mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-03 17:14:14 +08:00
e6cb02bd0a
Some sync algorithms may require a large amount of temporary space during its operations. There is no reason why they should be limited just because some legacy users want to place all temporary data on the stack. Such algorithms can now set a flag to indicate that they need extra request context, which will cause them to be invisible to users that go through the sync_skcipher interface. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
985 lines
25 KiB
C
985 lines
25 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Symmetric key cipher operations.
|
|
*
|
|
* Generic encrypt/decrypt wrapper for ciphers, handles operations across
|
|
* multiple page boundaries by using temporary blocks. In user context,
|
|
* the kernel is given a chance to schedule us once per page.
|
|
*
|
|
* Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
|
|
*/
|
|
|
|
#include <crypto/internal/aead.h>
|
|
#include <crypto/internal/cipher.h>
|
|
#include <crypto/internal/skcipher.h>
|
|
#include <crypto/scatterwalk.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/cryptouser.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/rtnetlink.h>
|
|
#include <linux/seq_file.h>
|
|
#include <net/netlink.h>
|
|
|
|
#include "internal.h"
|
|
|
|
enum {
|
|
SKCIPHER_WALK_PHYS = 1 << 0,
|
|
SKCIPHER_WALK_SLOW = 1 << 1,
|
|
SKCIPHER_WALK_COPY = 1 << 2,
|
|
SKCIPHER_WALK_DIFF = 1 << 3,
|
|
SKCIPHER_WALK_SLEEP = 1 << 4,
|
|
};
|
|
|
|
struct skcipher_walk_buffer {
|
|
struct list_head entry;
|
|
struct scatter_walk dst;
|
|
unsigned int len;
|
|
u8 *data;
|
|
u8 buffer[];
|
|
};
|
|
|
|
static int skcipher_walk_next(struct skcipher_walk *walk);
|
|
|
|
static inline void skcipher_unmap(struct scatter_walk *walk, void *vaddr)
|
|
{
|
|
if (PageHighMem(scatterwalk_page(walk)))
|
|
kunmap_atomic(vaddr);
|
|
}
|
|
|
|
static inline void *skcipher_map(struct scatter_walk *walk)
|
|
{
|
|
struct page *page = scatterwalk_page(walk);
|
|
|
|
return (PageHighMem(page) ? kmap_atomic(page) : page_address(page)) +
|
|
offset_in_page(walk->offset);
|
|
}
|
|
|
|
static inline void skcipher_map_src(struct skcipher_walk *walk)
|
|
{
|
|
walk->src.virt.addr = skcipher_map(&walk->in);
|
|
}
|
|
|
|
static inline void skcipher_map_dst(struct skcipher_walk *walk)
|
|
{
|
|
walk->dst.virt.addr = skcipher_map(&walk->out);
|
|
}
|
|
|
|
static inline void skcipher_unmap_src(struct skcipher_walk *walk)
|
|
{
|
|
skcipher_unmap(&walk->in, walk->src.virt.addr);
|
|
}
|
|
|
|
static inline void skcipher_unmap_dst(struct skcipher_walk *walk)
|
|
{
|
|
skcipher_unmap(&walk->out, walk->dst.virt.addr);
|
|
}
|
|
|
|
static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk)
|
|
{
|
|
return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
|
|
}
|
|
|
|
/* Get a spot of the specified length that does not straddle a page.
|
|
* The caller needs to ensure that there is enough space for this operation.
|
|
*/
|
|
static inline u8 *skcipher_get_spot(u8 *start, unsigned int len)
|
|
{
|
|
u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK);
|
|
|
|
return max(start, end_page);
|
|
}
|
|
|
|
static int skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize)
|
|
{
|
|
u8 *addr;
|
|
|
|
addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1);
|
|
addr = skcipher_get_spot(addr, bsize);
|
|
scatterwalk_copychunks(addr, &walk->out, bsize,
|
|
(walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1);
|
|
return 0;
|
|
}
|
|
|
|
int skcipher_walk_done(struct skcipher_walk *walk, int err)
|
|
{
|
|
unsigned int n = walk->nbytes;
|
|
unsigned int nbytes = 0;
|
|
|
|
if (!n)
|
|
goto finish;
|
|
|
|
if (likely(err >= 0)) {
|
|
n -= err;
|
|
nbytes = walk->total - n;
|
|
}
|
|
|
|
if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS |
|
|
SKCIPHER_WALK_SLOW |
|
|
SKCIPHER_WALK_COPY |
|
|
SKCIPHER_WALK_DIFF)))) {
|
|
unmap_src:
|
|
skcipher_unmap_src(walk);
|
|
} else if (walk->flags & SKCIPHER_WALK_DIFF) {
|
|
skcipher_unmap_dst(walk);
|
|
goto unmap_src;
|
|
} else if (walk->flags & SKCIPHER_WALK_COPY) {
|
|
skcipher_map_dst(walk);
|
|
memcpy(walk->dst.virt.addr, walk->page, n);
|
|
skcipher_unmap_dst(walk);
|
|
} else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) {
|
|
if (err > 0) {
|
|
/*
|
|
* Didn't process all bytes. Either the algorithm is
|
|
* broken, or this was the last step and it turned out
|
|
* the message wasn't evenly divisible into blocks but
|
|
* the algorithm requires it.
