mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-21 10:05:00 +08:00
ddfe12944e
A recent discussion[1] shows that we are in favor of strengthening the ordering of unlock + lock on the same CPU: a unlock and a po-after lock should provide the so-called RCtso ordering, that is a memory access S po-before the unlock should be ordered against a memory access R po-after the lock, unless S is a store and R is a load. The strengthening meets programmers' expection that "sequence of two locked regions to be ordered wrt each other" (from Linus), and can reduce the mental burden when using locks. Therefore add it in LKMM. [1]: https://lore.kernel.org/lkml/20210909185937.GA12379@rowland.harvard.edu/ Co-developed-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Boqun Feng <boqun.feng@gmail.com> Reviewed-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Acked-by: Palmer Dabbelt <palmerdabbelt@google.com> (RISC-V) Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
204 lines
7.1 KiB
Plaintext
204 lines
7.1 KiB
Plaintext
// SPDX-License-Identifier: GPL-2.0+
|
|
(*
|
|
* Copyright (C) 2015 Jade Alglave <j.alglave@ucl.ac.uk>,
|
|
* Copyright (C) 2016 Luc Maranget <luc.maranget@inria.fr> for Inria
|
|
* Copyright (C) 2017 Alan Stern <stern@rowland.harvard.edu>,
|
|
* Andrea Parri <parri.andrea@gmail.com>
|
|
*
|
|
* An earlier version of this file appeared in the companion webpage for
|
|
* "Frightening small children and disconcerting grown-ups: Concurrency
|
|
* in the Linux kernel" by Alglave, Maranget, McKenney, Parri, and Stern,
|
|
* which appeared in ASPLOS 2018.
|
|
*)
|
|
|
|
"Linux-kernel memory consistency model"
|
|
|
|
(*
|
|
* File "lock.cat" handles locks and is experimental.
|
|
* It can be replaced by include "cos.cat" for tests that do not use locks.
|
|
*)
|
|
|
|
include "lock.cat"
|
|
|
|
(*******************)
|
|
(* Basic relations *)
|
|
(*******************)
|
|
|
|
(* Release Acquire *)
|
|
let acq-po = [Acquire] ; po ; [M]
|
|
let po-rel = [M] ; po ; [Release]
|
|
let po-unlock-lock-po = po ; [UL] ; (po|rf) ; [LKR] ; po
|
|
|
|
(* Fences *)
|
|
let R4rmb = R \ Noreturn (* Reads for which rmb works *)
|
|
let rmb = [R4rmb] ; fencerel(Rmb) ; [R4rmb]
|
|
let wmb = [W] ; fencerel(Wmb) ; [W]
|
|
let mb = ([M] ; fencerel(Mb) ; [M]) |
|
|
([M] ; fencerel(Before-atomic) ; [RMW] ; po? ; [M]) |
|
|
([M] ; po? ; [RMW] ; fencerel(After-atomic) ; [M]) |
|
|
([M] ; po? ; [LKW] ; fencerel(After-spinlock) ; [M]) |
|
|
([M] ; po ; [UL] ; (co | po) ; [LKW] ;
|
|
fencerel(After-unlock-lock) ; [M])
|
|
let gp = po ; [Sync-rcu | Sync-srcu] ; po?
