linux/drivers/clocksource/timer-riscv.c
Linus Torvalds 56d428ae1c RISC-V Patches for the 6.7 Merge Window, Part 2
* Support for handling misaligned accesses in S-mode.
 * Probing for misaligned access support is now properly cached and
   handled in parallel.
 * PTDUMP now reflects the SW reserved bits, as well as the PBMT and
   NAPOT extensions.
 * Performance improvements for TLB flushing.
 * Support for many new relocations in the module loader.
 * Various bug fixes and cleanups.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCAAxFiEEKzw3R0RoQ7JKlDp6LhMZ81+7GIkFAmVOUCcTHHBhbG1lckBk
 YWJiZWx0LmNvbQAKCRAuExnzX7sYicJ2D/9S+9dnHYHVGTeJfr9Zf2T4r+qHBPyx
 LXbTAbgHN6139MgcRLMRlcUaQ04RVxuBCWhxewJ6mQiHiYNlullgKmJO8oYMS4uZ
 2yQGHKhzKEVluXxe+qT6VW+zsP0cY6pDQ+e59AqZgyWzvATxMU4VtFfCDdjFG03I
 k/8Y3MUKSHAKzIHUsGHiMW5J2YRiM/iVehv2gZfanreulWlK6lyiV4AZ4KChu8Sa
 gix9QkFJw+9+7RHnouHvczt4xTqLPJQcdecLJsbisEI4VaaPtTVzkvXx/kwbMwX0
 qkQnZ7I60fPHrCb9ccuedjDMa1Z0lrfwRldBGz9f9QaW37Eppirn6LA5JiZ1cA47
 wKTwba6gZJCTRXELFTJLcv+Cwdy003E0y3iL5UK2rkbLqcxfvLdq1WAJU2t05Lmh
 aRQN10BtM2DZG+SNPlLoBpXPDw0Q3KOc20zGtuhmk010+X4yOK7WXlu8zNGLLE0+
 yHamiZqAbpIUIEzwDdGbb95jywR1sUhNTbScuhj4Rc79ZqLtPxty1PUhnfqFat1R
 i3ngQtCbeUUYFS2YV9tKkXjLf/xkQNRbt7kQBowuvFuvfksl9UwMdRAWcE/h0M9P
 7uz7cBFhuG0v/XblB7bUhYLkKITvP+ltSMyxaGlfpGqCLAH2KIztdZ2PLWLRdKeU
 +9dtZSQR6oBLqQ==
 =NhdR
 -----END PGP SIGNATURE-----

Merge tag 'riscv-for-linus-6.7-mw2' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux

Pull more RISC-V updates from Palmer Dabbelt:

 - Support for handling misaligned accesses in S-mode

 - Probing for misaligned access support is now properly cached and
   handled in parallel

 - PTDUMP now reflects the SW reserved bits, as well as the PBMT and
   NAPOT extensions

 - Performance improvements for TLB flushing

 - Support for many new relocations in the module loader

 - Various bug fixes and cleanups

* tag 'riscv-for-linus-6.7-mw2' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (51 commits)
  riscv: Optimize bitops with Zbb extension
  riscv: Rearrange hwcap.h and cpufeature.h
  drivers: perf: Do not broadcast to other cpus when starting a counter
  drivers: perf: Check find_first_bit() return value
  of: property: Add fw_devlink support for msi-parent
  RISC-V: Don't fail in riscv_of_parent_hartid() for disabled HARTs
  riscv: Fix set_memory_XX() and set_direct_map_XX() by splitting huge linear mappings
  riscv: Don't use PGD entries for the linear mapping
  RISC-V: Probe misaligned access speed in parallel
  RISC-V: Remove __init on unaligned_emulation_finish()
  RISC-V: Show accurate per-hart isa in /proc/cpuinfo
  RISC-V: Don't rely on positional structure initialization
  riscv: Add tests for riscv module loading
  riscv: Add remaining module relocations
  riscv: Avoid unaligned access when relocating modules
  riscv: split cache ops out of dma-noncoherent.c
  riscv: Improve flush_tlb_kernel_range()
  riscv: Make __flush_tlb_range() loop over pte instead of flushing the whole tlb
  riscv: Improve flush_tlb_range() for hugetlb pages
  riscv: Improve tlb_flush()
  ...
2023-11-10 09:23:17 -08:00