|
|
*/
|
|
err = -EINVAL;
|
|
nbytes = 0;
|
|
} else
|
|
n = skcipher_done_slow(walk, n);
|
|
}
|
|
|
|
if (err > 0)
|
|
err = 0;
|
|
|
|
walk->total = nbytes;
|
|
walk->nbytes = 0;
|
|
|
|
scatterwalk_advance(&walk->in, n);
|
|
scatterwalk_advance(&walk->out, n);
|
|
scatterwalk_done(&walk->in, 0, nbytes);
|
|
scatterwalk_done(&walk->out, 1, nbytes);
|
|
|
|
if (nbytes) {
|
|
crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ?
|
|
CRYPTO_TFM_REQ_MAY_SLEEP : 0);
|
|
return skcipher_walk_next(walk);
|
|
}
|
|
|
|
finish:
|
|
/* Short-circuit for the common/fast path. */
|
|
if (!((unsigned long)walk->buffer | (unsigned long)walk->page))
|
|
goto out;
|
|
|
|
if (walk->flags & SKCIPHER_WALK_PHYS)
|
|
goto out;
|
|
|
|
if (walk->iv != walk->oiv)
|
|
memcpy(walk->oiv, walk->iv, walk->ivsize);
|
|
if (walk->buffer != walk->page)
|
|
kfree(walk->buffer);
|
|
if (walk->page)
|
|
free_page((unsigned long)walk->page);
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(skcipher_walk_done);
|
|
|
|
void skcipher_walk_complete(struct skcipher_walk *walk, int err)
|
|
{
|
|
struct skcipher_walk_buffer *p, *tmp;
|
|
|
|
list_for_each_entry_safe(p, tmp, &walk->buffers, entry) {
|
|
u8 *data;
|
|
|
|
if (err)
|
|
goto done;
|
|
|
|
data = p->data;
|
|
if (!data) {
|
|
data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1);
|
|
data = skcipher_get_spot(data, walk->stride);
|
|
}
|
|
|
|
scatterwalk_copychunks(data, &p->dst, p->len, 1);
|
|
|
|
if (offset_in_page(p->data) + p->len + walk->stride >
|
|
PAGE_SIZE)
|
|
free_page((unsigned long)p->data);
|
|
|
|
done:
|
|
list_del(&p->entry);
|
|
kfree(p);
|
|
}
|
|
|
|
if (!err && walk->iv != walk->oiv)
|
|
memcpy(walk->oiv, walk->iv, walk->ivsize);
|
|
if (walk->buffer != walk->page)
|
|
kfree(walk->buffer);
|
|
if (walk->page)
|
|
free_page((unsigned long)walk->page);
|
|
}
|
|
EXPORT_SYMBOL_GPL(skcipher_walk_complete);
|
|
|
|
static void skcipher_queue_write(struct skcipher_walk *walk,
|
|
struct skcipher_walk_buffer *p)
|
|
{
|
|
p->dst = walk->out;
|
|
list_add_tail(&p->entry, &walk->buffers);
|
|
}
|
|
|
|
static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize)
|
|
{
|
|
bool phys = walk->flags & SKCIPHER_WALK_PHYS;
|
|
unsigned alignmask = walk->alignmask;
|
|
struct skcipher_walk_buffer *p;
|
|
unsigned a;
|
|
unsigned n;
|
|
u8 *buffer;
|
|
void *v;
|
|
|
|
if (!phys) {
|
|
if (!walk->buffer)
|
|
walk->buffer = walk->page;
|
|
buffer = walk->buffer;
|
|
if (buffer)
|
|
goto ok;
|
|
}
|
|
|
|
/* Start with the minimum alignment of kmalloc. */
|
|
a = crypto_tfm_ctx_alignment() - 1;
|
|
n = bsize;
|
|
|
|
if (phys) {
|
|
/* Calculate the minimum alignment of p->buffer. */
|
|
a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1;
|
|
n += sizeof(*p);
|
|
}
|
|
|
|
/* Minimum size to align p->buffer by alignmask. */
|
|
n += alignmask & ~a;
|
|
|
|
/* Minimum size to ensure p->buffer does not straddle a page. */
|
|
n += (bsize - 1) & ~(alignmask | a);
|
|
|
|
v = kzalloc(n, skcipher_walk_gfp(walk));
|
|
if (!v)
|
|
return skcipher_walk_done(walk, -ENOMEM);
|
|
|
|
if (phys) {
|
|
p = v;
|
|
p->len = bsize;
|
|
skcipher_queue_write(walk, p);
|
|
buffer = p->buffer;
|
|
} else {
|
|
walk->buffer = v;
|
|
buffer = v;
|
|
}
|
|
|
|
ok:
|
|
walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1);
|
|
walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize);
|
|
walk->src.virt.addr = walk->dst.virt.addr;
|
|
|
|
scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0);
