mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-27 14:14:24 +08:00
8866730aed
AF_UNIX stream sockets are a paired socket. So sending on one of the pairs
will lookup the paired socket as part of the send operation. It is possible
however to put just one of the pairs in a BPF map. This currently increments
the refcnt on the sock in the sockmap to ensure it is not free'd by the
stack before sockmap cleans up its state and stops any skbs being sent/recv'd
to that socket.
But we missed a case. If the peer socket is closed it will be free'd by the
stack. However, the paired socket can still be referenced from BPF sockmap
side because we hold a reference there. Then if we are sending traffic through
BPF sockmap to that socket it will try to dereference the free'd pair in its
send logic creating a use after free. And following splat:
[59.900375] BUG: KASAN: slab-use-after-free in sk_wake_async+0x31/0x1b0
[59.901211] Read of size 8 at addr ffff88811acbf060 by task kworker/1:2/954
[...]
[59.905468] Call Trace:
[59.905787] <TASK>
[59.906066] dump_stack_lvl+0x130/0x1d0
[59.908877] print_report+0x16f/0x740
[59.910629] kasan_report+0x118/0x160
[59.912576] sk_wake_async+0x31/0x1b0
[59.913554] sock_def_readable+0x156/0x2a0
[59.914060] unix_stream_sendmsg+0x3f9/0x12a0
[59.916398] sock_sendmsg+0x20e/0x250
[59.916854] skb_send_sock+0x236/0xac0
[59.920527] sk_psock_backlog+0x287/0xaa0
To fix let BPF sockmap hold a refcnt on both the socket in the sockmap and its
paired socket. It wasn't obvious how to contain the fix to bpf_unix logic. The
primarily problem with keeping this logic in bpf_unix was: In the sock close()
we could handle the deref by having a close handler. But, when we are destroying
the psock through a map delete operation we wouldn't have gotten any signal
thorugh the proto struct other than it being replaced. If we do the deref from
the proto replace its too early because we need to deref the sk_pair after the
backlog worker has been stopped.
Given all this it seems best to just cache it at the end of the psock and eat 8B
for the af_unix and vsock users. Notice dgram sockets are OK because they handle
locking already.
Fixes: 94531cfcbe
("af_unix: Add unix_stream_proto for sockmap")
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Jakub Sitnicki <jakub@cloudflare.com>
Link: https://lore.kernel.org/bpf/20231129012557.95371-2-john.fastabend@gmail.com
1256 lines
29 KiB
C
1256 lines
29 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */
|
|
|
|
#include <linux/skmsg.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/scatterlist.h>
|
|
|
|
#include <net/sock.h>
|
|
#include <net/tcp.h>
|
|
#include <net/tls.h>
|
|
#include <trace/events/sock.h>
|
|
|
|
static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce)
|
|
{
|
|
if (msg->sg.end > msg->sg.start &&
|
|
elem_first_coalesce < msg->sg.end)
|
|
return true;
|
|
|
|
if (msg->sg.end < msg->sg.start &&
|
|
(elem_first_coalesce > msg->sg.start ||
|
|
elem_first_coalesce < msg->sg.end))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len,
|
|
int elem_first_coalesce)
|
|
{
|
|
struct page_frag *pfrag = sk_page_frag(sk);
|
|
u32 osize = msg->sg.size;
|
|
int ret = 0;
|
|
|
|
len -= msg->sg.size;
|
|
while (len > 0) {
|
|
struct scatterlist *sge;
|
|
u32 orig_offset;
|
|
int use, i;
|
|
|
|
if (!sk_page_frag_refill(sk, pfrag)) {
|
|
ret = -ENOMEM;
|
|
goto msg_trim;
|
|
}
|
|
|
|
orig_offset = pfrag->offset;
|
|
use = min_t(int, len, pfrag->size - orig_offset);
|
|
if (!sk_wmem_schedule(sk, use)) {
|
|
ret = -ENOMEM;
|
|
goto msg_trim;
|
|
}
|
|
|
|
i = msg->sg.end;
|
|
sk_msg_iter_var_prev(i);
|
|
sge = &msg->sg.data[i];
|
|
|
|
if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) &&
|
|
sg_page(sge) == pfrag->page &&
|
|
sge->offset + sge->length == orig_offset) {
|
|
sge->length += use;
|
|
} else {
|
|
if (sk_msg_full(msg)) {
|
|
ret = -ENOSPC;
|
|
break;
|
|
}
|
|
|
|
sge = &msg->sg.data[msg->sg.end];
|
|
sg_unmark_end(sge);
|
|
sg_set_page(sge, pfrag->page, use, orig_offset);
|
|
get_page(pfrag->page);
|
|
sk_msg_iter_next(msg, end);
|
|
}
|
|
|
|
sk_mem_charge(sk, use);
|
|
msg->sg.size += use;
|
|
pfrag->offset += use;
|
|
len -= use;
|
|
}
|
|
|
|
return ret;
|
|
|
|
msg_trim:
|
|
sk_msg_trim(sk, msg, osize);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sk_msg_alloc);
|
|
|
|
int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src,
|
|
u32 off, u32 len)
|
|
{
|
|
int i = src->sg.start;
|
|
struct scatterlist *sge = sk_msg_elem(src, i);
|
|
struct scatterlist *sgd = NULL;
|
|
u32 sge_len, sge_off;
|
|
|
|
while (off) {
|
|
if (sge->length > off)
|
|
break;
|
|
off -= sge->length;
|
|
sk_msg_iter_var_next(i);
|
|
if (i == src->sg.end && off)
|
|
return -ENOSPC;
|
|
sge = sk_msg_elem(src, i);
|
|
}
|
|
|
|
while (len) {
|
|
sge_len = sge->length - off;
