,
(__force __wsum)htonl(paylen));
}
/* update gso size and bytecount with header size */
first->gso_segs = skb_shinfo(skb)->gso_segs;
first->bytecount += (first->gso_segs - 1) * *hdr_len;
/* MSS L4LEN IDX */
mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
/* VLAN MACLEN IPLEN */
vlan_macip_lens = l4.hdr - ip.hdr;
vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
type_tucmd, mss_l4len_idx);
return 1;
}
static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
{
struct sk_buff *skb = first->skb;
u32 vlan_macip_lens = 0;
u32 type_tucmd = 0;
if (skb->ip_summed != CHECKSUM_PARTIAL) {
csum_failed:
if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
!tx_ring->launchtime_enable)
return;
goto no_csum;
}
switch (skb->csum_offset) {
case offsetof(struct tcphdr, check):
type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
fallthrough;
case offsetof(struct udphdr, check):
break;
case offsetof(struct sctphdr, checksum):
/* validate that this is actually an SCTP request */
if (skb_csum_is_sctp(skb)) {
type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
break;
}
fallthrough;
default:
skb_checksum_help(skb);
goto csum_failed;
}
/* update TX checksum flag */
first->tx_flags |= IGB_TX_FLAGS_CSUM;
vlan_macip_lens = skb_checksum_start_offset(skb) -
skb_network_offset(skb);
no_csum:
vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
}
#define IGB_SET_FLAG(_input, _flag, _result) \
((_flag <= _result) ? \
((u32)(_input & _flag) * (_result / _flag)) : \
((u32)(_input & _flag) / (_flag / _result)))
static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
{
/* set type for advanced descriptor with frame checksum insertion */
u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
E1000_ADVTXD_DCMD_DEXT |
E1000_ADVTXD_DCMD_IFCS;
/* set HW vlan bit if vlan is present */
cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
(E1000_ADVTXD_DCMD_VLE));
/* set segmentation bits for TSO */
cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
(E1000_ADVTXD_DCMD_TSE));
/* set timestamp bit if present */
cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
(E1000_ADVTXD_MAC_TSTAMP));
/* insert frame checksum */
cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
return cmd_type;
}
static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
union e1000_adv_tx_desc *tx_desc,
u32 tx_flags, unsigned int paylen)
{
u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
/* 82575 requires a unique index per ring */
if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
olinfo_status |= tx_ring->reg_idx << 4;
/* insert L4 checksum */
olinfo_status |= IGB_SET_FLAG(tx_flags,
IGB_TX_FLAGS_CSUM,
(E1000_TXD_POPTS_TXSM << 8));
/* insert IPv4 checksum */
olinfo_status |= IGB_SET_FLAG(tx_flags,
IGB_TX_FLAGS_IPV4,
(E1000_TXD_POPTS_IXSM << 8));
tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
}
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
{
struct net_device *netdev = tx_ring->netdev;
netif_stop_subqueue(netdev, tx_ring->queue_index);
/* Herbert's original patch had:
* smp_mb__after_netif_stop_queue();
* but since that doesn't exist yet, just open code it.
*/
smp_mb();
/* We need to check again in a case another CPU has just
* made room available.
*/
if (igb_desc_unused(tx_ring) < size)
return -EBUSY;
/* A reprieve! */
netif_wake_subqueue(netdev, tx_ring->queue_index);
u64_stats_update_begin(&tx_ring->tx_syncp2);
tx_ring->tx_stats.restart_queue2++;
u64_stats_update_end(&tx_ring->tx_syncp2);
return 0;
}
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
{
if (igb_desc_unused(tx_ring) >= size)
return 0;
return __igb_maybe_stop_tx(tx_ring, size);
}
static int igb_tx_map(struct igb_ring *tx_ring,
struct igb_tx_buffer *first,
const u8 hdr_len)
{
struct sk_buff *skb = first->skb;
struct igb_tx_buffer *tx_buffer;
union e1000_adv_tx_desc *tx_desc;
skb_frag_t *frag;
dma_addr_t dma;
unsigned int data_len, size;
u32 tx_flags = first->tx_flags;
u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
u16 i = tx_ring->next_to_use;
tx_desc = IGB_TX_DESC(tx_ring, i);
igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
size = skb_headlen(skb);
data_len = skb->data_len;
dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
tx_buffer = first;
for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
if (dma_mapping_error(tx_ring->dev, dma))
goto dma_error;
/* record length, and DMA address */
dma_unmap_len_set(tx_buffer, len, size);
dma_unmap_addr_set(tx_buffer, dma, dma);
tx_desc->read.buffer_addr = cpu_to_le64(dma);
while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
tx_desc->read.cmd_type_len =
cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
i++;
tx_desc++;
if (i == tx_ring->count) {
tx_desc = IGB_TX_DESC(tx_ring, 0);
i = 0;
}
tx_desc->read.olinfo_status = 0;
dma += IGB_MAX_DATA_PER_TXD;
size -= IGB_MAX_DATA_PER_TXD;
tx_desc->read.buffer_addr = cpu_to_le64(dma);
}
if (likely(!data_len))
break;
tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
i++;
tx_desc++;
if (i == tx_ring->count) {
tx_desc = IGB_TX_DESC(tx_ring, 0);
i = 0;
}
tx_desc->read.olinfo_status = 0;
size = skb_frag_size(frag);
data_len -= size;
dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
size, DMA_TO_DEVICE);
tx_buffer = &tx_ring->tx_buffer_info[i];
}
/* write last descriptor with RS and EOP bits */
cmd_type |= size | IGB_TXD_DCMD;
tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
/* set the timestamp */
first->time_stamp = jiffies;
skb_tx_timestamp(skb);
/* Force memory writes to complete before letting h/w know there
* are new descriptors to fetch. (Only applicable for weak-ordered
* memory model archs, such as IA-64).
*
* We also need this memory barrier to make certain all of the
* status bits have been updated before next_to_watch is written.
*/
dma_wmb();
/* set next_to_watch value indicating a packet is present */
first->next_to_watch = tx_desc;
i++;
if (i == tx_ring->count)
i = 0;
tx_ring->next_to_use = i;
/* Make sure there is space in the ring for the next send. */
igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
writel(i, tx_ring->tail);
}
return 0;
dma_error:
dev_err(tx_ring->dev, "TX DMA map failed\n");
tx_buffer = &tx_ring->tx_buffer_info[i];
/* clear dma mappings for failed tx_buffer_info map */
while (tx_buffer != first) {
if (dma_unmap_len(tx_buffer, len))
dma_unmap_page(tx_ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
dma_unmap_len_set(tx_buffer, len, 0);
if (i-- == 0)
i += tx_ring->count;
tx_buffer = &tx_ring->tx_buffer_info[i];
}
if (dma_unmap_len(tx_buffer, len))
dma_unmap_single(tx_ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
dma_unmap_len_set(tx_buffer, len, 0);
dev_kfree_skb_any(tx_buffer->skb);
tx_buffer->skb = NULL;
tx_ring->next_to_use = i;
return -1;
}
int igb_xmit_xdp_ring(struct igb_adapter *adapter,
struct igb_ring *tx_ring,
struct xdp_frame *xdpf)
{
union e1000_adv_tx_desc *tx_desc;
u32 len, cmd_type, olinfo_status;
struct igb_tx_buffer *tx_buffer;
dma_addr_t dma;
u16 i;
len = xdpf->len;
if (unlikely(!igb_desc_unused(tx_ring)))
return IGB_XDP_CONSUMED;
dma = dma_map_single(tx_ring->dev, xdpf->data, len, DMA_TO_DEVICE);
if (dma_mapping_error(tx_ring->dev, dma))
return IGB_XDP_CONSUMED;
/* record the location of the first descriptor for this packet */
tx_buffer = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
tx_buffer->bytecount = len;
tx_buffer->gso_segs = 1;
tx_buffer->protocol = 0;
i = tx_ring->next_to_use;
tx_desc = IGB_TX_DESC(tx_ring, i);
dma_unmap_len_set(tx_buffer, len, len);
dma_unmap_addr_set(tx_buffer, dma, dma);
tx_buffer->type = IGB_TYPE_XDP;
tx_buffer->xdpf = xdpf;
tx_desc->read.buffer_addr = cpu_to_le64(dma);
/* put descriptor type bits */
cmd_type = E1000_ADVTXD_DTYP_DATA |
E1000_ADVTXD_DCMD_DEXT |
E1000_ADVTXD_DCMD_IFCS;
cmd_type |= len | IGB_TXD_DCMD;
tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
olinfo_status = cpu_to_le32(len << E1000_ADVTXD_PAYLEN_SHIFT);
/* 82575 requires a unique index per ring */
if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
olinfo_status |= tx_ring->reg_idx << 4;
tx_desc->read.olinfo_status = olinfo_status;
netdev_tx_sent_queue(txring_txq(tx_ring), tx_buffer->bytecount);
/* set the timestamp */
tx_buffer->time_stamp = jiffies;
/* Avoid any potential race with xdp_xmit and cleanup */
smp_wmb();
/* set next_to_watch value indicating a packet is present */
i++;
if (i == tx_ring->count)
i = 0;
tx_buffer->next_to_watch = tx_desc;
tx_ring->next_to_use = i;
/* Make sure there is space in the ring for the next send. */
igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
writel(i, tx_ring->tail);
return IGB_XDP_TX;
}
netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
struct igb_ring *tx_ring)
{
struct igb_tx_buffer *first;
int tso;
u32 tx_flags = 0;
unsigned short f;
u16 count = TXD_USE_COUNT(skb_headlen(skb));
__be16 protocol = vlan_get_protocol(skb);
u8 hdr_len = 0;
/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
* + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
* + 2 desc gap to keep tail from touching head,
* + 1 desc for context descriptor,
* otherwise try next time
*/
for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
count += TXD_USE_COUNT(skb_frag_size(
&skb_shinfo(skb)->frags[f]));
if (igb_maybe_stop_tx(tx_ring, count + 3)) {
/* this is a hard error */
return NETDEV_TX_BUSY;
}
/* record the location of the first descriptor for this packet */
first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
first->type = IGB_TYPE_SKB;
first->skb = skb;
first->bytecount = skb->len;
first->gso_segs = 1;
if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
&adapter->state)) {
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
tx_flags |= IGB_TX_FLAGS_TSTAMP;
adapter->ptp_tx_skb = skb_get(skb);
adapter->ptp_tx_start = jiffies;
if (adapter->hw.mac.type == e1000_82576)
schedule_work(&adapter->ptp_tx_work);
} else {
adapter->tx_hwtstamp_skipped++;
}
}
if (skb_vlan_tag_present(skb)) {
tx_flags |= IGB_TX_FLAGS_VLAN;
tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
}
/* record initial flags and protocol */
first->tx_flags = tx_flags;
first->protocol = protocol;
tso = igb_tso(tx_ring, first, &hdr_len);
if (tso < 0)
goto out_drop;
else if (!tso)
igb_tx_csum(tx_ring, first);
if (igb_tx_map(tx_ring, first, hdr_len))
goto cleanup_tx_tstamp;
return NETDEV_TX_OK;
out_drop:
dev_kfree_skb_any(first->skb);
first->skb = NULL;
cleanup_tx_tstamp:
if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
dev_kfree_skb_any(adapter->ptp_tx_skb);
adapter->ptp_tx_skb = NULL;
if (adapter->hw.mac.type == e1000_82576)
cancel_work_sync(&adapter->ptp_tx_work);
clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
}
return NETDEV_TX_OK;
}
static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
struct sk_buff *skb)
{
unsigned int r_idx = skb->queue_mapping;
if (r_idx >= adapter->num_tx_queues)
r_idx = r_idx % adapter->num_tx_queues;
return adapter->tx_ring[r_idx];
}
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
* in order to meet this minimum size requirement.
