linux/drivers/net/wireless/iwlwifi/mvm/time-event.c
Emmanuel Grumbach 410dc5aa59 iwlwifi: a few fixes in license
7000.c was released as GPL only by mistake: it should be
dual licensed - GPL / BSD.
The file that contains the license in the kernel is COPYING
and not LICENSE.GPL.

Signed-off-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com>
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2013-03-06 16:46:59 +01:00

520 lines
17 KiB
C

/******************************************************************************
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2012 - 2013 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
* USA
*
* The full GNU General Public License is included in this distribution
* in the file called COPYING.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
* BSD LICENSE
*
* Copyright(c) 2012 - 2013 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*****************************************************************************/
#include <linux/jiffies.h>
#include <net/mac80211.h>
#include "iwl-notif-wait.h"
#include "iwl-trans.h"
#include "fw-api.h"
#include "time-event.h"
#include "mvm.h"
#include "iwl-io.h"
#include "iwl-prph.h"
/* A TimeUnit is 1024 microsecond */
#define TU_TO_JIFFIES(_tu) (usecs_to_jiffies((_tu) * 1024))
#define MSEC_TO_TU(_msec) (_msec*1000/1024)
/* For ROC use a TE type which has priority high enough to be scheduled when
* there is a concurrent BSS or GO/AP. Currently, use a TE type that has
* priority similar to the TE priority used for action scans by the FW.
* TODO: This needs to be changed, based on the reason for the ROC, i.e., use
* TE_P2P_DEVICE_DISCOVERABLE for remain on channel without mgmt skb, and use
* TE_P2P_DEVICE_ACTION_SCAN
*/
#define IWL_MVM_ROC_TE_TYPE TE_P2P_DEVICE_ACTION_SCAN
void iwl_mvm_te_clear_data(struct iwl_mvm *mvm,
struct iwl_mvm_time_event_data *te_data)
{
lockdep_assert_held(&mvm->time_event_lock);
if (te_data->id == TE_MAX)
return;
list_del(&te_data->list);
te_data->running = false;
te_data->uid = 0;
te_data->id = TE_MAX;
te_data->vif = NULL;
}
void iwl_mvm_roc_done_wk(struct work_struct *wk)
{
struct iwl_mvm *mvm = container_of(wk, struct iwl_mvm, roc_done_wk);
synchronize_net();
/*
* Flush the offchannel queue -- this is called when the time
* event finishes or is cancelled, so that frames queued for it
* won't get stuck on the queue and be transmitted in the next
* time event.
* We have to send the command asynchronously since this cannot
* be under the mutex for locking reasons, but that's not an
* issue as it will have to complete before the next command is
* executed, and a new time event means a new command.
*/
iwl_mvm_flush_tx_path(mvm, BIT(IWL_OFFCHANNEL_QUEUE), false);
}
static void iwl_mvm_roc_finished(struct iwl_mvm *mvm)
{
/*
* First, clear the ROC_RUNNING status bit. This will cause the TX
* path to drop offchannel transmissions. That would also be done
* by mac80211, but it is racy, in particular in the case that the
* time event actually completed in the firmware (which is handled
* in iwl_mvm_te_handle_notif).
*/
clear_bit(IWL_MVM_STATUS_ROC_RUNNING, &mvm->status);
/*
* Of course, our status bit is just as racy as mac80211, so in
* addition, fire off the work struct which will drop all frames
* from the hardware queues that made it through the race. First
* it will of course synchronize the TX path to make sure that
* any *new* TX will be rejected.
*/
schedule_work(&mvm->roc_done_wk);
}
/*
* Handles a FW notification for an event that is known to the driver.
*
* @mvm: the mvm component
* @te_data: the time event data
* @notif: the notification data corresponding the time event data.
*/
static void iwl_mvm_te_handle_notif(struct iwl_mvm *mvm,
struct iwl_mvm_time_event_data *te_data,
struct iwl_time_event_notif *notif)
{
lockdep_assert_held(&mvm->time_event_lock);
IWL_DEBUG_TE(mvm, "Handle time event notif - UID = 0x%x action %d\n",
le32_to_cpu(notif->unique_id),
le32_to_cpu(notif->action));
/*
* The FW sends the start/end time event notifications even for events
* that it fails to schedule. This is indicated in the status field of
* the notification. This happens in cases that the scheduler cannot
* find a schedule that can handle the event (for example requesting a
* P2P Device discoveribility, while there are other higher priority
* events in the system).