|
|
if (sge_len > len)
|
|
sge_len = len;
|
|
|
|
if (dst->sg.end)
|
|
sgd = sk_msg_elem(dst, dst->sg.end - 1);
|
|
|
|
if (sgd &&
|
|
(sg_page(sge) == sg_page(sgd)) &&
|
|
(sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) {
|
|
sgd->length += sge_len;
|
|
dst->sg.size += sge_len;
|
|
} else if (!sk_msg_full(dst)) {
|
|
sge_off = sge->offset + off;
|
|
sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off);
|
|
} else {
|
|
return -ENOSPC;
|
|
}
|
|
|
|
off = 0;
|
|
len -= sge_len;
|
|
sk_mem_charge(sk, sge_len);
|
|
sk_msg_iter_var_next(i);
|
|
if (i == src->sg.end && len)
|
|
return -ENOSPC;
|
|
sge = sk_msg_elem(src, i);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sk_msg_clone);
|
|
|
|
void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes)
|
|
{
|
|
int i = msg->sg.start;
|
|
|
|
do {
|
|
struct scatterlist *sge = sk_msg_elem(msg, i);
|
|
|
|
if (bytes < sge->length) {
|
|
sge->length -= bytes;
|
|
sge->offset += bytes;
|
|
sk_mem_uncharge(sk, bytes);
|
|
break;
|
|
}
|
|
|
|
sk_mem_uncharge(sk, sge->length);
|
|
bytes -= sge->length;
|
|
sge->length = 0;
|
|
sge->offset = 0;
|
|
sk_msg_iter_var_next(i);
|
|
} while (bytes && i != msg->sg.end);
|
|
msg->sg.start = i;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sk_msg_return_zero);
|
|
|
|
void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes)
|
|
{
|
|
int i = msg->sg.start;
|
|
|
|
do {
|
|
struct scatterlist *sge = &msg->sg.data[i];
|
|
int uncharge = (bytes < sge->length) ? bytes : sge->length;
|
|
|
|
sk_mem_uncharge(sk, uncharge);
|
|
bytes -= uncharge;
|
|
sk_msg_iter_var_next(i);
|
|
} while (i != msg->sg.end);
|
|
}
|
|
EXPORT_SYMBOL_GPL(sk_msg_return);
|
|
|
|
static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i,
|
|
bool charge)
|
|
{
|
|
struct scatterlist *sge = sk_msg_elem(msg, i);
|
|
u32 len = sge->length;
|
|
|
|
/* When the skb owns the memory we free it from consume_skb path. */
|
|
if (!msg->skb) {
|
|
if (charge)
|
|
sk_mem_uncharge(sk, len);
|
|
put_page(sg_page(sge));
|
|
}
|
|
memset(sge, 0, sizeof(*sge));
|
|
return len;
|
|
}
|
|
|
|
static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i,
|
|
bool charge)
|
|
{
|
|
struct scatterlist *sge = sk_msg_elem(msg, i);
|
|
int freed = 0;
|
|
|
|
while (msg->sg.size) {
|
|
msg->sg.size -= sge->length;
|
|
freed += sk_msg_free_elem(sk, msg, i, charge);
|
|
sk_msg_iter_var_next(i);
|
|
sk_msg_check_to_free(msg, i, msg->sg.size);
|
|
sge = sk_msg_elem(msg, i);
|
|
}
|
|
consume_skb(msg->skb);
|
|
sk_msg_init(msg);
|
|
return freed;
|
|
}
|
|
|
|
int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg)
|
|
{
|
|
return __sk_msg_free(sk, msg, msg->sg.start, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(sk_msg_free_nocharge);
|
|
|
|
int sk_msg_free(struct sock *sk, struct sk_msg *msg)
|
|
{
|
|
return __sk_msg_free(sk, msg, msg->sg.start, true);
|
|
}
|
|
EXPORT_SYMBOL_GPL(sk_msg_free);
|
|
|
|
static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg,
|
|
u32 bytes, bool charge)
|
|
{
|
|
struct scatterlist *sge;
|
|
u32 i = msg->sg.start;
|
|
|
|
while (bytes) {
|
|
sge = sk_msg_elem(msg, i);
|
|
if (!sge->length)
|
|
break;
|
|
if (bytes < sge->length) {
|
|
if (charge)
|
|
sk_mem_uncharge(sk, bytes);
|
|
sge->length -= bytes;
|
|
sge->offset += bytes;
|
|
msg->sg.size -= bytes;
|
|
break;
|
|
}
|
|
|
|
msg->sg.size -= sge->length;
|
|
bytes -= sge->length;
|
|
sk_msg_free_elem(sk, msg, i, charge);
|
|
sk_msg_iter_var_next(i);
|
|
sk_msg_check_to_free(msg, i, bytes);
|
|
}
|
|
msg->sg.start = i;
|
|
}
|
|
|
|
void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes)
|
|
{
|
|
__sk_msg_free_partial(sk, msg, bytes, true);
|
|
}
|
|
EXPORT_SYMBOL_GPL(sk_msg_free_partial);
|
|
|
|
void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg,
|
|
u32 bytes)
|
|
{
|
|
__sk_msg_free_partial(sk, msg, bytes, false);
|
|
}
|
|
|
|
void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len)
|
|
{
|
|
int trim = msg->sg.size - len;
|
|
u32 i = msg->sg.end;
|
|
|
|
if (trim <= 0) {
|
|
WARN_ON(trim < 0);
|
|
return;
|
|
}
|
|
|
|
sk_msg_iter_var_prev(i);
|
|
msg->sg.size = len;
|
|
while (msg->sg.data[i].length &&
|
|
trim >= msg->sg.data[i].length) {
|
|
trim -= msg->sg.data[i].length;
|
|
sk_msg_free_elem(sk, msg, i, true);
|
|
sk_msg_iter_var_prev(i);
|
|
if (!trim)
|
|
goto out;
|
|
}
|
|
|
|
msg->sg.data[i].length -= trim;
|
|
sk_mem_uncharge(sk, trim);
|
|
/* Adjust copybreak if it falls into the trimmed part of last buf */
|
|
if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length)
|
|
msg->sg.copybreak = msg->sg.data[i].length;
|
|
out:
|
|
sk_msg_iter_var_next(i);
|
|
msg->sg.end = i;
|
|
|
|
/* If we trim data a full sg elem before curr pointer update
|
|
* copybreak and current so that any future copy operations
|
|
* start at new copy location.