*/
if (skb_put_padto(skb, 17))
return NETDEV_TX_OK;
return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
}
/**
* igb_tx_timeout - Respond to a Tx Hang
* @netdev: network interface device structure
* @txqueue: number of the Tx queue that hung (unused)
**/
static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
/* Do the reset outside of interrupt context */
adapter->tx_timeout_count++;
if (hw->mac.type >= e1000_82580)
hw->dev_spec._82575.global_device_reset = true;
schedule_work(&adapter->reset_task);
wr32(E1000_EICS,
(adapter->eims_enable_mask & ~adapter->eims_other));
}
static void igb_reset_task(struct work_struct *work)
{
struct igb_adapter *adapter;
adapter = container_of(work, struct igb_adapter, reset_task);
rtnl_lock();
/* If we're already down or resetting, just bail */
if (test_bit(__IGB_DOWN, &adapter->state) ||
test_bit(__IGB_RESETTING, &adapter->state)) {
rtnl_unlock();
return;
}
igb_dump(adapter);
netdev_err(adapter->netdev, "Reset adapter\n");
igb_reinit_locked(adapter);
rtnl_unlock();
}
/**
* igb_get_stats64 - Get System Network Statistics
* @netdev: network interface device structure
* @stats: rtnl_link_stats64 pointer
**/
static void igb_get_stats64(struct net_device *netdev,
struct rtnl_link_stats64 *stats)
{
struct igb_adapter *adapter = netdev_priv(netdev);
spin_lock(&adapter->stats64_lock);
igb_update_stats(adapter);
memcpy(stats, &adapter->stats64, sizeof(*stats));
spin_unlock(&adapter->stats64_lock);
}
/**
* igb_change_mtu - Change the Maximum Transfer Unit
* @netdev: network interface device structure
* @new_mtu: new value for maximum frame size
*
* Returns 0 on success, negative on failure
**/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
struct igb_adapter *adapter = netdev_priv(netdev);
int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
if (adapter->xdp_prog) {
int i;
for (i = 0; i < adapter->num_rx_queues; i++) {
struct igb_ring *ring = adapter->rx_ring[i];
if (max_frame > igb_rx_bufsz(ring)) {
netdev_warn(adapter->netdev,
"Requested MTU size is not supported with XDP. Max frame size is %d\n",
max_frame);
return -EINVAL;
}
}
}
/* adjust max frame to be at least the size of a standard frame */
if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
usleep_range(1000, 2000);
/* igb_down has a dependency on max_frame_size */
adapter->max_frame_size = max_frame;
if (netif_running(netdev))
igb_down(adapter);
netdev_dbg(netdev, "changing MTU from %d to %d\n",
netdev->mtu, new_mtu);
netdev->mtu = new_mtu;
if (netif_running(netdev))
igb_up(adapter);
else
igb_reset(adapter);
clear_bit(__IGB_RESETTING, &adapter->state);
return 0;
}
/**
* igb_update_stats - Update the board statistics counters
* @adapter: board private structure
**/
void igb_update_stats(struct igb_adapter *adapter)
{
struct rtnl_link_stats64 *net_stats = &adapter->stats64;
struct e1000_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev;
u32 reg, mpc;
int i;
u64 bytes, packets;
unsigned int start;
u64 _bytes, _packets;
/* Prevent stats update while adapter is being reset, or if the pci
* connection is down.
*/
if (adapter->link_speed == 0)
return;
if (pci_channel_offline(pdev))
return;
bytes = 0;
packets = 0;
rcu_read_lock();
for (i = 0; i < adapter->num_rx_queues; i++) {
struct igb_ring *ring = adapter->rx_ring[i];
u32 rqdpc = rd32(E1000_RQDPC(i));
if (hw->mac.type >= e1000_i210)
wr32(E1000_RQDPC(i), 0);
if (rqdpc) {
ring->rx_stats.drops += rqdpc;
net_stats->rx_fifo_errors += rqdpc;
}
do {
start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
_bytes = ring->rx_stats.bytes;
_packets = ring->rx_stats.packets;
} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
bytes += _bytes;
packets += _packets;
}
net_stats->rx_bytes = bytes;
net_stats->rx_packets = packets;
bytes = 0;
packets = 0;
for (i = 0; i < adapter->num_tx_queues; i++) {
struct igb_ring *ring = adapter->tx_ring[i];
do {
start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
_bytes = ring->tx_stats.bytes;
_packets = ring->tx_stats.packets;
} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
bytes += _bytes;
packets += _packets;
}
net_stats->tx_bytes = bytes;
net_stats->tx_packets = packets;
rcu_read_unlock();
/* read stats registers */
adapter->stats.crcerrs += rd32(E1000_CRCERRS);
adapter->stats.gprc += rd32(E1000_GPRC);
adapter->stats.gorc += rd32(E1000_GORCL);
rd32(E1000_GORCH); /* clear GORCL */
adapter->stats.bprc += rd32(E1000_BPRC);
adapter->stats.mprc += rd32(E1000_MPRC);
adapter->stats.roc += rd32(E1000_ROC);
adapter->stats.prc64 += rd32(E1000_PRC64);
adapter->stats.prc127 += rd32(E1000_PRC127);
adapter->stats.prc255 += rd32(E1000_PRC255);
adapter->stats.prc511 += rd32(E1000_PRC511);
adapter->stats.prc1023 += rd32(E1000_PRC1023);
adapter->stats.prc1522 += rd32(E1000_PRC1522);
adapter->stats.symerrs += rd32(E1000_SYMERRS);
adapter->stats.sec += rd32(E1000_SEC);
mpc = rd32(E1000_MPC);
adapter->stats.mpc += mpc;
net_stats->rx_fifo_errors += mpc;
adapter->stats.scc += rd32(E1000_SCC);
adapter->stats.ecol += rd32(E1000_ECOL);
adapter->stats.mcc += rd32(E1000_MCC);
adapter->stats.latecol += rd32(E1000_LATECOL);
adapter->stats.dc += rd32(E1000_DC);
adapter->stats.rlec += rd32(E1000_RLEC);
adapter->stats.xonrxc += rd32(E1000_XONRXC);
adapter->stats.xontxc += rd32(E1000_XONTXC);
adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
adapter->stats.fcruc += rd32(E1000_FCRUC);
adapter->stats.gptc += rd32(E1000_GPTC);
adapter->stats.gotc += rd32(E1000_GOTCL);
rd32(E1000_GOTCH); /* clear GOTCL */
adapter->stats.rnbc += rd32(E1000_RNBC);
adapter->stats.ruc += rd32(E1000_RUC);
adapter->stats.rfc += rd32(E1000_RFC);
adapter->stats.rjc += rd32(E1000_RJC);
adapter->stats.tor += rd32(E1000_TORH);
adapter->stats.tot += rd32(E1000_TOTH);
adapter->stats.tpr += rd32(E1000_TPR);
adapter->stats.ptc64 += rd32(E1000_PTC64);
adapter->stats.ptc127 += rd32(E1000_PTC127);
adapter->stats.ptc255 += rd32(E1000_PTC255);
adapter->stats.ptc511 += rd32(E1000_PTC511);
adapter->stats.ptc1023 += rd32(E1000_PTC1023);
adapter->stats.ptc1522 += rd32(E1000_PTC1522);
adapter->stats.mptc += rd32(E1000_MPTC);
adapter->stats.bptc += rd32(E1000_BPTC);
adapter->stats.tpt += rd32(E1000_TPT);
adapter->stats.colc += rd32(E1000_COLC);
adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
/* read internal phy specific stats */
reg = rd32(E1000_CTRL_EXT);
if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
adapter->stats.rxerrc += rd32(E1000_RXERRC);
/* this stat has invalid values on i210/i211 */
if ((hw->mac.type != e1000_i210) &&
(hw->mac.type != e1000_i211))
adapter->stats.tncrs += rd32(E1000_TNCRS);
}
adapter->stats.tsctc += rd32(E1000_TSCTC);
adapter->stats.tsctfc += rd32(E1000_TSCTFC);
adapter->stats.iac += rd32(E1000_IAC);
adapter->stats.icrxoc += rd32(E1000_ICRXOC);
adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
adapter->stats.icrxatc += rd32(E1000_ICRXATC);
adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
adapter->stats.ictxatc += rd32(E1000_ICTXATC);
adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
/* Fill out the OS statistics structure */
net_stats->multicast = adapter->stats.mprc;
net_stats->collisions = adapter->stats.colc;
/* Rx Errors */
/* RLEC on some newer hardware can be incorrect so build
* our own version based on RUC and ROC
*/
net_stats->rx_errors = adapter->stats.rxerrc +
adapter->stats.crcerrs + adapter->stats.algnerrc +
adapter->stats.ruc + adapter->stats.roc +
adapter->stats.cexterr;
net_stats->rx_length_errors = adapter->stats.ruc +
adapter->stats.roc;
net_stats->rx_crc_errors = adapter->stats.crcerrs;
net_stats->rx_frame_errors = adapter->stats.algnerrc;
net_stats->rx_missed_errors = adapter->stats.mpc;
/* Tx Errors */
net_stats->tx_errors = adapter->stats.ecol +
adapter->stats.latecol;
net_stats->tx_aborted_errors = adapter->stats.ecol;
net_stats->tx_window_errors = adapter->stats.latecol;
net_stats->tx_carrier_errors = adapter->stats.tncrs;
/* Tx Dropped needs to be maintained elsewhere */
/* Management Stats */
adapter->stats.mgptc += rd32(E1000_MGTPTC);
adapter->stats.mgprc += rd32(E1000_MGTPRC);
adapter->stats.mgpdc += rd32(E1000_MGTPDC);
/* OS2BMC Stats */
reg = rd32(E1000_MANC);
if (reg & E1000_MANC_EN_BMC2OS) {
adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
adapter->stats.o2bspc += rd32(E1000_O2BSPC);
adapter->stats.b2ospc += rd32(E1000_B2OSPC);
adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
}
}
static void igb_tsync_interrupt(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct ptp_clock_event event;
struct timespec64 ts;
u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
if (tsicr & TSINTR_SYS_WRAP) {
event.type = PTP_CLOCK_PPS;
if (adapter->ptp_caps.pps)
ptp_clock_event(adapter->ptp_clock, &event);
ack |= TSINTR_SYS_WRAP;
}
if (tsicr & E1000_TSICR_TXTS) {
/* retrieve hardware timestamp */
schedule_work(&adapter->ptp_tx_work);
ack |= E1000_TSICR_TXTS;
}
if (tsicr & TSINTR_TT0) {
spin_lock(&adapter->tmreg_lock);
ts = timespec64_add(adapter->perout[0].start,
adapter->perout[0].period);
/* u32 conversion of tv_sec is safe until y2106 */
wr32(E1000_TRGTTIML0, ts.tv_nsec);
wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
tsauxc = rd32(E1000_TSAUXC);
tsauxc |= TSAUXC_EN_TT0;
wr32(E1000_TSAUXC, tsauxc);
adapter->perout[0].start = ts;
spin_unlock(&adapter->tmreg_lock);
ack |= TSINTR_TT0;
}
if (tsicr & TSINTR_TT1) {
spin_lock(&adapter->tmreg_lock);
ts = timespec64_add(adapter->perout[1].start,
adapter->perout[1].period);
wr32(E1000_TRGTTIML1, ts.tv_nsec);
wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
tsauxc = rd32(E1000_TSAUXC);
tsauxc |= TSAUXC_EN_TT1;
wr32(E1000_TSAUXC, tsauxc);
adapter->perout[1].start = ts;
spin_unlock(&adapter->tmreg_lock);
ack |= TSINTR_TT1;
}
if (tsicr & TSINTR_AUTT0) {
nsec = rd32(E1000_AUXSTMPL0);
sec = rd32(E1000_AUXSTMPH0);
event.type = PTP_CLOCK_EXTTS;
event.index = 0;
event.timestamp = sec * 1000000000ULL + nsec;
ptp_clock_event(adapter->ptp_clock, &event);
ack |= TSINTR_AUTT0;
}
if (tsicr & TSINTR_AUTT1) {
nsec = rd32(E1000_AUXSTMPL1);
sec = rd32(E1000_AUXSTMPH1);
event.type = PTP_CLOCK_EXTTS;
event.index = 1;
event.timestamp = sec * 1000000000ULL + nsec;
ptp_clock_event(adapter->ptp_clock, &event);
ack |= TSINTR_AUTT1;
}
/* acknowledge the interrupts */
wr32(E1000_TSICR, ack);
}
static irqreturn_t igb_msix_other(int irq, void *data)
{
struct igb_adapter *adapter = data;
struct e1000_hw *hw = &adapter->hw;
u32 icr = rd32(E1000_ICR);
/* reading ICR causes bit 31 of EICR to be cleared */
if (icr & E1000_ICR_DRSTA)
schedule_work(&adapter->reset_task);
if (icr & E1000_ICR_DOUTSYNC) {
/* HW is reporting DMA is out of sync */
adapter->stats.doosync++;
/* The DMA Out of Sync is also indication of a spoof event
* in IOV mode. Check the Wrong VM Behavior register to
* see if it is really a spoof event.
