mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-05 18:14:07 +08:00
96cc637235
This change fixes VM pool allocation issues based on MAC address filtering, as well as limits the scope of VF access to promiscuous mode. Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com> Acked-by: Greg Rose <gregory.v.rose@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2879 lines
79 KiB
C
2879 lines
79 KiB
C
/*******************************************************************************
|
|
|
|
Intel 10 Gigabit PCI Express Linux driver
|
|
Copyright(c) 1999 - 2010 Intel Corporation.
|
|
|
|
This program is free software; you can redistribute it and/or modify it
|
|
under the terms and conditions of the GNU General Public License,
|
|
version 2, as published by the Free Software Foundation.
|
|
|
|
This program is distributed in the hope it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
more details.
|
|
|
|
You should have received a copy of the GNU General Public License along with
|
|
this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
The full GNU General Public License is included in this distribution in
|
|
the file called "COPYING".
|
|
|
|
Contact Information:
|
|
e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
|
|
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
|
|
*******************************************************************************/
|
|
|
|
#include <linux/pci.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/netdevice.h>
|
|
|
|
#include "ixgbe.h"
|
|
#include "ixgbe_common.h"
|
|
#include "ixgbe_phy.h"
|
|
|
|
static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
|
|
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
|
|
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
|
|
static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
|
|
static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
|
|
static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
|
|
u16 count);
|
|
static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
|
|
static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
|
|
static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
|
|
static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
|
|
|
|
static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index);
|
|
static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index);
|
|
static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
|
|
static void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq);
|
|
static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num);
|
|
|
|
/**
|
|
* ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Starts the hardware by filling the bus info structure and media type, clears
|
|
* all on chip counters, initializes receive address registers, multicast
|
|
* table, VLAN filter table, calls routine to set up link and flow control
|
|
* settings, and leaves transmit and receive units disabled and uninitialized
|
|
**/
|
|
s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
|
|
{
|
|
u32 ctrl_ext;
|
|
|
|
/* Set the media type */
|
|
hw->phy.media_type = hw->mac.ops.get_media_type(hw);
|
|
|
|
/* Identify the PHY */
|
|
hw->phy.ops.identify(hw);
|
|
|
|
/* Clear the VLAN filter table */
|
|
hw->mac.ops.clear_vfta(hw);
|
|
|
|
/* Clear statistics registers */
|
|
hw->mac.ops.clear_hw_cntrs(hw);
|
|
|
|
/* Set No Snoop Disable */
|
|
ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
|
|
ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
|
|
IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
|
|
/* Setup flow control */
|
|
ixgbe_setup_fc(hw, 0);
|
|
|
|
/* Clear adapter stopped flag */
|
|
hw->adapter_stopped = false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_init_hw_generic - Generic hardware initialization
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Initialize the hardware by resetting the hardware, filling the bus info
|
|
* structure and media type, clears all on chip counters, initializes receive
|
|
* address registers, multicast table, VLAN filter table, calls routine to set
|
|
* up link and flow control settings, and leaves transmit and receive units
|
|
* disabled and uninitialized
|
|
**/
|
|
s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
|
|
{
|
|
s32 status;
|
|
|
|
/* Reset the hardware */
|
|
status = hw->mac.ops.reset_hw(hw);
|
|
|
|
if (status == 0) {
|
|
/* Start the HW */
|
|
status = hw->mac.ops.start_hw(hw);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Clears all hardware statistics counters by reading them from the hardware
|
|
* Statistics counters are clear on read.
|
|
**/
|
|
s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
|
|
{
|
|
u16 i = 0;
|
|
|
|
IXGBE_READ_REG(hw, IXGBE_CRCERRS);
|
|
IXGBE_READ_REG(hw, IXGBE_ILLERRC);
|
|
IXGBE_READ_REG(hw, IXGBE_ERRBC);
|
|
IXGBE_READ_REG(hw, IXGBE_MSPDC);
|
|
for (i = 0; i < 8; i++)
|
|
IXGBE_READ_REG(hw, IXGBE_MPC(i));
|
|
|
|
IXGBE_READ_REG(hw, IXGBE_MLFC);
|
|
IXGBE_READ_REG(hw, IXGBE_MRFC);
|
|
IXGBE_READ_REG(hw, IXGBE_RLEC);
|
|
IXGBE_READ_REG(hw, IXGBE_LXONTXC);
|
|
IXGBE_READ_REG(hw, IXGBE_LXONRXC);
|
|
IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
|
|
IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
|
|
IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
|
|
IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
|
|
IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
|
|
}
|
|
|
|
IXGBE_READ_REG(hw, IXGBE_PRC64);
|
|
IXGBE_READ_REG(hw, IXGBE_PRC127);
|
|
IXGBE_READ_REG(hw, IXGBE_PRC255);
|
|
IXGBE_READ_REG(hw, IXGBE_PRC511);
|
|
IXGBE_READ_REG(hw, IXGBE_PRC1023);
|
|
IXGBE_READ_REG(hw, IXGBE_PRC1522);
|
|
IXGBE_READ_REG(hw, IXGBE_GPRC);
|
|
IXGBE_READ_REG(hw, IXGBE_BPRC);
|
|
IXGBE_READ_REG(hw, IXGBE_MPRC);
|
|
IXGBE_READ_REG(hw, IXGBE_GPTC);
|
|
IXGBE_READ_REG(hw, IXGBE_GORCL);
|
|
IXGBE_READ_REG(hw, IXGBE_GORCH);
|
|
IXGBE_READ_REG(hw, IXGBE_GOTCL);
|
|
IXGBE_READ_REG(hw, IXGBE_GOTCH);
|
|
for (i = 0; i < 8; i++)
|
|
IXGBE_READ_REG(hw, IXGBE_RNBC(i));
|
|
IXGBE_READ_REG(hw, IXGBE_RUC);
|
|
IXGBE_READ_REG(hw, IXGBE_RFC);
|
|
IXGBE_READ_REG(hw, IXGBE_ROC);
|
|
IXGBE_READ_REG(hw, IXGBE_RJC);
|
|
IXGBE_READ_REG(hw, IXGBE_MNGPRC);
|
|
IXGBE_READ_REG(hw, IXGBE_MNGPDC);
|
|
IXGBE_READ_REG(hw, IXGBE_MNGPTC);
|
|
IXGBE_READ_REG(hw, IXGBE_TORL);
|
|
IXGBE_READ_REG(hw, IXGBE_TORH);
|
|
IXGBE_READ_REG(hw, IXGBE_TPR);
|
|
IXGBE_READ_REG(hw, IXGBE_TPT);
|
|
IXGBE_READ_REG(hw, IXGBE_PTC64);
|
|
IXGBE_READ_REG(hw, IXGBE_PTC127);
|
|
IXGBE_READ_REG(hw, IXGBE_PTC255);
|
|
IXGBE_READ_REG(hw, IXGBE_PTC511);
|
|
IXGBE_READ_REG(hw, IXGBE_PTC1023);
|
|
IXGBE_READ_REG(hw, IXGBE_PTC1522);
|
|
IXGBE_READ_REG(hw, IXGBE_MPTC);
|
|
IXGBE_READ_REG(hw, IXGBE_BPTC);
|
|
for (i = 0; i < 16; i++) {
|
|
IXGBE_READ_REG(hw, IXGBE_QPRC(i));
|
|
IXGBE_READ_REG(hw, IXGBE_QBRC(i));
|
|
IXGBE_READ_REG(hw, IXGBE_QPTC(i));
|
|
IXGBE_READ_REG(hw, IXGBE_QBTC(i));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_read_pba_string_generic - Reads part number string from EEPROM
|
|
* @hw: pointer to hardware structure
|
|
* @pba_num: stores the part number string from the EEPROM
|
|
* @pba_num_size: part number string buffer length
|
|
*
|
|
* Reads the part number string from the EEPROM.
|
|
**/
|
|
s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
|
|
u32 pba_num_size)
|
|
{
|
|
s32 ret_val;
|
|
u16 data;
|
|
u16 pba_ptr;
|
|
u16 offset;
|
|
u16 length;
|
|
|
|
if (pba_num == NULL) {
|
|
hw_dbg(hw, "PBA string buffer was null\n");
|
|
return IXGBE_ERR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
|
|
if (ret_val) {
|
|
hw_dbg(hw, "NVM Read Error\n");
|
|
return ret_val;
|
|
}
|
|
|
|
ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
|
|
if (ret_val) {
|
|
hw_dbg(hw, "NVM Read Error\n");
|
|
return ret_val;
|
|
}
|
|
|
|
/*
|
|
* if data is not ptr guard the PBA must be in legacy format which
|
|
* means pba_ptr is actually our second data word for the PBA number
|
|
* and we can decode it into an ascii string
|
|
*/
|
|
if (data != IXGBE_PBANUM_PTR_GUARD) {
|
|
hw_dbg(hw, "NVM PBA number is not stored as string\n");
|
|
|
|
/* we will need 11 characters to store the PBA */
|
|
if (pba_num_size < 11) {
|
|
hw_dbg(hw, "PBA string buffer too small\n");
|
|
return IXGBE_ERR_NO_SPACE;
|
|
}
|
|
|
|
/* extract hex string from data and pba_ptr */
|
|
pba_num[0] = (data >> 12) & 0xF;
|
|
pba_num[1] = (data >> 8) & 0xF;
|
|
pba_num[2] = (data >> 4) & 0xF;
|
|
pba_num[3] = data & 0xF;
|
|
pba_num[4] = (pba_ptr >> 12) & 0xF;
|
|
pba_num[5] = (pba_ptr >> 8) & 0xF;
|
|
pba_num[6] = '-';
|
|
pba_num[7] = 0;
|
|
pba_num[8] = (pba_ptr >> 4) & 0xF;
|
|
pba_num[9] = pba_ptr & 0xF;
|
|
|
|
/* put a null character on the end of our string */
|
|
pba_num[10] = '\0';
|
|
|
|
/* switch all the data but the '-' to hex char */
|
|
for (offset = 0; offset < 10; offset++) {
|
|
if (pba_num[offset] < 0xA)
|
|
pba_num[offset] += '0';
|
|
else if (pba_num[offset] < 0x10)
|
|
pba_num[offset] += 'A' - 0xA;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
|
|
if (ret_val) {
|
|
hw_dbg(hw, "NVM Read Error\n");
|
|
return ret_val;
|
|
}
|
|
|
|
if (length == 0xFFFF || length == 0) {
|
|
hw_dbg(hw, "NVM PBA number section invalid length\n");
|
|
return IXGBE_ERR_PBA_SECTION;
|
|
}
|
|
|
|
/* check if pba_num buffer is big enough */
|
|
if (pba_num_size < (((u32)length * 2) - 1)) {
|
|
hw_dbg(hw, "PBA string buffer too small\n");
|
|
return IXGBE_ERR_NO_SPACE;
|
|
}
|
|
|
|
/* trim pba length from start of string */
|
|
pba_ptr++;
|
|
length--;
|
|
|
|
for (offset = 0; offset < length; offset++) {
|
|
ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
|
|
if (ret_val) {
|
|
hw_dbg(hw, "NVM Read Error\n");
|
|
return ret_val;
|
|
}
|
|
pba_num[offset * 2] = (u8)(data >> 8);
|
|
pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
|
|
}
|
|
pba_num[offset * 2] = '\0';
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_get_mac_addr_generic - Generic get MAC address
|
|
* @hw: pointer to hardware structure
|
|
* @mac_addr: Adapter MAC address
|
|
*
|
|
* Reads the adapter's MAC address from first Receive Address Register (RAR0)
|
|
* A reset of the adapter must be performed prior to calling this function
|
|
* in order for the MAC address to have been loaded from the EEPROM into RAR0
|
|
**/
|
|
s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
|
|
{
|
|
u32 rar_high;
|
|
u32 rar_low;
|
|
u16 i;
|
|
|
|
rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
|
|
rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
|
|
|
|
for (i = 0; i < 4; i++)
|
|
mac_addr[i] = (u8)(rar_low >> (i*8));
|
|
|
|
for (i = 0; i < 2; i++)
|
|
mac_addr[i+4] = (u8)(rar_high >> (i*8));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_get_bus_info_generic - Generic set PCI bus info
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
|
|
**/
|
|
s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
|
|
{
|
|
struct ixgbe_adapter *adapter = hw->back;
|
|
struct ixgbe_mac_info *mac = &hw->mac;
|
|
u16 link_status;
|
|
|
|
hw->bus.type = ixgbe_bus_type_pci_express;
|
|
|
|
/* Get the negotiated link width and speed from PCI config space */
|
|
pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
|
|
&link_status);
|
|
|
|
switch (link_status & IXGBE_PCI_LINK_WIDTH) {
|
|
case IXGBE_PCI_LINK_WIDTH_1:
|
|
hw->bus.width = ixgbe_bus_width_pcie_x1;
|
|
break;
|
|
case IXGBE_PCI_LINK_WIDTH_2:
|
|
hw->bus.width = ixgbe_bus_width_pcie_x2;
|
|
break;
|
|
case IXGBE_PCI_LINK_WIDTH_4:
|
|
hw->bus.width = ixgbe_bus_width_pcie_x4;
|
|
break;
|
|
case IXGBE_PCI_LINK_WIDTH_8:
|
|
hw->bus.width = ixgbe_bus_width_pcie_x8;
|
|
break;
|
|
default:
|
|
hw->bus.width = ixgbe_bus_width_unknown;
|
|
break;
|
|
}
|
|
|
|
switch (link_status & IXGBE_PCI_LINK_SPEED) {
|
|
case IXGBE_PCI_LINK_SPEED_2500:
|
|
hw->bus.speed = ixgbe_bus_speed_2500;
|
|
break;
|
|
case IXGBE_PCI_LINK_SPEED_5000:
|
|
hw->bus.speed = ixgbe_bus_speed_5000;
|
|
break;
|
|
default:
|
|
hw->bus.speed = ixgbe_bus_speed_unknown;
|
|
break;
|
|
}
|
|
|
|
mac->ops.set_lan_id(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Determines the LAN function id by reading memory-mapped registers
|
|
* and swaps the port value if requested.