|
|
* However trimed data that has not yet been used in a copy op
|
|
* does not require an update.
|
|
*/
|
|
if (!msg->sg.size) {
|
|
msg->sg.curr = msg->sg.start;
|
|
msg->sg.copybreak = 0;
|
|
} else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >=
|
|
sk_msg_iter_dist(msg->sg.start, msg->sg.end)) {
|
|
sk_msg_iter_var_prev(i);
|
|
msg->sg.curr = i;
|
|
msg->sg.copybreak = msg->sg.data[i].length;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(sk_msg_trim);
|
|
|
|
int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
|
|
struct sk_msg *msg, u32 bytes)
|
|
{
|
|
int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg);
|
|
const int to_max_pages = MAX_MSG_FRAGS;
|
|
struct page *pages[MAX_MSG_FRAGS];
|
|
ssize_t orig, copied, use, offset;
|
|
|
|
orig = msg->sg.size;
|
|
while (bytes > 0) {
|
|
i = 0;
|
|
maxpages = to_max_pages - num_elems;
|
|
if (maxpages == 0) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
copied = iov_iter_get_pages2(from, pages, bytes, maxpages,
|
|
&offset);
|
|
if (copied <= 0) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
bytes -= copied;
|
|
msg->sg.size += copied;
|
|
|
|
while (copied) {
|
|
use = min_t(int, copied, PAGE_SIZE - offset);
|
|
sg_set_page(&msg->sg.data[msg->sg.end],
|
|
pages[i], use, offset);
|
|
sg_unmark_end(&msg->sg.data[msg->sg.end]);
|
|
sk_mem_charge(sk, use);
|
|
|
|
offset = 0;
|
|
copied -= use;
|
|
sk_msg_iter_next(msg, end);
|
|
num_elems++;
|
|
i++;
|
|
}
|
|
/* When zerocopy is mixed with sk_msg_*copy* operations we
|
|
* may have a copybreak set in this case clear and prefer
|
|
* zerocopy remainder when possible.
|
|
*/
|
|
msg->sg.copybreak = 0;
|
|
msg->sg.curr = msg->sg.end;
|
|
}
|
|
out:
|
|
/* Revert iov_iter updates, msg will need to use 'trim' later if it
|
|
* also needs to be cleared.
|
|
*/
|
|
if (ret)
|
|
iov_iter_revert(from, msg->sg.size - orig);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter);
|
|
|
|
int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from,
|
|
struct sk_msg *msg, u32 bytes)
|
|
{
|
|
int ret = -ENOSPC, i = msg->sg.curr;
|
|
struct scatterlist *sge;
|
|
u32 copy, buf_size;
|
|
void *to;
|
|
|
|
do {
|
|
sge = sk_msg_elem(msg, i);
|
|
/* This is possible if a trim operation shrunk the buffer */
|
|
if (msg->sg.copybreak >= sge->length) {
|
|
msg->sg.copybreak = 0;
|
|
sk_msg_iter_var_next(i);
|
|
if (i == msg->sg.end)
|
|
break;
|
|
sge = sk_msg_elem(msg, i);
|
|
}
|
|
|
|
buf_size = sge->length - msg->sg.copybreak;
|
|
copy = (buf_size > bytes) ? bytes : buf_size;
|
|
to = sg_virt(sge) + msg->sg.copybreak;
|
|
msg->sg.copybreak += copy;
|
|
if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
|
|
ret = copy_from_iter_nocache(to, copy, from);
|
|
else
|
|
ret = copy_from_iter(to, copy, from);
|
|
if (ret != copy) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
bytes -= copy;
|
|
if (!bytes)
|
|
break;
|
|
msg->sg.copybreak = 0;
|
|
sk_msg_iter_var_next(i);
|
|
} while (i != msg->sg.end);
|
|
out:
|
|
msg->sg.curr = i;
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter);
|
|
|
|
/* Receive sk_msg from psock->ingress_msg to @msg. */
|
|
int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg,
|
|
int len, int flags)
|
|
{
|
|
struct iov_iter *iter = &msg->msg_iter;
|
|
int peek = flags & MSG_PEEK;
|
|
struct sk_msg *msg_rx;
|
|
int i, copied = 0;
|
|
|
|
msg_rx = sk_psock_peek_msg(psock);
|
|
while (copied != len) {
|
|
struct scatterlist *sge;
|
|
|
|
if (unlikely(!msg_rx))
|
|
break;
|
|
|
|
i = msg_rx->sg.start;
|
|
do {
|
|
struct page *page;
|
|
int copy;
|
|
|
|
sge = sk_msg_elem(msg_rx, i);
|
|
copy = sge->length;
|
|
page = sg_page(sge);
|
|
if (copied + copy > len)
|
|
copy = len - copied;
|
|
copy = copy_page_to_iter(page, sge->offset, copy, iter);
|
|
if (!copy) {
|
|
copied = copied ? copied : -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
copied += copy;
|
|
if (likely(!peek)) {
|
|
sge->offset += copy;
|
|
sge->length -= copy;
|
|
if (!msg_rx->skb)
|
|
sk_mem_uncharge(sk, copy);
|
|
msg_rx->sg.size -= copy;
|
|
|
|
if (!sge->length) {
|
|
sk_msg_iter_var_next(i);
|
|
if (!msg_rx->skb)
|
|
put_page(page);
|
|
}
|
|
} else {
|
|
/* Lets not optimize peek case if copy_page_to_iter
|
|
* didn't copy the entire length lets just break.
