mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-27 00:04:47 +08:00
c1de45ca83
Idle injection drivers such as Intel powerclamp and ACPI PAD drivers use realtime tasks to take control of CPU then inject idle. There are two issues with this approach: 1. Low efficiency: injected idle task is treated as busy so sched ticks do not stop during injected idle period, the result of these unwanted wakeups can be ~20% loss in power savings. 2. Idle accounting: injected idle time is presented to user as busy. This patch addresses the issues by introducing a new PF_IDLE flag which allows any given task to be treated as idle task while the flag is set. Therefore, idle injection tasks can run through the normal flow of NOHZ idle enter/exit to get the correct accounting as well as tick stop when possible. The implication is that idle task is then no longer limited to PID == 0. Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
347 lines
8.5 KiB
C
347 lines
8.5 KiB
C
/*
|
|
* Generic entry point for the idle threads
|
|
*/
|
|
#include <linux/sched.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpuidle.h>
|
|
#include <linux/cpuhotplug.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/stackprotector.h>
|
|
#include <linux/suspend.h>
|
|
|
|
#include <asm/tlb.h>
|
|
|
|
#include <trace/events/power.h>
|
|
|
|
#include "sched.h"
|
|
|
|
/* Linker adds these: start and end of __cpuidle functions */
|
|
extern char __cpuidle_text_start[], __cpuidle_text_end[];
|
|
|
|
/**
|
|
* sched_idle_set_state - Record idle state for the current CPU.
|
|
* @idle_state: State to record.
|
|
*/
|
|
void sched_idle_set_state(struct cpuidle_state *idle_state)
|
|
{
|
|
idle_set_state(this_rq(), idle_state);
|
|
}
|
|
|
|
static int __read_mostly cpu_idle_force_poll;
|
|
|
|
void cpu_idle_poll_ctrl(bool enable)
|
|
{
|
|
if (enable) {
|
|
cpu_idle_force_poll++;
|
|
} else {
|
|
cpu_idle_force_poll--;
|
|
WARN_ON_ONCE(cpu_idle_force_poll < 0);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_GENERIC_IDLE_POLL_SETUP
|
|
static int __init cpu_idle_poll_setup(char *__unused)
|
|
{
|
|
cpu_idle_force_poll = 1;
|
|
return 1;
|
|
}
|
|
__setup("nohlt", cpu_idle_poll_setup);
|
|
|
|
static int __init cpu_idle_nopoll_setup(char *__unused)
|
|
{
|
|
cpu_idle_force_poll = 0;
|
|
return 1;
|
|
}
|
|
__setup("hlt", cpu_idle_nopoll_setup);
|
|
#endif
|
|
|
|
static noinline int __cpuidle cpu_idle_poll(void)
|
|
{
|
|
rcu_idle_enter();
|
|
trace_cpu_idle_rcuidle(0, smp_processor_id());
|
|
local_irq_enable();
|
|
stop_critical_timings();
|
|
while (!tif_need_resched() &&
|
|
(cpu_idle_force_poll || tick_check_broadcast_expired()))
|
|
cpu_relax();
|
|
start_critical_timings();
|
|
trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
|
|
rcu_idle_exit();
|
|
return 1;
|
|
}
|
|
|
|
/* Weak implementations for optional arch specific functions */
|
|
void __weak arch_cpu_idle_prepare(void) { }
|
|
void __weak arch_cpu_idle_enter(void) { }
|
|
void __weak arch_cpu_idle_exit(void) { }
|
|
void __weak arch_cpu_idle_dead(void) { }
|
|
void __weak arch_cpu_idle(void)
|
|
{
|
|
cpu_idle_force_poll = 1;
|
|
local_irq_enable();
|
|
}
|
|
|
|
/**
|
|
* default_idle_call - Default CPU idle routine.
|
|
*
|
|
* To use when the cpuidle framework cannot be used.
|
|
*/
|
|
void __cpuidle default_idle_call(void)
|
|
{
|
|
if (current_clr_polling_and_test()) {
|
|
local_irq_enable();
|
|
} else {
|
|
stop_critical_timings();
|
|
arch_cpu_idle();
|
|
start_critical_timings();
|
|
}
|
|
}
|
|
|
|
static int call_cpuidle(struct cpuidle_driver *drv, struct cpuidle_device *dev,
|
|
int next_state)
|
|
{
|
|
/*
|
|
* The idle task must be scheduled, it is pointless to go to idle, just
|
|
* update no idle residency and return.