238 lines
6.1 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2012 Regents of the University of California
* Copyright (C) 2017 SiFive
*
* All RISC-V systems have a timer attached to every hart. These timers can
* either be read from the "time" and "timeh" CSRs, and can use the SBI to
* setup events, or directly accessed using MMIO registers.
*/
#define pr_fmt(fmt) "riscv-timer: " fmt
#include <linux/acpi.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/cpu.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
#include <linux/module.h>
#include <linux/sched_clock.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/interrupt.h>
#include <linux/of_irq.h>
#include <linux/limits.h>
#include <clocksource/timer-riscv.h>
#include <asm/smp.h>
#include <asm/cpufeature.h>
#include <asm/sbi.h>
#include <asm/timex.h>
static DEFINE_STATIC_KEY_FALSE(riscv_sstc_available);
static bool riscv_timer_cannot_wake_cpu;
static void riscv_clock_event_stop(void)
{
if (static_branch_likely(&riscv_sstc_available)) {
csr_write(CSR_STIMECMP, ULONG_MAX);
if (IS_ENABLED(CONFIG_32BIT))
csr_write(CSR_STIMECMPH, ULONG_MAX);
} else {
sbi_set_timer(U64_MAX);
}
}
static int riscv_clock_next_event(unsigned long delta,
struct clock_event_device *ce)
{
u64 next_tval = get_cycles64() + delta;
if (static_branch_likely(&riscv_sstc_available)) {
#if defined(CONFIG_32BIT)
csr_write(CSR_STIMECMP, next_tval & 0xFFFFFFFF);
csr_write(CSR_STIMECMPH, next_tval >> 32);
#else
csr_write(CSR_STIMECMP, next_tval);
#endif
} else
sbi_set_timer(next_tval);
return 0;
}
static unsigned int riscv_clock_event_irq;
static DEFINE_PER_CPU(struct clock_event_device, riscv_clock_event) = {
.name = "riscv_timer_clockevent",
.features = CLOCK_EVT_FEAT_ONESHOT,
.rating = 100,
.set_next_event = riscv_clock_next_event,
};
/*
* It is guaranteed that all the timers across all the harts are synchronized
* within one tick of each other, so while this could technically go
* backwards when hopping between CPUs, practically it won't happen.
*/
static unsigned long long riscv_clocksource_rdtime(struct clocksource *cs)
{
return get_cycles64();
}
static u64 notrace riscv_sched_clock(void)
{
return get_cycles64();
}
static struct clocksource riscv_clocksource = {
.name = "riscv_clocksource",
.rating = 400,
.mask = CLOCKSOURCE_MASK(64),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
.read = riscv_clocksource_rdtime,
#if IS_ENABLED(CONFIG_GENERIC_GETTIMEOFDAY)
.vdso_clock_mode = VDSO_CLOCKMODE_ARCHTIMER,
#else
.vdso_clock_mode = VDSO_CLOCKMODE_NONE,
#endif
};
static int riscv_timer_starting_cpu(unsigned int cpu)
{
struct clock_event_device *ce = per_cpu_ptr(&riscv_clock_event, cpu);
ce->cpumask = cpumask_of(cpu);
ce->irq = riscv_clock_event_irq;
if (riscv_timer_cannot_wake_cpu)
ce->features |= CLOCK_EVT_FEAT_C3STOP;
if (static_branch_likely(&riscv_sstc_available))
ce->rating = 450;
clockevents_config_and_register(ce, riscv_timebase, 100, 0x7fffffff);
enable_percpu_irq(riscv_clock_event_irq,