|
|
*/
|
|
if (copy != sge->length)
|
|
goto out;
|
|
sk_msg_iter_var_next(i);
|
|
}
|
|
|
|
if (copied == len)
|
|
break;
|
|
} while ((i != msg_rx->sg.end) && !sg_is_last(sge));
|
|
|
|
if (unlikely(peek)) {
|
|
msg_rx = sk_psock_next_msg(psock, msg_rx);
|
|
if (!msg_rx)
|
|
break;
|
|
continue;
|
|
}
|
|
|
|
msg_rx->sg.start = i;
|
|
if (!sge->length && (i == msg_rx->sg.end || sg_is_last(sge))) {
|
|
msg_rx = sk_psock_dequeue_msg(psock);
|
|
kfree_sk_msg(msg_rx);
|
|
}
|
|
msg_rx = sk_psock_peek_msg(psock);
|
|
}
|
|
out:
|
|
return copied;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sk_msg_recvmsg);
|
|
|
|
bool sk_msg_is_readable(struct sock *sk)
|
|
{
|
|
struct sk_psock *psock;
|
|
bool empty = true;
|
|
|
|
rcu_read_lock();
|
|
psock = sk_psock(sk);
|
|
if (likely(psock))
|
|
empty = list_empty(&psock->ingress_msg);
|
|
rcu_read_unlock();
|
|
return !empty;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sk_msg_is_readable);
|
|
|
|
static struct sk_msg *alloc_sk_msg(gfp_t gfp)
|
|
{
|
|
struct sk_msg *msg;
|
|
|
|
msg = kzalloc(sizeof(*msg), gfp | __GFP_NOWARN);
|
|
if (unlikely(!msg))
|
|
return NULL;
|
|
sg_init_marker(msg->sg.data, NR_MSG_FRAG_IDS);
|
|
return msg;
|
|
}
|
|
|
|
static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk,
|
|
struct sk_buff *skb)
|
|
{
|
|
if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
|
|
return NULL;
|
|
|
|
if (!sk_rmem_schedule(sk, skb, skb->truesize))
|
|
return NULL;
|
|
|
|
return alloc_sk_msg(GFP_KERNEL);
|
|
}
|
|
|
|
static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb,
|
|
u32 off, u32 len,
|
|
struct sk_psock *psock,
|
|
struct sock *sk,
|
|
struct sk_msg *msg)
|
|
{
|
|
int num_sge, copied;
|
|
|
|
num_sge = skb_to_sgvec(skb, msg->sg.data, off, len);
|
|
if (num_sge < 0) {
|
|
/* skb linearize may fail with ENOMEM, but lets simply try again
|
|
* later if this happens. Under memory pressure we don't want to
|
|
* drop the skb. We need to linearize the skb so that the mapping
|
|
* in skb_to_sgvec can not error.
|
|
*/
|
|
if (skb_linearize(skb))
|
|
return -EAGAIN;
|
|
|
|
num_sge = skb_to_sgvec(skb, msg->sg.data, off, len);
|
|
if (unlikely(num_sge < 0))
|
|
return num_sge;
|
|
}
|
|
|
|
copied = len;
|
|
msg->sg.start = 0;
|
|
msg->sg.size = copied;
|
|
msg->sg.end = num_sge;
|
|
msg->skb = skb;
|
|
|
|
sk_psock_queue_msg(psock, msg);
|
|
sk_psock_data_ready(sk, psock);
|
|
return copied;
|
|
}
|
|
|
|
static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb,
|
|
u32 off, u32 len);
|
|
|
|
static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb,
|
|
u32 off, u32 len)
|
|
{
|
|
struct sock *sk = psock->sk;
|
|
struct sk_msg *msg;
|
|
int err;
|
|
|
|
/* If we are receiving on the same sock skb->sk is already assigned,
|
|
* skip memory accounting and owner transition seeing it already set
|
|
* correctly.
|
|
*/
|
|
if (unlikely(skb->sk == sk))
|
|
return sk_psock_skb_ingress_self(psock, skb, off, len);
|
|
msg = sk_psock_create_ingress_msg(sk, skb);
|
|
if (!msg)
|
|
return -EAGAIN;
|
|
|
|
/* This will transition ownership of the data from the socket where
|
|
* the BPF program was run initiating the redirect to the socket
|
|
* we will eventually receive this data on. The data will be released
|
|
* from skb_consume found in __tcp_bpf_recvmsg() after its been copied
|
|
* into user buffers.
|
|
*/
|
|
skb_set_owner_r(skb, sk);
|
|
err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg);
|
|
if (err < 0)
|
|
kfree(msg);
|
|
return err;
|
|
}
|
|
|
|
/* Puts an skb on the ingress queue of the socket already assigned to the
|
|
* skb. In this case we do not need to check memory limits or skb_set_owner_r
|
|
* because the skb is already accounted for here.