|
|
**/
|
|
void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
|
|
{
|
|
struct ixgbe_bus_info *bus = &hw->bus;
|
|
u32 reg;
|
|
|
|
reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
|
|
bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
|
|
bus->lan_id = bus->func;
|
|
|
|
/* check for a port swap */
|
|
reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
|
|
if (reg & IXGBE_FACTPS_LFS)
|
|
bus->func ^= 0x1;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
|
|
* disables transmit and receive units. The adapter_stopped flag is used by
|
|
* the shared code and drivers to determine if the adapter is in a stopped
|
|
* state and should not touch the hardware.
|
|
**/
|
|
s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
|
|
{
|
|
u32 number_of_queues;
|
|
u32 reg_val;
|
|
u16 i;
|
|
|
|
/*
|
|
* Set the adapter_stopped flag so other driver functions stop touching
|
|
* the hardware
|
|
*/
|
|
hw->adapter_stopped = true;
|
|
|
|
/* Disable the receive unit */
|
|
reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
|
|
reg_val &= ~(IXGBE_RXCTRL_RXEN);
|
|
IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
msleep(2);
|
|
|
|
/* Clear interrupt mask to stop from interrupts being generated */
|
|
IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
|
|
|
|
/* Clear any pending interrupts */
|
|
IXGBE_READ_REG(hw, IXGBE_EICR);
|
|
|
|
/* Disable the transmit unit. Each queue must be disabled. */
|
|
number_of_queues = hw->mac.max_tx_queues;
|
|
for (i = 0; i < number_of_queues; i++) {
|
|
reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
|
|
if (reg_val & IXGBE_TXDCTL_ENABLE) {
|
|
reg_val &= ~IXGBE_TXDCTL_ENABLE;
|
|
IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Prevent the PCI-E bus from from hanging by disabling PCI-E master
|
|
* access and verify no pending requests
|
|
*/
|
|
if (ixgbe_disable_pcie_master(hw) != 0)
|
|
hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_led_on_generic - Turns on the software controllable LEDs.
|
|
* @hw: pointer to hardware structure
|
|
* @index: led number to turn on
|
|
**/
|
|
s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
|
|
{
|
|
u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
|
|
|
|
/* To turn on the LED, set mode to ON. */
|
|
led_reg &= ~IXGBE_LED_MODE_MASK(index);
|
|
led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
|
|
IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_led_off_generic - Turns off the software controllable LEDs.
|
|
* @hw: pointer to hardware structure
|
|
* @index: led number to turn off
|
|
**/
|
|
s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
|
|
{
|
|
u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
|
|
|
|
/* To turn off the LED, set mode to OFF. */
|
|
led_reg &= ~IXGBE_LED_MODE_MASK(index);
|
|
led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
|
|
IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_init_eeprom_params_generic - Initialize EEPROM params
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Initializes the EEPROM parameters ixgbe_eeprom_info within the
|
|
* ixgbe_hw struct in order to set up EEPROM access.
|
|
**/
|
|
s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
|
|
{
|
|
struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
|
|
u32 eec;
|
|
u16 eeprom_size;
|
|
|
|
if (eeprom->type == ixgbe_eeprom_uninitialized) {
|
|
eeprom->type = ixgbe_eeprom_none;
|
|
/* Set default semaphore delay to 10ms which is a well
|
|
* tested value */
|
|
eeprom->semaphore_delay = 10;
|
|
|
|
/*
|
|
* Check for EEPROM present first.
|
|
* If not present leave as none
|
|
*/
|
|
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
|
|
if (eec & IXGBE_EEC_PRES) {
|
|
eeprom->type = ixgbe_eeprom_spi;
|
|
|
|
/*
|
|
* SPI EEPROM is assumed here. This code would need to
|
|
* change if a future EEPROM is not SPI.
|
|
*/
|
|
eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
|
|
IXGBE_EEC_SIZE_SHIFT);
|
|
eeprom->word_size = 1 << (eeprom_size +
|
|
IXGBE_EEPROM_WORD_SIZE_SHIFT);
|
|
}
|
|
|
|
if (eec & IXGBE_EEC_ADDR_SIZE)
|
|
eeprom->address_bits = 16;
|
|
else
|
|
eeprom->address_bits = 8;
|
|
hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
|
|
"%d\n", eeprom->type, eeprom->word_size,
|
|
eeprom->address_bits);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
|
|
* @hw: pointer to hardware structure
|
|
* @offset: offset within the EEPROM to be written to
|
|
* @data: 16 bit word to be written to the EEPROM
|
|
*
|
|
* If ixgbe_eeprom_update_checksum is not called after this function, the
|
|
* EEPROM will most likely contain an invalid checksum.
|
|
**/
|
|
s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
|
|
{
|
|
s32 status;
|
|
u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
|
|
|
|
hw->eeprom.ops.init_params(hw);
|
|
|
|
if (offset >= hw->eeprom.word_size) {
|
|
status = IXGBE_ERR_EEPROM;
|
|
goto out;
|
|
}
|
|
|
|
/* Prepare the EEPROM for writing */
|
|
status = ixgbe_acquire_eeprom(hw);
|
|
|
|
if (status == 0) {
|
|
if (ixgbe_ready_eeprom(hw) != 0) {
|
|
ixgbe_release_eeprom(hw);
|
|
status = IXGBE_ERR_EEPROM;
|
|
}
|
|
}
|
|
|
|
if (status == 0) {
|
|
ixgbe_standby_eeprom(hw);
|
|
|
|
/* Send the WRITE ENABLE command (8 bit opcode ) */
|
|
ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_WREN_OPCODE_SPI,
|
|
IXGBE_EEPROM_OPCODE_BITS);
|
|
|
|
ixgbe_standby_eeprom(hw);
|
|
|
|
/*
|
|
* Some SPI eeproms use the 8th address bit embedded in the
|
|
* opcode
|
|
*/
|
|
if ((hw->eeprom.address_bits == 8) && (offset >= 128))
|
|
write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
|
|
|
|
/* Send the Write command (8-bit opcode + addr) */
|
|
ixgbe_shift_out_eeprom_bits(hw, write_opcode,
|
|
IXGBE_EEPROM_OPCODE_BITS);
|
|
ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
|
|
hw->eeprom.address_bits);
|
|
|
|
/* Send the data */
|
|
data = (data >> 8) | (data << 8);
|
|
ixgbe_shift_out_eeprom_bits(hw, data, 16);
|
|
ixgbe_standby_eeprom(hw);
|
|
|
|
msleep(hw->eeprom.semaphore_delay);
|
|
/* Done with writing - release the EEPROM */
|
|
ixgbe_release_eeprom(hw);
|
|
}
|
|
|
|
out:
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
|
|
* @hw: pointer to hardware structure
|
|
* @offset: offset within the EEPROM to be read
|
|
* @data: read 16 bit value from EEPROM
|
|
*
|
|
* Reads 16 bit value from EEPROM through bit-bang method
|
|
**/
|
|
s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
|
|
u16 *data)
|
|
{
|
|
s32 status;
|
|
u16 word_in;
|
|
u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
|
|
|
|
hw->eeprom.ops.init_params(hw);
|
|
|
|
if (offset >= hw->eeprom.word_size) {
|
|
status = IXGBE_ERR_EEPROM;
|
|
goto out;
|
|
}
|
|
|
|
/* Prepare the EEPROM for reading */
|
|
status = ixgbe_acquire_eeprom(hw);
|
|
|
|
if (status == 0) {
|
|
if (ixgbe_ready_eeprom(hw) != 0) {
|
|
ixgbe_release_eeprom(hw);
|
|
status = IXGBE_ERR_EEPROM;
|
|
}
|
|
}
|
|
|
|
if (status == 0) {
|
|
ixgbe_standby_eeprom(hw);
|
|
|
|
/*
|
|
* Some SPI eeproms use the 8th address bit embedded in the
|
|
* opcode
|
|
*/
|
|
if ((hw->eeprom.address_bits == 8) && (offset >= 128))
|
|
read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
|
|
|
|
/* Send the READ command (opcode + addr) */
|
|
ixgbe_shift_out_eeprom_bits(hw, read_opcode,
|
|
IXGBE_EEPROM_OPCODE_BITS);
|
|
ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
|
|
hw->eeprom.address_bits);
|
|
|
|
/* Read the data. */
|
|
word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
|
|
*data = (word_in >> 8) | (word_in << 8);
|
|
|
|
/* End this read operation */
|
|
ixgbe_release_eeprom(hw);
|
|
}
|
|
|
|
out:
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_read_eerd_generic - Read EEPROM word using EERD
|
|
* @hw: pointer to hardware structure
|
|
* @offset: offset of word in the EEPROM to read
|
|
* @data: word read from the EEPROM
|
|
*
|
|
* Reads a 16 bit word from the EEPROM using the EERD register.