*/
igb_check_wvbr(adapter);
}
/* Check for a mailbox event */
if (icr & E1000_ICR_VMMB)
igb_msg_task(adapter);
if (icr & E1000_ICR_LSC) {
hw->mac.get_link_status = 1;
/* guard against interrupt when we're going down */
if (!test_bit(__IGB_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
if (icr & E1000_ICR_TS)
igb_tsync_interrupt(adapter);
wr32(E1000_EIMS, adapter->eims_other);
return IRQ_HANDLED;
}
static void igb_write_itr(struct igb_q_vector *q_vector)
{
struct igb_adapter *adapter = q_vector->adapter;
u32 itr_val = q_vector->itr_val & 0x7FFC;
if (!q_vector->set_itr)
return;
if (!itr_val)
itr_val = 0x4;
if (adapter->hw.mac.type == e1000_82575)
itr_val |= itr_val << 16;
else
itr_val |= E1000_EITR_CNT_IGNR;
writel(itr_val, q_vector->itr_register);
q_vector->set_itr = 0;
}
static irqreturn_t igb_msix_ring(int irq, void *data)
{
struct igb_q_vector *q_vector = data;
/* Write the ITR value calculated from the previous interrupt. */
igb_write_itr(q_vector);
napi_schedule(&q_vector->napi);
return IRQ_HANDLED;
}
#ifdef CONFIG_IGB_DCA
static void igb_update_tx_dca(struct igb_adapter *adapter,
struct igb_ring *tx_ring,
int cpu)
{
struct e1000_hw *hw = &adapter->hw;
u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
if (hw->mac.type != e1000_82575)
txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
/* We can enable relaxed ordering for reads, but not writes when
* DCA is enabled. This is due to a known issue in some chipsets
* which will cause the DCA tag to be cleared.
*/
txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
E1000_DCA_TXCTRL_DATA_RRO_EN |
E1000_DCA_TXCTRL_DESC_DCA_EN;
wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
}
static void igb_update_rx_dca(struct igb_adapter *adapter,
struct igb_ring *rx_ring,
int cpu)
{
struct e1000_hw *hw = &adapter->hw;
u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
if (hw->mac.type != e1000_82575)
rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
/* We can enable relaxed ordering for reads, but not writes when
* DCA is enabled. This is due to a known issue in some chipsets
* which will cause the DCA tag to be cleared.
*/
rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
E1000_DCA_RXCTRL_DESC_DCA_EN;
wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
}
static void igb_update_dca(struct igb_q_vector *q_vector)
{
struct igb_adapter *adapter = q_vector->adapter;
int cpu = get_cpu();
if (q_vector->cpu == cpu)
goto out_no_update;
if (q_vector->tx.ring)
igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
if (q_vector->rx.ring)
igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
q_vector->cpu = cpu;
out_no_update:
put_cpu();
}
static void igb_setup_dca(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
int i;
if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
return;
/* Always use CB2 mode, difference is masked in the CB driver. */
wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
for (i = 0; i < adapter->num_q_vectors; i++) {
adapter->q_vector[i]->cpu = -1;
igb_update_dca(adapter->q_vector[i]);
}
}
static int __igb_notify_dca(struct device *dev, void *data)
{
struct net_device *netdev = dev_get_drvdata(dev);
struct igb_adapter *adapter = netdev_priv(netdev);
struct pci_dev *pdev = adapter->pdev;
struct e1000_hw *hw = &adapter->hw;
unsigned long event = *(unsigned long *)data;
switch (event) {
case DCA_PROVIDER_ADD:
/* if already enabled, don't do it again */
if (adapter->flags & IGB_FLAG_DCA_ENABLED)
break;
if (dca_add_requester(dev) == 0) {
adapter->flags |= IGB_FLAG_DCA_ENABLED;
dev_info(&pdev->dev, "DCA enabled\n");
igb_setup_dca(adapter);
break;
}
fallthrough; /* since DCA is disabled. */
case DCA_PROVIDER_REMOVE:
if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
/* without this a class_device is left
* hanging around in the sysfs model
*/
dca_remove_requester(dev);
dev_info(&pdev->dev, "DCA disabled\n");
adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
}
break;
}
return 0;
}
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
void *p)
{
int ret_val;
ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
__igb_notify_dca);
return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
#endif /* CONFIG_IGB_DCA */
#ifdef CONFIG_PCI_IOV
static int igb_vf_configure(struct igb_adapter *adapter, int vf)
{
unsigned char mac_addr[ETH_ALEN];
eth_zero_addr(mac_addr);
igb_set_vf_mac(adapter, vf, mac_addr);
/* By default spoof check is enabled for all VFs */
adapter->vf_data[vf].spoofchk_enabled = true;
/* By default VFs are not trusted */
adapter->vf_data[vf].trusted = false;
return 0;
}
#endif
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ping;
int i;
for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
ping = E1000_PF_CONTROL_MSG;
if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
ping |= E1000_VT_MSGTYPE_CTS;
igb_write_mbx(hw, &ping, 1, i);
}
}
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
struct e1000_hw *hw = &adapter->hw;
u32 vmolr = rd32(E1000_VMOLR(vf));
struct vf_data_storage *vf_data = &adapter->vf_data[vf];
vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
IGB_VF_FLAG_MULTI_PROMISC);
vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
vmolr |= E1000_VMOLR_MPME;
vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
} else {
/* if we have hashes and we are clearing a multicast promisc
* flag we need to write the hashes to the MTA as this step
* was previously skipped
*/
if (vf_data->num_vf_mc_hashes > 30) {
vmolr |= E1000_VMOLR_MPME;
} else if (vf_data->num_vf_mc_hashes) {
int j;
vmolr |= E1000_VMOLR_ROMPE;
for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
}
}
wr32(E1000_VMOLR(vf), vmolr);
/* there are flags left unprocessed, likely not supported */
if (*msgbuf & E1000_VT_MSGINFO_MASK)
return -EINVAL;
return 0;
}
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
u32 *msgbuf, u32 vf)
{
int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
u16 *hash_list = (u16 *)&msgbuf[1];
struct vf_data_storage *vf_data = &adapter->vf_data[vf];
int i;
/* salt away the number of multicast addresses assigned
* to this VF for later use to restore when the PF multi cast
* list changes
*/
vf_data->num_vf_mc_hashes = n;
/* only up to 30 hash values supported */
if (n > 30)
n = 30;
/* store the hashes for later use */
for (i = 0; i < n; i++)
vf_data->vf_mc_hashes[i] = hash_list[i];
/* Flush and reset the mta with the new values */
igb_set_rx_mode(adapter->netdev);
return 0;
}
static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct vf_data_storage *vf_data;
int i, j;
for (i = 0; i < adapter->vfs_allocated_count; i++) {
u32 vmolr = rd32(E1000_VMOLR(i));
vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
vf_data = &adapter->vf_data[i];
if ((vf_data->num_vf_mc_hashes > 30) ||
(vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
vmolr |= E1000_VMOLR_MPME;
} else if (vf_data->num_vf_mc_hashes) {
vmolr |= E1000_VMOLR_ROMPE;
for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
}
wr32(E1000_VMOLR(i), vmolr);
}
}
static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
struct e1000_hw *hw = &adapter->hw;
u32 pool_mask, vlvf_mask, i;
/* create mask for VF and other pools */
pool_mask = E1000_VLVF_POOLSEL_MASK;
vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
/* drop PF from pool bits */
pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
adapter->vfs_allocated_count);
/* Find the vlan filter for this id */
for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
u32 vlvf = rd32(E1000_VLVF(i));
u32 vfta_mask, vid, vfta;
/* remove the vf from the pool */
if (!(vlvf & vlvf_mask))
continue;
/* clear out bit from VLVF */
vlvf ^= vlvf_mask;
/* if other pools are present, just remove ourselves */
if (vlvf & pool_mask)
goto update_vlvfb;
/* if PF is present, leave VFTA */
if (vlvf & E1000_VLVF_POOLSEL_MASK)
goto update_vlvf;
vid = vlvf & E1000_VLVF_VLANID_MASK;
vfta_mask = BIT(vid % 32);
/* clear bit from VFTA */
vfta = adapter->shadow_vfta[vid / 32];
if (vfta & vfta_mask)
hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
update_vlvf:
/* clear pool selection enable */
if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
vlvf &= E1000_VLVF_POOLSEL_MASK;
else
vlvf = 0;
update_vlvfb:
/* clear pool bits */
wr32(E1000_VLVF(i), vlvf);
}
}
static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
{
u32 vlvf;
int idx;
/* short cut the special case */
if (vlan == 0)
return 0;
/* Search for the VLAN id in the VLVF entries */
for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
vlvf = rd32(E1000_VLVF(idx));
if ((vlvf & VLAN_VID_MASK) == vlan)
break;
}
return idx;
}
static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
{
struct e1000_hw *hw = &adapter->hw;
u32 bits, pf_id;
int idx;
idx = igb_find_vlvf_entry(hw, vid);
if (!idx)
return;
/* See if any other pools are set for this VLAN filter
* entry other than the PF.
*/
pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
bits &= rd32(E1000_VLVF(idx));
/* Disable the filter so this falls into the default pool. */
if (!bits) {
if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
wr32(E1000_VLVF(idx), BIT(pf_id));
else
wr32(E1000_VLVF(idx), 0);
}
}
static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
bool add, u32 vf)
{
int pf_id = adapter->vfs_allocated_count;
struct e1000_hw *hw = &adapter->hw;
int err;
/* If VLAN overlaps with one the PF is currently monitoring make
* sure that we are able to allocate a VLVF entry. This may be
* redundant but it guarantees PF will maintain visibility to
* the VLAN.
*/
if (add && test_bit(vid, adapter->active_vlans)) {
err = igb_vfta_set(hw, vid, pf_id, true, false);
if (err)
return err;
}
err = igb_vfta_set(hw, vid, vf, add, false);
if (add && !err)
return err;
/* If we failed to add the VF VLAN or we are removing the VF VLAN
* we may need to drop the PF pool bit in order to allow us to free
* up the VLVF resources.
*/
if (test_bit(vid, adapter->active_vlans) ||
(adapter->flags & IGB_FLAG_VLAN_PROMISC))
igb_update_pf_vlvf(adapter, vid);
return err;
}
static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
struct e1000_hw *hw = &adapter->hw;
if (vid)
wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
else
wr32(E1000_VMVIR(vf), 0);
}
static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
u16 vlan, u8 qos)
{
int err;
err = igb_set_vf_vlan(adapter, vlan, true, vf);
if (err)
return err;
igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
igb_set_vmolr(adapter, vf, !vlan);
/* revoke access to previous VLAN */
if (vlan != adapter->vf_data[vf].pf_vlan)
igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
false, vf);
adapter->vf_data[vf].pf_vlan = vlan;
adapter->vf_data[vf].pf_qos = qos;
igb_set_vf_vlan_strip(adapter, vf, true);
dev_info(&adapter->pdev->dev,
"Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
if (test_bit(__IGB_DOWN, &adapter->state)) {
dev_warn(&adapter->pdev->dev,
"The VF VLAN has been set, but the PF device is not up.\n");
dev_warn(&adapter->pdev->dev,
"Bring the PF device up before attempting to use the VF device.\n");
}
return err;
}
static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
{
/* Restore tagless access via VLAN 0 */
igb_set_vf_vlan(adapter, 0, true, vf);
igb_set_vmvir(adapter, 0, vf);
igb_set_vmolr(adapter, vf, true);
/* Remove any PF assigned VLAN */
if (adapter->vf_data[vf].pf_vlan)
igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
false, vf);
adapter->vf_data[vf].pf_vlan = 0;
adapter->vf_data[vf].pf_qos = 0;
igb_set_vf_vlan_strip(adapter, vf, false);
return 0;
}
static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
u16 vlan, u8 qos, __be16 vlan_proto)
{
struct igb_adapter *adapter = netdev_priv(netdev);
if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
return -EINVAL;
if (vlan_proto != htons(ETH_P_8021Q))
return -EPROTONOSUPPORT;
return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
igb_disable_port_vlan(adapter, vf);
}
static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
int ret;
if (adapter->vf_data[vf].pf_vlan)
return -1;
/* VLAN 0 is a special case, don't allow it to be removed */
if (!vid && !add)
return 0;
ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
if (!ret)
igb_set_vf_vlan_strip(adapter, vf, !!vid);
return ret;
}
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
{
struct vf_data_storage *vf_data = &adapter->vf_data[vf];
/* clear flags - except flag that indicates PF has set the MAC */
vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
vf_data->last_nack = jiffies;
/* reset vlans for device */
igb_clear_vf_vfta(adapter, vf);
igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
igb_set_vmvir(adapter, vf_data->pf_vlan |
(vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
/* reset multicast table array for vf */
adapter->vf_data[vf].num_vf_mc_hashes = 0;
/* Flush and reset the mta with the new values */
igb_set_rx_mode(adapter->netdev);
}
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
/* clear mac address as we were hotplug removed/added */
if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
eth_zero_addr(vf_mac);
/* process remaining reset events */
igb_vf_reset(adapter, vf);
}
static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
{
struct e1000_hw *hw = &adapter->hw;
unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
u32 reg, msgbuf[3];
u8 *addr = (u8 *)(&msgbuf[1]);
/* process all the same items cleared in a function level reset */
igb_vf_reset(adapter, vf);
/* set vf mac address */
igb_set_vf_mac(adapter, vf, vf_mac);
/* enable transmit and receive for vf */
reg = rd32(E1000_VFTE);
wr32(E1000_VFTE, reg | BIT(vf));
reg = rd32(E1000_VFRE);
wr32(E1000_VFRE, reg | BIT(vf));
adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
/* reply to reset with ack and vf mac address */
if (!is_zero_ether_addr(vf_mac)) {
msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
memcpy(addr, vf_mac, ETH_ALEN);
} else {
msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
}
igb_write_mbx(hw, msgbuf, 3, vf);
}
static void igb_flush_mac_table(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
int i;
for (i = 0; i < hw->mac.rar_entry_count; i++) {
adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
eth_zero_addr(adapter->mac_table[i].addr);
adapter->mac_table[i].queue = 0;
igb_rar_set_index(adapter, i);
}
}
static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
{
struct e1000_hw *hw = &adapter->hw;
/* do not count rar entries reserved for VFs MAC addresses */
int rar_entries = hw->mac.rar_entry_count -
adapter->vfs_allocated_count;
int i, count = 0;
for (i = 0; i < rar_entries; i++) {
/* do not count default entries */
if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
continue;
/* do not count "in use" entries for different queues */
if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
(adapter->mac_table[i].queue != queue))
continue;
count++;
}
return count;
}
/* Set default MAC address for the PF in the first RAR entry */
static void igb_set_default_mac_filter(struct igb_adapter *adapter)
{
struct igb_mac_addr *mac_table = &adapter->mac_table[0];
ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
mac_table->queue = adapter->vfs_allocated_count;
mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
igb_rar_set_index(adapter, 0);
}
/* If the filter to be added and an already existing filter express
* the same address and address type, it should be possible to only
* override the other configurations, for example the queue to steer
* traffic.