|
|
*/
|
|
static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb,
|
|
u32 off, u32 len)
|
|
{
|
|
struct sk_msg *msg = alloc_sk_msg(GFP_ATOMIC);
|
|
struct sock *sk = psock->sk;
|
|
int err;
|
|
|
|
if (unlikely(!msg))
|
|
return -EAGAIN;
|
|
skb_set_owner_r(skb, sk);
|
|
err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg);
|
|
if (err < 0)
|
|
kfree(msg);
|
|
return err;
|
|
}
|
|
|
|
static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb,
|
|
u32 off, u32 len, bool ingress)
|
|
{
|
|
int err = 0;
|
|
|
|
if (!ingress) {
|
|
if (!sock_writeable(psock->sk))
|
|
return -EAGAIN;
|
|
return skb_send_sock(psock->sk, skb, off, len);
|
|
}
|
|
skb_get(skb);
|
|
err = sk_psock_skb_ingress(psock, skb, off, len);
|
|
if (err < 0)
|
|
kfree_skb(skb);
|
|
return err;
|
|
}
|
|
|
|
static void sk_psock_skb_state(struct sk_psock *psock,
|
|
struct sk_psock_work_state *state,
|
|
int len, int off)
|
|
{
|
|
spin_lock_bh(&psock->ingress_lock);
|
|
if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
|
|
state->len = len;
|
|
state->off = off;
|
|
}
|
|
spin_unlock_bh(&psock->ingress_lock);
|
|
}
|
|
|
|
static void sk_psock_backlog(struct work_struct *work)
|
|
{
|
|
struct delayed_work *dwork = to_delayed_work(work);
|
|
struct sk_psock *psock = container_of(dwork, struct sk_psock, work);
|
|
struct sk_psock_work_state *state = &psock->work_state;
|
|
struct sk_buff *skb = NULL;
|
|
u32 len = 0, off = 0;
|
|
bool ingress;
|
|
int ret;
|
|
|
|
mutex_lock(&psock->work_mutex);
|
|
if (unlikely(state->len)) {
|
|
len = state->len;
|
|
off = state->off;
|
|
}
|
|
|
|
while ((skb = skb_peek(&psock->ingress_skb))) {
|
|
len = skb->len;
|
|
off = 0;
|
|
if (skb_bpf_strparser(skb)) {
|
|
struct strp_msg *stm = strp_msg(skb);
|
|
|
|
off = stm->offset;
|
|
len = stm->full_len;
|
|
}
|
|
ingress = skb_bpf_ingress(skb);
|
|
skb_bpf_redirect_clear(skb);
|
|
do {
|
|
ret = -EIO;
|
|
if (!sock_flag(psock->sk, SOCK_DEAD))
|
|
ret = sk_psock_handle_skb(psock, skb, off,
|
|
len, ingress);
|
|
if (ret <= 0) {
|
|
if (ret == -EAGAIN) {
|
|
sk_psock_skb_state(psock, state, len, off);
|
|
|
|
/* Delay slightly to prioritize any
|
|
* other work that might be here.
|
|
*/
|
|
if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
|
|
schedule_delayed_work(&psock->work, 1);
|
|
goto end;
|
|
}
|
|
/* Hard errors break pipe and stop xmit. */
|
|
sk_psock_report_error(psock, ret ? -ret : EPIPE);
|
|
sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
|
|
goto end;
|
|
}
|
|
off += ret;
|
|
len -= ret;
|
|
} while (len);
|
|
|
|
skb = skb_dequeue(&psock->ingress_skb);
|
|
kfree_skb(skb);
|
|
}
|
|
end:
|
|
mutex_unlock(&psock->work_mutex);
|
|
}
|
|
|
|
struct sk_psock *sk_psock_init(struct sock *sk, int node)
|
|
{
|
|
struct sk_psock *psock;
|
|
struct proto *prot;
|
|
|
|
write_lock_bh(&sk->sk_callback_lock);
|
|
|
|
if (sk_is_inet(sk) && inet_csk_has_ulp(sk)) {
|
|
psock = ERR_PTR(-EINVAL);
|
|
goto out;
|
|
}
|
|
|
|
if (sk->sk_user_data) {
|
|
psock = ERR_PTR(-EBUSY);
|
|
goto out;
|
|
}
|
|
|
|
psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node);
|
|
if (!psock) {
|
|
psock = ERR_PTR(-ENOMEM);
|
|
goto out;
|
|
}
|
|
|
|
prot = READ_ONCE(sk->sk_prot);
|
|
psock->sk = sk;
|
|
psock->eval = __SK_NONE;
|
|
psock->sk_proto = prot;
|
|
psock->saved_unhash = prot->unhash;
|
|
psock->saved_destroy = prot->destroy;
|
|
psock->saved_close = prot->close;
|
|
psock->saved_write_space = sk->sk_write_space;
|
|
|
|
INIT_LIST_HEAD(&psock->link);
|
|
spin_lock_init(&psock->link_lock);
|
|
|
|
INIT_DELAYED_WORK(&psock->work, sk_psock_backlog);
|
|
mutex_init(&psock->work_mutex);
|
|
INIT_LIST_HEAD(&psock->ingress_msg);
|
|
spin_lock_init(&psock->ingress_lock);
|
|
skb_queue_head_init(&psock->ingress_skb);
|
|
|
|
sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED);
|
|
refcount_set(&psock->refcnt, 1);
|
|
|
|
__rcu_assign_sk_user_data_with_flags(sk, psock,
|
|
SK_USER_DATA_NOCOPY |
|
|
SK_USER_DATA_PSOCK);
|
|
sock_hold(sk);
|
|
|
|
out:
|
|
write_unlock_bh(&sk->sk_callback_lock);
|
|
return psock;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sk_psock_init);
|
|
|
|
struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock)
|
|
{
|
|
struct sk_psock_link *link;
|
|
|
|
spin_lock_bh(&psock->link_lock);
|
