linux/arch/powerpc/mm/nohash/mmu_context.c
Christophe Leroy e2c043163d powerpc/nohash: Remove DEBUG_HARDER
DEBUG_HARDER is not user selectable.

Remove it together with related messages.

Also remove two pr_devel() messages that should
likely have been pr_hard().

Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/0f25109b0e12fdd1e6541dedbb2212cc53526a57.1622712515.git.christophe.leroy@csgroup.eu
2021-06-17 00:09:10 +10:00

431 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* This file contains the routines for handling the MMU on those
* PowerPC implementations where the MMU is not using the hash
* table, such as 8xx, 4xx, BookE's etc...
*
* Copyright 2008 Ben Herrenschmidt <benh@kernel.crashing.org>
* IBM Corp.
*
* Derived from previous arch/powerpc/mm/mmu_context.c
* and arch/powerpc/include/asm/mmu_context.h
*
* TODO:
*
* - The global context lock will not scale very well
* - The maps should be dynamically allocated to allow for processors
* that support more PID bits at runtime
* - Implement flush_tlb_mm() by making the context stale and picking
* a new one
* - More aggressively clear stale map bits and maybe find some way to
* also clear mm->cpu_vm_mask bits when processes are migrated
*/
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/memblock.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/slab.h>
#include <asm/mmu_context.h>
#include <asm/tlbflush.h>
#include <asm/smp.h>
#include <mm/mmu_decl.h>
/*
* Room for two PTE table pointers, usually the kernel and current user
* pointer to their respective root page table (pgdir).
*/
void *abatron_pteptrs[2];
/*
* The MPC8xx has only 16 contexts. We rotate through them on each task switch.
* A better way would be to keep track of tasks that own contexts, and implement
* an LRU usage. That way very active tasks don't always have to pay the TLB
* reload overhead. The kernel pages are mapped shared, so the kernel can run on
* behalf of any task that makes a kernel entry. Shared does not mean they are
* not protected, just that the ASID comparison is not performed. -- Dan
*
* The IBM4xx has 256 contexts, so we can just rotate through these as a way of
* "switching" contexts. If the TID of the TLB is zero, the PID/TID comparison
* is disabled, so we can use a TID of zero to represent all kernel pages as
* shared among all contexts. -- Dan
*
* The IBM 47x core supports 16-bit PIDs, thus 65535 contexts. We should
* normally never have to steal though the facility is present if needed.
* -- BenH
*/
#define FIRST_CONTEXT 1
#if defined(CONFIG_PPC_8xx)
#define LAST_CONTEXT 16
#elif defined(CONFIG_PPC_47x)
#define LAST_CONTEXT 65535
#else
#define LAST_CONTEXT 255
#endif
static unsigned int next_context, nr_free_contexts;
static unsigned long *context_map;
static unsigned long *stale_map[NR_CPUS];
static struct mm_struct **context_mm;
static DEFINE_RAW_SPINLOCK(context_lock);
#define CTX_MAP_SIZE \
(sizeof(unsigned long) * (LAST_CONTEXT / BITS_PER_LONG + 1))
/* Steal a context from a task that has one at the moment.
*
* This is used when we are running out of available PID numbers
* on the processors.
*
* This isn't an LRU system, it just frees up each context in
* turn (sort-of pseudo-random replacement :). This would be the
* place to implement an LRU scheme if anyone was motivated to do it.
* -- paulus
*
* For context stealing, we use a slightly different approach for
* SMP and UP. Basically, the UP one is simpler and doesn't use
* the stale map as we can just flush the local CPU
* -- benh
*/
static unsigned int steal_context_smp(unsigned int id)
{
struct mm_struct *mm;
unsigned int cpu, max, i;
max = LAST_CONTEXT - FIRST_CONTEXT;
/* Attempt to free next_context first and then loop until we manage */
while (max--) {
/* Pick up the victim mm */
mm = context_mm[id];
/* We have a candidate victim, check if it's active, on SMP
* we cannot steal active contexts
*/
if (mm->context.active) {
id++;
if (id > LAST_CONTEXT)
id = FIRST_CONTEXT;
continue;
}
/* Mark this mm has having no context anymore */
mm->context.id = MMU_NO_CONTEXT;
/* Mark it stale on all CPUs that used this mm. For threaded
* implementations, we set it on all threads on each core
* represented in the mask. A future implementation will use
* a core map instead but this will do for now.
