linux/kernel/time/posix-cpu-timers.c
Sebastian Andrzej Siewior d53f2b62fc lockdep: Add posixtimer context tracing bits
Splitting run_posix_cpu_timers() into two parts is work in progress which
is stuck on other entry code related problems. The heavy lifting which
involves locking of sighand lock will be moved into task context so the
necessary execution time is burdened on the task and not on interrupt
context.

Until this work completes lockdep with the spinlock nesting rules enabled
would emit warnings for this known context.

Prevent it by setting "->irq_config = 1" for the invocation of
run_posix_cpu_timers() so lockdep does not complain when sighand lock is
acquried. This will be removed once the split is completed.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200321113242.751182723@linutronix.de
2020-03-21 16:00:25 +01:00

1421 lines
38 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Implement CPU time clocks for the POSIX clock interface.
*/
#include <linux/sched/signal.h>
#include <linux/sched/cputime.h>
#include <linux/posix-timers.h>
#include <linux/errno.h>
#include <linux/math64.h>
#include <linux/uaccess.h>
#include <linux/kernel_stat.h>
#include <trace/events/timer.h>
#include <linux/tick.h>
#include <linux/workqueue.h>
#include <linux/compat.h>
#include <linux/sched/deadline.h>
#include "posix-timers.h"
static void posix_cpu_timer_rearm(struct k_itimer *timer);
void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit)
{
posix_cputimers_init(pct);
if (cpu_limit != RLIM_INFINITY) {
pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC;
pct->timers_active = true;
}
}
/*
* Called after updating RLIMIT_CPU to run cpu timer and update
* tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if
* necessary. Needs siglock protection since other code may update the
* expiration cache as well.
*/
void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
{
u64 nsecs = rlim_new * NSEC_PER_SEC;
spin_lock_irq(&task->sighand->siglock);
set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
spin_unlock_irq(&task->sighand->siglock);
}
/*
* Functions for validating access to tasks.
*/
static struct task_struct *lookup_task(const pid_t pid, bool thread,
bool gettime)
{
struct task_struct *p;
/*
* If the encoded PID is 0, then the timer is targeted at current
* or the process to which current belongs.
*/
if (!pid)
return thread ? current : current->group_leader;
p = find_task_by_vpid(pid);
if (!p)
return p;
if (thread)
return same_thread_group(p, current) ? p : NULL;
if (gettime) {
/*
* For clock_gettime(PROCESS) the task does not need to be
* the actual group leader. tsk->sighand gives
* access to the group's clock.
*
* Timers need the group leader because they take a
* reference on it and store the task pointer until the
* timer is destroyed.
*/
return (p == current || thread_group_leader(p)) ? p : NULL;
}
/*
* For processes require that p is group leader.
*/
return has_group_leader_pid(p) ? p : NULL;
}
static struct task_struct *__get_task_for_clock(const clockid_t clock,
bool getref, bool gettime)
{
const bool thread = !!CPUCLOCK_PERTHREAD(clock);
const pid_t pid = CPUCLOCK_PID(clock);
struct task_struct *p;
if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX)
return NULL;
rcu_read_lock();
p = lookup_task(pid, thread, gettime);
if (p && getref)
get_task_struct(p);
rcu_read_unlock();
return p;
}
static inline struct task_struct *get_task_for_clock(const clockid_t clock)
{
return __get_task_for_clock(clock, true, false);
}
static inline struct task_struct *get_task_for_clock_get(const clockid_t clock)
{
return __get_task_for_clock(clock, true, true);
}
static inline int validate_clock_permissions(const clockid_t clock)
{
return __get_task_for_clock(clock, false, false) ? 0 : -EINVAL;
}
/*
* Update expiry time from increment, and increase overrun count,
* given the current clock sample.
*/
static u64 bump_cpu_timer(struct k_itimer *timer, u64 now)
{
u64 delta, incr, expires = timer->it.cpu.node.expires;
int i;
if (!timer->it_interval)
return expires;
if (now < expires)
return expires;
incr = timer->it_interval;
delta = now + incr - expires;
/* Don't use (incr*2 < delta), incr*2 might overflow. */
for (i = 0; incr < delta - incr; i++)
incr = incr << 1;
for (; i >= 0; incr >>= 1, i--) {
if (delta < incr)
continue;
timer->it.cpu.node.expires += incr;
timer->it_overrun += 1LL << i;
delta -= incr;
}
return timer->it.cpu.node.expires;
}
/* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */
static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct)
{
return !(~pct->bases[CPUCLOCK_PROF].nextevt |
~pct->bases[CPUCLOCK_VIRT].nextevt |
~pct->bases[CPUCLOCK_SCHED].nextevt);
}
static int
posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
{
int error = validate_clock_permissions(which_clock);
if (!error) {
tp->tv_sec = 0;
tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
/*
* If sched_clock is using a cycle counter, we
* don't have any idea of its true resolution
* exported, but it is much more than 1s/HZ.