*/
WARN_ONCE(!le32_to_cpu(notif->status),
"Failed to schedule time event\n");
if (le32_to_cpu(notif->action) == TE_NOTIF_HOST_END) {
IWL_DEBUG_TE(mvm,
"TE ended - current time %lu, estimated end %lu\n",
jiffies, te_data->end_jiffies);
if (te_data->vif->type == NL80211_IFTYPE_P2P_DEVICE) {
ieee80211_remain_on_channel_expired(mvm->hw);
iwl_mvm_roc_finished(mvm);
}
/*
* By now, we should have finished association
* and know the dtim period.
*/
if (te_data->vif->type == NL80211_IFTYPE_STATION &&
(!te_data->vif->bss_conf.assoc ||
!te_data->vif->bss_conf.dtim_period)) {
IWL_ERR(mvm,
"No assocation and the time event is over already...\n");
ieee80211_connection_loss(te_data->vif);
}
iwl_mvm_te_clear_data(mvm, te_data);
} else if (le32_to_cpu(notif->action) == TE_NOTIF_HOST_START) {
te_data->running = true;
te_data->end_jiffies = jiffies +
TU_TO_JIFFIES(te_data->duration);
if (te_data->vif->type == NL80211_IFTYPE_P2P_DEVICE) {
set_bit(IWL_MVM_STATUS_ROC_RUNNING, &mvm->status);
ieee80211_ready_on_channel(mvm->hw);
}
} else {
IWL_WARN(mvm, "Got TE with unknown action\n");
}
}
/*
* The Rx handler for time event notifications
*/
int iwl_mvm_rx_time_event_notif(struct iwl_mvm *mvm,
struct iwl_rx_cmd_buffer *rxb,
struct iwl_device_cmd *cmd)
{
struct iwl_rx_packet *pkt = rxb_addr(rxb);
struct iwl_time_event_notif *notif = (void *)pkt->data;
struct iwl_mvm_time_event_data *te_data, *tmp;
IWL_DEBUG_TE(mvm, "Time event notification - UID = 0x%x action %d\n",
le32_to_cpu(notif->unique_id),
le32_to_cpu(notif->action));
spin_lock_bh(&mvm->time_event_lock);
list_for_each_entry_safe(te_data, tmp, &mvm->time_event_list, list) {
if (le32_to_cpu(notif->unique_id) == te_data->uid)
iwl_mvm_te_handle_notif(mvm, te_data, notif);
}
spin_unlock_bh(&mvm->time_event_lock);
return 0;
}
static bool iwl_mvm_time_event_response(struct iwl_notif_wait_data *notif_wait,
struct iwl_rx_packet *pkt, void *data)
{
struct iwl_mvm *mvm =
container_of(notif_wait, struct iwl_mvm, notif_wait);
struct iwl_mvm_time_event_data *te_data = data;
struct iwl_time_event_resp *resp;
int resp_len = le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
if (WARN_ON(pkt->hdr.cmd != TIME_EVENT_CMD))
return true;
if (WARN_ON_ONCE(resp_len != sizeof(pkt->hdr) + sizeof(*resp))) {
IWL_ERR(mvm, "Invalid TIME_EVENT_CMD response\n");
return true;
}
resp = (void *)pkt->data;
/* we should never get a response to another TIME_EVENT_CMD here */
if (WARN_ON_ONCE(le32_to_cpu(resp->id) != te_data->id))
return false;
te_data->uid = le32_to_cpu(resp->unique_id);
IWL_DEBUG_TE(mvm, "TIME_EVENT_CMD response - UID = 0x%x\n",
te_data->uid);
return true;
}
static int iwl_mvm_time_event_send_add(struct iwl_mvm *mvm,
struct ieee80211_vif *vif,
struct iwl_mvm_time_event_data *te_data,
struct iwl_time_event_cmd *te_cmd)
{
static const u8 time_event_response[] = { TIME_EVENT_CMD };
struct iwl_notification_wait wait_time_event;
int ret;
lockdep_assert_held(&mvm->mutex);
IWL_DEBUG_TE(mvm, "Add new TE, duration %d TU\n",
le32_to_cpu(te_cmd->duration));
spin_lock_bh(&mvm->time_event_lock);
if (WARN_ON(te_data->id != TE_MAX)) {
spin_unlock_bh(&mvm->time_event_lock);
return -EIO;
}
te_data->vif = vif;
te_data->duration = le32_to_cpu(te_cmd->duration);
te_data->id = le32_to_cpu(te_cmd->id);
list_add_tail(&te_data->list, &mvm->time_event_list);
spin_unlock_bh(&mvm->time_event_lock);
/*
* Use a notification wait, which really just processes the
* command response and doesn't wait for anything, in order
* to be able to process the response and get the UID inside
* the RX path. Using CMD_WANT_SKB doesn't work because it
* stores the buffer and then wakes up this thread, by which
* time another notification (that the time event started)
* might already be processed unsuccessfully.