*/
for_each_cpu(cpu, mm_cpumask(mm)) {
for (i = cpu_first_thread_sibling(cpu);
i <= cpu_last_thread_sibling(cpu); i++) {
if (stale_map[i])
__set_bit(id, stale_map[i]);
}
cpu = i - 1;
}
return id;
}
/* This will happen if you have more CPUs than available contexts,
* all we can do here is wait a bit and try again
*/
raw_spin_unlock(&context_lock);
cpu_relax();
raw_spin_lock(&context_lock);
/* This will cause the caller to try again */
return MMU_NO_CONTEXT;
}
static unsigned int steal_all_contexts(void)
{
struct mm_struct *mm;
int cpu = smp_processor_id();
unsigned int id;
for (id = FIRST_CONTEXT; id <= LAST_CONTEXT; id++) {
/* Pick up the victim mm */
mm = context_mm[id];
/* Mark this mm as having no context anymore */
mm->context.id = MMU_NO_CONTEXT;
if (id != FIRST_CONTEXT) {
context_mm[id] = NULL;
__clear_bit(id, context_map);
}
if (IS_ENABLED(CONFIG_SMP))
__clear_bit(id, stale_map[cpu]);
}
/* Flush the TLB for all contexts (not to be used on SMP) */
_tlbil_all();
nr_free_contexts = LAST_CONTEXT - FIRST_CONTEXT;
return FIRST_CONTEXT;
}
/* Note that this will also be called on SMP if all other CPUs are
* offlined, which means that it may be called for cpu != 0. For
* this to work, we somewhat assume that CPUs that are onlined
* come up with a fully clean TLB (or are cleaned when offlined)
*/
static unsigned int steal_context_up(unsigned int id)
{
struct mm_struct *mm;
int cpu = smp_processor_id();
/* Pick up the victim mm */
mm = context_mm[id];
/* Flush the TLB for that context */
local_flush_tlb_mm(mm);
/* Mark this mm has having no context anymore */
mm->context.id = MMU_NO_CONTEXT;
/* XXX This clear should ultimately be part of local_flush_tlb_mm */
if (IS_ENABLED(CONFIG_SMP))
__clear_bit(id, stale_map[cpu]);
return id;
}
static void set_context(unsigned long id, pgd_t *pgd)
{
if (IS_ENABLED(CONFIG_PPC_8xx)) {
s16 offset = (s16)(__pa(swapper_pg_dir));
/*
* Register M_TWB will contain base address of level 1 table minus the
* lower part of the kernel PGDIR base address, so that all accesses to
* level 1 table are done relative to lower part of kernel PGDIR base
* address.
*/
mtspr(SPRN_M_TWB, __pa(pgd) - offset);
/* Update context */
mtspr(SPRN_M_CASID, id - 1);
/* sync */
mb();
} else {
if (IS_ENABLED(CONFIG_40x))
mb(); /* sync */
mtspr(SPRN_PID, id);
isync();
}
}
void switch_mmu_context(struct mm_struct *prev, struct mm_struct *next,
struct task_struct *tsk)
{
unsigned int id;
unsigned int i, cpu = smp_processor_id();
unsigned long *map;
/* No lockless fast path .. yet */
raw_spin_lock(&context_lock);
if (IS_ENABLED(CONFIG_SMP)) {
/* Mark us active and the previous one not anymore */
next->context.active++;
if (prev) {
WARN_ON(prev->context.active < 1);
prev->context.active--;
}
}
again:
/* If we already have a valid assigned context, skip all that */
id = next->context.id;
if (likely(id != MMU_NO_CONTEXT))
goto ctxt_ok;
/* We really don't have a context, let's try to acquire one */
id = next_context;
if (id > LAST_CONTEXT)
id = FIRST_CONTEXT;
map = context_map;
/* No more free contexts, let's try to steal one */
if (nr_free_contexts == 0) {
if (num_online_cpus() > 1) {
id = steal_context_smp(id);
if (id == MMU_NO_CONTEXT)
goto again;
goto stolen;
}
if (IS_ENABLED(CONFIG_PPC_8xx))
id = steal_all_contexts();
else
id = steal_context_up(id);
goto stolen;
}
nr_free_contexts--;
/* We know there's at least one free context, try to find it */
while (__test_and_set_bit(id, map)) {
id = find_next_zero_bit(map, LAST_CONTEXT+1, id);
if (id > LAST_CONTEXT)
id = FIRST_CONTEXT;
}
stolen:
next_context = id + 1;
context_mm[id] = next;
next->context.id = id;
ctxt_ok:
/* If that context got marked stale on this CPU, then flush the
* local TLB for it and unmark it before we use it
*/
if (IS_ENABLED(CONFIG_SMP) && test_bit(id, stale_map[cpu])) {
local_flush_tlb_mm(next);
/* XXX This clear should ultimately be part of local_flush_tlb_mm */
for (i = cpu_first_thread_sibling(cpu);
i <= cpu_last_thread_sibling(cpu); i++) {
if (stale_map[i])
__clear_bit(id, stale_map[i]);
}
}
/* Flick the MMU and release lock */
if (IS_ENABLED(CONFIG_BDI_SWITCH))
abatron_pteptrs[1] = next->pgd;
set_context(id, next->pgd);
raw_spin_unlock(&context_lock);
}
/*
* Set up the context for a new address space.