|
|
**/
|
|
s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
|
|
{
|
|
u32 eerd;
|
|
s32 status;
|
|
|
|
hw->eeprom.ops.init_params(hw);
|
|
|
|
if (offset >= hw->eeprom.word_size) {
|
|
status = IXGBE_ERR_EEPROM;
|
|
goto out;
|
|
}
|
|
|
|
eerd = (offset << IXGBE_EEPROM_RW_ADDR_SHIFT) +
|
|
IXGBE_EEPROM_RW_REG_START;
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
|
|
status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
|
|
|
|
if (status == 0)
|
|
*data = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
|
|
IXGBE_EEPROM_RW_REG_DATA);
|
|
else
|
|
hw_dbg(hw, "Eeprom read timed out\n");
|
|
|
|
out:
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
|
|
* @hw: pointer to hardware structure
|
|
* @ee_reg: EEPROM flag for polling
|
|
*
|
|
* Polls the status bit (bit 1) of the EERD or EEWR to determine when the
|
|
* read or write is done respectively.
|
|
**/
|
|
s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
|
|
{
|
|
u32 i;
|
|
u32 reg;
|
|
s32 status = IXGBE_ERR_EEPROM;
|
|
|
|
for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
|
|
if (ee_reg == IXGBE_NVM_POLL_READ)
|
|
reg = IXGBE_READ_REG(hw, IXGBE_EERD);
|
|
else
|
|
reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
|
|
|
|
if (reg & IXGBE_EEPROM_RW_REG_DONE) {
|
|
status = 0;
|
|
break;
|
|
}
|
|
udelay(5);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Prepares EEPROM for access using bit-bang method. This function should
|
|
* be called before issuing a command to the EEPROM.
|
|
**/
|
|
static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
|
|
{
|
|
s32 status = 0;
|
|
u32 eec = 0;
|
|
u32 i;
|
|
|
|
if (ixgbe_acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
|
|
status = IXGBE_ERR_SWFW_SYNC;
|
|
|
|
if (status == 0) {
|
|
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
|
|
|
|
/* Request EEPROM Access */
|
|
eec |= IXGBE_EEC_REQ;
|
|
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
|
|
|
|
for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
|
|
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
|
|
if (eec & IXGBE_EEC_GNT)
|
|
break;
|
|
udelay(5);
|
|
}
|
|
|
|
/* Release if grant not acquired */
|
|
if (!(eec & IXGBE_EEC_GNT)) {
|
|
eec &= ~IXGBE_EEC_REQ;
|
|
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
|
|
hw_dbg(hw, "Could not acquire EEPROM grant\n");
|
|
|
|
ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
|
|
status = IXGBE_ERR_EEPROM;
|
|
}
|
|
}
|
|
|
|
/* Setup EEPROM for Read/Write */
|
|
if (status == 0) {
|
|
/* Clear CS and SK */
|
|
eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
|
|
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
udelay(1);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_get_eeprom_semaphore - Get hardware semaphore
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Sets the hardware semaphores so EEPROM access can occur for bit-bang method
|
|
**/
|
|
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
|
|
{
|
|
s32 status = IXGBE_ERR_EEPROM;
|
|
u32 timeout;
|
|
u32 i;
|
|
u32 swsm;
|
|
|
|
/* Set timeout value based on size of EEPROM */
|
|
timeout = hw->eeprom.word_size + 1;
|
|
|
|
/* Get SMBI software semaphore between device drivers first */
|
|
for (i = 0; i < timeout; i++) {
|
|
/*
|
|
* If the SMBI bit is 0 when we read it, then the bit will be
|
|
* set and we have the semaphore
|
|
*/
|
|
swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
|
|
if (!(swsm & IXGBE_SWSM_SMBI)) {
|
|
status = 0;
|
|
break;
|
|
}
|
|
msleep(1);
|
|
}
|
|
|
|
/* Now get the semaphore between SW/FW through the SWESMBI bit */
|
|
if (status == 0) {
|
|
for (i = 0; i < timeout; i++) {
|
|
swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
|
|
|
|
/* Set the SW EEPROM semaphore bit to request access */
|
|
swsm |= IXGBE_SWSM_SWESMBI;
|
|
IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
|
|
|
|
/*
|
|
* If we set the bit successfully then we got the
|
|
* semaphore.
|
|
*/
|
|
swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
|
|
if (swsm & IXGBE_SWSM_SWESMBI)
|
|
break;
|
|
|
|
udelay(50);
|
|
}
|
|
|
|
/*
|
|
* Release semaphores and return error if SW EEPROM semaphore
|
|
* was not granted because we don't have access to the EEPROM
|
|
*/
|
|
if (i >= timeout) {
|
|
hw_dbg(hw, "Driver can't access the Eeprom - Semaphore "
|
|
"not granted.\n");
|
|
ixgbe_release_eeprom_semaphore(hw);
|
|
status = IXGBE_ERR_EEPROM;
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_release_eeprom_semaphore - Release hardware semaphore
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* This function clears hardware semaphore bits.
|
|
**/
|
|
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
|
|
{
|
|
u32 swsm;
|
|
|
|
swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
|
|
|
|
/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
|
|
swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
|
|
IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
}
|
|
|
|
/**
|
|
* ixgbe_ready_eeprom - Polls for EEPROM ready
|
|
* @hw: pointer to hardware structure
|
|
**/
|
|
static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
|
|
{
|
|
s32 status = 0;
|
|
u16 i;
|
|
u8 spi_stat_reg;
|
|
|
|
/*
|
|
* Read "Status Register" repeatedly until the LSB is cleared. The
|
|
* EEPROM will signal that the command has been completed by clearing
|
|
* bit 0 of the internal status register. If it's not cleared within
|
|
* 5 milliseconds, then error out.
|
|
*/
|
|
for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
|
|
ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
|
|
IXGBE_EEPROM_OPCODE_BITS);
|
|
spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
|
|
if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
|
|
break;
|
|
|
|
udelay(5);
|
|
ixgbe_standby_eeprom(hw);
|
|
};
|
|
|
|
/*
|
|
* On some parts, SPI write time could vary from 0-20mSec on 3.3V
|
|
* devices (and only 0-5mSec on 5V devices)
|
|
*/
|
|
if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
|
|
hw_dbg(hw, "SPI EEPROM Status error\n");
|
|
status = IXGBE_ERR_EEPROM;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
|
|
* @hw: pointer to hardware structure
|
|
**/
|
|
static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
|
|
{
|
|
u32 eec;
|
|
|
|
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
|
|
|
|
/* Toggle CS to flush commands */
|
|
eec |= IXGBE_EEC_CS;
|
|
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
udelay(1);
|
|
eec &= ~IXGBE_EEC_CS;
|
|
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
udelay(1);
|
|
}
|
|
|
|
/**
|
|
* ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
|
|
* @hw: pointer to hardware structure
|
|
* @data: data to send to the EEPROM
|
|
* @count: number of bits to shift out
|
|
**/
|
|
static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
|
|
u16 count)
|
|
{
|
|
u32 eec;
|
|
u32 mask;
|
|
u32 i;
|
|
|
|
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
|
|
|
|
/*
|
|
* Mask is used to shift "count" bits of "data" out to the EEPROM
|
|
* one bit at a time. Determine the starting bit based on count
|
|
*/
|
|
mask = 0x01 << (count - 1);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
/*
|
|
* A "1" is shifted out to the EEPROM by setting bit "DI" to a
|
|
* "1", and then raising and then lowering the clock (the SK
|
|
* bit controls the clock input to the EEPROM). A "0" is
|
|
* shifted out to the EEPROM by setting "DI" to "0" and then
|
|
* raising and then lowering the clock.
|
|
*/
|
|
if (data & mask)
|
|
eec |= IXGBE_EEC_DI;
|
|
else
|
|
eec &= ~IXGBE_EEC_DI;
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
|
|
udelay(1);
|
|
|
|
ixgbe_raise_eeprom_clk(hw, &eec);
|
|
ixgbe_lower_eeprom_clk(hw, &eec);
|
|
|
|
/*
|
|
* Shift mask to signify next bit of data to shift in to the
|
|
* EEPROM
|
|
*/
|
|
mask = mask >> 1;
|
|
};
|
|
|
|
/* We leave the "DI" bit set to "0" when we leave this routine. */
|
|
eec &= ~IXGBE_EEC_DI;
|
|
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
}
|
|
|
|
/**
|
|
* ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
|
|
* @hw: pointer to hardware structure
|
|
**/
|
|
static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
|
|
{
|
|
u32 eec;
|
|
u32 i;
|
|
u16 data = 0;
|
|
|
|
/*
|
|
* In order to read a register from the EEPROM, we need to shift
|
|
* 'count' bits in from the EEPROM. Bits are "shifted in" by raising
|
|
* the clock input to the EEPROM (setting the SK bit), and then reading
|
|
* the value of the "DO" bit. During this "shifting in" process the
|
|
* "DI" bit should always be clear.
|
|
*/
|
|
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
|
|
|
|
eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
data = data << 1;
|
|
ixgbe_raise_eeprom_clk(hw, &eec);
|
|
|
|
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
|
|
|
|
eec &= ~(IXGBE_EEC_DI);
|
|
if (eec & IXGBE_EEC_DO)
|
|
data |= 1;
|
|
|
|
ixgbe_lower_eeprom_clk(hw, &eec);
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
|
|
* @hw: pointer to hardware structure
|
|
* @eec: EEC register's current value
|
|
**/
|
|
static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
|
|
{
|
|
/*
|
|
* Raise the clock input to the EEPROM
|
|
* (setting the SK bit), then delay
|
|
*/
|
|
*eec = *eec | IXGBE_EEC_SK;
|
|
IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
udelay(1);
|
|
}
|
|
|
|
/**
|
|
* ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
|
|
* @hw: pointer to hardware structure
|
|
* @eecd: EECD's current value
|
|
**/
|
|
static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
|
|
{
|
|
/*
|
|
* Lower the clock input to the EEPROM (clearing the SK bit), then
|
|
* delay
|
|
*/
|
|
*eec = *eec & ~IXGBE_EEC_SK;
|
|
IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
udelay(1);
|
|
}
|
|
|
|
/**
|
|
* ixgbe_release_eeprom - Release EEPROM, release semaphores
|
|
* @hw: pointer to hardware structure
|
|
**/
|
|
static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
|
|
{
|
|
u32 eec;
|
|
|
|
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
|
|
|
|
eec |= IXGBE_EEC_CS; /* Pull CS high */
|
|
eec &= ~IXGBE_EEC_SK; /* Lower SCK */
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
|
|
udelay(1);
|
|
|
|
/* Stop requesting EEPROM access */
|
|
eec &= ~IXGBE_EEC_REQ;
|
|
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
|
|
|
|
ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
|
|
}
|
|
|
|
/**
|
|
* ixgbe_calc_eeprom_checksum - Calculates and returns the checksum
|
|
* @hw: pointer to hardware structure
|
|
**/
|
|
u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
|
|
{
|
|
u16 i;
|
|
u16 j;
|
|
u16 checksum = 0;
|
|
u16 length = 0;
|
|
u16 pointer = 0;
|
|
u16 word = 0;
|
|
|
|
/* Include 0x0-0x3F in the checksum */
|
|
for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
|
|
if (hw->eeprom.ops.read(hw, i, &word) != 0) {
|
|
hw_dbg(hw, "EEPROM read failed\n");
|
|
break;
|
|
}
|
|
checksum += word;
|
|
}
|
|
|
|
/* Include all data from pointers except for the fw pointer */
|
|
for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
|
|
hw->eeprom.ops.read(hw, i, &pointer);
|
|
|
|
/* Make sure the pointer seems valid */
|
|
if (pointer != 0xFFFF && pointer != 0) {
|
|
hw->eeprom.ops.read(hw, pointer, &length);
|
|
|
|
if (length != 0xFFFF && length != 0) {
|
|
for (j = pointer+1; j <= pointer+length; j++) {
|
|
hw->eeprom.ops.read(hw, j, &word);
|
|
checksum += word;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
checksum = (u16)IXGBE_EEPROM_SUM - checksum;
|
|
|
|
return checksum;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
|
|
* @hw: pointer to hardware structure
|
|
* @checksum_val: calculated checksum
|
|
*
|
|
* Performs checksum calculation and validates the EEPROM checksum. If the
|
|
* caller does not need checksum_val, the value can be NULL.