|
|
|
|
walk->nbytes = bsize;
|
|
walk->flags |= SKCIPHER_WALK_SLOW;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int skcipher_next_copy(struct skcipher_walk *walk)
|
|
{
|
|
struct skcipher_walk_buffer *p;
|
|
u8 *tmp = walk->page;
|
|
|
|
skcipher_map_src(walk);
|
|
memcpy(tmp, walk->src.virt.addr, walk->nbytes);
|
|
skcipher_unmap_src(walk);
|
|
|
|
walk->src.virt.addr = tmp;
|
|
walk->dst.virt.addr = tmp;
|
|
|
|
if (!(walk->flags & SKCIPHER_WALK_PHYS))
|
|
return 0;
|
|
|
|
p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk));
|
|
if (!p)
|
|
return -ENOMEM;
|
|
|
|
p->data = walk->page;
|
|
p->len = walk->nbytes;
|
|
skcipher_queue_write(walk, p);
|
|
|
|
if (offset_in_page(walk->page) + walk->nbytes + walk->stride >
|
|
PAGE_SIZE)
|
|
walk->page = NULL;
|
|
else
|
|
walk->page += walk->nbytes;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int skcipher_next_fast(struct skcipher_walk *walk)
|
|
{
|
|
unsigned long diff;
|
|
|
|
walk->src.phys.page = scatterwalk_page(&walk->in);
|
|
walk->src.phys.offset = offset_in_page(walk->in.offset);
|
|
walk->dst.phys.page = scatterwalk_page(&walk->out);
|
|
walk->dst.phys.offset = offset_in_page(walk->out.offset);
|
|
|
|
if (walk->flags & SKCIPHER_WALK_PHYS)
|
|
return 0;
|
|
|
|
diff = walk->src.phys.offset - walk->dst.phys.offset;
|
|
diff |= walk->src.virt.page - walk->dst.virt.page;
|
|
|
|
skcipher_map_src(walk);
|
|
walk->dst.virt.addr = walk->src.virt.addr;
|
|
|
|
if (diff) {
|
|
walk->flags |= SKCIPHER_WALK_DIFF;
|
|
skcipher_map_dst(walk);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int skcipher_walk_next(struct skcipher_walk *walk)
|
|
{
|
|
unsigned int bsize;
|
|
unsigned int n;
|
|
int err;
|
|
|
|
walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY |
|
|
SKCIPHER_WALK_DIFF);
|
|
|
|
n = walk->total;
|
|
bsize = min(walk->stride, max(n, walk->blocksize));
|
|
n = scatterwalk_clamp(&walk->in, n);
|
|
n = scatterwalk_clamp(&walk->out, n);
|
|
|
|
if (unlikely(n < bsize)) {
|
|
if (unlikely(walk->total < walk->blocksize))
|
|
return skcipher_walk_done(walk, -EINVAL);
|
|
|
|
slow_path:
|
|
err = skcipher_next_slow(walk, bsize);
|
|
goto set_phys_lowmem;
|
|
}
|
|
|
|
if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) {
|
|
if (!walk->page) {
|
|
gfp_t gfp = skcipher_walk_gfp(walk);
|
|
|
|
walk->page = (void *)__get_free_page(gfp);
|
|
if (!walk->page)
|
|
goto slow_path;
|
|
}
|
|
|
|
walk->nbytes = min_t(unsigned, n,
|
|
PAGE_SIZE - offset_in_page(walk->page));
|
|
walk->flags |= SKCIPHER_WALK_COPY;
|
|
err = skcipher_next_copy(walk);
|
|
goto set_phys_lowmem;
|
|
}
|
|
|
|
walk->nbytes = n;
|
|
|
|
return skcipher_next_fast(walk);
|
|
|
|
set_phys_lowmem:
|
|
if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) {
|
|
walk->src.phys.page = virt_to_page(walk->src.virt.addr);
|
|
walk->dst.phys.page = virt_to_page(walk->dst.virt.addr);
|
|
walk->src.phys.offset &= PAGE_SIZE - 1;
|
|
walk->dst.phys.offset &= PAGE_SIZE - 1;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int skcipher_copy_iv(struct skcipher_walk *walk)
|
|
{
|
|
unsigned a = crypto_tfm_ctx_alignment() - 1;
|
|
unsigned alignmask = walk->alignmask;
|
|
unsigned ivsize = walk->ivsize;
|
|
unsigned bs = walk->stride;
|
|
unsigned aligned_bs;
|
|
unsigned size;
|
|
u8 *iv;
|
|
|
|
aligned_bs = ALIGN(bs, alignmask + 1);
|
|
|
|
/* Minimum size to align buffer by alignmask. */
|
|
size = alignmask & ~a;
|
|
|
|
