mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-25 12:04:46 +08:00
59dc5bfca0
When an interrupt is taken, the SRR registers are set to return to where it left off. Unless they are modified in the meantime, or the return address or MSR are modified, there is no need to reload these registers when returning from interrupt. Introduce per-CPU flags that track the validity of SRR and HSRR registers. These are cleared when returning from interrupt, when using the registers for something else (e.g., OPAL calls), when adjusting the return address or MSR of a context, and when context switching (which changes the return address and MSR). This improves the performance of interrupt returns. Signed-off-by: Nicholas Piggin <npiggin@gmail.com> [mpe: Fold in fixup patch from Nick] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20210617155116.2167984-5-npiggin@gmail.com
361 lines
9.8 KiB
C
361 lines
9.8 KiB
C
/*
|
|
* Common signal handling code for both 32 and 64 bits
|
|
*
|
|
* Copyright (c) 2007 Benjamin Herrenschmidt, IBM Corporation
|
|
* Extracted from signal_32.c and signal_64.c
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General
|
|
* Public License. See the file README.legal in the main directory of
|
|
* this archive for more details.
|
|
*/
|
|
|
|
#include <linux/tracehook.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/uprobes.h>
|
|
#include <linux/key.h>
|
|
#include <linux/context_tracking.h>
|
|
#include <linux/livepatch.h>
|
|
#include <linux/syscalls.h>
|
|
#include <asm/hw_breakpoint.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/switch_to.h>
|
|
#include <asm/unistd.h>
|
|
#include <asm/debug.h>
|
|
#include <asm/tm.h>
|
|
|
|
#include "signal.h"
|
|
|
|
#ifdef CONFIG_VSX
|
|
unsigned long copy_fpr_to_user(void __user *to,
|
|
struct task_struct *task)
|
|
{
|
|
u64 buf[ELF_NFPREG];
|
|
int i;
|
|
|
|
/* save FPR copy to local buffer then write to the thread_struct */
|
|
for (i = 0; i < (ELF_NFPREG - 1) ; i++)
|
|
buf[i] = task->thread.TS_FPR(i);
|
|
buf[i] = task->thread.fp_state.fpscr;
|
|
return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
|
|
}
|
|
|
|
unsigned long copy_fpr_from_user(struct task_struct *task,
|
|
void __user *from)
|
|
{
|
|
u64 buf[ELF_NFPREG];
|
|
int i;
|
|
|
|
if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
|
|
return 1;
|
|
for (i = 0; i < (ELF_NFPREG - 1) ; i++)
|
|
task->thread.TS_FPR(i) = buf[i];
|
|
task->thread.fp_state.fpscr = buf[i];
|
|
|
|
return 0;
|
|
}
|
|
|
|
unsigned long copy_vsx_to_user(void __user *to,
|
|
struct task_struct *task)
|
|
{
|
|
u64 buf[ELF_NVSRHALFREG];
|
|
int i;
|
|
|
|
/* save FPR copy to local buffer then write to the thread_struct */
|
|
for (i = 0; i < ELF_NVSRHALFREG; i++)
|
|
buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
|
|
return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
|
|
}
|
|
|
|
unsigned long copy_vsx_from_user(struct task_struct *task,
|
|
void __user *from)
|
|
{
|
|
u64 buf[ELF_NVSRHALFREG];
|
|
int i;
|
|
|
|
if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
|
|
return 1;
|
|
for (i = 0; i < ELF_NVSRHALFREG ; i++)
|
|
task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
unsigned long copy_ckfpr_to_user(void __user *to,
|
|
struct task_struct *task)
|
|
{
|
|
u64 buf[ELF_NFPREG];
|
|
int i;
|
|
|
|
/* save FPR copy to local buffer then write to the thread_struct */
|
|
for (i = 0; i < (ELF_NFPREG - 1) ; i++)
|
|
buf[i] = task->thread.TS_CKFPR(i);
|
|
buf[i] = task->thread.ckfp_state.fpscr;
|
|
return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
|
|
}
|
|
|
|
unsigned long copy_ckfpr_from_user(struct task_struct *task,
|
|
void __user *from)
|
|
{
|
|
u64 buf[ELF_NFPREG];
|
|
int i;
|
|
|
|
if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
|
|
return 1;
|
|
for (i = 0; i < (ELF_NFPREG - 1) ; i++)
|
|
task->thread.TS_CKFPR(i) = buf[i];
|
|
task->thread.ckfp_state.fpscr = buf[i];
|
|
|
|
return 0;
|
|
}
|
|
|
|
unsigned long copy_ckvsx_to_user(void __user *to,
|
|
struct task_struct *task)
|
|
{
|
|
u64 buf[ELF_NVSRHALFREG];
|
|
int i;
|
|
|
|
/* save FPR copy to local buffer then write to the thread_struct */
|
|
for (i = 0; i < ELF_NVSRHALFREG; i++)
|
|
buf[i] = task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
|
|
return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
|
|
}
|
|
|
|
unsigned long copy_ckvsx_from_user(struct task_struct *task,
|
|
void __user *from)
|
|
{
|
|
u64 buf[ELF_NVSRHALFREG];
|
|
int i;
|
|
|
|
if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
|
|
return 1;
|
|
for (i = 0; i < ELF_NVSRHALFREG ; i++)
|
|
task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
|
|
#endif
|
|
|
|
/* Log an error when sending an unhandled signal to a process. Controlled
|
|
* through debug.exception-trace sysctl.