*/
static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
const u8 *addr, const u8 flags)
{
if (!(entry->state & IGB_MAC_STATE_IN_USE))
return true;
if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
(flags & IGB_MAC_STATE_SRC_ADDR))
return false;
if (!ether_addr_equal(addr, entry->addr))
return false;
return true;
}
/* Add a MAC filter for 'addr' directing matching traffic to 'queue',
* 'flags' is used to indicate what kind of match is made, match is by
* default for the destination address, if matching by source address
* is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
*/
static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
const u8 *addr, const u8 queue,
const u8 flags)
{
struct e1000_hw *hw = &adapter->hw;
int rar_entries = hw->mac.rar_entry_count -
adapter->vfs_allocated_count;
int i;
if (is_zero_ether_addr(addr))
return -EINVAL;
/* Search for the first empty entry in the MAC table.
* Do not touch entries at the end of the table reserved for the VF MAC
* addresses.
*/
for (i = 0; i < rar_entries; i++) {
if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
addr, flags))
continue;
ether_addr_copy(adapter->mac_table[i].addr, addr);
adapter->mac_table[i].queue = queue;
adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
igb_rar_set_index(adapter, i);
return i;
}
return -ENOSPC;
}
static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
const u8 queue)
{
return igb_add_mac_filter_flags(adapter, addr, queue, 0);
}
/* Remove a MAC filter for 'addr' directing matching traffic to
* 'queue', 'flags' is used to indicate what kind of match need to be
* removed, match is by default for the destination address, if
* matching by source address is to be removed the flag
* IGB_MAC_STATE_SRC_ADDR can be used.
*/
static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
const u8 *addr, const u8 queue,
const u8 flags)
{
struct e1000_hw *hw = &adapter->hw;
int rar_entries = hw->mac.rar_entry_count -
adapter->vfs_allocated_count;
int i;
if (is_zero_ether_addr(addr))
return -EINVAL;
/* Search for matching entry in the MAC table based on given address
* and queue. Do not touch entries at the end of the table reserved
* for the VF MAC addresses.
*/
for (i = 0; i < rar_entries; i++) {
if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
continue;
if ((adapter->mac_table[i].state & flags) != flags)
continue;
if (adapter->mac_table[i].queue != queue)
continue;
if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
continue;
/* When a filter for the default address is "deleted",
* we return it to its initial configuration
*/
if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
adapter->mac_table[i].state =
IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
adapter->mac_table[i].queue =
adapter->vfs_allocated_count;
} else {
adapter->mac_table[i].state = 0;
adapter->mac_table[i].queue = 0;
eth_zero_addr(adapter->mac_table[i].addr);
}
igb_rar_set_index(adapter, i);
return 0;
}
return -ENOENT;
}
static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
const u8 queue)
{
return igb_del_mac_filter_flags(adapter, addr, queue, 0);
}
int igb_add_mac_steering_filter(struct igb_adapter *adapter,
const u8 *addr, u8 queue, u8 flags)
{
struct e1000_hw *hw = &adapter->hw;
/* In theory, this should be supported on 82575 as well, but
* that part wasn't easily accessible during development.
*/
if (hw->mac.type != e1000_i210)
return -EOPNOTSUPP;
return igb_add_mac_filter_flags(adapter, addr, queue,
IGB_MAC_STATE_QUEUE_STEERING | flags);
}
int igb_del_mac_steering_filter(struct igb_adapter *adapter,
const u8 *addr, u8 queue, u8 flags)
{
return igb_del_mac_filter_flags(adapter, addr, queue,
IGB_MAC_STATE_QUEUE_STEERING | flags);
}
static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
{
struct igb_adapter *adapter = netdev_priv(netdev);
int ret;
ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
return min_t(int, ret, 0);
}
static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
{
struct igb_adapter *adapter = netdev_priv(netdev);
igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
return 0;
}
static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
const u32 info, const u8 *addr)
{
struct pci_dev *pdev = adapter->pdev;
struct vf_data_storage *vf_data = &adapter->vf_data[vf];
struct list_head *pos;
struct vf_mac_filter *entry = NULL;
int ret = 0;
switch (info) {
case E1000_VF_MAC_FILTER_CLR:
/* remove all unicast MAC filters related to the current VF */
list_for_each(pos, &adapter->vf_macs.l) {
entry = list_entry(pos, struct vf_mac_filter, l);
if (entry->vf == vf) {
entry->vf = -1;
entry->free = true;
igb_del_mac_filter(adapter, entry->vf_mac, vf);
}
}
break;
case E1000_VF_MAC_FILTER_ADD:
if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
!vf_data->trusted) {
dev_warn(&pdev->dev,
"VF %d requested MAC filter but is administratively denied\n",
vf);
return -EINVAL;
}
if (!is_valid_ether_addr(addr)) {
dev_warn(&pdev->dev,
"VF %d attempted to set invalid MAC filter\n",
vf);
return -EINVAL;
}
/* try to find empty slot in the list */
list_for_each(pos, &adapter->vf_macs.l) {
entry = list_entry(pos, struct vf_mac_filter, l);
if (entry->free)
break;
}
if (entry && entry->free) {
entry->free = false;
entry->vf = vf;
ether_addr_copy(entry->vf_mac, addr);
ret = igb_add_mac_filter(adapter, addr, vf);
ret = min_t(int, ret, 0);
} else {
ret = -ENOSPC;
}
if (ret == -ENOSPC)
dev_warn(&pdev->dev,
"VF %d has requested MAC filter but there is no space for it\n",
vf);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
struct pci_dev *pdev = adapter->pdev;
struct vf_data_storage *vf_data = &adapter->vf_data[vf];
u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
/* The VF MAC Address is stored in a packed array of bytes
* starting at the second 32 bit word of the msg array
*/
unsigned char *addr = (unsigned char *)&msg[1];
int ret = 0;
if (!info) {
if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
!vf_data->trusted) {
dev_warn(&pdev->dev,
"VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
vf);
return -EINVAL;
}
if (!is_valid_ether_addr(addr)) {
dev_warn(&pdev->dev,
"VF %d attempted to set invalid MAC\n",
vf);
return -EINVAL;
}
ret = igb_set_vf_mac(adapter, vf, addr);
} else {
ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
}
return ret;
}
static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
struct e1000_hw *hw = &adapter->hw;
struct vf_data_storage *vf_data = &adapter->vf_data[vf];
u32 msg = E1000_VT_MSGTYPE_NACK;
/* if device isn't clear to send it shouldn't be reading either */
if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
igb_write_mbx(hw, &msg, 1, vf);
vf_data->last_nack = jiffies;
}
}
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
{
struct pci_dev *pdev = adapter->pdev;
u32 msgbuf[E1000_VFMAILBOX_SIZE];
struct e1000_hw *hw = &adapter->hw;
struct vf_data_storage *vf_data = &adapter->vf_data[vf];
s32 retval;
retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
if (retval) {
/* if receive failed revoke VF CTS stats and restart init */
dev_err(&pdev->dev, "Error receiving message from VF\n");
vf_data->flags &= ~IGB_VF_FLAG_CTS;
if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
goto unlock;
goto out;
}
/* this is a message we already processed, do nothing */
if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
goto unlock;
/* until the vf completes a reset it should not be
* allowed to start any configuration.
*/
if (msgbuf[0] == E1000_VF_RESET) {
/* unlocks mailbox */
igb_vf_reset_msg(adapter, vf);
return;
}
if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
goto unlock;
retval = -1;
goto out;
}
switch ((msgbuf[0] & 0xFFFF)) {
case E1000_VF_SET_MAC_ADDR:
retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
break;
case E1000_VF_SET_PROMISC:
retval = igb_set_vf_promisc(adapter, msgbuf, vf);
break;
case E1000_VF_SET_MULTICAST:
retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
break;
case E1000_VF_SET_LPE:
retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
break;
case E1000_VF_SET_VLAN:
retval = -1;
if (vf_data->pf_vlan)
dev_warn(&pdev->dev,
"VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
vf);
else
retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
break;
default:
dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
retval = -1;
break;
}
msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
/* notify the VF of the results of what it sent us */
if (retval)
msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
else
msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
/* unlocks mailbox */
igb_write_mbx(hw, msgbuf, 1, vf);
return;
unlock:
igb_unlock_mbx(hw, vf);
}
static void igb_msg_task(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 vf;
for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
/* process any reset requests */
if (!igb_check_for_rst(hw, vf))
igb_vf_reset_event(adapter, vf);
/* process any messages pending */
if (!igb_check_for_msg(hw, vf))
igb_rcv_msg_from_vf(adapter, vf);
/* process any acks */
if (!igb_check_for_ack(hw, vf))
igb_rcv_ack_from_vf(adapter, vf);
}
}
/**
* igb_set_uta - Set unicast filter table address
* @adapter: board private structure
* @set: boolean indicating if we are setting or clearing bits
*
* The unicast table address is a register array of 32-bit registers.