if (walk->flags & SKCIPHER_WALK_PHYS)
|
|
size += ivsize;
|
|
else {
|
|
size += aligned_bs + ivsize;
|
|
|
|
/* Minimum size to ensure buffer does not straddle a page. */
|
|
size += (bs - 1) & ~(alignmask | a);
|
|
}
|
|
|
|
walk->buffer = kmalloc(size, skcipher_walk_gfp(walk));
|
|
if (!walk->buffer)
|
|
return -ENOMEM;
|
|
|
|
iv = PTR_ALIGN(walk->buffer, alignmask + 1);
|
|
iv = skcipher_get_spot(iv, bs) + aligned_bs;
|
|
|
|
walk->iv = memcpy(iv, walk->iv, walk->ivsize);
|
|
return 0;
|
|
}
|
|
|
|
static int skcipher_walk_first(struct skcipher_walk *walk)
|
|
{
|
|
if (WARN_ON_ONCE(in_hardirq()))
|
|
return -EDEADLK;
|
|
|
|
walk->buffer = NULL;
|
|
if (unlikely(((unsigned long)walk->iv & walk->alignmask))) {
|
|
int err = skcipher_copy_iv(walk);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
walk->page = NULL;
|
|
|
|
return skcipher_walk_next(walk);
|
|
}
|
|
|
|
static int skcipher_walk_skcipher(struct skcipher_walk *walk,
|
|
struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
|
|
walk->total = req->cryptlen;
|
|
walk->nbytes = 0;
|
|
walk->iv = req->iv;
|
|
walk->oiv = req->iv;
|
|
|
|
if (unlikely(!walk->total))
|
|
return 0;
|
|
|
|
scatterwalk_start(&walk->in, req->src);
|
|
scatterwalk_start(&walk->out, req->dst);
|
|
|
|
walk->flags &= ~SKCIPHER_WALK_SLEEP;
|
|
walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
|
|
SKCIPHER_WALK_SLEEP : 0;
|
|
|
|
walk->blocksize = crypto_skcipher_blocksize(tfm);
|
|
walk->stride = crypto_skcipher_walksize(tfm);
|
|
walk->ivsize = crypto_skcipher_ivsize(tfm);
|
|
walk->alignmask = crypto_skcipher_alignmask(tfm);
|
|
|
|
return skcipher_walk_first(walk);
|
|
}
|
|
|
|
int skcipher_walk_virt(struct skcipher_walk *walk,
|
|
struct skcipher_request *req, bool atomic)
|
|
{
|
|
int err;
|
|
|
|
might_sleep_if(req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
|
|
|
|
walk->flags &= ~SKCIPHER_WALK_PHYS;
|
|
|
|
err = skcipher_walk_skcipher(walk, req);
|
|
|
|
walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0;
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(skcipher_walk_virt);
|
|
|
|
int skcipher_walk_async(struct skcipher_walk *walk,
|
|
struct skcipher_request *req)
|
|
{
|
|
walk->flags |= SKCIPHER_WALK_PHYS;
|
|
|
|
INIT_LIST_HEAD(&walk->buffers);
|
|
|
|
return skcipher_walk_skcipher(walk, req);
|
|
}
|
|
EXPORT_SYMBOL_GPL(skcipher_walk_async);
|
|
|
|
static int skcipher_walk_aead_common(struct skcipher_walk *walk,
|
|
struct aead_request *req, bool atomic)
|
|
{
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
|
|
int err;
|
|
|
|
walk->nbytes = 0;
|
|
walk->iv = req->iv;
|
|
walk->oiv = req->iv;
|
|
|
|
if (unlikely(!walk->total))
|
|
return 0;
|
|
|
|
walk->flags &= ~SKCIPHER_WALK_PHYS;
|
|
|
|
scatterwalk_start(&walk->in, req->src);
|
|
scatterwalk_start(&walk->out, req->dst);
|
|
|
|
scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2);
|
|
scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2);
|
|
|
|
scatterwalk_done(&walk->in, 0, walk->total);
|
|
scatterwalk_done(&walk->out, 0, walk->total);
|
|
|
|
if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP)
|
|
walk->flags |= SKCIPHER_WALK_SLEEP;
|
|
else
|
|
walk->flags &= ~SKCIPHER_WALK_SLEEP;
|
|
|
|
walk->blocksize = crypto_aead_blocksize(tfm);
|
|
walk->stride = crypto_aead_chunksize(tfm);
|
|
walk->ivsize = crypto_aead_ivsize(tfm);
|
|
walk->alignmask = crypto_aead_alignmask(tfm);
|
|
|
|
err = skcipher_walk_first(walk);
|
|
|
|
if (atomic)
|
|