|
link = list_first_entry_or_null(&psock->link, struct sk_psock_link,
|
|
list);
|
|
if (link)
|
|
list_del(&link->list);
|
|
spin_unlock_bh(&psock->link_lock);
|
|
return link;
|
|
}
|
|
|
|
static void __sk_psock_purge_ingress_msg(struct sk_psock *psock)
|
|
{
|
|
struct sk_msg *msg, *tmp;
|
|
|
|
list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) {
|
|
list_del(&msg->list);
|
|
sk_msg_free(psock->sk, msg);
|
|
kfree(msg);
|
|
}
|
|
}
|
|
|
|
static void __sk_psock_zap_ingress(struct sk_psock *psock)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) {
|
|
skb_bpf_redirect_clear(skb);
|
|
sock_drop(psock->sk, skb);
|
|
}
|
|
__sk_psock_purge_ingress_msg(psock);
|
|
}
|
|
|
|
static void sk_psock_link_destroy(struct sk_psock *psock)
|
|
{
|
|
struct sk_psock_link *link, *tmp;
|
|
|
|
list_for_each_entry_safe(link, tmp, &psock->link, list) {
|
|
list_del(&link->list);
|
|
sk_psock_free_link(link);
|
|
}
|
|
}
|
|
|
|
void sk_psock_stop(struct sk_psock *psock)
|
|
{
|
|
spin_lock_bh(&psock->ingress_lock);
|
|
sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
|
|
sk_psock_cork_free(psock);
|
|
spin_unlock_bh(&psock->ingress_lock);
|
|
}
|
|
|
|
static void sk_psock_done_strp(struct sk_psock *psock);
|
|
|
|
static void sk_psock_destroy(struct work_struct *work)
|
|
{
|
|
struct sk_psock *psock = container_of(to_rcu_work(work),
|
|
struct sk_psock, rwork);
|
|
/* No sk_callback_lock since already detached. */
|
|
|
|
sk_psock_done_strp(psock);
|
|
|
|
cancel_delayed_work_sync(&psock->work);
|
|
__sk_psock_zap_ingress(psock);
|
|
mutex_destroy(&psock->work_mutex);
|
|
|
|
psock_progs_drop(&psock->progs);
|
|
|
|
sk_psock_link_destroy(psock);
|
|
sk_psock_cork_free(psock);
|
|
|
|
if (psock->sk_redir)
|
|
sock_put(psock->sk_redir);
|
|
if (psock->sk_pair)
|
|
sock_put(psock->sk_pair);
|
|
sock_put(psock->sk);
|
|
kfree(psock);
|
|
}
|
|
|
|
void sk_psock_drop(struct sock *sk, struct sk_psock *psock)
|
|
{
|
|
write_lock_bh(&sk->sk_callback_lock);
|
|
sk_psock_restore_proto(sk, psock);
|
|
rcu_assign_sk_user_data(sk, NULL);
|
|
if (psock->progs.stream_parser)
|
|
sk_psock_stop_strp(sk, psock);
|
|
else if (psock->progs.stream_verdict || psock->progs.skb_verdict)
|
|
sk_psock_stop_verdict(sk, psock);
|
|
write_unlock_bh(&sk->sk_callback_lock);
|
|
|
|
sk_psock_stop(psock);
|
|
|
|
INIT_RCU_WORK(&psock->rwork, sk_psock_destroy);
|
|
queue_rcu_work(system_wq, &psock->rwork);
|
|
}
|
|
EXPORT_SYMBOL_GPL(sk_psock_drop);
|
|
|
|
static int sk_psock_map_verd(int verdict, bool redir)
|
|
{
|
|
switch (verdict) {
|
|
case SK_PASS:
|
|
return redir ? __SK_REDIRECT : __SK_PASS;
|
|
case SK_DROP:
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return __SK_DROP;
|
|
}
|
|
|
|
int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock,
|
|
struct sk_msg *msg)
|
|
{
|
|
struct bpf_prog *prog;
|
|
int ret;
|
|
|
|
rcu_read_lock();
|
|
prog = READ_ONCE(psock->progs.msg_parser);
|
|
if (unlikely(!prog)) {
|
|
ret = __SK_PASS;
|
|
goto out;
|
|
}
|
|
|
|
sk_msg_compute_data_pointers(msg);
|
|
msg->sk = sk;
|
|
ret = bpf_prog_run_pin_on_cpu(prog, msg);
|
|
ret = sk_psock_map_verd(ret, msg->sk_redir);
|
|
psock->apply_bytes = msg->apply_bytes;
|
|
if (ret == __SK_REDIRECT) {
|
|
if (psock->sk_redir) {
|
|
sock_put(psock->sk_redir);
|
|
psock->sk_redir = NULL;
|
|
}
|
|
if (!msg->sk_redir) {
|
|
ret = __SK_DROP;
|
|
goto out;
|
|
}
|
|
psock->redir_ingress = sk_msg_to_ingress(msg);
|
|
psock->sk_redir = msg->sk_redir;
|
|
sock_hold(psock->sk_redir);
|
|
}
|
|
out:
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sk_psock_msg_verdict);
|
|
|
|
static int sk_psock_skb_redirect(struct sk_psock *from, struct sk_buff *skb)
|
|
{
|
|
struct sk_psock *psock_other;
|
|
struct sock *sk_other;
|
|
|
|
sk_other = skb_bpf_redirect_fetch(skb);
|
|
/* This error is a buggy BPF program, it returned a redirect
|
|
* return code, but then didn't set a redirect interface.
|
|
*/
|
|
if (unlikely(!sk_other)) {
|
|
skb_bpf_redirect_clear(skb);
|
|
sock_drop(from->sk, skb);
|
|
return -EIO;
|
|
}
|
|
psock_other = sk_psock(sk_other);
|
|
/* This error indicates the socket is being torn down or had another
|
|
* error that caused the pipe to break. We can't send a packet on
|
|
* a socket that is in this state so we drop the skb.