* The table is meant to be used in a way similar to how the MTA is used
* however due to certain limitations in the hardware it is necessary to
* set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
* enable bit to allow vlan tag stripping when promiscuous mode is enabled
**/
static void igb_set_uta(struct igb_adapter *adapter, bool set)
{
struct e1000_hw *hw = &adapter->hw;
u32 uta = set ? ~0 : 0;
int i;
/* we only need to do this if VMDq is enabled */
if (!adapter->vfs_allocated_count)
return;
for (i = hw->mac.uta_reg_count; i--;)
array_wr32(E1000_UTA, i, uta);
}
/**
* igb_intr_msi - Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
**/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
struct igb_adapter *adapter = data;
struct igb_q_vector *q_vector = adapter->q_vector[0];
struct e1000_hw *hw = &adapter->hw;
/* read ICR disables interrupts using IAM */
u32 icr = rd32(E1000_ICR);
igb_write_itr(q_vector);
if (icr & E1000_ICR_DRSTA)
schedule_work(&adapter->reset_task);
if (icr & E1000_ICR_DOUTSYNC) {
/* HW is reporting DMA is out of sync */
adapter->stats.doosync++;
}
if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
hw->mac.get_link_status = 1;
if (!test_bit(__IGB_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
if (icr & E1000_ICR_TS)
igb_tsync_interrupt(adapter);
napi_schedule(&q_vector->napi);
return IRQ_HANDLED;
}
/**
* igb_intr - Legacy Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
**/
static irqreturn_t igb_intr(int irq, void *data)
{
struct igb_adapter *adapter = data;
struct igb_q_vector *q_vector = adapter->q_vector[0];
struct e1000_hw *hw = &adapter->hw;
/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
* need for the IMC write
*/
u32 icr = rd32(E1000_ICR);
/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
* not set, then the adapter didn't send an interrupt
*/
if (!(icr & E1000_ICR_INT_ASSERTED))
return IRQ_NONE;
igb_write_itr(q_vector);
if (icr & E1000_ICR_DRSTA)
schedule_work(&adapter->reset_task);
if (icr & E1000_ICR_DOUTSYNC) {
/* HW is reporting DMA is out of sync */
adapter->stats.doosync++;
}
if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
hw->mac.get_link_status = 1;
/* guard against interrupt when we're going down */
if (!test_bit(__IGB_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
if (icr & E1000_ICR_TS)
igb_tsync_interrupt(adapter);
napi_schedule(&q_vector->napi);
return IRQ_HANDLED;
}
static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
{
struct igb_adapter *adapter = q_vector->adapter;
struct e1000_hw *hw = &adapter->hw;
if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
(!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
igb_set_itr(q_vector);
else
igb_update_ring_itr(q_vector);
}
if (!test_bit(__IGB_DOWN, &adapter->state)) {
if (adapter->flags & IGB_FLAG_HAS_MSIX)
wr32(E1000_EIMS, q_vector->eims_value);
else
igb_irq_enable(adapter);
}
}
/**
* igb_poll - NAPI Rx polling callback
* @napi: napi polling structure
* @budget: count of how many packets we should handle
**/
static int igb_poll(struct napi_struct *napi, int budget)
{
struct igb_q_vector *q_vector = container_of(napi,
struct igb_q_vector,
napi);
bool clean_complete = true;
int work_done = 0;
#ifdef CONFIG_IGB_DCA
if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
igb_update_dca(q_vector);
#endif
if (q_vector->tx.ring)
clean_complete = igb_clean_tx_irq(q_vector, budget);
if (q_vector->rx.ring) {
int cleaned = igb_clean_rx_irq(q_vector, budget);
work_done += cleaned;
if (cleaned >= budget)
clean_complete = false;
}
/* If all work not completed, return budget and keep polling */
if (!clean_complete)
return budget;
/* Exit the polling mode, but don't re-enable interrupts if stack might
* poll us due to busy-polling
*/
if (likely(napi_complete_done(napi, work_done)))
igb_ring_irq_enable(q_vector);
return min(work_done, budget - 1);
}
/**
* igb_clean_tx_irq - Reclaim resources after transmit completes
* @q_vector: pointer to q_vector containing needed info
* @napi_budget: Used to determine if we are in netpoll
*
* returns true if ring is completely cleaned
**/
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
{
struct igb_adapter *adapter = q_vector->adapter;
struct igb_ring *tx_ring = q_vector->tx.ring;
struct igb_tx_buffer *tx_buffer;
union e1000_adv_tx_desc *tx_desc;
unsigned int total_bytes = 0, total_packets = 0;
unsigned int budget = q_vector->tx.work_limit;
unsigned int i = tx_ring->next_to_clean;
if (test_bit(__IGB_DOWN, &adapter->state))
return true;
tx_buffer = &tx_ring->tx_buffer_info[i];
tx_desc = IGB_TX_DESC(tx_ring, i);
i -= tx_ring->count;
do {
union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
/* if next_to_watch is not set then there is no work pending */
if (!eop_desc)
break;
/* prevent any other reads prior to eop_desc */
smp_rmb();
/* if DD is not set pending work has not been completed */
if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
break;
/* clear next_to_watch to prevent false hangs */
tx_buffer->next_to_watch = NULL;
/* update the statistics for this packet */
total_bytes += tx_buffer->bytecount;
total_packets += tx_buffer->gso_segs;
/* free the skb */
if (tx_buffer->type == IGB_TYPE_SKB)
napi_consume_skb(tx_buffer->skb, napi_budget);
else
xdp_return_frame(tx_buffer->xdpf);
/* unmap skb header data */
dma_unmap_single(tx_ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
/* clear tx_buffer data */
dma_unmap_len_set(tx_buffer, len, 0);
/* clear last DMA location and unmap remaining buffers */
while (tx_desc != eop_desc) {
tx_buffer++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_buffer = tx_ring->tx_buffer_info;
tx_desc = IGB_TX_DESC(tx_ring, 0);
}
/* unmap any remaining paged data */
if (dma_unmap_len(tx_buffer, len)) {
dma_unmap_page(tx_ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
dma_unmap_len_set(tx_buffer, len, 0);
}
}
/* move us one more past the eop_desc for start of next pkt */
tx_buffer++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_buffer = tx_ring->tx_buffer_info;
tx_desc = IGB_TX_DESC(tx_ring, 0);
}
/* issue prefetch for next Tx descriptor */
prefetch(tx_desc);
/* update budget accounting */
budget--;
} while (likely(budget));
netdev_tx_completed_queue(txring_txq(tx_ring),
total_packets, total_bytes);
i += tx_ring->count;
tx_ring->next_to_clean = i;
u64_stats_update_begin(&tx_ring->tx_syncp);
tx_ring->tx_stats.bytes += total_bytes;
tx_ring->tx_stats.packets += total_packets;
u64_stats_update_end(&tx_ring->tx_syncp);
q_vector->tx.total_bytes += total_bytes;
q_vector->tx.total_packets += total_packets;
if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
struct e1000_hw *hw = &adapter->hw;
/* Detect a transmit hang in hardware, this serializes the
* check with the clearing of time_stamp and movement of i
*/
clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
if (tx_buffer->next_to_watch &&
time_after(jiffies, tx_buffer->time_stamp +
(adapter->tx_timeout_factor * HZ)) &&
!(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
/* detected Tx unit hang */
dev_err(tx_ring->dev,
"Detected Tx Unit Hang\n"
" Tx Queue <%d>\n"
" TDH <%x>\n"
" TDT <%x>\n"
" next_to_use <%x>\n"
" next_to_clean <%x>\n"
"buffer_info[next_to_clean]\n"
" time_stamp <%lx>\n"
" next_to_watch <%p>\n"
" jiffies <%lx>\n"
" desc.status <%x>\n",
tx_ring->queue_index,
rd32(E1000_TDH(tx_ring->reg_idx)),
readl(tx_ring->tail),
tx_ring->next_to_use,
tx_ring->next_to_clean,
tx_buffer->time_stamp,
tx_buffer->next_to_watch,
jiffies,
tx_buffer->next_to_watch->wb.status);
netif_stop_subqueue(tx_ring->netdev,
tx_ring->queue_index);
/* we are about to reset, no point in enabling stuff */
return true;
}
}
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
if (unlikely(total_packets &&
netif_carrier_ok(tx_ring->netdev) &&
igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
/* Make sure that anybody stopping the queue after this
* sees the new next_to_clean.
*/
smp_mb();
if (__netif_subqueue_stopped(tx_ring->netdev,
tx_ring->queue_index) &&
!(test_bit(__IGB_DOWN, &adapter->state))) {
netif_wake_subqueue(tx_ring->netdev,
tx_ring->queue_index);
u64_stats_update_begin(&tx_ring->tx_syncp);
tx_ring->tx_stats.restart_queue++;
u64_stats_update_end(&tx_ring->tx_syncp);
}
}
return !!budget;
}
/**
* igb_reuse_rx_page - page flip buffer and store it back on the ring
* @rx_ring: rx descriptor ring to store buffers on
* @old_buff: donor buffer to have page reused
*
* Synchronizes page for reuse by the adapter
**/
static void igb_reuse_rx_page(struct igb_ring *rx_ring,
struct igb_rx_buffer *old_buff)
{
struct igb_rx_buffer *new_buff;
u16 nta = rx_ring->next_to_alloc;
new_buff = &rx_ring->rx_buffer_info[nta];
/* update, and store next to alloc */
nta++;
rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
/* Transfer page from old buffer to new buffer.
* Move each member individually to avoid possible store
* forwarding stalls.
*/
new_buff->dma = old_buff->dma;
new_buff->page = old_buff->page;
new_buff->page_offset = old_buff->page_offset;
new_buff->pagecnt_bias = old_buff->pagecnt_bias;
}
static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
{
unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
struct page *page = rx_buffer->page;
/* avoid re-using remote and pfmemalloc pages */
if (!dev_page_is_reusable(page))
return false;
#if (PAGE_SIZE < 8192)
/* if we are only owner of page we can reuse it */
if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
return false;
#else
#define IGB_LAST_OFFSET \
(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
if (rx_buffer->page_offset > IGB_LAST_OFFSET)
return false;
#endif
/* If we have drained the page fragment pool we need to update
* the pagecnt_bias and page count so that we fully restock the
* number of references the driver holds.
*/
if (unlikely(pagecnt_bias == 1)) {
page_ref_add(page, USHRT_MAX - 1);
rx_buffer->pagecnt_bias = USHRT_MAX;
}
return true;
}
/**
* igb_add_rx_frag - Add contents of Rx buffer to sk_buff
* @rx_ring: rx descriptor ring to transact packets on
* @rx_buffer: buffer containing page to add
* @skb: sk_buff to place the data into
* @size: size of buffer to be added
*
* This function will add the data contained in rx_buffer->page to the skb.
**/
static void igb_add_rx_frag(struct igb_ring *rx_ring,
struct igb_rx_buffer *rx_buffer,
struct sk_buff *skb,
unsigned int size)
{
#if (PAGE_SIZE < 8192)
unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
#else
unsigned int truesize = ring_uses_build_skb(rx_ring) ?
SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
SKB_DATA_ALIGN(size);
#endif
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
rx_buffer->page_offset, size, truesize);
#if (PAGE_SIZE < 8192)
rx_buffer->page_offset ^= truesize;
#else
rx_buffer->page_offset += truesize;
#endif
}
static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
struct igb_rx_buffer *rx_buffer,
struct xdp_buff *xdp,
union e1000_adv_rx_desc *rx_desc)
{
#if (PAGE_SIZE < 8192)
unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
#else
unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
xdp->data_hard_start);
#endif
unsigned int size = xdp->data_end - xdp->data;
unsigned int headlen;
struct sk_buff *skb;
/* prefetch first cache line of first page */
net_prefetch(xdp->data);
/* allocate a skb to store the frags */
skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
if (unlikely(!skb))
return NULL;
if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
igb_ptp_rx_pktstamp(rx_ring->q_vector, xdp->data, skb);
xdp->data += IGB_TS_HDR_LEN;
size -= IGB_TS_HDR_LEN;
}
/* Determine available headroom for copy */
headlen = size;
if (headlen > IGB_RX_HDR_LEN)
headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
/* align pull length to size of long to optimize memcpy performance */
memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
/* update all of the pointers */
size -= headlen;
if (size) {
skb_add_rx_frag(skb, 0, rx_buffer->page,
(xdp->data + headlen) - page_address(rx_buffer->page),
size, truesize);
#if (PAGE_SIZE < 8192)
rx_buffer->page_offset ^= truesize;
#else
rx_buffer->page_offset += truesize;
#endif
} else {
rx_buffer->pagecnt_bias++;
}
return skb;
}
static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
struct igb_rx_buffer *rx_buffer,
struct xdp_buff *xdp,
union e1000_adv_rx_desc *rx_desc)
{
#if (PAGE_SIZE < 8192)
unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
#else
unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
SKB_DATA_ALIGN(xdp->data_end -
xdp->data_hard_start);
#endif
unsigned int metasize = xdp->data - xdp->data_meta;
struct sk_buff *skb;
/* prefetch first cache line of first page */
net_prefetch(xdp->data_meta);
/* build an skb around the page buffer */
skb = build_skb(xdp->data_hard_start, truesize);
if (unlikely(!skb))
return NULL;
/* update pointers within the skb to store the data */
skb_reserve(skb, xdp->data - xdp->data_hard_start);
__skb_put(skb, xdp->data_end - xdp->data);
if (metasize)
skb_metadata_set(skb, metasize);
/* pull timestamp out of packet data */
if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
__skb_pull(skb, IGB_TS_HDR_LEN);
}
/* update buffer offset */
#if (PAGE_SIZE < 8192)
rx_buffer->page_offset ^= truesize;
#else
rx_buffer->page_offset += truesize;
#endif
return skb;
}
static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
struct igb_ring *rx_ring,
struct xdp_buff *xdp)
{
int err, result = IGB_XDP_PASS;
struct bpf_prog *xdp_prog;
u32 act;
rcu_read_lock();
xdp_prog = READ_ONCE(rx_ring->xdp_prog);
if (!xdp_prog)
goto xdp_out;
prefetchw(xdp->data_hard_start); /* xdp_frame write */
act = bpf_prog_run_xdp(xdp_prog, xdp);
switch (act) {
case XDP_PASS:
break;
case XDP_TX:
result = igb_xdp_xmit_back(adapter, xdp);
break;
case XDP_REDIRECT:
err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
if (!err)
result = IGB_XDP_REDIR;
else
result = IGB_XDP_CONSUMED;
break;
default:
bpf_warn_invalid_xdp_action(act);
fallthrough;
case XDP_ABORTED:
trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
fallthrough;
case XDP_DROP:
result = IGB_XDP_CONSUMED;
break;
}
xdp_out:
rcu_read_unlock();
return ERR_PTR(-result);
}
static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
unsigned int size)
{
unsigned int truesize;
#if (PAGE_SIZE < 8192)
truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
#else
truesize = ring_uses_build_skb(rx_ring) ?
SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
SKB_DATA_ALIGN(size);
#endif
return truesize;
}
static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
struct igb_rx_buffer *rx_buffer,
unsigned int size)
{
unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
#if (PAGE_SIZE < 8192)
rx_buffer->page_offset ^= truesize;
#else
rx_buffer->page_offset += truesize;
#endif
}
static inline void igb_rx_checksum(struct igb_ring *ring,
union e1000_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
skb_checksum_none_assert(skb);
/* Ignore Checksum bit is set */
if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
return;
/* Rx checksum disabled via ethtool */
if (!(ring->netdev->features & NETIF_F_RXCSUM))
return;
/* TCP/UDP checksum error bit is set */
if (igb_test_staterr(rx_desc,
E1000_RXDEXT_STATERR_TCPE |
E1000_RXDEXT_STATERR_IPE)) {
/* work around errata with sctp packets where the TCPE aka
* L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
* packets, (aka let the stack check the crc32c)
*/
if (!((skb->len == 60) &&
test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
u64_stats_update_begin(&ring->rx_syncp);
ring->rx_stats.csum_err++;
u64_stats_update_end(&ring->rx_syncp);
}
/* let the stack verify checksum errors */
return;
}
/* It must be a TCP or UDP packet with a valid checksum */
if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
E1000_RXD_STAT_UDPCS))
skb->ip_summed = CHECKSUM_UNNECESSARY;
dev_dbg(ring->dev, "cksum success: bits %08X\n",
le32_to_cpu(rx_desc->wb.upper.status_error));
}
static inline void igb_rx_hash(struct igb_ring *ring,
union e1000_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
if (ring->netdev->features & NETIF_F_RXHASH)
skb_set_hash(skb,
le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
PKT_HASH_TYPE_L3);
}
/**
* igb_is_non_eop - process handling of non-EOP buffers
* @rx_ring: Rx ring being processed
* @rx_desc: Rx descriptor for current buffer
*
* This function updates next to clean. If the buffer is an EOP buffer
* this function exits returning false, otherwise it will place the
* sk_buff in the next buffer to be chained and return true indicating
* that this is in fact a non-EOP buffer.
**/
static bool igb_is_non_eop(struct igb_ring *rx_ring,
union e1000_adv_rx_desc *rx_desc)
{
u32 ntc = rx_ring->next_to_clean + 1;
/* fetch, update, and store next to clean */
ntc = (ntc < rx_ring->count) ? ntc : 0;
rx_ring->next_to_clean = ntc;
prefetch(IGB_RX_DESC(rx_ring, ntc));
if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
return false;
return true;
}
/**
* igb_cleanup_headers - Correct corrupted or empty headers
* @rx_ring: rx descriptor ring packet is being transacted on
* @rx_desc: pointer to the EOP Rx descriptor
* @skb: pointer to current skb being fixed
*
* Address the case where we are pulling data in on pages only
* and as such no data is present in the skb header.
*
* In addition if skb is not at least 60 bytes we need to pad it so that
* it is large enough to qualify as a valid Ethernet frame.
*
* Returns true if an error was encountered and skb was freed.
**/
static bool igb_cleanup_headers(struct igb_ring *rx_ring,
union e1000_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
/* XDP packets use error pointer so abort at this point */
if (IS_ERR(skb))
return true;
if (unlikely((igb_test_staterr(rx_desc,
E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
struct net_device *netdev = rx_ring->netdev;
if (!(netdev->features & NETIF_F_RXALL)) {
dev_kfree_skb_any(skb);
return true;
}
}
/* if eth_skb_pad returns an error the skb was freed */
if (eth_skb_pad(skb))
return true;
return false;
}
/**
* igb_process_skb_fields - Populate skb header fields from Rx descriptor
* @rx_ring: rx descriptor ring packet is being transacted on
* @rx_desc: pointer to the EOP Rx descriptor
* @skb: pointer to current skb being populated
*
* This function checks the ring, descriptor, and packet information in
* order to populate the hash, checksum, VLAN, timestamp, protocol, and
* other fields within the skb.
**/
static void igb_process_skb_fields(struct igb_ring *rx_ring,
union e1000_adv_rx_desc *rx_desc,
struct sk_buff *skb)
{
struct net_device *dev = rx_ring->netdev;
igb_rx_hash(rx_ring, rx_desc, skb);
igb_rx_checksum(rx_ring, rx_desc, skb);
if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
!igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
u16 vid;
if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
vid = be16_to_cpu(rx_desc->wb.upper.vlan);
else
vid = le16_to_cpu(rx_desc->wb.upper.vlan);
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
}
skb_record_rx_queue(skb, rx_ring->queue_index);
skb->protocol = eth_type_trans(skb, rx_ring->netdev);
}
static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
{
return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
}
static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
const unsigned int size)
{
struct igb_rx_buffer *rx_buffer;
rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
prefetchw(rx_buffer->page);
/* we are reusing so sync this buffer for CPU use */
dma_sync_single_range_for_cpu(rx_ring->dev,
rx_buffer->dma,
rx_buffer->page_offset,
size,
DMA_FROM_DEVICE);
rx_buffer->pagecnt_bias--;
return rx_buffer;
}
static void igb_put_rx_buffer(struct igb_ring *rx_ring,
struct igb_rx_buffer *rx_buffer)
{
if (igb_can_reuse_rx_page(rx_buffer)) {
/* hand second half of page back to the ring */
igb_reuse_rx_page(rx_ring, rx_buffer);
} else {
/* We are not reusing the buffer so unmap it and free
* any references we are holding to it
*/
dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
IGB_RX_DMA_ATTR);
__page_frag_cache_drain(rx_buffer->page,
rx_buffer->pagecnt_bias);
}
/* clear contents of rx_buffer */
rx_buffer->page = NULL;
}
static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
{
struct igb_adapter *adapter = q_vector->adapter;
struct igb_ring *rx_ring = q_vector->rx.ring;
struct sk_buff *skb = rx_ring->skb;
unsigned int total_bytes = 0, total_packets = 0;
u16 cleaned_count = igb_desc_unused(rx_ring);
unsigned int xdp_xmit = 0;
struct xdp_buff xdp;
u32 frame_sz = 0;
/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
#if (PAGE_SIZE < 8192)
frame_sz = igb_rx_frame_truesize(rx_ring, 0);
#endif
xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
while (likely(total_packets < budget)) {
union e1000_adv_rx_desc *rx_desc;
struct igb_rx_buffer *rx_buffer;
unsigned int size;
/* return some buffers to hardware, one at a time is too slow */
if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
igb_alloc_rx_buffers(rx_ring, cleaned_count);
cleaned_count = 0;
}
rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
size = le16_to_cpu(rx_desc->wb.upper.length);
if (!size)
break;
/* This memory barrier is needed to keep us from reading
* any other fields out of the rx_desc until we know the
* descriptor has been written back
*/
dma_rmb();
rx_buffer = igb_get_rx_buffer(rx_ring, size);
/* retrieve a buffer from the ring */
if (!skb) {
unsigned int offset = igb_rx_offset(rx_ring);
unsigned char *hard_start;
hard_start = page_address(rx_buffer->page) +
rx_buffer->page_offset - offset;
xdp_prepare_buff(&xdp, hard_start, offset, size, true);
#if (PAGE_SIZE > 4096)
/* At larger PAGE_SIZE, frame_sz depend on len size */
xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
#endif
skb = igb_run_xdp(adapter, rx_ring, &xdp);
}
if (IS_ERR(skb)) {
unsigned int xdp_res = -PTR_ERR(skb);
if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
xdp_xmit |= xdp_res;
igb_rx_buffer_flip(rx_ring, rx_buffer, size);
} else {
rx_buffer->pagecnt_bias++;
}
total_packets++;
total_bytes += size;
} else if (skb)
igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
else if (ring_uses_build_skb(rx_ring))
skb = igb_build_skb(rx_ring, rx_buffer, &xdp, rx_desc);
else
skb = igb_construct_skb(rx_ring, rx_buffer,
&xdp, rx_desc);
/* exit if we failed to retrieve a buffer */
if (!skb) {
rx_ring->rx_stats.alloc_failed++;
rx_buffer->pagecnt_bias++;
break;
}
igb_put_rx_buffer(rx_ring, rx_buffer);
cleaned_count++;
/* fetch next buffer in frame if non-eop */
if (igb_is_non_eop(rx_ring, rx_desc))
continue;
/* verify the packet layout is correct */
if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
skb = NULL;
continue;
}
/* probably a little skewed due to removing CRC */
total_bytes += skb->len;
/* populate checksum, timestamp, VLAN, and protocol */
igb_process_skb_fields(rx_ring, rx_desc, skb);
napi_gro_receive(&q_vector->napi, skb);
/* reset skb pointer */
skb = NULL;
/* update budget accounting */
total_packets++;
}
/* place incomplete frames back on ring for completion */
rx_ring->skb = skb;
if (xdp_xmit & IGB_XDP_REDIR)
xdp_do_flush();
if (xdp_xmit & IGB_XDP_TX) {
struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
igb_xdp_ring_update_tail(tx_ring);
}
u64_stats_update_begin(&rx_ring->rx_syncp);
rx_ring->rx_stats.packets += total_packets;
rx_ring->rx_stats.bytes += total_bytes;
u64_stats_update_end(&rx_ring->rx_syncp);
q_vector->rx.total_packets += total_packets;
q_vector->rx.total_bytes += total_bytes;
if (cleaned_count)
igb_alloc_rx_buffers(rx_ring, cleaned_count);
return total_packets;
}
static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
struct igb_rx_buffer *bi)
{
struct page *page = bi->page;
dma_addr_t dma;
/* since we are recycling buffers we should seldom need to alloc */
if (likely(page))
return true;
/* alloc new page for storage */
page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
if (unlikely(!page)) {
rx_ring->rx_stats.alloc_failed++;
return false;
}
/* map page for use */
dma = dma_map_page_attrs(rx_ring->dev, page, 0,
igb_rx_pg_size(rx_ring),
DMA_FROM_DEVICE,
IGB_RX_DMA_ATTR);
/* if mapping failed free memory back to system since
* there isn't much point in holding memory we can't use
*/
if (dma_mapping_error(rx_ring->dev, dma)) {
__free_pages(page, igb_rx_pg_order(rx_ring));
rx_ring->rx_stats.alloc_failed++;
return false;
}
bi->dma = dma;
bi->page = page;
bi->page_offset = igb_rx_offset(rx_ring);
page_ref_add(page, USHRT_MAX - 1);
bi->pagecnt_bias = USHRT_MAX;
return true;
}
/**
* igb_alloc_rx_buffers - Replace used receive buffers
* @rx_ring: rx descriptor ring to allocate new receive buffers
* @cleaned_count: count of buffers to allocate
**/
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
{
union e1000_adv_rx_desc *rx_desc;
struct igb_rx_buffer *bi;
u16 i = rx_ring->next_to_use;
u16 bufsz;
/* nothing to do */
if (!cleaned_count)
return;
rx_desc = IGB_RX_DESC(rx_ring, i);
bi = &rx_ring->rx_buffer_info[i];
i -= rx_ring->count;
bufsz = igb_rx_bufsz(rx_ring);
do {
if (!igb_alloc_mapped_page(rx_ring, bi))
break;
/* sync the buffer for use by the device */
dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
bi->page_offset, bufsz,
DMA_FROM_DEVICE);
/* Refresh the desc even if buffer_addrs didn't change
* because each write-back erases this info.