*/
tp->tv_nsec = 1;
}
}
return error;
}
static int
posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp)
{
int error = validate_clock_permissions(clock);
/*
* You can never reset a CPU clock, but we check for other errors
* in the call before failing with EPERM.
*/
return error ? : -EPERM;
}
/*
* Sample a per-thread clock for the given task. clkid is validated.
*/
static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p)
{
u64 utime, stime;
if (clkid == CPUCLOCK_SCHED)
return task_sched_runtime(p);
task_cputime(p, &utime, &stime);
switch (clkid) {
case CPUCLOCK_PROF:
return utime + stime;
case CPUCLOCK_VIRT:
return utime;
default:
WARN_ON_ONCE(1);
}
return 0;
}
static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime)
{
samples[CPUCLOCK_PROF] = stime + utime;
samples[CPUCLOCK_VIRT] = utime;
samples[CPUCLOCK_SCHED] = rtime;
}
static void task_sample_cputime(struct task_struct *p, u64 *samples)
{
u64 stime, utime;
task_cputime(p, &utime, &stime);
store_samples(samples, stime, utime, p->se.sum_exec_runtime);
}
static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
u64 *samples)
{
u64 stime, utime, rtime;
utime = atomic64_read(&at->utime);
stime = atomic64_read(&at->stime);
rtime = atomic64_read(&at->sum_exec_runtime);
store_samples(samples, stime, utime, rtime);
}
/*
* Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
* to avoid race conditions with concurrent updates to cputime.
*/
static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
{
u64 curr_cputime;
retry:
curr_cputime = atomic64_read(cputime);
if (sum_cputime > curr_cputime) {
if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
goto retry;
}
}
static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic,
struct task_cputime *sum)
{
__update_gt_cputime(&cputime_atomic->utime, sum->utime);
__update_gt_cputime(&cputime_atomic->stime, sum->stime);
__update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
}
/**
* thread_group_sample_cputime - Sample cputime for a given task
* @tsk: Task for which cputime needs to be started
* @samples: Storage for time samples
*
* Called from sys_getitimer() to calculate the expiry time of an active
* timer. That means group cputime accounting is already active. Called
* with task sighand lock held.
*
* Updates @times with an uptodate sample of the thread group cputimes.
*/
void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples)
{
struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
WARN_ON_ONCE(!pct->timers_active);
proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
}
/**
* thread_group_start_cputime - Start cputime and return a sample
* @tsk: Task for which cputime needs to be started
* @samples: Storage for time samples
*
* The thread group cputime accouting is avoided when there are no posix
* CPU timers armed. Before starting a timer it's required to check whether
* the time accounting is active. If not, a full update of the atomic
* accounting store needs to be done and the accounting enabled.
*
* Updates @times with an uptodate sample of the thread group cputimes.
*/
static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples)
{
struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
/* Check if cputimer isn't running. This is accessed without locking. */
if (!READ_ONCE(pct->timers_active)) {
struct task_cputime sum;
/*
* The POSIX timer interface allows for absolute time expiry
* values through the TIMER_ABSTIME flag, therefore we have
* to synchronize the timer to the clock every time we start it.
*/
thread_group_cputime(tsk, &sum);
update_gt_cputime(&cputimer->cputime_atomic, &sum);
/*
* We're setting timers_active without a lock. Ensure this
* only gets written to in one operation. We set it after
* update_gt_cputime() as a small optimization, but
* barriers are not required because update_gt_cputime()
* can handle concurrent updates.
*/
WRITE_ONCE(pct->timers_active, true);
}
proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
}
static void __thread_group_cputime(struct task_struct *tsk, u64 *samples)
{
struct task_cputime ct;
thread_group_cputime(tsk, &ct);
store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime);
}
/*
* Sample a process (thread group) clock for the given task clkid. If the
* group's cputime accounting is already enabled, read the atomic
* store. Otherwise a full update is required. Task's sighand lock must be
* held to protect the task traversal on a full update. clkid is already
* validated.