|
|
**/
|
|
s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
|
|
u16 *checksum_val)
|
|
{
|
|
s32 status;
|
|
u16 checksum;
|
|
u16 read_checksum = 0;
|
|
|
|
/*
|
|
* Read the first word from the EEPROM. If this times out or fails, do
|
|
* not continue or we could be in for a very long wait while every
|
|
* EEPROM read fails
|
|
*/
|
|
status = hw->eeprom.ops.read(hw, 0, &checksum);
|
|
|
|
if (status == 0) {
|
|
checksum = hw->eeprom.ops.calc_checksum(hw);
|
|
|
|
hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
|
|
|
|
/*
|
|
* Verify read checksum from EEPROM is the same as
|
|
* calculated checksum
|
|
*/
|
|
if (read_checksum != checksum)
|
|
status = IXGBE_ERR_EEPROM_CHECKSUM;
|
|
|
|
/* If the user cares, return the calculated checksum */
|
|
if (checksum_val)
|
|
*checksum_val = checksum;
|
|
} else {
|
|
hw_dbg(hw, "EEPROM read failed\n");
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
|
|
* @hw: pointer to hardware structure
|
|
**/
|
|
s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
|
|
{
|
|
s32 status;
|
|
u16 checksum;
|
|
|
|
/*
|
|
* Read the first word from the EEPROM. If this times out or fails, do
|
|
* not continue or we could be in for a very long wait while every
|
|
* EEPROM read fails
|
|
*/
|
|
status = hw->eeprom.ops.read(hw, 0, &checksum);
|
|
|
|
if (status == 0) {
|
|
checksum = hw->eeprom.ops.calc_checksum(hw);
|
|
status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
|
|
checksum);
|
|
} else {
|
|
hw_dbg(hw, "EEPROM read failed\n");
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_validate_mac_addr - Validate MAC address
|
|
* @mac_addr: pointer to MAC address.
|
|
*
|
|
* Tests a MAC address to ensure it is a valid Individual Address
|
|
**/
|
|
s32 ixgbe_validate_mac_addr(u8 *mac_addr)
|
|
{
|
|
s32 status = 0;
|
|
|
|
/* Make sure it is not a multicast address */
|
|
if (IXGBE_IS_MULTICAST(mac_addr))
|
|
status = IXGBE_ERR_INVALID_MAC_ADDR;
|
|
/* Not a broadcast address */
|
|
else if (IXGBE_IS_BROADCAST(mac_addr))
|
|
status = IXGBE_ERR_INVALID_MAC_ADDR;
|
|
/* Reject the zero address */
|
|
else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
|
|
mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
|
|
status = IXGBE_ERR_INVALID_MAC_ADDR;
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_set_rar_generic - Set Rx address register
|
|
* @hw: pointer to hardware structure
|
|
* @index: Receive address register to write
|
|
* @addr: Address to put into receive address register
|
|
* @vmdq: VMDq "set" or "pool" index
|
|
* @enable_addr: set flag that address is active
|
|
*
|
|
* Puts an ethernet address into a receive address register.
|
|
**/
|
|
s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
|
|
u32 enable_addr)
|
|
{
|
|
u32 rar_low, rar_high;
|
|
u32 rar_entries = hw->mac.num_rar_entries;
|
|
|
|
/* setup VMDq pool selection before this RAR gets enabled */
|
|
hw->mac.ops.set_vmdq(hw, index, vmdq);
|
|
|
|
/* Make sure we are using a valid rar index range */
|
|
if (index < rar_entries) {
|
|
/*
|
|
* HW expects these in little endian so we reverse the byte
|
|
* order from network order (big endian) to little endian
|
|
*/
|
|
rar_low = ((u32)addr[0] |
|
|
((u32)addr[1] << 8) |
|
|
((u32)addr[2] << 16) |
|
|
((u32)addr[3] << 24));
|
|
/*
|
|
* Some parts put the VMDq setting in the extra RAH bits,
|
|
* so save everything except the lower 16 bits that hold part
|
|
* of the address and the address valid bit.
|
|
*/
|
|
rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
|
|
rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
|
|
rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
|
|
|
|
if (enable_addr != 0)
|
|
rar_high |= IXGBE_RAH_AV;
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
|
|
IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
|
|
} else {
|
|
hw_dbg(hw, "RAR index %d is out of range.\n", index);
|
|
return IXGBE_ERR_RAR_INDEX;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_clear_rar_generic - Remove Rx address register
|
|
* @hw: pointer to hardware structure
|
|
* @index: Receive address register to write
|
|
*
|
|
* Clears an ethernet address from a receive address register.
|
|
**/
|
|
s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
|
|
{
|
|
u32 rar_high;
|
|
u32 rar_entries = hw->mac.num_rar_entries;
|
|
|
|
/* Make sure we are using a valid rar index range */
|
|
if (index < rar_entries) {
|
|
/*
|
|
* Some parts put the VMDq setting in the extra RAH bits,
|
|
* so save everything except the lower 16 bits that hold part
|
|
* of the address and the address valid bit.
|
|
*/
|
|
rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
|
|
rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
|
|
IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
|
|
} else {
|
|
hw_dbg(hw, "RAR index %d is out of range.\n", index);
|
|
return IXGBE_ERR_RAR_INDEX;
|
|
}
|
|
|
|
/* clear VMDq pool/queue selection for this RAR */
|
|
hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_enable_rar - Enable Rx address register
|
|
* @hw: pointer to hardware structure
|
|
* @index: index into the RAR table
|
|
*
|
|
* Enables the select receive address register.
|
|
**/
|
|
static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index)
|
|
{
|
|
u32 rar_high;
|
|
|
|
rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
|
|
rar_high |= IXGBE_RAH_AV;
|
|
IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
|
|
}
|
|
|
|
/**
|
|
* ixgbe_disable_rar - Disable Rx address register
|
|
* @hw: pointer to hardware structure
|
|
* @index: index into the RAR table
|
|
*
|
|
* Disables the select receive address register.
|
|
**/
|
|
static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index)
|
|
{
|
|
u32 rar_high;
|
|
|
|
rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
|
|
rar_high &= (~IXGBE_RAH_AV);
|
|
IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
|
|
}
|
|
|
|
/**
|
|
* ixgbe_init_rx_addrs_generic - Initializes receive address filters.
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Places the MAC address in receive address register 0 and clears the rest
|
|
* of the receive address registers. Clears the multicast table. Assumes
|
|
* the receiver is in reset when the routine is called.
|
|
**/
|
|
s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
|
|
{
|
|
u32 i;
|
|
u32 rar_entries = hw->mac.num_rar_entries;
|
|
|
|
/*
|
|
* If the current mac address is valid, assume it is a software override
|
|
* to the permanent address.
|
|
* Otherwise, use the permanent address from the eeprom.
|
|
*/
|
|
if (ixgbe_validate_mac_addr(hw->mac.addr) ==
|
|
IXGBE_ERR_INVALID_MAC_ADDR) {
|
|
/* Get the MAC address from the RAR0 for later reference */
|
|
hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
|
|
|
|
hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
|
|
} else {
|
|
/* Setup the receive address. */
|
|
hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
|
|
hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
|
|
|
|
hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
|
|
|
|
/* clear VMDq pool/queue selection for RAR 0 */
|
|
hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
|
|
}
|
|
hw->addr_ctrl.overflow_promisc = 0;
|
|
|
|
hw->addr_ctrl.rar_used_count = 1;
|
|
|
|
/* Zero out the other receive addresses. */
|
|
hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
|
|
for (i = 1; i < rar_entries; i++) {
|
|
IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
|
|
IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
|
|
}
|
|
|
|
/* Clear the MTA */
|
|
hw->addr_ctrl.mc_addr_in_rar_count = 0;
|
|
hw->addr_ctrl.mta_in_use = 0;
|
|
IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
|
|
|
|
hw_dbg(hw, " Clearing MTA\n");
|
|
for (i = 0; i < hw->mac.mcft_size; i++)
|
|
IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
|
|
|
|
if (hw->mac.ops.init_uta_tables)
|
|
hw->mac.ops.init_uta_tables(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_add_uc_addr - Adds a secondary unicast address.
|
|
* @hw: pointer to hardware structure
|
|
* @addr: new address
|
|
*
|
|
* Adds it to unused receive address register or goes into promiscuous mode.
|
|
**/
|
|
static void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
|
|
{
|
|
u32 rar_entries = hw->mac.num_rar_entries;
|
|
u32 rar;
|
|
|
|
hw_dbg(hw, " UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
|
|
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
|
|
|
|
/*
|
|
* Place this address in the RAR if there is room,
|
|
* else put the controller into promiscuous mode
|
|
*/
|
|
if (hw->addr_ctrl.rar_used_count < rar_entries) {
|
|
rar = hw->addr_ctrl.rar_used_count -
|
|
hw->addr_ctrl.mc_addr_in_rar_count;
|
|
hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
|
|
hw_dbg(hw, "Added a secondary address to RAR[%d]\n", rar);
|
|
hw->addr_ctrl.rar_used_count++;
|
|
} else {
|
|
hw->addr_ctrl.overflow_promisc++;
|
|
}
|
|
|
|
hw_dbg(hw, "ixgbe_add_uc_addr Complete\n");
|
|
}
|
|
|
|
/**
|
|
* ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
|
|
* @hw: pointer to hardware structure
|
|
* @netdev: pointer to net device structure
|
|
*
|
|
* The given list replaces any existing list. Clears the secondary addrs from
|
|
* receive address registers. Uses unused receive address registers for the
|
|
* first secondary addresses, and falls back to promiscuous mode as needed.
|
|
*
|
|
* Drivers using secondary unicast addresses must set user_set_promisc when
|
|
* manually putting the device into promiscuous mode.