walk->flags &= ~SKCIPHER_WALK_SLEEP;
|
|
|
|
return err;
|
|
}
|
|
|
|
int skcipher_walk_aead_encrypt(struct skcipher_walk *walk,
|
|
struct aead_request *req, bool atomic)
|
|
{
|
|
walk->total = req->cryptlen;
|
|
|
|
return skcipher_walk_aead_common(walk, req, atomic);
|
|
}
|
|
EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt);
|
|
|
|
int skcipher_walk_aead_decrypt(struct skcipher_walk *walk,
|
|
struct aead_request *req, bool atomic)
|
|
{
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
|
|
|
|
walk->total = req->cryptlen - crypto_aead_authsize(tfm);
|
|
|
|
return skcipher_walk_aead_common(walk, req, atomic);
|
|
}
|
|
EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt);
|
|
|
|
static void skcipher_set_needkey(struct crypto_skcipher *tfm)
|
|
{
|
|
if (crypto_skcipher_max_keysize(tfm) != 0)
|
|
crypto_skcipher_set_flags(tfm, CRYPTO_TFM_NEED_KEY);
|
|
}
|
|
|
|
static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm,
|
|
const u8 *key, unsigned int keylen)
|
|
{
|
|
unsigned long alignmask = crypto_skcipher_alignmask(tfm);
|
|
struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
|
|
u8 *buffer, *alignbuffer;
|
|
unsigned long absize;
|
|
int ret;
|
|
|
|
absize = keylen + alignmask;
|
|
buffer = kmalloc(absize, GFP_ATOMIC);
|
|
if (!buffer)
|
|
return -ENOMEM;
|
|
|
|
alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
|
|
memcpy(alignbuffer, key, keylen);
|
|
ret = cipher->setkey(tfm, alignbuffer, keylen);
|
|
kfree_sensitive(buffer);
|
|
return ret;
|
|
}
|
|
|
|
int crypto_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
|
|
unsigned long alignmask = crypto_skcipher_alignmask(tfm);
|
|
int err;
|
|
|
|
if (keylen < cipher->min_keysize || keylen > cipher->max_keysize)
|
|
return -EINVAL;
|
|
|
|
if ((unsigned long)key & alignmask)
|
|
err = skcipher_setkey_unaligned(tfm, key, keylen);
|
|
else
|
|
err = cipher->setkey(tfm, key, keylen);
|
|
|
|
if (unlikely(err)) {
|
|
skcipher_set_needkey(tfm);
|
|
return err;
|
|
}
|
|
|
|
crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_skcipher_setkey);
|
|
|
|
int crypto_skcipher_encrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_alg *alg = tfm->base.__crt_alg;
|
|
unsigned int cryptlen = req->cryptlen;
|
|
int ret;
|
|
|
|
crypto_stats_get(alg);
|
|
if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
|
|
ret = -ENOKEY;
|
|
else
|
|
ret = crypto_skcipher_alg(tfm)->encrypt(req);
|
|
crypto_stats_skcipher_encrypt(cryptlen, ret, alg);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_skcipher_encrypt);
|
|
|
|
int crypto_skcipher_decrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_alg *alg = tfm->base.__crt_alg;
|
|
unsigned int cryptlen = req->cryptlen;
|
|
int ret;
|
|
|
|
crypto_stats_get(alg);
|
|
if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
|
|
ret = -ENOKEY;
|
|
else
|
|
ret = crypto_skcipher_alg(tfm)->decrypt(req);
|
|
crypto_stats_skcipher_decrypt(cryptlen, ret, alg);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_skcipher_decrypt);
|
|
|
|
static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm)
|
|
{
|
|
struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
|
|
struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
|
|
|
|
alg->exit(skcipher);
|
|
}
|
|
|
|
static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm)
|
|
{
|
|
struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
|
|
struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
|
|
|
|
skcipher_set_needkey(skcipher);