|
|
*/
|
|
if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) {
|
|
skb_bpf_redirect_clear(skb);
|
|
sock_drop(from->sk, skb);
|
|
return -EIO;
|
|
}
|
|
spin_lock_bh(&psock_other->ingress_lock);
|
|
if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) {
|
|
spin_unlock_bh(&psock_other->ingress_lock);
|
|
skb_bpf_redirect_clear(skb);
|
|
sock_drop(from->sk, skb);
|
|
return -EIO;
|
|
}
|
|
|
|
skb_queue_tail(&psock_other->ingress_skb, skb);
|
|
schedule_delayed_work(&psock_other->work, 0);
|
|
spin_unlock_bh(&psock_other->ingress_lock);
|
|
return 0;
|
|
}
|
|
|
|
static void sk_psock_tls_verdict_apply(struct sk_buff *skb,
|
|
struct sk_psock *from, int verdict)
|
|
{
|
|
switch (verdict) {
|
|
case __SK_REDIRECT:
|
|
sk_psock_skb_redirect(from, skb);
|
|
break;
|
|
case __SK_PASS:
|
|
case __SK_DROP:
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb)
|
|
{
|
|
struct bpf_prog *prog;
|
|
int ret = __SK_PASS;
|
|
|
|
rcu_read_lock();
|
|
prog = READ_ONCE(psock->progs.stream_verdict);
|
|
if (likely(prog)) {
|
|
skb->sk = psock->sk;
|
|
skb_dst_drop(skb);
|
|
skb_bpf_redirect_clear(skb);
|
|
ret = bpf_prog_run_pin_on_cpu(prog, skb);
|
|
ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
|
|
skb->sk = NULL;
|
|
}
|
|
sk_psock_tls_verdict_apply(skb, psock, ret);
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read);
|
|
|
|
static int sk_psock_verdict_apply(struct sk_psock *psock, struct sk_buff *skb,
|
|
int verdict)
|
|
{
|
|
struct sock *sk_other;
|
|
int err = 0;
|
|
u32 len, off;
|
|
|
|
switch (verdict) {
|
|
case __SK_PASS:
|
|
err = -EIO;
|
|
sk_other = psock->sk;
|
|
if (sock_flag(sk_other, SOCK_DEAD) ||
|
|
!sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
|
|
goto out_free;
|
|
|
|
skb_bpf_set_ingress(skb);
|
|
|
|
/* If the queue is empty then we can submit directly
|
|
* into the msg queue. If its not empty we have to
|
|
* queue work otherwise we may get OOO data. Otherwise,
|
|
* if sk_psock_skb_ingress errors will be handled by
|
|
* retrying later from workqueue.
|
|
*/
|
|
if (skb_queue_empty(&psock->ingress_skb)) {
|
|
len = skb->len;
|
|
off = 0;
|
|
if (skb_bpf_strparser(skb)) {
|
|
struct strp_msg *stm = strp_msg(skb);
|
|
|
|
off = stm->offset;
|
|
len = stm->full_len;
|
|
}
|
|
err = sk_psock_skb_ingress_self(psock, skb, off, len);
|
|
}
|
|
if (err < 0) {
|
|
spin_lock_bh(&psock->ingress_lock);
|
|
if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
|
|
skb_queue_tail(&psock->ingress_skb, skb);
|
|
schedule_delayed_work(&psock->work, 0);
|
|
err = 0;
|
|
}
|
|
spin_unlock_bh(&psock->ingress_lock);
|
|
if (err < 0)
|
|
goto out_free;
|
|
}
|
|
break;
|
|
case __SK_REDIRECT:
|
|
tcp_eat_skb(psock->sk, skb);
|
|
err = sk_psock_skb_redirect(psock, skb);
|
|
break;
|
|
case __SK_DROP:
|
|
default:
|
|
out_free:
|
|
skb_bpf_redirect_clear(skb);
|
|
tcp_eat_skb(psock->sk, skb);
|
|
sock_drop(psock->sk, skb);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static void sk_psock_write_space(struct sock *sk)
|
|
{
|
|
struct sk_psock *psock;
|
|
void (*write_space)(struct sock *sk) = NULL;
|
|
|
|
rcu_read_lock();
|
|
psock = sk_psock(sk);
|
|
if (likely(psock)) {
|
|
if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
|
|
schedule_delayed_work(&psock->work, 0);
|
|
write_space = psock->saved_write_space;
|
|
}
|
|
rcu_read_unlock();
|
|
if (write_space)
|
|
write_space(sk);
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_BPF_STREAM_PARSER)
|
|
static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb)
|
|
{
|
|
struct sk_psock *psock;
|
|
struct bpf_prog *prog;
|
|
int ret = __SK_DROP;
|
|
struct sock *sk;
|
|
|
|
rcu_read_lock();
|
|
sk = strp->sk;
|
|
psock = sk_psock(sk);
|
|
if (unlikely(!psock)) {
|
|
sock_drop(sk, skb);
|
|
goto out;
|
|
}
|
|
prog = READ_ONCE(psock->progs.stream_verdict);
|
|
if (likely(prog)) {
|
|
skb->sk = sk;
|
|
skb_dst_drop(skb);
|
|
skb_bpf_redirect_clear(skb);
|
|
ret = bpf_prog_run_pin_on_cpu(prog, skb);
|
|
skb_bpf_set_strparser(skb);
|
|
ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
|
|
skb->sk = NULL;
|
|
}
|
|
sk_psock_verdict_apply(psock, skb, ret);
|
|
out:
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static int sk_psock_strp_read_done(struct strparser *strp, int err)