|
|
**/
|
|
s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw,
|
|
struct net_device *netdev)
|
|
{
|
|
u32 i;
|
|
u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
|
|
u32 uc_addr_in_use;
|
|
u32 fctrl;
|
|
struct netdev_hw_addr *ha;
|
|
|
|
/*
|
|
* Clear accounting of old secondary address list,
|
|
* don't count RAR[0]
|
|
*/
|
|
uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
|
|
hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
|
|
hw->addr_ctrl.overflow_promisc = 0;
|
|
|
|
/* Zero out the other receive addresses */
|
|
hw_dbg(hw, "Clearing RAR[1-%d]\n", uc_addr_in_use + 1);
|
|
for (i = 0; i < uc_addr_in_use; i++) {
|
|
IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
|
|
IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
|
|
}
|
|
|
|
/* Add the new addresses */
|
|
netdev_for_each_uc_addr(ha, netdev) {
|
|
hw_dbg(hw, " Adding the secondary addresses:\n");
|
|
ixgbe_add_uc_addr(hw, ha->addr, 0);
|
|
}
|
|
|
|
if (hw->addr_ctrl.overflow_promisc) {
|
|
/* enable promisc if not already in overflow or set by user */
|
|
if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
|
|
hw_dbg(hw, " Entering address overflow promisc mode\n");
|
|
fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
|
|
fctrl |= IXGBE_FCTRL_UPE;
|
|
IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
|
|
hw->addr_ctrl.uc_set_promisc = true;
|
|
}
|
|
} else {
|
|
/* only disable if set by overflow, not by user */
|
|
if ((old_promisc_setting && hw->addr_ctrl.uc_set_promisc) &&
|
|
!(hw->addr_ctrl.user_set_promisc)) {
|
|
hw_dbg(hw, " Leaving address overflow promisc mode\n");
|
|
fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
|
|
fctrl &= ~IXGBE_FCTRL_UPE;
|
|
IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
|
|
hw->addr_ctrl.uc_set_promisc = false;
|
|
}
|
|
}
|
|
|
|
hw_dbg(hw, "ixgbe_update_uc_addr_list_generic Complete\n");
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_mta_vector - Determines bit-vector in multicast table to set
|
|
* @hw: pointer to hardware structure
|
|
* @mc_addr: the multicast address
|
|
*
|
|
* Extracts the 12 bits, from a multicast address, to determine which
|
|
* bit-vector to set in the multicast table. The hardware uses 12 bits, from
|
|
* incoming rx multicast addresses, to determine the bit-vector to check in
|
|
* the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
|
|
* by the MO field of the MCSTCTRL. The MO field is set during initialization
|
|
* to mc_filter_type.
|
|
**/
|
|
static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
|
|
{
|
|
u32 vector = 0;
|
|
|
|
switch (hw->mac.mc_filter_type) {
|
|
case 0: /* use bits [47:36] of the address */
|
|
vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
|
|
break;
|
|
case 1: /* use bits [46:35] of the address */
|
|
vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
|
|
break;
|
|
case 2: /* use bits [45:34] of the address */
|
|
vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
|
|
break;
|
|
case 3: /* use bits [43:32] of the address */
|
|
vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
|
|
break;
|
|
default: /* Invalid mc_filter_type */
|
|
hw_dbg(hw, "MC filter type param set incorrectly\n");
|
|
break;
|
|
}
|
|
|
|
/* vector can only be 12-bits or boundary will be exceeded */
|
|
vector &= 0xFFF;
|
|
return vector;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_set_mta - Set bit-vector in multicast table
|
|
* @hw: pointer to hardware structure
|
|
* @hash_value: Multicast address hash value
|
|
*
|
|
* Sets the bit-vector in the multicast table.
|
|
**/
|
|
static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
|
|
{
|
|
u32 vector;
|
|
u32 vector_bit;
|
|
u32 vector_reg;
|
|
u32 mta_reg;
|
|
|
|
hw->addr_ctrl.mta_in_use++;
|
|
|
|
vector = ixgbe_mta_vector(hw, mc_addr);
|
|
hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
|
|
|
|
/*
|
|
* The MTA is a register array of 128 32-bit registers. It is treated
|
|
* like an array of 4096 bits. We want to set bit
|
|
* BitArray[vector_value]. So we figure out what register the bit is
|
|
* in, read it, OR in the new bit, then write back the new value. The
|
|
* register is determined by the upper 7 bits of the vector value and
|
|
* the bit within that register are determined by the lower 5 bits of
|
|
* the value.
|
|
*/
|
|
vector_reg = (vector >> 5) & 0x7F;
|
|
vector_bit = vector & 0x1F;
|
|
mta_reg = IXGBE_READ_REG(hw, IXGBE_MTA(vector_reg));
|
|
mta_reg |= (1 << vector_bit);
|
|
IXGBE_WRITE_REG(hw, IXGBE_MTA(vector_reg), mta_reg);
|
|
}
|
|
|
|
/**
|
|
* ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
|
|
* @hw: pointer to hardware structure
|
|
* @netdev: pointer to net device structure
|
|
*
|
|
* The given list replaces any existing list. Clears the MC addrs from receive
|
|
* address registers and the multicast table. Uses unused receive address
|
|
* registers for the first multicast addresses, and hashes the rest into the
|
|
* multicast table.
|
|
**/
|
|
s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
|
|
struct net_device *netdev)
|
|
{
|
|
struct netdev_hw_addr *ha;
|
|
u32 i;
|
|
|
|
/*
|
|
* Set the new number of MC addresses that we are being requested to
|
|
* use.
|
|
*/
|
|
hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
|
|
hw->addr_ctrl.mta_in_use = 0;
|
|
|
|
/* Clear the MTA */
|
|
hw_dbg(hw, " Clearing MTA\n");
|
|
for (i = 0; i < hw->mac.mcft_size; i++)
|
|
IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
|
|
|
|
/* Add the new addresses */
|
|
netdev_for_each_mc_addr(ha, netdev) {
|
|
hw_dbg(hw, " Adding the multicast addresses:\n");
|
|
ixgbe_set_mta(hw, ha->addr);
|
|
}
|
|
|
|
/* Enable mta */
|
|
if (hw->addr_ctrl.mta_in_use > 0)
|
|
IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
|
|
IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
|
|
|
|
hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_enable_mc_generic - Enable multicast address in RAR
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Enables multicast address in RAR and the use of the multicast hash table.
|
|
**/
|
|
s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
|
|
{
|
|
u32 i;
|
|
u32 rar_entries = hw->mac.num_rar_entries;
|
|
struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
|
|
|
|
if (a->mc_addr_in_rar_count > 0)
|
|
for (i = (rar_entries - a->mc_addr_in_rar_count);
|
|
i < rar_entries; i++)
|
|
ixgbe_enable_rar(hw, i);
|
|
|
|
if (a->mta_in_use > 0)
|
|
IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
|
|
hw->mac.mc_filter_type);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_disable_mc_generic - Disable multicast address in RAR
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Disables multicast address in RAR and the use of the multicast hash table.
|
|
**/
|
|
s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
|
|
{
|
|
u32 i;
|
|
u32 rar_entries = hw->mac.num_rar_entries;
|
|
struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
|
|
|
|
if (a->mc_addr_in_rar_count > 0)
|
|
for (i = (rar_entries - a->mc_addr_in_rar_count);
|
|
i < rar_entries; i++)
|
|
ixgbe_disable_rar(hw, i);
|
|
|
|
if (a->mta_in_use > 0)
|
|
IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_fc_enable_generic - Enable flow control
|
|
* @hw: pointer to hardware structure
|
|
* @packetbuf_num: packet buffer number (0-7)
|
|
*
|
|
* Enable flow control according to the current settings.
|
|
**/
|
|
s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw, s32 packetbuf_num)
|
|
{
|
|
s32 ret_val = 0;
|
|
u32 mflcn_reg, fccfg_reg;
|
|
u32 reg;
|
|
u32 rx_pba_size;
|
|
u32 fcrtl, fcrth;
|
|
|
|
#ifdef CONFIG_DCB
|
|
if (hw->fc.requested_mode == ixgbe_fc_pfc)
|
|
goto out;
|
|
|
|
#endif /* CONFIG_DCB */
|
|
/* Negotiate the fc mode to use */
|
|
ret_val = ixgbe_fc_autoneg(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
/* Disable any previous flow control settings */
|
|
mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
|
|
mflcn_reg &= ~(IXGBE_MFLCN_RFCE | IXGBE_MFLCN_RPFCE);
|
|
|
|
fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
|
|
fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
|
|
|
|
/*
|
|
* The possible values of fc.current_mode are:
|
|
* 0: Flow control is completely disabled
|
|
* 1: Rx flow control is enabled (we can receive pause frames,
|
|
* but not send pause frames).
|
|
* 2: Tx flow control is enabled (we can send pause frames but
|
|
* we do not support receiving pause frames).
|
|
* 3: Both Rx and Tx flow control (symmetric) are enabled.
|
|
* 4: Priority Flow Control is enabled.
|
|
* other: Invalid.
|
|
*/
|
|
switch (hw->fc.current_mode) {
|
|
case ixgbe_fc_none:
|
|
/*
|
|
* Flow control is disabled by software override or autoneg.
|
|
* The code below will actually disable it in the HW.
|
|
*/
|
|
break;
|
|
case ixgbe_fc_rx_pause:
|
|
/*
|
|
* Rx Flow control is enabled and Tx Flow control is
|
|
* disabled by software override. Since there really
|
|
* isn't a way to advertise that we are capable of RX
|
|
* Pause ONLY, we will advertise that we support both
|
|
* symmetric and asymmetric Rx PAUSE. Later, we will
|
|
* disable the adapter's ability to send PAUSE frames.
|
|
*/
|
|
mflcn_reg |= IXGBE_MFLCN_RFCE;
|
|
break;
|
|
case ixgbe_fc_tx_pause:
|
|
/*
|
|
* Tx Flow control is enabled, and Rx Flow control is
|
|
* disabled by software override.
|
|
*/
|
|
fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
|
|
break;
|
|
case ixgbe_fc_full:
|
|
/* Flow control (both Rx and Tx) is enabled by SW override. */
|
|
mflcn_reg |= IXGBE_MFLCN_RFCE;
|
|
fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
|
|
break;
|
|
#ifdef CONFIG_DCB
|
|
case ixgbe_fc_pfc:
|
|
goto out;
|
|
break;
|
|
#endif /* CONFIG_DCB */
|
|
default:
|
|
hw_dbg(hw, "Flow control param set incorrectly\n");
|
|
ret_val = IXGBE_ERR_CONFIG;
|
|
goto out;
|
|
break;
|
|
}
|
|
|
|
/* Set 802.3x based flow control settings. */
|
|
mflcn_reg |= IXGBE_MFLCN_DPF;
|
|
IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
|
|
IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
|
|
|
|
rx_pba_size = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(packetbuf_num));
|
|
rx_pba_size >>= IXGBE_RXPBSIZE_SHIFT;
|
|
|
|
fcrth = (rx_pba_size - hw->fc.high_water) << 10;
|
|
fcrtl = (rx_pba_size - hw->fc.low_water) << 10;
|
|
|
|
if (hw->fc.current_mode & ixgbe_fc_tx_pause) {
|
|
fcrth |= IXGBE_FCRTH_FCEN;
|
|
if (hw->fc.send_xon)
|
|
fcrtl |= IXGBE_FCRTL_XONE;
|
|
}
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num), fcrth);
|
|
IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num), fcrtl);
|
|
|
|
/* Configure pause time (2 TCs per register) */
|
|
reg = IXGBE_READ_REG(hw, IXGBE_FCTTV(packetbuf_num / 2));
|
|
if ((packetbuf_num & 1) == 0)
|
|
reg = (reg & 0xFFFF0000) | hw->fc.pause_time;
|
|
else
|
|
reg = (reg & 0x0000FFFF) | (hw->fc.pause_time << 16);
|
|
IXGBE_WRITE_REG(hw, IXGBE_FCTTV(packetbuf_num / 2), reg);
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_fc_autoneg - Configure flow control
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Compares our advertised flow control capabilities to those advertised by
|
|
* our link partner, and determines the proper flow control mode to use.