|
|
|
|
if (alg->exit)
|
|
skcipher->base.exit = crypto_skcipher_exit_tfm;
|
|
|
|
if (alg->init)
|
|
return alg->init(skcipher);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void crypto_skcipher_free_instance(struct crypto_instance *inst)
|
|
{
|
|
struct skcipher_instance *skcipher =
|
|
container_of(inst, struct skcipher_instance, s.base);
|
|
|
|
skcipher->free(skcipher);
|
|
}
|
|
|
|
static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
|
|
__maybe_unused;
|
|
static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
|
|
{
|
|
struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
|
|
base);
|
|
|
|
seq_printf(m, "type : skcipher\n");
|
|
seq_printf(m, "async : %s\n",
|
|
alg->cra_flags & CRYPTO_ALG_ASYNC ? "yes" : "no");
|
|
seq_printf(m, "blocksize : %u\n", alg->cra_blocksize);
|
|
seq_printf(m, "min keysize : %u\n", skcipher->min_keysize);
|
|
seq_printf(m, "max keysize : %u\n", skcipher->max_keysize);
|
|
seq_printf(m, "ivsize : %u\n", skcipher->ivsize);
|
|
seq_printf(m, "chunksize : %u\n", skcipher->chunksize);
|
|
seq_printf(m, "walksize : %u\n", skcipher->walksize);
|
|
}
|
|
|
|
#ifdef CONFIG_NET
|
|
static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
|
|
{
|
|
struct crypto_report_blkcipher rblkcipher;
|
|
struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
|
|
base);
|
|
|
|
memset(&rblkcipher, 0, sizeof(rblkcipher));
|
|
|
|
strscpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type));
|
|
strscpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv));
|
|
|
|
rblkcipher.blocksize = alg->cra_blocksize;
|
|
rblkcipher.min_keysize = skcipher->min_keysize;
|
|
rblkcipher.max_keysize = skcipher->max_keysize;
|
|
rblkcipher.ivsize = skcipher->ivsize;
|
|
|
|
return nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER,
|
|
sizeof(rblkcipher), &rblkcipher);
|
|
}
|
|
#else
|
|
static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
#endif
|
|
|
|
static const struct crypto_type crypto_skcipher_type = {
|
|
.extsize = crypto_alg_extsize,
|
|
.init_tfm = crypto_skcipher_init_tfm,
|
|
.free = crypto_skcipher_free_instance,
|
|
#ifdef CONFIG_PROC_FS
|
|
.show = crypto_skcipher_show,
|
|
#endif
|
|
.report = crypto_skcipher_report,
|
|
.maskclear = ~CRYPTO_ALG_TYPE_MASK,
|
|
.maskset = CRYPTO_ALG_TYPE_MASK,
|
|
.type = CRYPTO_ALG_TYPE_SKCIPHER,
|
|
.tfmsize = offsetof(struct crypto_skcipher, base),
|
|
};
|
|
|
|
int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn,
|
|
struct crypto_instance *inst,
|
|
const char *name, u32 type, u32 mask)
|
|
{
|
|
spawn->base.frontend = &crypto_skcipher_type;
|
|
return crypto_grab_spawn(&spawn->base, inst, name, type, mask);
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_grab_skcipher);
|
|
|
|
struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
|
|
u32 type, u32 mask)
|
|
{
|
|
return crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask);
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_alloc_skcipher);
|
|
|
|
struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(
|
|
const char *alg_name, u32 type, u32 mask)
|
|
{
|
|
struct crypto_skcipher *tfm;
|
|
|
|
/* Only sync algorithms allowed. */
|
|
mask |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_SKCIPHER_REQSIZE_LARGE;
|
|
|
|
tfm = crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask);
|
|
|
|
/*
|
|
* Make sure we do not allocate something that might get used with
|
|
* an on-stack request: check the request size.