*/
rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
rx_desc++;
bi++;
i++;
if (unlikely(!i)) {
rx_desc = IGB_RX_DESC(rx_ring, 0);
bi = rx_ring->rx_buffer_info;
i -= rx_ring->count;
}
/* clear the length for the next_to_use descriptor */
rx_desc->wb.upper.length = 0;
cleaned_count--;
} while (cleaned_count);
i += rx_ring->count;
if (rx_ring->next_to_use != i) {
/* record the next descriptor to use */
rx_ring->next_to_use = i;
/* update next to alloc since we have filled the ring */
rx_ring->next_to_alloc = i;
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
dma_wmb();
writel(i, rx_ring->tail);
}
}
/**
* igb_mii_ioctl -
* @netdev: pointer to netdev struct
* @ifr: interface structure
* @cmd: ioctl command to execute
**/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct mii_ioctl_data *data = if_mii(ifr);
if (adapter->hw.phy.media_type != e1000_media_type_copper)
return -EOPNOTSUPP;
switch (cmd) {
case SIOCGMIIPHY:
data->phy_id = adapter->hw.phy.addr;
break;
case SIOCGMIIREG:
if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
&data->val_out))
return -EIO;
break;
case SIOCSMIIREG:
default:
return -EOPNOTSUPP;
}
return 0;
}
/**
* igb_ioctl -
* @netdev: pointer to netdev struct
* @ifr: interface structure
* @cmd: ioctl command to execute
**/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
switch (cmd) {
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
return igb_mii_ioctl(netdev, ifr, cmd);
case SIOCGHWTSTAMP:
return igb_ptp_get_ts_config(netdev, ifr);
case SIOCSHWTSTAMP:
return igb_ptp_set_ts_config(netdev, ifr);
default:
return -EOPNOTSUPP;
}
}
void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
{
struct igb_adapter *adapter = hw->back;
pci_read_config_word(adapter->pdev, reg, value);
}
void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
{
struct igb_adapter *adapter = hw->back;
pci_write_config_word(adapter->pdev, reg, *value);
}
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
struct igb_adapter *adapter = hw->back;
if (pcie_capability_read_word(adapter->pdev, reg, value))
return -E1000_ERR_CONFIG;
return 0;
}
s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
struct igb_adapter *adapter = hw->back;
if (pcie_capability_write_word(adapter->pdev, reg, *value))
return -E1000_ERR_CONFIG;
return 0;
}
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 ctrl, rctl;
bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
if (enable) {
/* enable VLAN tag insert/strip */
ctrl = rd32(E1000_CTRL);
ctrl |= E1000_CTRL_VME;
wr32(E1000_CTRL, ctrl);
/* Disable CFI check */
rctl = rd32(E1000_RCTL);
rctl &= ~E1000_RCTL_CFIEN;
wr32(E1000_RCTL, rctl);
} else {
/* disable VLAN tag insert/strip */
ctrl = rd32(E1000_CTRL);
ctrl &= ~E1000_CTRL_VME;
wr32(E1000_CTRL, ctrl);
}
igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
}
static int igb_vlan_rx_add_vid(struct net_device *netdev,
__be16 proto, u16 vid)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
int pf_id = adapter->vfs_allocated_count;
/* add the filter since PF can receive vlans w/o entry in vlvf */
if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
igb_vfta_set(hw, vid, pf_id, true, !!vid);
set_bit(vid, adapter->active_vlans);
return 0;
}
static int igb_vlan_rx_kill_vid(struct net_device *netdev,
__be16 proto, u16 vid)
{
struct igb_adapter *adapter = netdev_priv(netdev);
int pf_id = adapter->vfs_allocated_count;
struct e1000_hw *hw = &adapter->hw;
/* remove VID from filter table */
if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
igb_vfta_set(hw, vid, pf_id, false, true);
clear_bit(vid, adapter->active_vlans);
return 0;
}
static void igb_restore_vlan(struct igb_adapter *adapter)
{
u16 vid = 1;
igb_vlan_mode(adapter->netdev, adapter->netdev->features);
igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
}
int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
{
struct pci_dev *pdev = adapter->pdev;
struct e1000_mac_info *mac = &adapter->hw.mac;
mac->autoneg = 0;
/* Make sure dplx is at most 1 bit and lsb of speed is not set
* for the switch() below to work
*/
if ((spd & 1) || (dplx & ~1))
goto err_inval;
/* Fiber NIC's only allow 1000 gbps Full duplex
* and 100Mbps Full duplex for 100baseFx sfp
*/
if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
switch (spd + dplx) {
case SPEED_10 + DUPLEX_HALF:
case SPEED_10 + DUPLEX_FULL:
case SPEED_100 + DUPLEX_HALF:
goto err_inval;
default:
break;
}
}
switch (spd + dplx) {
case SPEED_10 + DUPLEX_HALF:
mac->forced_speed_duplex = ADVERTISE_10_HALF;
break;
case SPEED_10 + DUPLEX_FULL:
mac->forced_speed_duplex = ADVERTISE_10_FULL;
break;
case SPEED_100 + DUPLEX_HALF:
mac->forced_speed_duplex = ADVERTISE_100_HALF;
break;
case SPEED_100 + DUPLEX_FULL:
mac->forced_speed_duplex = ADVERTISE_100_FULL;
break;
case SPEED_1000 + DUPLEX_FULL:
mac->autoneg = 1;
adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
break;
case SPEED_1000 + DUPLEX_HALF: /* not supported */
default:
goto err_inval;
}
/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
adapter->hw.phy.mdix = AUTO_ALL_MODES;
return 0;
err_inval:
dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
return -EINVAL;
}
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
bool runtime)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 ctrl, rctl, status;
u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
bool wake;
rtnl_lock();
netif_device_detach(netdev);
if (netif_running(netdev))
__igb_close(netdev, true);
igb_ptp_suspend(adapter);
igb_clear_interrupt_scheme(adapter);
rtnl_unlock();
status = rd32(E1000_STATUS);
if (status & E1000_STATUS_LU)
wufc &= ~E1000_WUFC_LNKC;
if (wufc) {
igb_setup_rctl(adapter);
igb_set_rx_mode(netdev);
/* turn on all-multi mode if wake on multicast is enabled */
if (wufc & E1000_WUFC_MC) {
rctl = rd32(E1000_RCTL);
rctl |= E1000_RCTL_MPE;
wr32(E1000_RCTL, rctl);
}
ctrl = rd32(E1000_CTRL);
ctrl |= E1000_CTRL_ADVD3WUC;
wr32(E1000_CTRL, ctrl);
/* Allow time for pending master requests to run */
igb_disable_pcie_master(hw);
wr32(E1000_WUC, E1000_WUC_PME_EN);
wr32(E1000_WUFC, wufc);
} else {
wr32(E1000_WUC, 0);
wr32(E1000_WUFC, 0);
}
wake = wufc || adapter->en_mng_pt;
if (!wake)
igb_power_down_link(adapter);
else
igb_power_up_link(adapter);
if (enable_wake)
*enable_wake = wake;
/* Release control of h/w to f/w. If f/w is AMT enabled, this
* would have already happened in close and is redundant.
*/
igb_release_hw_control(adapter);
pci_disable_device(pdev);
return 0;
}
static void igb_deliver_wake_packet(struct net_device *netdev)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct sk_buff *skb;
u32 wupl;
wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
/* WUPM stores only the first 128 bytes of the wake packet.
* Read the packet only if we have the whole thing.
*/
if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
return;
skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
if (!skb)
return;
skb_put(skb, wupl);
/* Ensure reads are 32-bit aligned */
wupl = roundup(wupl, 4);
memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
skb->protocol = eth_type_trans(skb, netdev);
netif_rx(skb);
}
static int __maybe_unused igb_suspend(struct device *dev)
{
return __igb_shutdown(to_pci_dev(dev), NULL, 0);
}
static int __maybe_unused igb_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 err, val;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
pci_save_state(pdev);
if (!pci_device_is_present(pdev))
return -ENODEV;
err = pci_enable_device_mem(pdev);
if (err) {
dev_err(&pdev->dev,
"igb: Cannot enable PCI device from suspend\n");
return err;
}
pci_set_master(pdev);
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
if (igb_init_interrupt_scheme(adapter, true)) {
dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
return -ENOMEM;
}
igb_reset(adapter);
/* let the f/w know that the h/w is now under the control of the
* driver.
*/
igb_get_hw_control(adapter);
val = rd32(E1000_WUS);
if (val & WAKE_PKT_WUS)
igb_deliver_wake_packet(netdev);
wr32(E1000_WUS, ~0);
rtnl_lock();
if (!err && netif_running(netdev))
err = __igb_open(netdev, true);
if (!err)
netif_device_attach(netdev);
rtnl_unlock();
return err;
}
static int __maybe_unused igb_runtime_idle(struct device *dev)
{
struct net_device *netdev = dev_get_drvdata(dev);
struct igb_adapter *adapter = netdev_priv(netdev);
if (!igb_has_link(adapter))
pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
return -EBUSY;
}
static int __maybe_unused igb_runtime_suspend(struct device *dev)
{
return __igb_shutdown(to_pci_dev(dev), NULL, 1);
}
static int __maybe_unused igb_runtime_resume(struct device *dev)
{
return igb_resume(dev);
}
static void igb_shutdown(struct pci_dev *pdev)
{
bool wake;
__igb_shutdown(pdev, &wake, 0);
if (system_state == SYSTEM_POWER_OFF) {
pci_wake_from_d3(pdev, wake);
pci_set_power_state(pdev, PCI_D3hot);
}
}
#ifdef CONFIG_PCI_IOV
static int igb_sriov_reinit(struct pci_dev *dev)
{
struct net_device *netdev = pci_get_drvdata(dev);
struct igb_adapter *adapter = netdev_priv(netdev);
struct pci_dev *pdev = adapter->pdev;
rtnl_lock();
if (netif_running(netdev))
igb_close(netdev);
else
igb_reset(adapter);
igb_clear_interrupt_scheme(adapter);
igb_init_queue_configuration(adapter);
if (igb_init_interrupt_scheme(adapter, true)) {
rtnl_unlock();
dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
return -ENOMEM;
}
if (netif_running(netdev))
igb_open(netdev);
rtnl_unlock();
return 0;
}
static int igb_pci_disable_sriov(struct pci_dev *dev)
{
int err = igb_disable_sriov(dev);
if (!err)
err = igb_sriov_reinit(dev);
return err;
}
static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
{
int err = igb_enable_sriov(dev, num_vfs);
if (err)
goto out;
err = igb_sriov_reinit(dev);
if (!err)
return num_vfs;
out:
return err;
}
#endif
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
{
#ifdef CONFIG_PCI_IOV
if (num_vfs == 0)
return igb_pci_disable_sriov(dev);
else
return igb_pci_enable_sriov(dev, num_vfs);
#endif
return 0;
}
/**
* igb_io_error_detected - called when PCI error is detected
* @pdev: Pointer to PCI device
* @state: The current pci connection state
*
* This function is called after a PCI bus error affecting
* this device has been detected.
**/
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
netif_device_detach(netdev);
if (state == pci_channel_io_perm_failure)
return PCI_ERS_RESULT_DISCONNECT;
if (netif_running(netdev))
igb_down(adapter);
pci_disable_device(pdev);
/* Request a slot slot reset. */
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* igb_io_slot_reset - called after the pci bus has been reset.
* @pdev: Pointer to PCI device
*
* Restart the card from scratch, as if from a cold-boot. Implementation
* resembles the first-half of the igb_resume routine.
**/
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
pci_ers_result_t result;
if (pci_enable_device_mem(pdev)) {
dev_err(&pdev->dev,
"Cannot re-enable PCI device after reset.\n");
result = PCI_ERS_RESULT_DISCONNECT;
} else {
pci_set_master(pdev);
pci_restore_state(pdev);
pci_save_state(pdev);
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
/* In case of PCI error, adapter lose its HW address
* so we should re-assign it here.
*/
hw->hw_addr = adapter->io_addr;
igb_reset(adapter);
wr32(E1000_WUS, ~0);
result = PCI_ERS_RESULT_RECOVERED;
}
return result;
}
/**
* igb_io_resume - called when traffic can start flowing again.
* @pdev: Pointer to PCI device
*
* This callback is called when the error recovery driver tells us that
* its OK to resume normal operation. Implementation resembles the
* second-half of the igb_resume routine.