|
|
**/
|
|
s32 ixgbe_fc_autoneg(struct ixgbe_hw *hw)
|
|
{
|
|
s32 ret_val = 0;
|
|
ixgbe_link_speed speed;
|
|
u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
|
|
u32 links2, anlp1_reg, autoc_reg, links;
|
|
bool link_up;
|
|
|
|
/*
|
|
* AN should have completed when the cable was plugged in.
|
|
* Look for reasons to bail out. Bail out if:
|
|
* - FC autoneg is disabled, or if
|
|
* - link is not up.
|
|
*
|
|
* Since we're being called from an LSC, link is already known to be up.
|
|
* So use link_up_wait_to_complete=false.
|
|
*/
|
|
hw->mac.ops.check_link(hw, &speed, &link_up, false);
|
|
|
|
if (hw->fc.disable_fc_autoneg || (!link_up)) {
|
|
hw->fc.fc_was_autonegged = false;
|
|
hw->fc.current_mode = hw->fc.requested_mode;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* On backplane, bail out if
|
|
* - backplane autoneg was not completed, or if
|
|
* - we are 82599 and link partner is not AN enabled
|
|
*/
|
|
if (hw->phy.media_type == ixgbe_media_type_backplane) {
|
|
links = IXGBE_READ_REG(hw, IXGBE_LINKS);
|
|
if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
|
|
hw->fc.fc_was_autonegged = false;
|
|
hw->fc.current_mode = hw->fc.requested_mode;
|
|
goto out;
|
|
}
|
|
|
|
if (hw->mac.type == ixgbe_mac_82599EB) {
|
|
links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
|
|
if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
|
|
hw->fc.fc_was_autonegged = false;
|
|
hw->fc.current_mode = hw->fc.requested_mode;
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* On multispeed fiber at 1g, bail out if
|
|
* - link is up but AN did not complete, or if
|
|
* - link is up and AN completed but timed out
|
|
*/
|
|
if (hw->phy.multispeed_fiber && (speed == IXGBE_LINK_SPEED_1GB_FULL)) {
|
|
linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
|
|
if (((linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
|
|
((linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
|
|
hw->fc.fc_was_autonegged = false;
|
|
hw->fc.current_mode = hw->fc.requested_mode;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Bail out on
|
|
* - copper or CX4 adapters
|
|
* - fiber adapters running at 10gig
|
|
*/
|
|
if ((hw->phy.media_type == ixgbe_media_type_copper) ||
|
|
(hw->phy.media_type == ixgbe_media_type_cx4) ||
|
|
((hw->phy.media_type == ixgbe_media_type_fiber) &&
|
|
(speed == IXGBE_LINK_SPEED_10GB_FULL))) {
|
|
hw->fc.fc_was_autonegged = false;
|
|
hw->fc.current_mode = hw->fc.requested_mode;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Read the AN advertisement and LP ability registers and resolve
|
|
* local flow control settings accordingly
|
|
*/
|
|
if ((speed == IXGBE_LINK_SPEED_1GB_FULL) &&
|
|
(hw->phy.media_type != ixgbe_media_type_backplane)) {
|
|
pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
|
|
pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
|
|
if ((pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
|
|
(pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE)) {
|
|
/*
|
|
* Now we need to check if the user selected Rx ONLY
|
|
* of pause frames. In this case, we had to advertise
|
|
* FULL flow control because we could not advertise RX
|
|
* ONLY. Hence, we must now check to see if we need to
|
|
* turn OFF the TRANSMISSION of PAUSE frames.
|
|
*/
|
|
if (hw->fc.requested_mode == ixgbe_fc_full) {
|
|
hw->fc.current_mode = ixgbe_fc_full;
|
|
hw_dbg(hw, "Flow Control = FULL.\n");
|
|
} else {
|
|
hw->fc.current_mode = ixgbe_fc_rx_pause;
|
|
hw_dbg(hw, "Flow Control=RX PAUSE only\n");
|
|
}
|
|
} else if (!(pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
|
|
(pcs_anadv_reg & IXGBE_PCS1GANA_ASM_PAUSE) &&
|
|
(pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
|
|
(pcs_lpab_reg & IXGBE_PCS1GANA_ASM_PAUSE)) {
|
|
hw->fc.current_mode = ixgbe_fc_tx_pause;
|
|
hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
|
|
} else if ((pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
|
|
(pcs_anadv_reg & IXGBE_PCS1GANA_ASM_PAUSE) &&
|
|
!(pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
|
|
(pcs_lpab_reg & IXGBE_PCS1GANA_ASM_PAUSE)) {
|
|
hw->fc.current_mode = ixgbe_fc_rx_pause;
|
|
hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
|
|
} else {
|
|
hw->fc.current_mode = ixgbe_fc_none;
|
|
hw_dbg(hw, "Flow Control = NONE.\n");
|
|
}
|
|
}
|
|
|
|
if (hw->phy.media_type == ixgbe_media_type_backplane) {
|
|
/*
|
|
* Read the 10g AN autoc and LP ability registers and resolve
|
|
* local flow control settings accordingly
|
|
*/
|
|
autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
|
|
anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
|
|
|
|
if ((autoc_reg & IXGBE_AUTOC_SYM_PAUSE) &&
|
|
(anlp1_reg & IXGBE_ANLP1_SYM_PAUSE)) {
|
|
/*
|
|
* Now we need to check if the user selected Rx ONLY
|
|
* of pause frames. In this case, we had to advertise
|
|
* FULL flow control because we could not advertise RX
|
|
* ONLY. Hence, we must now check to see if we need to
|
|
* turn OFF the TRANSMISSION of PAUSE frames.
|
|
*/
|
|
if (hw->fc.requested_mode == ixgbe_fc_full) {
|
|
hw->fc.current_mode = ixgbe_fc_full;
|
|
hw_dbg(hw, "Flow Control = FULL.\n");
|
|
} else {
|
|
hw->fc.current_mode = ixgbe_fc_rx_pause;
|
|
hw_dbg(hw, "Flow Control=RX PAUSE only\n");
|
|
}
|
|
} else if (!(autoc_reg & IXGBE_AUTOC_SYM_PAUSE) &&
|
|
(autoc_reg & IXGBE_AUTOC_ASM_PAUSE) &&
|
|
(anlp1_reg & IXGBE_ANLP1_SYM_PAUSE) &&
|
|
(anlp1_reg & IXGBE_ANLP1_ASM_PAUSE)) {
|
|
hw->fc.current_mode = ixgbe_fc_tx_pause;
|
|
hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
|
|
} else if ((autoc_reg & IXGBE_AUTOC_SYM_PAUSE) &&
|
|
(autoc_reg & IXGBE_AUTOC_ASM_PAUSE) &&
|
|
!(anlp1_reg & IXGBE_ANLP1_SYM_PAUSE) &&
|
|
(anlp1_reg & IXGBE_ANLP1_ASM_PAUSE)) {
|
|
hw->fc.current_mode = ixgbe_fc_rx_pause;
|
|
hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
|
|
} else {
|
|
hw->fc.current_mode = ixgbe_fc_none;
|
|
hw_dbg(hw, "Flow Control = NONE.\n");
|
|
}
|
|
}
|
|
/* Record that current_mode is the result of a successful autoneg */
|
|
hw->fc.fc_was_autonegged = true;
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_setup_fc - Set up flow control
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Called at init time to set up flow control.
|
|
**/
|
|
static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num)
|
|
{
|
|
s32 ret_val = 0;
|
|
u32 reg;
|
|
|
|
#ifdef CONFIG_DCB
|
|
if (hw->fc.requested_mode == ixgbe_fc_pfc) {
|
|
hw->fc.current_mode = hw->fc.requested_mode;
|
|
goto out;
|
|
}
|
|
|
|
#endif
|
|
/* Validate the packetbuf configuration */
|
|
if (packetbuf_num < 0 || packetbuf_num > 7) {
|
|
hw_dbg(hw, "Invalid packet buffer number [%d], expected range "
|
|
"is 0-7\n", packetbuf_num);
|
|
ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Validate the water mark configuration. Zero water marks are invalid
|
|
* because it causes the controller to just blast out fc packets.
|
|
*/
|
|
if (!hw->fc.low_water || !hw->fc.high_water || !hw->fc.pause_time) {
|
|
hw_dbg(hw, "Invalid water mark configuration\n");
|
|
ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Validate the requested mode. Strict IEEE mode does not allow
|
|
* ixgbe_fc_rx_pause because it will cause us to fail at UNH.
|
|
*/
|
|
if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
|
|
hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict "
|
|
"IEEE mode\n");
|
|
ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* 10gig parts do not have a word in the EEPROM to determine the
|
|
* default flow control setting, so we explicitly set it to full.
|
|
*/
|
|
if (hw->fc.requested_mode == ixgbe_fc_default)
|
|
hw->fc.requested_mode = ixgbe_fc_full;
|
|
|
|
/*
|
|
* Set up the 1G flow control advertisement registers so the HW will be
|
|
* able to do fc autoneg once the cable is plugged in. If we end up
|
|
* using 10g instead, this is harmless.
|
|
*/
|
|
reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
|
|
|
|
/*
|
|
* The possible values of fc.requested_mode are:
|
|
* 0: Flow control is completely disabled
|
|
* 1: Rx flow control is enabled (we can receive pause frames,
|
|
* but not send pause frames).
|
|
* 2: Tx flow control is enabled (we can send pause frames but
|
|
* we do not support receiving pause frames).
|
|
* 3: Both Rx and Tx flow control (symmetric) are enabled.
|
|
#ifdef CONFIG_DCB
|
|
* 4: Priority Flow Control is enabled.
|
|
#endif
|
|
* other: Invalid.
|
|
*/
|
|
switch (hw->fc.requested_mode) {
|
|
case ixgbe_fc_none:
|
|
/* Flow control completely disabled by software override. */
|
|
reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
|
|
break;
|
|
case ixgbe_fc_rx_pause:
|
|
/*
|
|
* Rx Flow control is enabled and Tx Flow control is
|
|
* disabled by software override. Since there really
|
|
* isn't a way to advertise that we are capable of RX
|
|
* Pause ONLY, we will advertise that we support both
|
|
* symmetric and asymmetric Rx PAUSE. Later, we will
|
|
* disable the adapter's ability to send PAUSE frames.
|
|
*/
|
|
reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
|
|
break;
|
|
case ixgbe_fc_tx_pause:
|
|
/*
|
|
* Tx Flow control is enabled, and Rx Flow control is
|
|
* disabled by software override.
|
|
*/
|
|
reg |= (IXGBE_PCS1GANA_ASM_PAUSE);
|
|
reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE);
|
|
break;
|
|
case ixgbe_fc_full:
|
|
/* Flow control (both Rx and Tx) is enabled by SW override. */
|
|
reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
|
|
break;
|
|
#ifdef CONFIG_DCB
|
|
case ixgbe_fc_pfc:
|
|
goto out;
|
|
break;
|
|
#endif /* CONFIG_DCB */
|
|
default:
|
|
hw_dbg(hw, "Flow control param set incorrectly\n");
|
|
ret_val = IXGBE_ERR_CONFIG;
|
|
goto out;
|
|
break;
|
|
}
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
|
|
reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
|
|
|
|
/* Disable AN timeout */
|
|
if (hw->fc.strict_ieee)
|
|
reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
|
|
hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
|
|
|
|
/*
|
|
* Set up the 10G flow control advertisement registers so the HW
|
|
* can do fc autoneg once the cable is plugged in. If we end up
|
|
* using 1g instead, this is harmless.