*/
int init_new_context(struct task_struct *t, struct mm_struct *mm)
{
/*
* We have MMU_NO_CONTEXT set to be ~0. Hence check
* explicitly against context.id == 0. This ensures that we properly
* initialize context slice details for newly allocated mm's (which will
* have id == 0) and don't alter context slice inherited via fork (which
* will have id != 0).
*/
if (mm->context.id == 0)
slice_init_new_context_exec(mm);
mm->context.id = MMU_NO_CONTEXT;
mm->context.active = 0;
pte_frag_set(&mm->context, NULL);
return 0;
}
/*
* We're finished using the context for an address space.
*/
void destroy_context(struct mm_struct *mm)
{
unsigned long flags;
unsigned int id;
if (mm->context.id == MMU_NO_CONTEXT)
return;
WARN_ON(mm->context.active != 0);
raw_spin_lock_irqsave(&context_lock, flags);
id = mm->context.id;
if (id != MMU_NO_CONTEXT) {
__clear_bit(id, context_map);
mm->context.id = MMU_NO_CONTEXT;
context_mm[id] = NULL;
nr_free_contexts++;
}
raw_spin_unlock_irqrestore(&context_lock, flags);
}
static int mmu_ctx_cpu_prepare(unsigned int cpu)
{
/* We don't touch CPU 0 map, it's allocated at aboot and kept
* around forever
*/
if (cpu == boot_cpuid)
return 0;
stale_map[cpu] = kzalloc(CTX_MAP_SIZE, GFP_KERNEL);
return 0;
}
static int mmu_ctx_cpu_dead(unsigned int cpu)
{
#ifdef CONFIG_HOTPLUG_CPU
if (cpu == boot_cpuid)
return 0;
kfree(stale_map[cpu]);
stale_map[cpu] = NULL;
/* We also clear the cpu_vm_mask bits of CPUs going away */
clear_tasks_mm_cpumask(cpu);
#endif
return 0;
}
/*
* Initialize the context management stuff.
*/
void __init mmu_context_init(void)
{
/* Mark init_mm as being active on all possible CPUs since
* we'll get called with prev == init_mm the first time
* we schedule on a given CPU
*/
init_mm.context.active = NR_CPUS;
/*
* Allocate the maps used by context management
*/
context_map = memblock_alloc(CTX_MAP_SIZE, SMP_CACHE_BYTES);
if (!context_map)
panic("%s: Failed to allocate %zu bytes\n", __func__,
CTX_MAP_SIZE);
context_mm = memblock_alloc(sizeof(void *) * (LAST_CONTEXT + 1),
SMP_CACHE_BYTES);
if (!context_mm)
panic("%s: Failed to allocate %zu bytes\n", __func__,
sizeof(void *) * (LAST_CONTEXT + 1));
if (IS_ENABLED(CONFIG_SMP)) {
stale_map[boot_cpuid] = memblock_alloc(CTX_MAP_SIZE, SMP_CACHE_BYTES);
if (!stale_map[boot_cpuid])
panic("%s: Failed to allocate %zu bytes\n", __func__,
CTX_MAP_SIZE);
cpuhp_setup_state_nocalls(CPUHP_POWERPC_MMU_CTX_PREPARE,
"powerpc/mmu/ctx:prepare",
mmu_ctx_cpu_prepare, mmu_ctx_cpu_dead);
}
printk(KERN_INFO
"MMU: Allocated %zu bytes of context maps for %d contexts\n",
2 * CTX_MAP_SIZE + (sizeof(void *) * (LAST_CONTEXT + 1)),
LAST_CONTEXT - FIRST_CONTEXT + 1);
/*
* Some processors have too few contexts to reserve one for
* init_mm, and require using context 0 for a normal task.
* Other processors reserve the use of context zero for the kernel.
* This code assumes FIRST_CONTEXT < 32.
*/
context_map[0] = (1 << FIRST_CONTEXT) - 1;
next_context = FIRST_CONTEXT;
nr_free_contexts = LAST_CONTEXT - FIRST_CONTEXT + 1;
}