|
|
{
|
|
return err;
|
|
}
|
|
|
|
static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb)
|
|
{
|
|
struct sk_psock *psock = container_of(strp, struct sk_psock, strp);
|
|
struct bpf_prog *prog;
|
|
int ret = skb->len;
|
|
|
|
rcu_read_lock();
|
|
prog = READ_ONCE(psock->progs.stream_parser);
|
|
if (likely(prog)) {
|
|
skb->sk = psock->sk;
|
|
ret = bpf_prog_run_pin_on_cpu(prog, skb);
|
|
skb->sk = NULL;
|
|
}
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
|
|
/* Called with socket lock held. */
|
|
static void sk_psock_strp_data_ready(struct sock *sk)
|
|
{
|
|
struct sk_psock *psock;
|
|
|
|
trace_sk_data_ready(sk);
|
|
|
|
rcu_read_lock();
|
|
psock = sk_psock(sk);
|
|
if (likely(psock)) {
|
|
if (tls_sw_has_ctx_rx(sk)) {
|
|
psock->saved_data_ready(sk);
|
|
} else {
|
|
write_lock_bh(&sk->sk_callback_lock);
|
|
strp_data_ready(&psock->strp);
|
|
write_unlock_bh(&sk->sk_callback_lock);
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock)
|
|
{
|
|
int ret;
|
|
|
|
static const struct strp_callbacks cb = {
|
|
.rcv_msg = sk_psock_strp_read,
|
|
.read_sock_done = sk_psock_strp_read_done,
|
|
.parse_msg = sk_psock_strp_parse,
|
|
};
|
|
|
|
ret = strp_init(&psock->strp, sk, &cb);
|
|
if (!ret)
|
|
sk_psock_set_state(psock, SK_PSOCK_RX_STRP_ENABLED);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock)
|
|
{
|
|
if (psock->saved_data_ready)
|
|
return;
|
|
|
|
psock->saved_data_ready = sk->sk_data_ready;
|
|
sk->sk_data_ready = sk_psock_strp_data_ready;
|
|
sk->sk_write_space = sk_psock_write_space;
|
|
}
|
|
|
|
void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock)
|
|
{
|
|
psock_set_prog(&psock->progs.stream_parser, NULL);
|
|
|
|
if (!psock->saved_data_ready)
|
|
return;
|
|
|
|
sk->sk_data_ready = psock->saved_data_ready;
|
|
psock->saved_data_ready = NULL;
|
|
strp_stop(&psock->strp);
|
|
}
|
|
|
|
static void sk_psock_done_strp(struct sk_psock *psock)
|
|
{
|
|
/* Parser has been stopped */
|
|
if (sk_psock_test_state(psock, SK_PSOCK_RX_STRP_ENABLED))
|
|
strp_done(&psock->strp);
|
|
}
|
|
#else
|
|
static void sk_psock_done_strp(struct sk_psock *psock)
|
|
{
|
|
}
|
|
#endif /* CONFIG_BPF_STREAM_PARSER */
|
|
|
|
static int sk_psock_verdict_recv(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
struct sk_psock *psock;
|
|
struct bpf_prog *prog;
|
|
int ret = __SK_DROP;
|
|
int len = skb->len;
|
|
|
|
rcu_read_lock();
|
|
psock = sk_psock(sk);
|
|
if (unlikely(!psock)) {
|
|
len = 0;
|
|
tcp_eat_skb(sk, skb);
|
|
sock_drop(sk, skb);
|
|
goto out;
|
|
}
|
|
prog = READ_ONCE(psock->progs.stream_verdict);
|
|
if (!prog)
|
|
prog = READ_ONCE(psock->progs.skb_verdict);
|
|
if (likely(prog)) {
|
|
skb_dst_drop(skb);
|
|
skb_bpf_redirect_clear(skb);
|
|
ret = bpf_prog_run_pin_on_cpu(prog, skb);
|
|
ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
|
|
}
|
|
ret = sk_psock_verdict_apply(psock, skb, ret);
|
|
if (ret < 0)
|
|
len = ret;
|
|
out:
|
|
rcu_read_unlock();
|
|
return len;
|
|
}
|
|
|
|
static void sk_psock_verdict_data_ready(struct sock *sk)
|
|
{
|
|
struct socket *sock = sk->sk_socket;
|
|
const struct proto_ops *ops;
|
|
int copied;
|
|
|
|
trace_sk_data_ready(sk);
|
|
|
|
if (unlikely(!sock))
|
|
return;
|
|
ops = READ_ONCE(sock->ops);
|
|
if (!ops || !ops->read_skb)
|
|
return;
|
|
copied = ops->read_skb(sk, sk_psock_verdict_recv);
|
|
if (copied >= 0) {
|
|
struct sk_psock *psock;
|
|
|
|
rcu_read_lock();
|
|
psock = sk_psock(sk);
|
|
if (psock)
|
|
psock->saved_data_ready(sk);
|
|
rcu_read_unlock();
|
|
}
|
|
}
|
|
|
|
void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock)
|
|
{
|
|
if (psock->saved_data_ready)
|
|
return;
|
|
|
|
psock->saved_data_ready = sk->sk_data_ready;
|
|
sk->sk_data_ready = sk_psock_verdict_data_ready;
|
|
sk->sk_write_space = sk_psock_write_space;
|
|
}
|
|
|
|
void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock)
|
|
{
|
|
psock_set_prog(&psock->progs.stream_verdict, NULL);
|
|
psock_set_prog(&psock->progs.skb_verdict, NULL);
|
|
|
|
if (!psock->saved_data_ready)
|
|
return;
|
|
|
|
sk->sk_data_ready = psock->saved_data_ready;
|
|
psock->saved_data_ready = NULL;
|
|
}
|