*/
static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p,
bool start)
{
struct thread_group_cputimer *cputimer = &p->signal->cputimer;
struct posix_cputimers *pct = &p->signal->posix_cputimers;
u64 samples[CPUCLOCK_MAX];
if (!READ_ONCE(pct->timers_active)) {
if (start)
thread_group_start_cputime(p, samples);
else
__thread_group_cputime(p, samples);
} else {
proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
}
return samples[clkid];
}
static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp)
{
const clockid_t clkid = CPUCLOCK_WHICH(clock);
struct task_struct *tsk;
u64 t;
tsk = get_task_for_clock_get(clock);
if (!tsk)
return -EINVAL;
if (CPUCLOCK_PERTHREAD(clock))
t = cpu_clock_sample(clkid, tsk);
else
t = cpu_clock_sample_group(clkid, tsk, false);
put_task_struct(tsk);
*tp = ns_to_timespec64(t);
return 0;
}
/*
* Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
* This is called from sys_timer_create() and do_cpu_nanosleep() with the
* new timer already all-zeros initialized.
*/
static int posix_cpu_timer_create(struct k_itimer *new_timer)
{
struct task_struct *p = get_task_for_clock(new_timer->it_clock);
if (!p)
return -EINVAL;
new_timer->kclock = &clock_posix_cpu;
timerqueue_init(&new_timer->it.cpu.node);
new_timer->it.cpu.task = p;
return 0;
}
/*
* Clean up a CPU-clock timer that is about to be destroyed.
* This is called from timer deletion with the timer already locked.
* If we return TIMER_RETRY, it's necessary to release the timer's lock
* and try again. (This happens when the timer is in the middle of firing.)
*/
static int posix_cpu_timer_del(struct k_itimer *timer)
{
struct cpu_timer *ctmr = &timer->it.cpu;
struct task_struct *p = ctmr->task;
struct sighand_struct *sighand;
unsigned long flags;
int ret = 0;
if (WARN_ON_ONCE(!p))
return -EINVAL;
/*
* Protect against sighand release/switch in exit/exec and process/
* thread timer list entry concurrent read/writes.
*/
sighand = lock_task_sighand(p, &flags);
if (unlikely(sighand == NULL)) {
/*
* This raced with the reaping of the task. The exit cleanup
* should have removed this timer from the timer queue.
*/
WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node));
} else {
if (timer->it.cpu.firing)
ret = TIMER_RETRY;
else
cpu_timer_dequeue(ctmr);
unlock_task_sighand(p, &flags);
}
if (!ret)
put_task_struct(p);
return ret;
}
static void cleanup_timerqueue(struct timerqueue_head *head)
{
struct timerqueue_node *node;
struct cpu_timer *ctmr;
while ((node = timerqueue_getnext(head))) {
timerqueue_del(head, node);
ctmr = container_of(node, struct cpu_timer, node);
ctmr->head = NULL;
}
}
/*
* Clean out CPU timers which are still armed when a thread exits. The
* timers are only removed from the list. No other updates are done. The
* corresponding posix timers are still accessible, but cannot be rearmed.
*
* This must be called with the siglock held.
*/
static void cleanup_timers(struct posix_cputimers *pct)
{
cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead);
cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead);
cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead);
}
/*
* These are both called with the siglock held, when the current thread
* is being reaped. When the final (leader) thread in the group is reaped,
* posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
*/
void posix_cpu_timers_exit(struct task_struct *tsk)
{
cleanup_timers(&tsk->posix_cputimers);
}
void posix_cpu_timers_exit_group(struct task_struct *tsk)
{
cleanup_timers(&tsk->signal->posix_cputimers);
}
/*
* Insert the timer on the appropriate list before any timers that
* expire later. This must be called with the sighand lock held.
*/
static void arm_timer(struct k_itimer *timer)
{
int clkidx = CPUCLOCK_WHICH(timer->it_clock);
struct cpu_timer *ctmr = &timer->it.cpu;
u64 newexp = cpu_timer_getexpires(ctmr);
struct task_struct *p = ctmr->task;
struct posix_cputimer_base *base;
if (CPUCLOCK_PERTHREAD(timer->it_clock))
base = p->posix_cputimers.bases + clkidx;
else
base = p->signal->posix_cputimers.bases + clkidx;
if (!cpu_timer_enqueue(&base->tqhead, ctmr))
return;
/*
* We are the new earliest-expiring POSIX 1.b timer, hence
* need to update expiration cache. Take into account that
* for process timers we share expiration cache with itimers
* and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
*/
if (newexp < base->nextevt)
base->nextevt = newexp;
if (CPUCLOCK_PERTHREAD(timer->it_clock))
tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
else
tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
}
/*
* The timer is locked, fire it and arrange for its reload.
*/
static void cpu_timer_fire(struct k_itimer *timer)
{
struct cpu_timer *ctmr = &timer->it.cpu;
if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
/*
* User don't want any signal.
*/
cpu_timer_setexpires(ctmr, 0);
} else if (unlikely(timer->sigq == NULL)) {
/*
* This a special case for clock_nanosleep,
* not a normal timer from sys_timer_create.