*/
static void igb_io_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igb_adapter *adapter = netdev_priv(netdev);
if (netif_running(netdev)) {
if (igb_up(adapter)) {
dev_err(&pdev->dev, "igb_up failed after reset\n");
return;
}
}
netif_device_attach(netdev);
/* let the f/w know that the h/w is now under the control of the
* driver.
*/
igb_get_hw_control(adapter);
}
/**
* igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
* @adapter: Pointer to adapter structure
* @index: Index of the RAR entry which need to be synced with MAC table
**/
static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
{
struct e1000_hw *hw = &adapter->hw;
u32 rar_low, rar_high;
u8 *addr = adapter->mac_table[index].addr;
/* HW expects these to be in network order when they are plugged
* into the registers which are little endian. In order to guarantee
* that ordering we need to do an leXX_to_cpup here in order to be
* ready for the byteswap that occurs with writel
*/
rar_low = le32_to_cpup((__le32 *)(addr));
rar_high = le16_to_cpup((__le16 *)(addr + 4));
/* Indicate to hardware the Address is Valid. */
if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
if (is_valid_ether_addr(addr))
rar_high |= E1000_RAH_AV;
if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
rar_high |= E1000_RAH_ASEL_SRC_ADDR;
switch (hw->mac.type) {
case e1000_82575:
case e1000_i210:
if (adapter->mac_table[index].state &
IGB_MAC_STATE_QUEUE_STEERING)
rar_high |= E1000_RAH_QSEL_ENABLE;
rar_high |= E1000_RAH_POOL_1 *
adapter->mac_table[index].queue;
break;
default:
rar_high |= E1000_RAH_POOL_1 <<
adapter->mac_table[index].queue;
break;
}
}
wr32(E1000_RAL(index), rar_low);
wrfl();
wr32(E1000_RAH(index), rar_high);
wrfl();
}
static int igb_set_vf_mac(struct igb_adapter *adapter,
int vf, unsigned char *mac_addr)
{
struct e1000_hw *hw = &adapter->hw;
/* VF MAC addresses start at end of receive addresses and moves
* towards the first, as a result a collision should not be possible
*/
int rar_entry = hw->mac.rar_entry_count - (vf + 1);
unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
ether_addr_copy(vf_mac_addr, mac_addr);
ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
adapter->mac_table[rar_entry].queue = vf;
adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
igb_rar_set_index(adapter, rar_entry);
return 0;
}
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
struct igb_adapter *adapter = netdev_priv(netdev);
if (vf >= adapter->vfs_allocated_count)
return -EINVAL;
/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
* flag and allows to overwrite the MAC via VF netdev. This
* is necessary to allow libvirt a way to restore the original
* MAC after unbinding vfio-pci and reloading igbvf after shutting
* down a VM.
*/
if (is_zero_ether_addr(mac)) {
adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
dev_info(&adapter->pdev->dev,
"remove administratively set MAC on VF %d\n",
vf);
} else if (is_valid_ether_addr(mac)) {
adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
mac, vf);
dev_info(&adapter->pdev->dev,
"Reload the VF driver to make this change effective.");
/* Generate additional warning if PF is down */
if (test_bit(__IGB_DOWN, &adapter->state)) {
dev_warn(&adapter->pdev->dev,
"The VF MAC address has been set, but the PF device is not up.\n");
dev_warn(&adapter->pdev->dev,
"Bring the PF device up before attempting to use the VF device.\n");
}
} else {
return -EINVAL;
}
return igb_set_vf_mac(adapter, vf, mac);
}
static int igb_link_mbps(int internal_link_speed)
{
switch (internal_link_speed) {
case SPEED_100:
return 100;
case SPEED_1000:
return 1000;
default:
return 0;
}
}
static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
int link_speed)
{
int rf_dec, rf_int;
u32 bcnrc_val;
if (tx_rate != 0) {
/* Calculate the rate factor values to set */
rf_int = link_speed / tx_rate;
rf_dec = (link_speed - (rf_int * tx_rate));
rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
tx_rate;
bcnrc_val = E1000_RTTBCNRC_RS_ENA;
bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
E1000_RTTBCNRC_RF_INT_MASK);
bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
} else {
bcnrc_val = 0;
}
wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
* register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
*/
wr32(E1000_RTTBCNRM, 0x14);
wr32(E1000_RTTBCNRC, bcnrc_val);
}
static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
int actual_link_speed, i;
bool reset_rate = false;
/* VF TX rate limit was not set or not supported */
if ((adapter->vf_rate_link_speed == 0) ||
(adapter->hw.mac.type != e1000_82576))
return;
actual_link_speed = igb_link_mbps(adapter->link_speed);
if (actual_link_speed != adapter->vf_rate_link_speed) {
reset_rate = true;
adapter->vf_rate_link_speed = 0;
dev_info(&adapter->pdev->dev,
"Link speed has been changed. VF Transmit rate is disabled\n");
}
for (i = 0; i < adapter->vfs_allocated_count; i++) {
if (reset_rate)
adapter->vf_data[i].tx_rate = 0;
igb_set_vf_rate_limit(&adapter->hw, i,
adapter->vf_data[i].tx_rate,
actual_link_speed);
}
}
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
int min_tx_rate, int max_tx_rate)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
int actual_link_speed;
if (hw->mac.type != e1000_82576)
return -EOPNOTSUPP;
if (min_tx_rate)
return -EINVAL;
actual_link_speed = igb_link_mbps(adapter->link_speed);
if ((vf >= adapter->vfs_allocated_count) ||
(!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
(max_tx_rate < 0) ||
(max_tx_rate > actual_link_speed))
return -EINVAL;
adapter->vf_rate_link_speed = actual_link_speed;
adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
return 0;
}
static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
bool setting)
{
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 reg_val, reg_offset;
if (!adapter->vfs_allocated_count)
return -EOPNOTSUPP;
if (vf >= adapter->vfs_allocated_count)
return -EINVAL;
reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
reg_val = rd32(reg_offset);
if (setting)
reg_val |= (BIT(vf) |
BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
else
reg_val &= ~(BIT(vf) |
BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
wr32(reg_offset, reg_val);
adapter->vf_data[vf].spoofchk_enabled = setting;
return 0;
}
static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
{
struct igb_adapter *adapter = netdev_priv(netdev);
if (vf >= adapter->vfs_allocated_count)
return -EINVAL;
if (adapter->vf_data[vf].trusted == setting)
return 0;
adapter->vf_data[vf].trusted = setting;
dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
vf, setting ? "" : "not ");
return 0;
}
static int igb_ndo_get_vf_config(struct net_device *netdev,
int vf, struct ifla_vf_info *ivi)
{
struct igb_adapter *adapter = netdev_priv(netdev);
if (vf >= adapter->vfs_allocated_count)
return -EINVAL;
ivi->vf = vf;
memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
ivi->min_tx_rate = 0;
ivi->vlan = adapter->vf_data[vf].pf_vlan;
ivi->qos = adapter->vf_data[vf].pf_qos;
ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
ivi->trusted = adapter->vf_data[vf].trusted;
return 0;
}
static void igb_vmm_control(struct igb_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 reg;
switch (hw->mac.type) {
case e1000_82575:
case e1000_i210:
case e1000_i211:
case e1000_i354:
default:
/* replication is not supported for 82575 */
return;
case e1000_82576:
/* notify HW that the MAC is adding vlan tags */
reg = rd32(E1000_DTXCTL);
reg |= E1000_DTXCTL_VLAN_ADDED;
wr32(E1000_DTXCTL, reg);
fallthrough;
case e1000_82580:
/* enable replication vlan tag stripping */
reg = rd32(E1000_RPLOLR);
reg |= E1000_RPLOLR_STRVLAN;
wr32(E1000_RPLOLR, reg);
fallthrough;
case e1000_i350:
/* none of the above registers are supported by i350 */
break;
}
if (adapter->vfs_allocated_count) {
igb_vmdq_set_loopback_pf(hw, true);
igb_vmdq_set_replication_pf(hw, true);
igb_vmdq_set_anti_spoofing_pf(hw, true,
adapter->vfs_allocated_count);
} else {
igb_vmdq_set_loopback_pf(hw, false);
igb_vmdq_set_replication_pf(hw, false);
}
}
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
{
struct e1000_hw *hw = &adapter->hw;
u32 dmac_thr;
u16 hwm;
if (hw->mac.type > e1000_82580) {
if (adapter->flags & IGB_FLAG_DMAC) {
u32 reg;
/* force threshold to 0. */
wr32(E1000_DMCTXTH, 0);
/* DMA Coalescing high water mark needs to be greater
* than the Rx threshold. Set hwm to PBA - max frame
* size in 16B units, capping it at PBA - 6KB.
*/
hwm = 64 * (pba - 6);
reg = rd32(E1000_FCRTC);
reg &= ~E1000_FCRTC_RTH_COAL_MASK;
reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
& E1000_FCRTC_RTH_COAL_MASK);
wr32(E1000_FCRTC, reg);
/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
* frame size, capping it at PBA - 10KB.
*/
dmac_thr = pba - 10;
reg = rd32(E1000_DMACR);
reg &= ~E1000_DMACR_DMACTHR_MASK;
reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
& E1000_DMACR_DMACTHR_MASK);
/* transition to L0x or L1 if available..*/
reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
/* watchdog timer= +-1000 usec in 32usec intervals */
reg |= (1000 >> 5);
/* Disable BMC-to-OS Watchdog Enable */
if (hw->mac.type != e1000_i354)
reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
wr32(E1000_DMACR, reg);
/* no lower threshold to disable
* coalescing(smart fifb)-UTRESH=0
*/
wr32(E1000_DMCRTRH, 0);
reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
wr32(E1000_DMCTLX, reg);
/* free space in tx packet buffer to wake from
* DMA coal
*/
wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
(IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
/* make low power state decision controlled
* by DMA coal
*/
reg = rd32(E1000_PCIEMISC);
reg &= ~E1000_PCIEMISC_LX_DECISION;
wr32(E1000_PCIEMISC, reg);
} /* endif adapter->dmac is not disabled */
} else if (hw->mac.type == e1000_82580) {
u32 reg = rd32(E1000_PCIEMISC);
wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
wr32(E1000_DMACR, 0);
}
}
/**
* igb_read_i2c_byte - Reads 8 bit word over I2C
* @hw: pointer to hardware structure
* @byte_offset: byte offset to read
* @dev_addr: device address
* @data: value read
*
* Performs byte read operation over I2C interface at
* a specified device address.
**/
s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
u8 dev_addr, u8 *data)
{
struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
struct i2c_client *this_client = adapter->i2c_client;
s32 status;
u16 swfw_mask = 0;
if (!this_client)
return E1000_ERR_I2C;
swfw_mask = E1000_SWFW_PHY0_SM;
if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
return E1000_ERR_SWFW_SYNC;
status = i2c_smbus_read_byte_data(this_client, byte_offset);
hw->mac.ops.release_swfw_sync(hw, swfw_mask);
if (status < 0)
return E1000_ERR_I2C;
else {
*data = status;
return 0;
}
}
/**
* igb_write_i2c_byte - Writes 8 bit word over I2C
* @hw: pointer to hardware structure
* @byte_offset: byte offset to write
* @dev_addr: device address
* @data: value to write
*
* Performs byte write operation over I2C interface at
* a specified device address.
**/
s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
u8 dev_addr, u8 data)
{
struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
struct i2c_client *this_client = adapter->i2c_client;
s32 status;
u16 swfw_mask = E1000_SWFW_PHY0_SM;
if (!this_client)
return E1000_ERR_I2C;
if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
return E1000_ERR_SWFW_SYNC;
status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
hw->mac.ops.release_swfw_sync(hw, swfw_mask);
if (status)
return E1000_ERR_I2C;
else
return 0;
}
int igb_reinit_queues(struct igb_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
int err = 0;
if (netif_running(netdev))
igb_close(netdev);
igb_reset_interrupt_capability(adapter);
if (igb_init_interrupt_scheme(adapter, true)) {
dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
return -ENOMEM;
}
if (netif_running(netdev))
err = igb_open(netdev);
return err;
}
static void igb_nfc_filter_exit(struct igb_adapter *adapter)
{
struct igb_nfc_filter *rule;
spin_lock(&adapter->nfc_lock);
hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
igb_erase_filter(adapter, rule);
hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
igb_erase_filter(adapter, rule);
spin_unlock(&adapter->nfc_lock);
}
static void igb_nfc_filter_restore(struct igb_adapter *adapter)
{
struct igb_nfc_filter *rule;
spin_lock(&adapter->nfc_lock);
hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
igb_add_filter(adapter, rule);
spin_unlock(&adapter->nfc_lock);
}
/* igb_main.c */