|
|
*/
|
|
reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
|
|
|
|
/*
|
|
* The possible values of fc.requested_mode are:
|
|
* 0: Flow control is completely disabled
|
|
* 1: Rx flow control is enabled (we can receive pause frames,
|
|
* but not send pause frames).
|
|
* 2: Tx flow control is enabled (we can send pause frames but
|
|
* we do not support receiving pause frames).
|
|
* 3: Both Rx and Tx flow control (symmetric) are enabled.
|
|
* other: Invalid.
|
|
*/
|
|
switch (hw->fc.requested_mode) {
|
|
case ixgbe_fc_none:
|
|
/* Flow control completely disabled by software override. */
|
|
reg &= ~(IXGBE_AUTOC_SYM_PAUSE | IXGBE_AUTOC_ASM_PAUSE);
|
|
break;
|
|
case ixgbe_fc_rx_pause:
|
|
/*
|
|
* Rx Flow control is enabled and Tx Flow control is
|
|
* disabled by software override. Since there really
|
|
* isn't a way to advertise that we are capable of RX
|
|
* Pause ONLY, we will advertise that we support both
|
|
* symmetric and asymmetric Rx PAUSE. Later, we will
|
|
* disable the adapter's ability to send PAUSE frames.
|
|
*/
|
|
reg |= (IXGBE_AUTOC_SYM_PAUSE | IXGBE_AUTOC_ASM_PAUSE);
|
|
break;
|
|
case ixgbe_fc_tx_pause:
|
|
/*
|
|
* Tx Flow control is enabled, and Rx Flow control is
|
|
* disabled by software override.
|
|
*/
|
|
reg |= (IXGBE_AUTOC_ASM_PAUSE);
|
|
reg &= ~(IXGBE_AUTOC_SYM_PAUSE);
|
|
break;
|
|
case ixgbe_fc_full:
|
|
/* Flow control (both Rx and Tx) is enabled by SW override. */
|
|
reg |= (IXGBE_AUTOC_SYM_PAUSE | IXGBE_AUTOC_ASM_PAUSE);
|
|
break;
|
|
#ifdef CONFIG_DCB
|
|
case ixgbe_fc_pfc:
|
|
goto out;
|
|
break;
|
|
#endif /* CONFIG_DCB */
|
|
default:
|
|
hw_dbg(hw, "Flow control param set incorrectly\n");
|
|
ret_val = IXGBE_ERR_CONFIG;
|
|
goto out;
|
|
break;
|
|
}
|
|
/*
|
|
* AUTOC restart handles negotiation of 1G and 10G. There is
|
|
* no need to set the PCS1GCTL register.
|
|
*/
|
|
reg |= IXGBE_AUTOC_AN_RESTART;
|
|
IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg);
|
|
hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_disable_pcie_master - Disable PCI-express master access
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Disables PCI-Express master access and verifies there are no pending
|
|
* requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
|
|
* bit hasn't caused the master requests to be disabled, else 0
|
|
* is returned signifying master requests disabled.
|
|
**/
|
|
s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
|
|
{
|
|
u32 i;
|
|
u32 reg_val;
|
|
u32 number_of_queues;
|
|
s32 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
|
|
|
|
/* Disable the receive unit by stopping each queue */
|
|
number_of_queues = hw->mac.max_rx_queues;
|
|
for (i = 0; i < number_of_queues; i++) {
|
|
reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
|
|
if (reg_val & IXGBE_RXDCTL_ENABLE) {
|
|
reg_val &= ~IXGBE_RXDCTL_ENABLE;
|
|
IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
|
|
}
|
|
}
|
|
|
|
reg_val = IXGBE_READ_REG(hw, IXGBE_CTRL);
|
|
reg_val |= IXGBE_CTRL_GIO_DIS;
|
|
IXGBE_WRITE_REG(hw, IXGBE_CTRL, reg_val);
|
|
|
|
for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
|
|
if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) {
|
|
status = 0;
|
|
break;
|
|
}
|
|
udelay(100);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
|
|
/**
|
|
* ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
|
|
* @hw: pointer to hardware structure
|
|
* @mask: Mask to specify which semaphore to acquire
|
|
*
|
|
* Acquires the SWFW semaphore thought the GSSR register for the specified
|
|
* function (CSR, PHY0, PHY1, EEPROM, Flash)
|
|
**/
|
|
s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
|
|
{
|
|
u32 gssr;
|
|
u32 swmask = mask;
|
|
u32 fwmask = mask << 5;
|
|
s32 timeout = 200;
|
|
|
|
while (timeout) {
|
|
if (ixgbe_get_eeprom_semaphore(hw))
|
|
return IXGBE_ERR_SWFW_SYNC;
|
|
|
|
gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
|
|
if (!(gssr & (fwmask | swmask)))
|
|
break;
|
|
|
|
/*
|
|
* Firmware currently using resource (fwmask) or other software
|
|
* thread currently using resource (swmask)
|
|
*/
|
|
ixgbe_release_eeprom_semaphore(hw);
|
|
msleep(5);
|
|
timeout--;
|
|
}
|
|
|
|
if (!timeout) {
|
|
hw_dbg(hw, "Driver can't access resource, GSSR timeout.\n");
|
|
return IXGBE_ERR_SWFW_SYNC;
|
|
}
|
|
|
|
gssr |= swmask;
|
|
IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
|
|
|
|
ixgbe_release_eeprom_semaphore(hw);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_release_swfw_sync - Release SWFW semaphore
|
|
* @hw: pointer to hardware structure
|
|
* @mask: Mask to specify which semaphore to release
|
|
*
|
|
* Releases the SWFW semaphore thought the GSSR register for the specified
|
|
* function (CSR, PHY0, PHY1, EEPROM, Flash)
|
|
**/
|
|
void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
|
|
{
|
|
u32 gssr;
|
|
u32 swmask = mask;
|
|
|
|
ixgbe_get_eeprom_semaphore(hw);
|
|
|
|
gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
|
|
gssr &= ~swmask;
|
|
IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
|
|
|
|
ixgbe_release_eeprom_semaphore(hw);
|
|
}
|
|
|
|
/**
|
|
* ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
|
|
* @hw: pointer to hardware structure
|
|
* @regval: register value to write to RXCTRL
|
|
*
|
|
* Enables the Rx DMA unit
|
|
**/
|
|
s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
|
|
{
|
|
IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_blink_led_start_generic - Blink LED based on index.
|
|
* @hw: pointer to hardware structure
|
|
* @index: led number to blink
|
|
**/
|
|
s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
|
|
{
|
|
ixgbe_link_speed speed = 0;
|
|
bool link_up = 0;
|
|
u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
|
|
u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
|
|
|
|
/*
|
|
* Link must be up to auto-blink the LEDs;
|
|
* Force it if link is down.
|
|
*/
|
|
hw->mac.ops.check_link(hw, &speed, &link_up, false);
|
|
|
|
if (!link_up) {
|
|
autoc_reg |= IXGBE_AUTOC_AN_RESTART;
|
|
autoc_reg |= IXGBE_AUTOC_FLU;
|
|
IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
|
|
msleep(10);
|
|
}
|
|
|
|
led_reg &= ~IXGBE_LED_MODE_MASK(index);
|
|
led_reg |= IXGBE_LED_BLINK(index);
|
|
IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
|
|
* @hw: pointer to hardware structure
|
|
* @index: led number to stop blinking
|
|
**/
|
|
s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
|
|
{
|
|
u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
|
|
u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
|
|
|
|
autoc_reg &= ~IXGBE_AUTOC_FLU;
|
|
autoc_reg |= IXGBE_AUTOC_AN_RESTART;
|
|
IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
|
|
|
|
led_reg &= ~IXGBE_LED_MODE_MASK(index);
|
|
led_reg &= ~IXGBE_LED_BLINK(index);
|
|
led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
|
|
IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
|
|
* @hw: pointer to hardware structure
|
|
* @san_mac_offset: SAN MAC address offset
|
|
*
|
|
* This function will read the EEPROM location for the SAN MAC address
|
|
* pointer, and returns the value at that location. This is used in both
|
|
* get and set mac_addr routines.
|
|
**/
|
|
static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
|
|
u16 *san_mac_offset)
|
|
{
|
|
/*
|
|
* First read the EEPROM pointer to see if the MAC addresses are
|
|
* available.
|
|
*/
|
|
hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
|
|
* @hw: pointer to hardware structure
|
|
* @san_mac_addr: SAN MAC address
|
|
*
|
|
* Reads the SAN MAC address from the EEPROM, if it's available. This is
|
|
* per-port, so set_lan_id() must be called before reading the addresses.
|
|
* set_lan_id() is called by identify_sfp(), but this cannot be relied
|
|
* upon for non-SFP connections, so we must call it here.
|
|
**/
|
|
s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
|
|
{
|
|
u16 san_mac_data, san_mac_offset;
|
|
u8 i;
|
|
|
|
/*
|
|
* First read the EEPROM pointer to see if the MAC addresses are
|
|
* available. If they're not, no point in calling set_lan_id() here.
|
|
*/
|
|
ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
|
|
|
|
if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
|
|
/*
|
|
* No addresses available in this EEPROM. It's not an
|
|
* error though, so just wipe the local address and return.
|
|
*/
|
|
for (i = 0; i < 6; i++)
|
|
san_mac_addr[i] = 0xFF;
|
|
|
|
goto san_mac_addr_out;
|
|
}
|
|
|
|
/* make sure we know which port we need to program */
|
|
hw->mac.ops.set_lan_id(hw);
|
|
/* apply the port offset to the address offset */
|
|
(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
|
|
(san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
|
|
for (i = 0; i < 3; i++) {
|
|
hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
|
|
san_mac_addr[i * 2] = (u8)(san_mac_data);
|
|
san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
|
|
san_mac_offset++;
|
|
}
|
|
|
|
san_mac_addr_out:
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Read PCIe configuration space, and get the MSI-X vector count from
|
|
* the capabilities table.