*/
wake_up_process(timer->it_process);
cpu_timer_setexpires(ctmr, 0);
} else if (!timer->it_interval) {
/*
* One-shot timer. Clear it as soon as it's fired.
*/
posix_timer_event(timer, 0);
cpu_timer_setexpires(ctmr, 0);
} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
/*
* The signal did not get queued because the signal
* was ignored, so we won't get any callback to
* reload the timer. But we need to keep it
* ticking in case the signal is deliverable next time.
*/
posix_cpu_timer_rearm(timer);
++timer->it_requeue_pending;
}
}
/*
* Guts of sys_timer_settime for CPU timers.
* This is called with the timer locked and interrupts disabled.
* If we return TIMER_RETRY, it's necessary to release the timer's lock
* and try again. (This happens when the timer is in the middle of firing.)
*/
static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
struct itimerspec64 *new, struct itimerspec64 *old)
{
clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
u64 old_expires, new_expires, old_incr, val;
struct cpu_timer *ctmr = &timer->it.cpu;
struct task_struct *p = ctmr->task;
struct sighand_struct *sighand;
unsigned long flags;
int ret = 0;
if (WARN_ON_ONCE(!p))
return -EINVAL;
/*
* Use the to_ktime conversion because that clamps the maximum
* value to KTIME_MAX and avoid multiplication overflows.
*/
new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
/*
* Protect against sighand release/switch in exit/exec and p->cpu_timers
* and p->signal->cpu_timers read/write in arm_timer()
*/
sighand = lock_task_sighand(p, &flags);
/*
* If p has just been reaped, we can no
* longer get any information about it at all.
*/
if (unlikely(sighand == NULL))
return -ESRCH;
/*
* Disarm any old timer after extracting its expiry time.
*/
old_incr = timer->it_interval;
old_expires = cpu_timer_getexpires(ctmr);
if (unlikely(timer->it.cpu.firing)) {
timer->it.cpu.firing = -1;
ret = TIMER_RETRY;
} else {
cpu_timer_dequeue(ctmr);
}
/*
* We need to sample the current value to convert the new
* value from to relative and absolute, and to convert the
* old value from absolute to relative. To set a process
* timer, we need a sample to balance the thread expiry
* times (in arm_timer). With an absolute time, we must
* check if it's already passed. In short, we need a sample.
*/
if (CPUCLOCK_PERTHREAD(timer->it_clock))
val = cpu_clock_sample(clkid, p);
else
val = cpu_clock_sample_group(clkid, p, true);
if (old) {
if (old_expires == 0) {
old->it_value.tv_sec = 0;
old->it_value.tv_nsec = 0;
} else {
/*
* Update the timer in case it has overrun already.
* If it has, we'll report it as having overrun and
* with the next reloaded timer already ticking,
* though we are swallowing that pending
* notification here to install the new setting.
*/
u64 exp = bump_cpu_timer(timer, val);
if (val < exp) {
old_expires = exp - val;
old->it_value = ns_to_timespec64(old_expires);
} else {
old->it_value.tv_nsec = 1;
old->it_value.tv_sec = 0;
}
}
}
if (unlikely(ret)) {
/*
* We are colliding with the timer actually firing.
* Punt after filling in the timer's old value, and
* disable this firing since we are already reporting
* it as an overrun (thanks to bump_cpu_timer above).
*/
unlock_task_sighand(p, &flags);
goto out;
}
if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
new_expires += val;
}
/*
* Install the new expiry time (or zero).
* For a timer with no notification action, we don't actually
* arm the timer (we'll just fake it for timer_gettime).
*/
cpu_timer_setexpires(ctmr, new_expires);
if (new_expires != 0 && val < new_expires) {
arm_timer(timer);
}
unlock_task_sighand(p, &flags);
/*
* Install the new reload setting, and
* set up the signal and overrun bookkeeping.
*/
timer->it_interval = timespec64_to_ktime(new->it_interval);
/*
* This acts as a modification timestamp for the timer,
* so any automatic reload attempt will punt on seeing
* that we have reset the timer manually.
*/
timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
~REQUEUE_PENDING;
timer->it_overrun_last = 0;
timer->it_overrun = -1;
if (new_expires != 0 && !(val < new_expires)) {
/*
* The designated time already passed, so we notify
* immediately, even if the thread never runs to
* accumulate more time on this clock.
*/
cpu_timer_fire(timer);
}
ret = 0;
out:
if (old)
old->it_interval = ns_to_timespec64(old_incr);
return ret;
}
static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
{
clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
struct cpu_timer *ctmr = &timer->it.cpu;
u64 now, expires = cpu_timer_getexpires(ctmr);
struct task_struct *p = ctmr->task;
if (WARN_ON_ONCE(!p))
return;
/*
* Easy part: convert the reload time.