|
|
let strong-fence = mb | gp
|
|
|
|
let nonrw-fence = strong-fence | po-rel | acq-po
|
|
let fence = nonrw-fence | wmb | rmb
|
|
let barrier = fencerel(Barrier | Rmb | Wmb | Mb | Sync-rcu | Sync-srcu |
|
|
Before-atomic | After-atomic | Acquire | Release |
|
|
Rcu-lock | Rcu-unlock | Srcu-lock | Srcu-unlock) |
|
|
(po ; [Release]) | ([Acquire] ; po)
|
|
|
|
(**********************************)
|
|
(* Fundamental coherence ordering *)
|
|
(**********************************)
|
|
|
|
(* Sequential Consistency Per Variable *)
|
|
let com = rf | co | fr
|
|
acyclic po-loc | com as coherence
|
|
|
|
(* Atomic Read-Modify-Write *)
|
|
empty rmw & (fre ; coe) as atomic
|
|
|
|
(**********************************)
|
|
(* Instruction execution ordering *)
|
|
(**********************************)
|
|
|
|
(* Preserved Program Order *)
|
|
let dep = addr | data
|
|
let rwdep = (dep | ctrl) ; [W]
|
|
let overwrite = co | fr
|
|
let to-w = rwdep | (overwrite & int) | (addr ; [Plain] ; wmb)
|
|
let to-r = addr | (dep ; [Marked] ; rfi)
|
|
let ppo = to-r | to-w | fence | (po-unlock-lock-po & int)
|
|
|
|
(* Propagation: Ordering from release operations and strong fences. *)
|
|
let A-cumul(r) = (rfe ; [Marked])? ; r
|
|
let cumul-fence = [Marked] ; (A-cumul(strong-fence | po-rel) | wmb |
|
|
po-unlock-lock-po) ; [Marked]
|
|
let prop = [Marked] ; (overwrite & ext)? ; cumul-fence* ;
|
|
[Marked] ; rfe? ; [Marked]
|
|
|
|
(*
|
|
* Happens Before: Ordering from the passage of time.
|
|
* No fences needed here for prop because relation confined to one process.
|
|
*)
|
|
let hb = [Marked] ; (ppo | rfe | ((prop \ id) & int)) ; [Marked]
|
|
acyclic hb as happens-before
|
|
|
|
(****************************************)
|
|
(* Write and fence propagation ordering *)
|
|
(****************************************)
|
|
|
|
(* Propagation: Each non-rf link needs a strong fence. *)
|
|
let pb = prop ; strong-fence ; hb* ; [Marked]
|
|
acyclic pb as propagation
|
|
|
|
(*******)
|
|
(* RCU *)
|
|
(*******)
|
|
|
|
(*
|
|
* Effects of read-side critical sections proceed from the rcu_read_unlock()
|
|
* or srcu_read_unlock() backwards on the one hand, and from the
|
|
* rcu_read_lock() or srcu_read_lock() forwards on the other hand.
|
|
*
|
|
* In the definition of rcu-fence below, the po term at the left-hand side
|
|
* of each disjunct and the po? term at the right-hand end have been factored
|
|
* out. They have been moved into the definitions of rcu-link and rb.
|
|
* This was necessary in order to apply the "& loc" tests correctly.
|
|
*)
|
|
let rcu-gp = [Sync-rcu] (* Compare with gp *)
|
|
let srcu-gp = [Sync-srcu]
|
|
let rcu-rscsi = rcu-rscs^-1
|
|
let srcu-rscsi = srcu-rscs^-1
|
|
|
|
(*
|
|
* The synchronize_rcu() strong fence is special in that it can order not
|
|
* one but two non-rf relations, but only in conjunction with an RCU
|
|
* read-side critical section.
|
|
*)
|
|
let rcu-link = po? ; hb* ; pb* ; prop ; po
|
|
|
|
(*
|
|
* Any sequence containing at least as many grace periods as RCU read-side
|
|
* critical sections (joined by rcu-link) induces order like a generalized
|
|
* inter-CPU strong fence.
|
|
* Likewise for SRCU grace periods and read-side critical sections, provided
|
|
* the synchronize_srcu() and srcu_read_[un]lock() calls refer to the same
|
|
* struct srcu_struct location.