|
|
*/
|
|
if (!IS_ERR(tfm) && WARN_ON(crypto_skcipher_reqsize(tfm) >
|
|
MAX_SYNC_SKCIPHER_REQSIZE)) {
|
|
crypto_free_skcipher(tfm);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
return (struct crypto_sync_skcipher *)tfm;
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_alloc_sync_skcipher);
|
|
|
|
int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask)
|
|
{
|
|
return crypto_type_has_alg(alg_name, &crypto_skcipher_type, type, mask);
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_has_skcipher);
|
|
|
|
static int skcipher_prepare_alg(struct skcipher_alg *alg)
|
|
{
|
|
struct crypto_alg *base = &alg->base;
|
|
|
|
if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 ||
|
|
alg->walksize > PAGE_SIZE / 8)
|
|
return -EINVAL;
|
|
|
|
if (!alg->chunksize)
|
|
alg->chunksize = base->cra_blocksize;
|
|
if (!alg->walksize)
|
|
alg->walksize = alg->chunksize;
|
|
|
|
base->cra_type = &crypto_skcipher_type;
|
|
base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
|
|
base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int crypto_register_skcipher(struct skcipher_alg *alg)
|
|
{
|
|
struct crypto_alg *base = &alg->base;
|
|
int err;
|
|
|
|
err = skcipher_prepare_alg(alg);
|
|
if (err)
|
|
return err;
|
|
|
|
return crypto_register_alg(base);
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_register_skcipher);
|
|
|
|
void crypto_unregister_skcipher(struct skcipher_alg *alg)
|
|
{
|
|
crypto_unregister_alg(&alg->base);
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_unregister_skcipher);
|
|
|
|
int crypto_register_skciphers(struct skcipher_alg *algs, int count)
|
|
{
|
|
int i, ret;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
ret = crypto_register_skcipher(&algs[i]);
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
for (--i; i >= 0; --i)
|
|
crypto_unregister_skcipher(&algs[i]);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_register_skciphers);
|
|
|
|
void crypto_unregister_skciphers(struct skcipher_alg *algs, int count)
|
|
{
|
|
int i;
|
|
|
|
for (i = count - 1; i >= 0; --i)
|
|
crypto_unregister_skcipher(&algs[i]);
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_unregister_skciphers);
|
|
|
|
int skcipher_register_instance(struct crypto_template *tmpl,
|
|
struct skcipher_instance *inst)
|
|
{
|
|
int err;
|
|
|
|
if (WARN_ON(!inst->free))
|
|
return -EINVAL;
|
|
|
|
err = skcipher_prepare_alg(&inst->alg);
|
|
if (err)
|
|
return err;
|
|
|
|
return crypto_register_instance(tmpl, skcipher_crypto_instance(inst));
|
|
}
|
|
EXPORT_SYMBOL_GPL(skcipher_register_instance);
|
|
|
|
static int skcipher_setkey_simple(struct crypto_skcipher *tfm, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct crypto_cipher *cipher = skcipher_cipher_simple(tfm);
|
|
|
|
crypto_cipher_clear_flags(cipher, CRYPTO_TFM_REQ_MASK);
|
|
crypto_cipher_set_flags(cipher, crypto_skcipher_get_flags(tfm) &
|
|
CRYPTO_TFM_REQ_MASK);
|
|
return crypto_cipher_setkey(cipher, key, keylen);
|
|
}
|
|
|
|
static int skcipher_init_tfm_simple(struct crypto_skcipher *tfm)
|
|
{
|
|
struct skcipher_instance *inst = skcipher_alg_instance(tfm);
|
|
struct crypto_cipher_spawn *spawn = skcipher_instance_ctx(inst);
|
|
struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
|
|
struct crypto_cipher *cipher;
|
|
|
|
cipher = crypto_spawn_cipher(spawn);
|
|
if (IS_ERR(cipher))
|
|
return PTR_ERR(cipher);
|
|
|
|
ctx->cipher = cipher;
|
|
return 0;
|
|
}
|
|
|
|
static void skcipher_exit_tfm_simple(struct crypto_skcipher *tfm)
|
|
{
|
|
struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
crypto_free_cipher(ctx->cipher);
|
|
}
|
|
|
|
static void skcipher_free_instance_simple(struct skcipher_instance *inst)
|
|
{
|
|
crypto_drop_cipher(skcipher_instance_ctx(inst));
|
|
kfree(inst);
|
|
}
|
|
|
|
/**
|
|
* skcipher_alloc_instance_simple - allocate instance of simple block cipher mode
|
|
*
|
|
* Allocate an skcipher_instance for a simple block cipher mode of operation,
|
|
* e.g. cbc or ecb. The instance context will have just a single crypto_spawn,
|
|
* that for the underlying cipher. The {min,max}_keysize, ivsize, blocksize,
|
|
* alignmask, and priority are set from the underlying cipher but can be
|
|
* overridden if needed. The tfm context defaults to skcipher_ctx_simple, and
|
|
* default ->setkey(), ->init(), and ->exit() methods are installed.
|
|
*
|
|
* @tmpl: the template being instantiated
|
|
* @tb: the template parameters
|
|
*
|
|
* Return: a pointer to the new instance, or an ERR_PTR(). The caller still
|
|
* needs to register the instance.
|
|
*/
|
|
struct skcipher_instance *skcipher_alloc_instance_simple(
|
|
struct crypto_template *tmpl, struct rtattr **tb)
|
|
{
|
|
u32 mask;
|
|
struct skcipher_instance *inst;
|
|
struct crypto_cipher_spawn *spawn;
|
|
struct crypto_alg *cipher_alg;
|
|
int err;
|
|
|
|
err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
|
|
inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
|
|
if (!inst)
|
|
return ERR_PTR(-ENOMEM);
|
|
spawn = skcipher_instance_ctx(inst);
|
|
|
|
err = crypto_grab_cipher(spawn, skcipher_crypto_instance(inst),
|
|
crypto_attr_alg_name(tb[1]), 0, mask);
|
|
if (err)
|
|
goto err_free_inst;
|
|
cipher_alg = crypto_spawn_cipher_alg(spawn);
|
|
|
|
err = crypto_inst_setname(skcipher_crypto_instance(inst), tmpl->name,
|
|
cipher_alg);
|
|
if (err)
|
|
goto err_free_inst;
|
|
|
|
inst->free = skcipher_free_instance_simple;
|
|
|
|
/* Default algorithm properties, can be overridden */
|
|
inst->alg.base.cra_blocksize = cipher_alg->cra_blocksize;
|
|
inst->alg.base.cra_alignmask = cipher_alg->cra_alignmask;
|
|
inst->alg.base.cra_priority = cipher_alg->cra_priority;
|
|
inst->alg.min_keysize = cipher_alg->cra_cipher.cia_min_keysize;
|
|
inst->alg.max_keysize = cipher_alg->cra_cipher.cia_max_keysize;
|
|
inst->alg.ivsize = cipher_alg->cra_blocksize;
|
|
|
|
/* Use skcipher_ctx_simple by default, can be overridden */
|
|
inst->alg.base.cra_ctxsize = sizeof(struct skcipher_ctx_simple);
|
|
inst->alg.setkey = skcipher_setkey_simple;
|
|
inst->alg.init = skcipher_init_tfm_simple;
|
|
inst->alg.exit = skcipher_exit_tfm_simple;
|
|
|
|
return inst;
|
|
|
|
err_free_inst:
|
|
skcipher_free_instance_simple(inst);
|
|
return ERR_PTR(err);
|
|
}
|
|
EXPORT_SYMBOL_GPL(skcipher_alloc_instance_simple);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("Symmetric key cipher type");
|
|
MODULE_IMPORT_NS(CRYPTO_INTERNAL);
|