*/
itp->it_interval = ktime_to_timespec64(timer->it_interval);
if (!expires)
return;
/*
* Sample the clock to take the difference with the expiry time.
*/
if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
now = cpu_clock_sample(clkid, p);
} else {
struct sighand_struct *sighand;
unsigned long flags;
/*
* Protect against sighand release/switch in exit/exec and
* also make timer sampling safe if it ends up calling
* thread_group_cputime().
*/
sighand = lock_task_sighand(p, &flags);
if (unlikely(sighand == NULL)) {
/*
* The process has been reaped.
* We can't even collect a sample any more.
* Disarm the timer, nothing else to do.
*/
cpu_timer_setexpires(ctmr, 0);
return;
} else {
now = cpu_clock_sample_group(clkid, p, false);
unlock_task_sighand(p, &flags);
}
}
if (now < expires) {
itp->it_value = ns_to_timespec64(expires - now);
} else {
/*
* The timer should have expired already, but the firing
* hasn't taken place yet. Say it's just about to expire.
*/
itp->it_value.tv_nsec = 1;
itp->it_value.tv_sec = 0;
}
}
#define MAX_COLLECTED 20
static u64 collect_timerqueue(struct timerqueue_head *head,
struct list_head *firing, u64 now)
{
struct timerqueue_node *next;
int i = 0;
while ((next = timerqueue_getnext(head))) {
struct cpu_timer *ctmr;
u64 expires;
ctmr = container_of(next, struct cpu_timer, node);
expires = cpu_timer_getexpires(ctmr);
/* Limit the number of timers to expire at once */
if (++i == MAX_COLLECTED || now < expires)
return expires;
ctmr->firing = 1;
cpu_timer_dequeue(ctmr);
list_add_tail(&ctmr->elist, firing);
}
return U64_MAX;
}
static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples,
struct list_head *firing)
{
struct posix_cputimer_base *base = pct->bases;
int i;
for (i = 0; i < CPUCLOCK_MAX; i++, base++) {
base->nextevt = collect_timerqueue(&base->tqhead, firing,
samples[i]);
}
}
static inline void check_dl_overrun(struct task_struct *tsk)
{
if (tsk->dl.dl_overrun) {
tsk->dl.dl_overrun = 0;
__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
}
}
static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard)
{
if (time < limit)
return false;
if (print_fatal_signals) {
pr_info("%s Watchdog Timeout (%s): %s[%d]\n",
rt ? "RT" : "CPU", hard ? "hard" : "soft",
current->comm, task_pid_nr(current));
}
__group_send_sig_info(signo, SEND_SIG_PRIV, current);
return true;
}
/*
* Check for any per-thread CPU timers that have fired and move them off
* the tsk->cpu_timers[N] list onto the firing list. Here we update the
* tsk->it_*_expires values to reflect the remaining thread CPU timers.
*/
static void check_thread_timers(struct task_struct *tsk,
struct list_head *firing)
{
struct posix_cputimers *pct = &tsk->posix_cputimers;
u64 samples[CPUCLOCK_MAX];
unsigned long soft;
if (dl_task(tsk))
check_dl_overrun(tsk);
if (expiry_cache_is_inactive(pct))
return;
task_sample_cputime(tsk, samples);
collect_posix_cputimers(pct, samples, firing);
/*
* Check for the special case thread timers.
*/
soft = task_rlimit(tsk, RLIMIT_RTTIME);
if (soft != RLIM_INFINITY) {
/* Task RT timeout is accounted in jiffies. RTTIME is usec */
unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
/* At the hard limit, send SIGKILL. No further action. */
if (hard != RLIM_INFINITY &&
check_rlimit(rttime, hard, SIGKILL, true, true))
return;
/* At the soft limit, send a SIGXCPU every second */
if (check_rlimit(rttime, soft, SIGXCPU, true, false)) {
soft += USEC_PER_SEC;
tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft;
}
}
if (expiry_cache_is_inactive(pct))
tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
}
static inline void stop_process_timers(struct signal_struct *sig)
{
struct posix_cputimers *pct = &sig->posix_cputimers;
/* Turn off the active flag. This is done without locking. */
WRITE_ONCE(pct->timers_active, false);
tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
}
static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
u64 *expires, u64 cur_time, int signo)
{
if (!it->expires)
return;
if (cur_time >= it->expires) {
if (it->incr)
it->expires += it->incr;
else
it->expires = 0;
trace_itimer_expire(signo == SIGPROF ?