|
|
*/
|
|
if (current_clr_polling_and_test()) {
|
|
dev->last_residency = 0;
|
|
local_irq_enable();
|
|
return -EBUSY;
|
|
}
|
|
|
|
/*
|
|
* Enter the idle state previously returned by the governor decision.
|
|
* This function will block until an interrupt occurs and will take
|
|
* care of re-enabling the local interrupts
|
|
*/
|
|
return cpuidle_enter(drv, dev, next_state);
|
|
}
|
|
|
|
/**
|
|
* cpuidle_idle_call - the main idle function
|
|
*
|
|
* NOTE: no locks or semaphores should be used here
|
|
*
|
|
* On archs that support TIF_POLLING_NRFLAG, is called with polling
|
|
* set, and it returns with polling set. If it ever stops polling, it
|
|
* must clear the polling bit.
|
|
*/
|
|
static void cpuidle_idle_call(void)
|
|
{
|
|
struct cpuidle_device *dev = cpuidle_get_device();
|
|
struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
|
|
int next_state, entered_state;
|
|
|
|
/*
|
|
* Check if the idle task must be rescheduled. If it is the
|
|
* case, exit the function after re-enabling the local irq.
|
|
*/
|
|
if (need_resched()) {
|
|
local_irq_enable();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Tell the RCU framework we are entering an idle section,
|
|
* so no more rcu read side critical sections and one more
|
|
* step to the grace period
|
|
*/
|
|
rcu_idle_enter();
|
|
|
|
if (cpuidle_not_available(drv, dev)) {
|
|
default_idle_call();
|
|
goto exit_idle;
|
|
}
|
|
|
|
/*
|
|
* Suspend-to-idle ("freeze") is a system state in which all user space
|
|
* has been frozen, all I/O devices have been suspended and the only
|
|
* activity happens here and in iterrupts (if any). In that case bypass
|
|
* the cpuidle governor and go stratight for the deepest idle state
|
|
* available. Possibly also suspend the local tick and the entire
|
|
* timekeeping to prevent timer interrupts from kicking us out of idle
|
|
* until a proper wakeup interrupt happens.
|
|
*/
|
|
|
|
if (idle_should_freeze() || dev->use_deepest_state) {
|
|
if (idle_should_freeze()) {
|
|
entered_state = cpuidle_enter_freeze(drv, dev);
|
|
if (entered_state > 0) {
|
|
local_irq_enable();
|
|
goto exit_idle;
|
|
}
|
|
}
|
|
|
|
next_state = cpuidle_find_deepest_state(drv, dev);
|
|
call_cpuidle(drv, dev, next_state);
|
|
} else {
|
|
/*
|
|
* Ask the cpuidle framework to choose a convenient idle state.
|
|
*/
|
|
next_state = cpuidle_select(drv, dev);
|
|
entered_state = call_cpuidle(drv, dev, next_state);
|
|
/*
|
|
* Give the governor an opportunity to reflect on the outcome
|
|
*/
|
|
cpuidle_reflect(dev, entered_state);
|
|
}
|
|
|
|
exit_idle:
|
|
__current_set_polling();
|
|
|
|
/*
|
|
* It is up to the idle functions to reenable local interrupts
|
|
*/
|
|
if (WARN_ON_ONCE(irqs_disabled()))
|
|
local_irq_enable();
|
|
|
|
rcu_idle_exit();
|
|
}
|
|
|
|
/*
|
|
* Generic idle loop implementation
|
|
*
|
|
* Called with polling cleared.
|
|
*/
|
|
static void do_idle(void)
|
|
{
|
|
/*
|
|
* If the arch has a polling bit, we maintain an invariant:
|
|
*
|
|
* Our polling bit is clear if we're not scheduled (i.e. if rq->curr !=
|
|
* rq->idle). This means that, if rq->idle has the polling bit set,
|
|
* then setting need_resched is guaranteed to cause the CPU to
|
|
* reschedule.
|
|
*/
|
|
|
|
__current_set_polling();
|
|
tick_nohz_idle_enter();
|
|
|
|
while (!need_resched()) {
|
|
check_pgt_cache();
|
|
rmb();
|
|
|
|
if (cpu_is_offline(smp_processor_id())) {
|
|
cpuhp_report_idle_dead();
|
|
arch_cpu_idle_dead();
|
|
}
|
|
|
|
local_irq_disable();
|
|
arch_cpu_idle_enter();
|
|
|
|
/*
|
|
* In poll mode we reenable interrupts and spin. Also if we
|
|
* detected in the wakeup from idle path that the tick
|
|
* broadcast device expired for us, we don't want to go deep
|
|
* idle as we know that the IPI is going to arrive right away.