*/
iwl_init_notification_wait(&mvm->notif_wait, &wait_time_event,
time_event_response,
ARRAY_SIZE(time_event_response),
iwl_mvm_time_event_response, te_data);
ret = iwl_mvm_send_cmd_pdu(mvm, TIME_EVENT_CMD, CMD_SYNC,
sizeof(*te_cmd), te_cmd);
if (ret) {
IWL_ERR(mvm, "Couldn't send TIME_EVENT_CMD: %d\n", ret);
iwl_remove_notification(&mvm->notif_wait, &wait_time_event);
goto out_clear_te;
}
/* No need to wait for anything, so just pass 1 (0 isn't valid) */
ret = iwl_wait_notification(&mvm->notif_wait, &wait_time_event, 1);
/* should never fail */
WARN_ON_ONCE(ret);
if (ret) {
out_clear_te:
spin_lock_bh(&mvm->time_event_lock);
iwl_mvm_te_clear_data(mvm, te_data);
spin_unlock_bh(&mvm->time_event_lock);
}
return ret;
}
void iwl_mvm_protect_session(struct iwl_mvm *mvm,
struct ieee80211_vif *vif,
u32 duration, u32 min_duration)
{
struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif);
struct iwl_mvm_time_event_data *te_data = &mvmvif->time_event_data;
struct iwl_time_event_cmd time_cmd = {};
lockdep_assert_held(&mvm->mutex);
if (te_data->running &&
time_after(te_data->end_jiffies,
jiffies + TU_TO_JIFFIES(min_duration))) {
IWL_DEBUG_TE(mvm, "We have enough time in the current TE: %u\n",
jiffies_to_msecs(te_data->end_jiffies - jiffies));
return;
}
if (te_data->running) {
IWL_DEBUG_TE(mvm, "extend 0x%x: only %u ms left\n",
te_data->uid,
jiffies_to_msecs(te_data->end_jiffies - jiffies));
/*
* we don't have enough time
* cancel the current TE and issue a new one
* Of course it would be better to remove the old one only
* when the new one is added, but we don't care if we are off
* channel for a bit. All we need to do, is not to return
* before we actually begin to be on the channel.
*/
iwl_mvm_stop_session_protection(mvm, vif);
}
time_cmd.action = cpu_to_le32(FW_CTXT_ACTION_ADD);
time_cmd.id_and_color =
cpu_to_le32(FW_CMD_ID_AND_COLOR(mvmvif->id, mvmvif->color));
time_cmd.id = cpu_to_le32(TE_BSS_STA_AGGRESSIVE_ASSOC);
time_cmd.apply_time =
cpu_to_le32(iwl_read_prph(mvm->trans, DEVICE_SYSTEM_TIME_REG));
time_cmd.dep_policy = TE_INDEPENDENT;
time_cmd.is_present = cpu_to_le32(1);
time_cmd.max_frags = cpu_to_le32(TE_FRAG_NONE);
time_cmd.max_delay = cpu_to_le32(500);
/* TODO: why do we need to interval = bi if it is not periodic? */
time_cmd.interval = cpu_to_le32(1);
time_cmd.interval_reciprocal = cpu_to_le32(iwl_mvm_reciprocal(1));
time_cmd.duration = cpu_to_le32(duration);
time_cmd.repeat = cpu_to_le32(1);
time_cmd.notify = cpu_to_le32(TE_NOTIF_HOST_START | TE_NOTIF_HOST_END);
iwl_mvm_time_event_send_add(mvm, vif, te_data, &time_cmd);
}
/*
* Explicit request to remove a time event. The removal of a time event needs to
* be synchronized with the flow of a time event's end notification, which also
* removes the time event from the op mode data structures.
*/
void iwl_mvm_remove_time_event(struct iwl_mvm *mvm,
struct iwl_mvm_vif *mvmvif,
struct iwl_mvm_time_event_data *te_data)
{
struct iwl_time_event_cmd time_cmd = {};
u32 id, uid;
int ret;
/*
* It is possible that by the time we got to this point the time
* event was already removed.