ITIMER_PROF : ITIMER_VIRTUAL,
task_tgid(tsk), cur_time);
__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
}
if (it->expires && it->expires < *expires)
*expires = it->expires;
}
/*
* Check for any per-thread CPU timers that have fired and move them
* off the tsk->*_timers list onto the firing list. Per-thread timers
* have already been taken off.
*/
static void check_process_timers(struct task_struct *tsk,
struct list_head *firing)
{
struct signal_struct *const sig = tsk->signal;
struct posix_cputimers *pct = &sig->posix_cputimers;
u64 samples[CPUCLOCK_MAX];
unsigned long soft;
/*
* If there are no active process wide timers (POSIX 1.b, itimers,
* RLIMIT_CPU) nothing to check. Also skip the process wide timer
* processing when there is already another task handling them.
*/
if (!READ_ONCE(pct->timers_active) || pct->expiry_active)
return;
/*
* Signify that a thread is checking for process timers.
* Write access to this field is protected by the sighand lock.
*/
pct->expiry_active = true;
/*
* Collect the current process totals. Group accounting is active
* so the sample can be taken directly.
*/
proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples);
collect_posix_cputimers(pct, samples, firing);
/*
* Check for the special case process timers.
*/
check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF],
&pct->bases[CPUCLOCK_PROF].nextevt,
samples[CPUCLOCK_PROF], SIGPROF);
check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT],
&pct->bases[CPUCLOCK_VIRT].nextevt,
samples[CPUCLOCK_VIRT], SIGVTALRM);
soft = task_rlimit(tsk, RLIMIT_CPU);
if (soft != RLIM_INFINITY) {
/* RLIMIT_CPU is in seconds. Samples are nanoseconds */
unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
u64 ptime = samples[CPUCLOCK_PROF];
u64 softns = (u64)soft * NSEC_PER_SEC;
u64 hardns = (u64)hard * NSEC_PER_SEC;
/* At the hard limit, send SIGKILL. No further action. */
if (hard != RLIM_INFINITY &&
check_rlimit(ptime, hardns, SIGKILL, false, true))
return;
/* At the soft limit, send a SIGXCPU every second */
if (check_rlimit(ptime, softns, SIGXCPU, false, false)) {
sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1;
softns += NSEC_PER_SEC;
}
/* Update the expiry cache */
if (softns < pct->bases[CPUCLOCK_PROF].nextevt)
pct->bases[CPUCLOCK_PROF].nextevt = softns;
}
if (expiry_cache_is_inactive(pct))
stop_process_timers(sig);
pct->expiry_active = false;
}
/*
* This is called from the signal code (via posixtimer_rearm)
* when the last timer signal was delivered and we have to reload the timer.
*/
static void posix_cpu_timer_rearm(struct k_itimer *timer)
{
clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
struct cpu_timer *ctmr = &timer->it.cpu;
struct task_struct *p = ctmr->task;
struct sighand_struct *sighand;
unsigned long flags;
u64 now;
if (WARN_ON_ONCE(!p))
return;
/*
* Fetch the current sample and update the timer's expiry time.
*/
if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
now = cpu_clock_sample(clkid, p);
bump_cpu_timer(timer, now);
if (unlikely(p->exit_state))
return;
/* Protect timer list r/w in arm_timer() */
sighand = lock_task_sighand(p, &flags);
if (!sighand)
return;
} else {
/*
* Protect arm_timer() and timer sampling in case of call to
* thread_group_cputime().
*/
sighand = lock_task_sighand(p, &flags);
if (unlikely(sighand == NULL)) {
/*
* The process has been reaped.
* We can't even collect a sample any more.
*/
cpu_timer_setexpires(ctmr, 0);
return;
} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
/* If the process is dying, no need to rearm */
goto unlock;
}
now = cpu_clock_sample_group(clkid, p, true);
bump_cpu_timer(timer, now);
/* Leave the sighand locked for the call below. */
}
/*
* Now re-arm for the new expiry time.
*/
arm_timer(timer);
unlock:
unlock_task_sighand(p, &flags);
}
/**
* task_cputimers_expired - Check whether posix CPU timers are expired
*
* @samples: Array of current samples for the CPUCLOCK clocks
* @pct: Pointer to a posix_cputimers container
*
* Returns true if any member of @samples is greater than the corresponding
* member of @pct->bases[CLK].nextevt. False otherwise
*/
static inline bool
task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct)
{
int i;
for (i = 0; i < CPUCLOCK_MAX; i++) {
if (samples[i] >= pct->bases[i].nextevt)
return true;
}
return false;
}
/**
* fastpath_timer_check - POSIX CPU timers fast path.
*
* @tsk: The task (thread) being checked.
*
* Check the task and thread group timers. If both are zero (there are no
* timers set) return false. Otherwise snapshot the task and thread group
* timers and compare them with the corresponding expiration times. Return
* true if a timer has expired, else return false.