|
|
*/
|
|
if (cpu_idle_force_poll || tick_check_broadcast_expired())
|
|
cpu_idle_poll();
|
|
else
|
|
cpuidle_idle_call();
|
|
arch_cpu_idle_exit();
|
|
}
|
|
|
|
/*
|
|
* Since we fell out of the loop above, we know TIF_NEED_RESCHED must
|
|
* be set, propagate it into PREEMPT_NEED_RESCHED.
|
|
*
|
|
* This is required because for polling idle loops we will not have had
|
|
* an IPI to fold the state for us.
|
|
*/
|
|
preempt_set_need_resched();
|
|
tick_nohz_idle_exit();
|
|
__current_clr_polling();
|
|
|
|
/*
|
|
* We promise to call sched_ttwu_pending() and reschedule if
|
|
* need_resched() is set while polling is set. That means that clearing
|
|
* polling needs to be visible before doing these things.
|
|
*/
|
|
smp_mb__after_atomic();
|
|
|
|
sched_ttwu_pending();
|
|
schedule_preempt_disabled();
|
|
}
|
|
|
|
bool cpu_in_idle(unsigned long pc)
|
|
{
|
|
return pc >= (unsigned long)__cpuidle_text_start &&
|
|
pc < (unsigned long)__cpuidle_text_end;
|
|
}
|
|
|
|
struct idle_timer {
|
|
struct hrtimer timer;
|
|
int done;
|
|
};
|
|
|
|
static enum hrtimer_restart idle_inject_timer_fn(struct hrtimer *timer)
|
|
{
|
|
struct idle_timer *it = container_of(timer, struct idle_timer, timer);
|
|
|
|
WRITE_ONCE(it->done, 1);
|
|
set_tsk_need_resched(current);
|
|
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
void play_idle(unsigned long duration_ms)
|
|
{
|
|
struct idle_timer it;
|
|
|
|
/*
|
|
* Only FIFO tasks can disable the tick since they don't need the forced
|
|
* preemption.
|
|
*/
|
|
WARN_ON_ONCE(current->policy != SCHED_FIFO);
|
|
WARN_ON_ONCE(current->nr_cpus_allowed != 1);
|
|
WARN_ON_ONCE(!(current->flags & PF_KTHREAD));
|
|
WARN_ON_ONCE(!(current->flags & PF_NO_SETAFFINITY));
|
|
WARN_ON_ONCE(!duration_ms);
|
|
|
|
rcu_sleep_check();
|
|
preempt_disable();
|
|
current->flags |= PF_IDLE;
|
|
cpuidle_use_deepest_state(true);
|
|
|
|
it.done = 0;
|
|
hrtimer_init_on_stack(&it.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
|
it.timer.function = idle_inject_timer_fn;
|
|
hrtimer_start(&it.timer, ms_to_ktime(duration_ms), HRTIMER_MODE_REL_PINNED);
|
|
|
|
while (!READ_ONCE(it.done))
|
|
do_idle();
|
|
|
|
cpuidle_use_deepest_state(false);
|
|
current->flags &= ~PF_IDLE;
|
|
|
|
preempt_fold_need_resched();
|
|
preempt_enable();
|
|
}
|
|
EXPORT_SYMBOL_GPL(play_idle);
|
|
|
|
void cpu_startup_entry(enum cpuhp_state state)
|
|
{
|
|
/*
|
|
* This #ifdef needs to die, but it's too late in the cycle to
|
|
* make this generic (arm and sh have never invoked the canary
|
|
* init for the non boot cpus!). Will be fixed in 3.11
|
|
*/
|
|
#ifdef CONFIG_X86
|
|
/*
|
|
* If we're the non-boot CPU, nothing set the stack canary up
|
|
* for us. The boot CPU already has it initialized but no harm
|
|
* in doing it again. This is a good place for updating it, as
|
|
* we wont ever return from this function (so the invalid
|
|
* canaries already on the stack wont ever trigger).
|
|
*/
|
|
boot_init_stack_canary();
|
|
#endif
|
|
arch_cpu_idle_prepare();
|
|
cpuhp_online_idle(state);
|
|
while (1)
|
|
do_idle();
|
|
}
|