|
|
*/
|
|
|
|
int show_unhandled_signals = 1;
|
|
|
|
/*
|
|
* Allocate space for the signal frame
|
|
*/
|
|
static unsigned long get_tm_stackpointer(struct task_struct *tsk);
|
|
|
|
void __user *get_sigframe(struct ksignal *ksig, struct task_struct *tsk,
|
|
size_t frame_size, int is_32)
|
|
{
|
|
unsigned long oldsp, newsp;
|
|
unsigned long sp = get_tm_stackpointer(tsk);
|
|
|
|
/* Default to using normal stack */
|
|
if (is_32)
|
|
oldsp = sp & 0x0ffffffffUL;
|
|
else
|
|
oldsp = sp;
|
|
oldsp = sigsp(oldsp, ksig);
|
|
newsp = (oldsp - frame_size) & ~0xFUL;
|
|
|
|
return (void __user *)newsp;
|
|
}
|
|
|
|
static void check_syscall_restart(struct pt_regs *regs, struct k_sigaction *ka,
|
|
int has_handler)
|
|
{
|
|
unsigned long ret = regs->gpr[3];
|
|
int restart = 1;
|
|
|
|
/* syscall ? */
|
|
if (!trap_is_syscall(regs))
|
|
return;
|
|
|
|
if (trap_norestart(regs))
|
|
return;
|
|
|
|
/* error signalled ? */
|
|
if (trap_is_scv(regs)) {
|
|
/* 32-bit compat mode sign extend? */
|
|
if (!IS_ERR_VALUE(ret))
|
|
return;
|
|
ret = -ret;
|
|
} else if (!(regs->ccr & 0x10000000)) {
|
|
return;
|
|
}
|
|
|
|
switch (ret) {
|
|
case ERESTART_RESTARTBLOCK:
|
|
case ERESTARTNOHAND:
|
|
/* ERESTARTNOHAND means that the syscall should only be
|
|
* restarted if there was no handler for the signal, and since
|
|
* we only get here if there is a handler, we dont restart.
|
|
*/
|
|
restart = !has_handler;
|
|
break;
|
|
case ERESTARTSYS:
|
|
/* ERESTARTSYS means to restart the syscall if there is no
|
|
* handler or the handler was registered with SA_RESTART
|
|
*/
|
|
restart = !has_handler || (ka->sa.sa_flags & SA_RESTART) != 0;
|
|
break;
|
|
case ERESTARTNOINTR:
|
|
/* ERESTARTNOINTR means that the syscall should be
|
|
* called again after the signal handler returns.
|
|
*/
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
if (restart) {
|
|
if (ret == ERESTART_RESTARTBLOCK)
|
|
regs->gpr[0] = __NR_restart_syscall;
|
|
else
|
|
regs->gpr[3] = regs->orig_gpr3;
|
|
regs_add_return_ip(regs, -4);
|
|
regs->result = 0;
|
|
} else {
|
|
if (trap_is_scv(regs)) {
|
|
regs->result = -EINTR;
|
|
regs->gpr[3] = -EINTR;
|
|
} else {
|
|
regs->result = -EINTR;
|
|
regs->gpr[3] = EINTR;
|
|
regs->ccr |= 0x10000000;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void do_signal(struct task_struct *tsk)
|
|
{
|
|
sigset_t *oldset = sigmask_to_save();
|
|
struct ksignal ksig = { .sig = 0 };
|
|
int ret;
|
|
|
|
BUG_ON(tsk != current);
|
|
|
|
get_signal(&ksig);
|
|
|
|
/* Is there any syscall restart business here ? */
|
|
check_syscall_restart(tsk->thread.regs, &ksig.ka, ksig.sig > 0);
|
|
|
|
if (ksig.sig <= 0) {
|
|
/* No signal to deliver -- put the saved sigmask back */
|
|
restore_saved_sigmask();
|
|
set_trap_norestart(tsk->thread.regs);
|
|
return; /* no signals delivered */
|
|
}
|
|
|
|
/*
|
|
* Reenable the DABR before delivering the signal to
|
|
* user space. The DABR will have been cleared if it
|
|
* triggered inside the kernel.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
|
|
int i;
|
|
|
|
for (i = 0; i < nr_wp_slots(); i++) {
|
|
if (tsk->thread.hw_brk[i].address && tsk->thread.hw_brk[i].type)
|
|
__set_breakpoint(i, &tsk->thread.hw_brk[i]);
|
|
}
|
|
}
|
|
|
|
/* Re-enable the breakpoints for the signal stack */
|
|
thread_change_pc(tsk, tsk->thread.regs);
|
|
|
|
rseq_signal_deliver(&ksig, tsk->thread.regs);
|
|
|
|
if (is_32bit_task()) {
|
|