*/
static inline bool fastpath_timer_check(struct task_struct *tsk)
{
struct posix_cputimers *pct = &tsk->posix_cputimers;
struct signal_struct *sig;
if (!expiry_cache_is_inactive(pct)) {
u64 samples[CPUCLOCK_MAX];
task_sample_cputime(tsk, samples);
if (task_cputimers_expired(samples, pct))
return true;
}
sig = tsk->signal;
pct = &sig->posix_cputimers;
/*
* Check if thread group timers expired when timers are active and
* no other thread in the group is already handling expiry for
* thread group cputimers. These fields are read without the
* sighand lock. However, this is fine because this is meant to be
* a fastpath heuristic to determine whether we should try to
* acquire the sighand lock to handle timer expiry.
*
* In the worst case scenario, if concurrently timers_active is set
* or expiry_active is cleared, but the current thread doesn't see
* the change yet, the timer checks are delayed until the next
* thread in the group gets a scheduler interrupt to handle the
* timer. This isn't an issue in practice because these types of
* delays with signals actually getting sent are expected.
*/
if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) {
u64 samples[CPUCLOCK_MAX];
proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic,
samples);
if (task_cputimers_expired(samples, pct))
return true;
}
if (dl_task(tsk) && tsk->dl.dl_overrun)
return true;
return false;
}
/*
* This is called from the timer interrupt handler. The irq handler has
* already updated our counts. We need to check if any timers fire now.
* Interrupts are disabled.
*/
void run_posix_cpu_timers(void)
{
struct task_struct *tsk = current;
struct k_itimer *timer, *next;
unsigned long flags;
LIST_HEAD(firing);
lockdep_assert_irqs_disabled();
/*
* The fast path checks that there are no expired thread or thread
* group timers. If that's so, just return.
*/
if (!fastpath_timer_check(tsk))
return;
lockdep_posixtimer_enter();
if (!lock_task_sighand(tsk, &flags)) {
lockdep_posixtimer_exit();
return;
}
/*
* Here we take off tsk->signal->cpu_timers[N] and
* tsk->cpu_timers[N] all the timers that are firing, and
* put them on the firing list.
*/
check_thread_timers(tsk, &firing);
check_process_timers(tsk, &firing);
/*
* We must release these locks before taking any timer's lock.
* There is a potential race with timer deletion here, as the
* siglock now protects our private firing list. We have set
* the firing flag in each timer, so that a deletion attempt
* that gets the timer lock before we do will give it up and
* spin until we've taken care of that timer below.
*/
unlock_task_sighand(tsk, &flags);
/*
* Now that all the timers on our list have the firing flag,
* no one will touch their list entries but us. We'll take
* each timer's lock before clearing its firing flag, so no
* timer call will interfere.
*/
list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
int cpu_firing;
spin_lock(&timer->it_lock);
list_del_init(&timer->it.cpu.elist);
cpu_firing = timer->it.cpu.firing;
timer->it.cpu.firing = 0;
/*
* The firing flag is -1 if we collided with a reset
* of the timer, which already reported this
* almost-firing as an overrun. So don't generate an event.
*/
if (likely(cpu_firing >= 0))
cpu_timer_fire(timer);
spin_unlock(&timer->it_lock);
}
lockdep_posixtimer_exit();
}
/*
* Set one of the process-wide special case CPU timers or RLIMIT_CPU.
* The tsk->sighand->siglock must be held by the caller.
*/
void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid,
u64 *newval, u64 *oldval)
{
u64 now, *nextevt;
if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED))
return;
nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt;
now = cpu_clock_sample_group(clkid, tsk, true);
if (oldval) {
/*
* We are setting itimer. The *oldval is absolute and we update
* it to be relative, *newval argument is relative and we update
* it to be absolute.
*/
if (*oldval) {
if (*oldval <= now) {
/* Just about to fire. */
*oldval = TICK_NSEC;
} else {
*oldval -= now;
}
}
if (!*newval)
return;
*newval += now;
}
/*
* Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
* expiry cache is also used by RLIMIT_CPU!.
*/
if (*newval < *nextevt)
*nextevt = *newval;
tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
}
static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
const struct timespec64 *rqtp)
{
struct itimerspec64 it;
struct k_itimer timer;
u64 expires;
int error;
/*
* Set up a temporary timer and then wait for it to go off.