|
|
*)
|
|
let rec rcu-order = rcu-gp | srcu-gp |
|
|
(rcu-gp ; rcu-link ; rcu-rscsi) |
|
|
((srcu-gp ; rcu-link ; srcu-rscsi) & loc) |
|
|
(rcu-rscsi ; rcu-link ; rcu-gp) |
|
|
((srcu-rscsi ; rcu-link ; srcu-gp) & loc) |
|
|
(rcu-gp ; rcu-link ; rcu-order ; rcu-link ; rcu-rscsi) |
|
|
((srcu-gp ; rcu-link ; rcu-order ; rcu-link ; srcu-rscsi) & loc) |
|
|
(rcu-rscsi ; rcu-link ; rcu-order ; rcu-link ; rcu-gp) |
|
|
((srcu-rscsi ; rcu-link ; rcu-order ; rcu-link ; srcu-gp) & loc) |
|
|
(rcu-order ; rcu-link ; rcu-order)
|
|
let rcu-fence = po ; rcu-order ; po?
|
|
let fence = fence | rcu-fence
|
|
let strong-fence = strong-fence | rcu-fence
|
|
|
|
(* rb orders instructions just as pb does *)
|
|
let rb = prop ; rcu-fence ; hb* ; pb* ; [Marked]
|
|
|
|
irreflexive rb as rcu
|
|
|
|
(*
|
|
* The happens-before, propagation, and rcu constraints are all
|
|
* expressions of temporal ordering. They could be replaced by
|
|
* a single constraint on an "executes-before" relation, xb:
|
|
*
|
|
* let xb = hb | pb | rb
|
|
* acyclic xb as executes-before
|
|
*)
|
|
|
|
(*********************************)
|
|
(* Plain accesses and data races *)
|
|
(*********************************)
|
|
|
|
(* Warn about plain writes and marked accesses in the same region *)
|
|
let mixed-accesses = ([Plain & W] ; (po-loc \ barrier) ; [Marked]) |
|
|
([Marked] ; (po-loc \ barrier) ; [Plain & W])
|
|
flag ~empty mixed-accesses as mixed-accesses
|
|
|
|
(* Executes-before and visibility *)
|
|
let xbstar = (hb | pb | rb)*
|
|
let vis = cumul-fence* ; rfe? ; [Marked] ;
|
|
((strong-fence ; [Marked] ; xbstar) | (xbstar & int))
|
|
|
|
(* Boundaries for lifetimes of plain accesses *)
|
|
let w-pre-bounded = [Marked] ; (addr | fence)?
|
|
let r-pre-bounded = [Marked] ; (addr | nonrw-fence |
|
|
([R4rmb] ; fencerel(Rmb) ; [~Noreturn]))?
|
|
let w-post-bounded = fence? ; [Marked]
|
|
let r-post-bounded = (nonrw-fence | ([~Noreturn] ; fencerel(Rmb) ; [R4rmb]))? ;
|
|
[Marked]
|
|
|
|
(* Visibility and executes-before for plain accesses *)
|
|
let ww-vis = fence | (strong-fence ; xbstar ; w-pre-bounded) |
|
|
(w-post-bounded ; vis ; w-pre-bounded)
|
|
let wr-vis = fence | (strong-fence ; xbstar ; r-pre-bounded) |
|
|
(w-post-bounded ; vis ; r-pre-bounded)
|
|
let rw-xbstar = fence | (r-post-bounded ; xbstar ; w-pre-bounded)
|
|
|
|
(* Potential races *)
|
|
let pre-race = ext & ((Plain * M) | ((M \ IW) * Plain))
|
|
|
|
(* Coherence requirements for plain accesses *)
|
|
let wr-incoh = pre-race & rf & rw-xbstar^-1
|
|
let rw-incoh = pre-race & fr & wr-vis^-1
|
|
let ww-incoh = pre-race & co & ww-vis^-1
|
|
empty (wr-incoh | rw-incoh | ww-incoh) as plain-coherence
|
|
|
|
(* Actual races *)
|
|
let ww-nonrace = ww-vis & ((Marked * W) | rw-xbstar) & ((W * Marked) | wr-vis)
|
|
let ww-race = (pre-race & co) \ ww-nonrace
|
|
let wr-race = (pre-race & (co? ; rf)) \ wr-vis \ rw-xbstar^-1
|
|
let rw-race = (pre-race & fr) \ rw-xbstar
|
|
|
|
flag ~empty (ww-race | wr-race | rw-race) as data-race
|