if (ksig.ka.sa.sa_flags & SA_SIGINFO)
|
|
ret = handle_rt_signal32(&ksig, oldset, tsk);
|
|
else
|
|
ret = handle_signal32(&ksig, oldset, tsk);
|
|
} else {
|
|
ret = handle_rt_signal64(&ksig, oldset, tsk);
|
|
}
|
|
|
|
set_trap_norestart(tsk->thread.regs);
|
|
signal_setup_done(ret, &ksig, test_thread_flag(TIF_SINGLESTEP));
|
|
}
|
|
|
|
void do_notify_resume(struct pt_regs *regs, unsigned long thread_info_flags)
|
|
{
|
|
if (thread_info_flags & _TIF_UPROBE)
|
|
uprobe_notify_resume(regs);
|
|
|
|
if (thread_info_flags & _TIF_PATCH_PENDING)
|
|
klp_update_patch_state(current);
|
|
|
|
if (thread_info_flags & (_TIF_SIGPENDING | _TIF_NOTIFY_SIGNAL)) {
|
|
BUG_ON(regs != current->thread.regs);
|
|
do_signal(current);
|
|
}
|
|
|
|
if (thread_info_flags & _TIF_NOTIFY_RESUME) {
|
|
tracehook_notify_resume(regs);
|
|
rseq_handle_notify_resume(NULL, regs);
|
|
}
|
|
}
|
|
|
|
static unsigned long get_tm_stackpointer(struct task_struct *tsk)
|
|
{
|
|
/* When in an active transaction that takes a signal, we need to be
|
|
* careful with the stack. It's possible that the stack has moved back
|
|
* up after the tbegin. The obvious case here is when the tbegin is
|
|
* called inside a function that returns before a tend. In this case,
|
|
* the stack is part of the checkpointed transactional memory state.
|
|
* If we write over this non transactionally or in suspend, we are in
|
|
* trouble because if we get a tm abort, the program counter and stack
|
|
* pointer will be back at the tbegin but our in memory stack won't be
|
|
* valid anymore.
|
|
*
|
|
* To avoid this, when taking a signal in an active transaction, we
|
|
* need to use the stack pointer from the checkpointed state, rather
|
|
* than the speculated state. This ensures that the signal context
|
|
* (written tm suspended) will be written below the stack required for
|
|
* the rollback. The transaction is aborted because of the treclaim,
|
|
* so any memory written between the tbegin and the signal will be
|
|
* rolled back anyway.
|
|
*
|
|
* For signals taken in non-TM or suspended mode, we use the
|
|
* normal/non-checkpointed stack pointer.
|
|
*/
|
|
struct pt_regs *regs = tsk->thread.regs;
|
|
unsigned long ret = regs->gpr[1];
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
BUG_ON(tsk != current);
|
|
|
|
if (MSR_TM_ACTIVE(regs->msr)) {
|
|
preempt_disable();
|
|
tm_reclaim_current(TM_CAUSE_SIGNAL);
|
|
if (MSR_TM_TRANSACTIONAL(regs->msr))
|
|
ret = tsk->thread.ckpt_regs.gpr[1];
|
|
|
|
/*
|
|
* If we treclaim, we must clear the current thread's TM bits
|
|
* before re-enabling preemption. Otherwise we might be
|
|
* preempted and have the live MSR[TS] changed behind our back
|
|
* (tm_recheckpoint_new_task() would recheckpoint). Besides, we
|
|
* enter the signal handler in non-transactional state.
|
|
*/
|
|
regs_set_return_msr(regs, regs->msr & ~MSR_TS_MASK);
|
|
preempt_enable();
|
|
}
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
static const char fm32[] = KERN_INFO "%s[%d]: bad frame in %s: %p nip %08lx lr %08lx\n";
|
|
static const char fm64[] = KERN_INFO "%s[%d]: bad frame in %s: %p nip %016lx lr %016lx\n";
|
|
|
|
void signal_fault(struct task_struct *tsk, struct pt_regs *regs,
|
|
const char *where, void __user *ptr)
|
|
{
|
|
if (show_unhandled_signals)
|
|
printk_ratelimited(regs->msr & MSR_64BIT ? fm64 : fm32, tsk->comm,
|
|
task_pid_nr(tsk), where, ptr, regs->nip, regs->link);
|
|
}
|