*/
memset(&timer, 0, sizeof timer);
spin_lock_init(&timer.it_lock);
timer.it_clock = which_clock;
timer.it_overrun = -1;
error = posix_cpu_timer_create(&timer);
timer.it_process = current;
if (!error) {
static struct itimerspec64 zero_it;
struct restart_block *restart;
memset(&it, 0, sizeof(it));
it.it_value = *rqtp;
spin_lock_irq(&timer.it_lock);
error = posix_cpu_timer_set(&timer, flags, &it, NULL);
if (error) {
spin_unlock_irq(&timer.it_lock);
return error;
}
while (!signal_pending(current)) {
if (!cpu_timer_getexpires(&timer.it.cpu)) {
/*
* Our timer fired and was reset, below
* deletion can not fail.
*/
posix_cpu_timer_del(&timer);
spin_unlock_irq(&timer.it_lock);
return 0;
}
/*
* Block until cpu_timer_fire (or a signal) wakes us.
*/
__set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irq(&timer.it_lock);
schedule();
spin_lock_irq(&timer.it_lock);
}
/*
* We were interrupted by a signal.
*/
expires = cpu_timer_getexpires(&timer.it.cpu);
error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
if (!error) {
/*
* Timer is now unarmed, deletion can not fail.
*/
posix_cpu_timer_del(&timer);
}
spin_unlock_irq(&timer.it_lock);
while (error == TIMER_RETRY) {
/*
* We need to handle case when timer was or is in the
* middle of firing. In other cases we already freed
* resources.
*/
spin_lock_irq(&timer.it_lock);
error = posix_cpu_timer_del(&timer);
spin_unlock_irq(&timer.it_lock);
}
if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
/*
* It actually did fire already.
*/
return 0;
}
error = -ERESTART_RESTARTBLOCK;
/*
* Report back to the user the time still remaining.
*/
restart = &current->restart_block;
restart->nanosleep.expires = expires;
if (restart->nanosleep.type != TT_NONE)
error = nanosleep_copyout(restart, &it.it_value);
}
return error;
}
static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
const struct timespec64 *rqtp)
{
struct restart_block *restart_block = &current->restart_block;
int error;
/*
* Diagnose required errors first.
*/
if (CPUCLOCK_PERTHREAD(which_clock) &&
(CPUCLOCK_PID(which_clock) == 0 ||
CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
return -EINVAL;
error = do_cpu_nanosleep(which_clock, flags, rqtp);
if (error == -ERESTART_RESTARTBLOCK) {
if (flags & TIMER_ABSTIME)
return -ERESTARTNOHAND;
restart_block->fn = posix_cpu_nsleep_restart;
restart_block->nanosleep.clockid = which_clock;
}
return error;
}
static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
{
clockid_t which_clock = restart_block->nanosleep.clockid;
struct timespec64 t;
t = ns_to_timespec64(restart_block->nanosleep.expires);
return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
}
#define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED)
#define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED)
static int process_cpu_clock_getres(const clockid_t which_clock,
struct timespec64 *tp)
{
return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
}
static int process_cpu_clock_get(const clockid_t which_clock,
struct timespec64 *tp)
{
return posix_cpu_clock_get(PROCESS_CLOCK, tp);
}
static int process_cpu_timer_create(struct k_itimer *timer)
{
timer->it_clock = PROCESS_CLOCK;
return posix_cpu_timer_create(timer);
}
static int process_cpu_nsleep(const clockid_t which_clock, int flags,
const struct timespec64 *rqtp)
{
return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
}
static int thread_cpu_clock_getres(const clockid_t which_clock,
struct timespec64 *tp)
{
return posix_cpu_clock_getres(THREAD_CLOCK, tp);
}
static int thread_cpu_clock_get(const clockid_t which_clock,
struct timespec64 *tp)
{
return posix_cpu_clock_get(THREAD_CLOCK, tp);
}
static int thread_cpu_timer_create(struct k_itimer *timer)
{
timer->it_clock = THREAD_CLOCK;
return posix_cpu_timer_create(timer);
}
const struct k_clock clock_posix_cpu = {
.clock_getres = posix_cpu_clock_getres,
.clock_set = posix_cpu_clock_set,
.clock_get_timespec = posix_cpu_clock_get,
.timer_create = posix_cpu_timer_create,
.nsleep = posix_cpu_nsleep,
.timer_set = posix_cpu_timer_set,
.timer_del = posix_cpu_timer_del,
.timer_get = posix_cpu_timer_get,
.timer_rearm = posix_cpu_timer_rearm,
};
const struct k_clock clock_process = {
.clock_getres = process_cpu_clock_getres,
.clock_get_timespec = process_cpu_clock_get,
.timer_create = process_cpu_timer_create,
.nsleep = process_cpu_nsleep,
};
const struct k_clock clock_thread = {
.clock_getres = thread_cpu_clock_getres,
.clock_get_timespec = thread_cpu_clock_get,
.timer_create = thread_cpu_timer_create,
};