irq_get_trigger_type(riscv_clock_event_irq));
return 0;
}
static int riscv_timer_dying_cpu(unsigned int cpu)
{
disable_percpu_irq(riscv_clock_event_irq);
return 0;
}
void riscv_cs_get_mult_shift(u32 *mult, u32 *shift)
{
*mult = riscv_clocksource.mult;
*shift = riscv_clocksource.shift;
}
EXPORT_SYMBOL_GPL(riscv_cs_get_mult_shift);
/* called directly from the low-level interrupt handler */
static irqreturn_t riscv_timer_interrupt(int irq, void *dev_id)
{
struct clock_event_device *evdev = this_cpu_ptr(&riscv_clock_event);
riscv_clock_event_stop();
evdev->event_handler(evdev);
return IRQ_HANDLED;
}
static int __init riscv_timer_init_common(void)
{
int error;
struct irq_domain *domain;
struct fwnode_handle *intc_fwnode = riscv_get_intc_hwnode();
domain = irq_find_matching_fwnode(intc_fwnode, DOMAIN_BUS_ANY);
if (!domain) {
pr_err("Failed to find irq_domain for INTC node [%pfwP]\n",
intc_fwnode);
return -ENODEV;
}
riscv_clock_event_irq = irq_create_mapping(domain, RV_IRQ_TIMER);
if (!riscv_clock_event_irq) {
pr_err("Failed to map timer interrupt for node [%pfwP]\n", intc_fwnode);
return -ENODEV;
}
error = clocksource_register_hz(&riscv_clocksource, riscv_timebase);
if (error) {
pr_err("RISCV timer registration failed [%d]\n", error);
return error;
}
sched_clock_register(riscv_sched_clock, 64, riscv_timebase);
error = request_percpu_irq(riscv_clock_event_irq,
riscv_timer_interrupt,
"riscv-timer", &riscv_clock_event);
if (error) {
pr_err("registering percpu irq failed [%d]\n", error);
return error;
}
if (riscv_isa_extension_available(NULL, SSTC)) {
pr_info("Timer interrupt in S-mode is available via sstc extension\n");
static_branch_enable(&riscv_sstc_available);
}
error = cpuhp_setup_state(CPUHP_AP_RISCV_TIMER_STARTING,
"clockevents/riscv/timer:starting",
riscv_timer_starting_cpu, riscv_timer_dying_cpu);
if (error)
pr_err("cpu hp setup state failed for RISCV timer [%d]\n",
error);
return error;
}
static int __init riscv_timer_init_dt(struct device_node *n)
{
int cpuid, error;
unsigned long hartid;
struct device_node *child;
error = riscv_of_processor_hartid(n, &hartid);
if (error < 0) {
pr_warn("Invalid hartid for node [%pOF] error = [%lu]\n",
n, hartid);
return error;
}
cpuid = riscv_hartid_to_cpuid(hartid);
if (cpuid < 0) {
pr_warn("Invalid cpuid for hartid [%lu]\n", hartid);
return cpuid;
}
if (cpuid != smp_processor_id())
return 0;
child = of_find_compatible_node(NULL, NULL, "riscv,timer");
if (child) {
riscv_timer_cannot_wake_cpu = of_property_read_bool(child,
"riscv,timer-cannot-wake-cpu");
of_node_put(child);
}
return riscv_timer_init_common();
}
TIMER_OF_DECLARE(riscv_timer, "riscv", riscv_timer_init_dt);
#ifdef CONFIG_ACPI
static int __init riscv_timer_acpi_init(struct acpi_table_header *table)
{
struct acpi_table_rhct *rhct = (struct acpi_table_rhct *)table;
riscv_timer_cannot_wake_cpu = rhct->flags & ACPI_RHCT_TIMER_CANNOT_WAKEUP_CPU;
return riscv_timer_init_common();
}
TIMER_ACPI_DECLARE(aclint_mtimer, ACPI_SIG_RHCT, riscv_timer_acpi_init);
#endif