*/
spin_lock_bh(&mvm->time_event_lock);
/* Save time event uid before clearing its data */
uid = te_data->uid;
id = te_data->id;
/*
* The clear_data function handles time events that were already removed
*/
iwl_mvm_te_clear_data(mvm, te_data);
spin_unlock_bh(&mvm->time_event_lock);
/*
* It is possible that by the time we try to remove it, the time event
* has already ended and removed. In such a case there is no need to
* send a removal command.
*/
if (id == TE_MAX) {
IWL_DEBUG_TE(mvm, "TE 0x%x has already ended\n", uid);
return;
}
/* When we remove a TE, the UID is to be set in the id field */
time_cmd.id = cpu_to_le32(uid);
time_cmd.action = cpu_to_le32(FW_CTXT_ACTION_REMOVE);
time_cmd.id_and_color =
cpu_to_le32(FW_CMD_ID_AND_COLOR(mvmvif->id, mvmvif->color));
IWL_DEBUG_TE(mvm, "Removing TE 0x%x\n", le32_to_cpu(time_cmd.id));
ret = iwl_mvm_send_cmd_pdu(mvm, TIME_EVENT_CMD, CMD_SYNC,
sizeof(time_cmd), &time_cmd);
if (WARN_ON(ret))
return;
}
void iwl_mvm_stop_session_protection(struct iwl_mvm *mvm,
struct ieee80211_vif *vif)
{
struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif);
struct iwl_mvm_time_event_data *te_data = &mvmvif->time_event_data;
lockdep_assert_held(&mvm->mutex);
iwl_mvm_remove_time_event(mvm, mvmvif, te_data);
}
int iwl_mvm_start_p2p_roc(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
int duration)
{
struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif);
struct iwl_mvm_time_event_data *te_data = &mvmvif->time_event_data;
struct iwl_time_event_cmd time_cmd = {};
lockdep_assert_held(&mvm->mutex);
if (te_data->running) {
IWL_WARN(mvm, "P2P_DEVICE remain on channel already running\n");
return -EBUSY;
}
/*
* Flush the done work, just in case it's still pending, so that
* the work it does can complete and we can accept new frames.
*/
flush_work(&mvm->roc_done_wk);
time_cmd.action = cpu_to_le32(FW_CTXT_ACTION_ADD);
time_cmd.id_and_color =
cpu_to_le32(FW_CMD_ID_AND_COLOR(mvmvif->id, mvmvif->color));
time_cmd.id = cpu_to_le32(IWL_MVM_ROC_TE_TYPE);
time_cmd.apply_time = cpu_to_le32(0);
time_cmd.dep_policy = cpu_to_le32(TE_INDEPENDENT);
time_cmd.is_present = cpu_to_le32(1);
time_cmd.interval = cpu_to_le32(1);
/*
* IWL_MVM_ROC_TE_TYPE can have lower priority than other events
* that are being scheduled by the driver/fw, and thus it might not be
* scheduled. To improve the chances of it being scheduled, allow it to
* be fragmented.
* In addition, for the same reasons, allow to delay the scheduling of
* the time event.
*/
time_cmd.max_frags = cpu_to_le32(MSEC_TO_TU(duration)/20);
time_cmd.max_delay = cpu_to_le32(MSEC_TO_TU(duration/2));
time_cmd.duration = cpu_to_le32(MSEC_TO_TU(duration));
time_cmd.repeat = cpu_to_le32(1);
time_cmd.notify = cpu_to_le32(TE_NOTIF_HOST_START | TE_NOTIF_HOST_END);
return iwl_mvm_time_event_send_add(mvm, vif, te_data, &time_cmd);
}
void iwl_mvm_stop_p2p_roc(struct iwl_mvm *mvm)
{
struct iwl_mvm_vif *mvmvif;
struct iwl_mvm_time_event_data *te_data;
lockdep_assert_held(&mvm->mutex);
/*
* Iterate over the list of time events and find the time event that is
* associated with a P2P_DEVICE interface.
* This assumes that a P2P_DEVICE interface can have only a single time
* event at any given time and this time event coresponds to a ROC
* request
*/
mvmvif = NULL;
spin_lock_bh(&mvm->time_event_lock);
list_for_each_entry(te_data, &mvm->time_event_list, list) {
if (te_data->vif->type == NL80211_IFTYPE_P2P_DEVICE) {
mvmvif = iwl_mvm_vif_from_mac80211(te_data->vif);
break;
}
}
spin_unlock_bh(&mvm->time_event_lock);
if (!mvmvif) {
IWL_WARN(mvm, "P2P_DEVICE no remain on channel event\n");
return;
}
iwl_mvm_remove_time_event(mvm, mvmvif, te_data);
iwl_mvm_roc_finished(mvm);
}