|
|
**/
|
|
u32 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
|
|
{
|
|
struct ixgbe_adapter *adapter = hw->back;
|
|
u16 msix_count;
|
|
pci_read_config_word(adapter->pdev, IXGBE_PCIE_MSIX_82599_CAPS,
|
|
&msix_count);
|
|
msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
|
|
|
|
/* MSI-X count is zero-based in HW, so increment to give proper value */
|
|
msix_count++;
|
|
|
|
return msix_count;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
|
|
* @hw: pointer to hardware struct
|
|
* @rar: receive address register index to disassociate
|
|
* @vmdq: VMDq pool index to remove from the rar
|
|
**/
|
|
s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
|
|
{
|
|
u32 mpsar_lo, mpsar_hi;
|
|
u32 rar_entries = hw->mac.num_rar_entries;
|
|
|
|
if (rar < rar_entries) {
|
|
mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
|
|
mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
|
|
|
|
if (!mpsar_lo && !mpsar_hi)
|
|
goto done;
|
|
|
|
if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
|
|
if (mpsar_lo) {
|
|
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
|
|
mpsar_lo = 0;
|
|
}
|
|
if (mpsar_hi) {
|
|
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
|
|
mpsar_hi = 0;
|
|
}
|
|
} else if (vmdq < 32) {
|
|
mpsar_lo &= ~(1 << vmdq);
|
|
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
|
|
} else {
|
|
mpsar_hi &= ~(1 << (vmdq - 32));
|
|
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
|
|
}
|
|
|
|
/* was that the last pool using this rar? */
|
|
if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
|
|
hw->mac.ops.clear_rar(hw, rar);
|
|
} else {
|
|
hw_dbg(hw, "RAR index %d is out of range.\n", rar);
|
|
}
|
|
|
|
done:
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
|
|
* @hw: pointer to hardware struct
|
|
* @rar: receive address register index to associate with a VMDq index
|
|
* @vmdq: VMDq pool index
|
|
**/
|
|
s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
|
|
{
|
|
u32 mpsar;
|
|
u32 rar_entries = hw->mac.num_rar_entries;
|
|
|
|
if (rar < rar_entries) {
|
|
if (vmdq < 32) {
|
|
mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
|
|
mpsar |= 1 << vmdq;
|
|
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
|
|
} else {
|
|
mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
|
|
mpsar |= 1 << (vmdq - 32);
|
|
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
|
|
}
|
|
} else {
|
|
hw_dbg(hw, "RAR index %d is out of range.\n", rar);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
|
|
* @hw: pointer to hardware structure
|
|
**/
|
|
s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
|
|
{
|
|
int i;
|
|
|
|
|
|
for (i = 0; i < 128; i++)
|
|
IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
|
|
* @hw: pointer to hardware structure
|
|
* @vlan: VLAN id to write to VLAN filter
|
|
*
|
|
* return the VLVF index where this VLAN id should be placed
|
|
*
|
|
**/
|
|
static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
|
|
{
|
|
u32 bits = 0;
|
|
u32 first_empty_slot = 0;
|
|
s32 regindex;
|
|
|
|
/* short cut the special case */
|
|
if (vlan == 0)
|
|
return 0;
|
|
|
|
/*
|
|
* Search for the vlan id in the VLVF entries. Save off the first empty
|
|
* slot found along the way
|
|
*/
|
|
for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
|
|
bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
|
|
if (!bits && !(first_empty_slot))
|
|
first_empty_slot = regindex;
|
|
else if ((bits & 0x0FFF) == vlan)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
|
|
* in the VLVF. Else use the first empty VLVF register for this
|
|
* vlan id.
|
|
*/
|
|
if (regindex >= IXGBE_VLVF_ENTRIES) {
|
|
if (first_empty_slot)
|
|
regindex = first_empty_slot;
|
|
else {
|
|
hw_dbg(hw, "No space in VLVF.\n");
|
|
regindex = IXGBE_ERR_NO_SPACE;
|
|
}
|
|
}
|
|
|
|
return regindex;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_set_vfta_generic - Set VLAN filter table
|
|
* @hw: pointer to hardware structure
|
|
* @vlan: VLAN id to write to VLAN filter
|
|
* @vind: VMDq output index that maps queue to VLAN id in VFVFB
|
|
* @vlan_on: boolean flag to turn on/off VLAN in VFVF
|
|
*
|
|
* Turn on/off specified VLAN in the VLAN filter table.
|
|
**/
|
|
s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
|
|
bool vlan_on)
|
|
{
|
|
s32 regindex;
|
|
u32 bitindex;
|
|
u32 vfta;
|
|
u32 bits;
|
|
u32 vt;
|
|
u32 targetbit;
|
|
bool vfta_changed = false;
|
|
|
|
if (vlan > 4095)
|
|
return IXGBE_ERR_PARAM;
|
|
|
|
/*
|
|
* this is a 2 part operation - first the VFTA, then the
|
|
* VLVF and VLVFB if VT Mode is set
|
|
* We don't write the VFTA until we know the VLVF part succeeded.
|
|
*/
|
|
|
|
/* Part 1
|
|
* The VFTA is a bitstring made up of 128 32-bit registers
|
|
* that enable the particular VLAN id, much like the MTA:
|
|
* bits[11-5]: which register
|
|
* bits[4-0]: which bit in the register
|
|
*/
|
|
regindex = (vlan >> 5) & 0x7F;
|
|
bitindex = vlan & 0x1F;
|
|
targetbit = (1 << bitindex);
|
|
vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
|
|
|
|
if (vlan_on) {
|
|
if (!(vfta & targetbit)) {
|
|
vfta |= targetbit;
|
|
vfta_changed = true;
|
|
}
|
|
} else {
|
|
if ((vfta & targetbit)) {
|
|
vfta &= ~targetbit;
|
|
vfta_changed = true;
|
|
}
|
|
}
|
|
|
|
/* Part 2
|
|
* If VT Mode is set
|
|
* Either vlan_on
|
|
* make sure the vlan is in VLVF
|
|
* set the vind bit in the matching VLVFB
|
|
* Or !vlan_on
|
|
* clear the pool bit and possibly the vind
|
|
*/
|
|
vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
|
|
if (vt & IXGBE_VT_CTL_VT_ENABLE) {
|
|
s32 vlvf_index;
|
|
|
|
vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
|
|
if (vlvf_index < 0)
|
|
return vlvf_index;
|
|
|
|
if (vlan_on) {
|
|
/* set the pool bit */
|
|
if (vind < 32) {
|
|
bits = IXGBE_READ_REG(hw,
|
|
IXGBE_VLVFB(vlvf_index*2));
|
|
bits |= (1 << vind);
|
|
IXGBE_WRITE_REG(hw,
|
|
IXGBE_VLVFB(vlvf_index*2),
|
|
bits);
|
|
} else {
|
|
bits = IXGBE_READ_REG(hw,
|
|
IXGBE_VLVFB((vlvf_index*2)+1));
|
|
bits |= (1 << (vind-32));
|
|
IXGBE_WRITE_REG(hw,
|
|
IXGBE_VLVFB((vlvf_index*2)+1),
|
|
bits);
|
|
}
|
|
} else {
|
|
/* clear the pool bit */
|
|
if (vind < 32) {
|
|
bits = IXGBE_READ_REG(hw,
|
|
IXGBE_VLVFB(vlvf_index*2));
|
|
bits &= ~(1 << vind);
|
|
IXGBE_WRITE_REG(hw,
|
|
IXGBE_VLVFB(vlvf_index*2),
|
|
bits);
|
|
bits |= IXGBE_READ_REG(hw,
|
|
IXGBE_VLVFB((vlvf_index*2)+1));
|
|
} else {
|
|
bits = IXGBE_READ_REG(hw,
|
|
IXGBE_VLVFB((vlvf_index*2)+1));
|
|
bits &= ~(1 << (vind-32));
|
|
IXGBE_WRITE_REG(hw,
|
|
IXGBE_VLVFB((vlvf_index*2)+1),
|
|
bits);
|
|
bits |= IXGBE_READ_REG(hw,
|
|
IXGBE_VLVFB(vlvf_index*2));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If there are still bits set in the VLVFB registers
|
|
* for the VLAN ID indicated we need to see if the
|
|
* caller is requesting that we clear the VFTA entry bit.
|
|
* If the caller has requested that we clear the VFTA
|
|
* entry bit but there are still pools/VFs using this VLAN
|
|
* ID entry then ignore the request. We're not worried
|
|
* about the case where we're turning the VFTA VLAN ID
|
|
* entry bit on, only when requested to turn it off as
|
|
* there may be multiple pools and/or VFs using the
|
|
* VLAN ID entry. In that case we cannot clear the
|
|
* VFTA bit until all pools/VFs using that VLAN ID have also
|
|
* been cleared. This will be indicated by "bits" being
|
|
* zero.
|
|
*/
|
|
if (bits) {
|
|
IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
|
|
(IXGBE_VLVF_VIEN | vlan));
|
|
if (!vlan_on) {
|
|
/* someone wants to clear the vfta entry
|
|
* but some pools/VFs are still using it.
|
|
* Ignore it. */
|
|
vfta_changed = false;
|
|
}
|
|
}
|
|
else
|
|
IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
|
|
}
|
|
|
|
if (vfta_changed)
|
|
IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_clear_vfta_generic - Clear VLAN filter table
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Clears the VLAN filer table, and the VMDq index associated with the filter
|
|
**/
|
|
s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
|
|
{
|
|
u32 offset;
|
|
|
|
for (offset = 0; offset < hw->mac.vft_size; offset++)
|
|
IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
|
|
|
|
for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
|
|
IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
|
|
IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
|
|
IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_check_mac_link_generic - Determine link and speed status
|
|
* @hw: pointer to hardware structure
|
|
* @speed: pointer to link speed
|
|
* @link_up: true when link is up
|
|
* @link_up_wait_to_complete: bool used to wait for link up or not
|
|
*
|
|
* Reads the links register to determine if link is up and the current speed
|
|
**/
|
|
s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
|
|
bool *link_up, bool link_up_wait_to_complete)
|
|
{
|
|
u32 links_reg;
|
|
u32 i;
|
|
|
|
links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
|
|
if (link_up_wait_to_complete) {
|
|
for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
|
|
if (links_reg & IXGBE_LINKS_UP) {
|
|
*link_up = true;
|
|
break;
|
|
} else {
|
|
*link_up = false;
|
|
}
|
|
msleep(100);
|
|
links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
|
|
}
|
|
} else {
|
|
if (links_reg & IXGBE_LINKS_UP)
|
|
*link_up = true;
|
|
else
|
|
*link_up = false;
|
|
}
|
|
|
|
if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
|
|
IXGBE_LINKS_SPEED_10G_82599)
|
|
*speed = IXGBE_LINK_SPEED_10GB_FULL;
|
|
else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
|
|
IXGBE_LINKS_SPEED_1G_82599)
|
|
*speed = IXGBE_LINK_SPEED_1GB_FULL;
|
|
else
|
|
*speed = IXGBE_LINK_SPEED_100_FULL;
|
|
|
|
/* if link is down, zero out the current_mode */
|
|
if (*link_up == false) {
|
|
hw->fc.current_mode = ixgbe_fc_none;
|
|
hw->fc.fc_was_autonegged = false;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_get_wwn_prefix_generic Get alternative WWNN/WWPN prefix from
|
|
* the EEPROM
|
|
* @hw: pointer to hardware structure
|
|
* @wwnn_prefix: the alternative WWNN prefix
|
|
* @wwpn_prefix: the alternative WWPN prefix
|
|
*
|
|
* This function will read the EEPROM from the alternative SAN MAC address
|
|
* block to check the support for the alternative WWNN/WWPN prefix support.
|
|
**/
|
|
s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
|
|
u16 *wwpn_prefix)
|
|
{
|
|
u16 offset, caps;
|
|
u16 alt_san_mac_blk_offset;
|
|
|
|
/* clear output first */
|
|
*wwnn_prefix = 0xFFFF;
|
|
*wwpn_prefix = 0xFFFF;
|
|
|
|
/* check if alternative SAN MAC is supported */
|
|
hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
|
|
&alt_san_mac_blk_offset);
|
|
|
|
if ((alt_san_mac_blk_offset == 0) ||
|
|
(alt_san_mac_blk_offset == 0xFFFF))
|
|
goto wwn_prefix_out;
|
|
|
|
/* check capability in alternative san mac address block */
|
|
offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
|
|
hw->eeprom.ops.read(hw, offset, &caps);
|
|
if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
|
|
goto wwn_prefix_out;
|
|
|
|
/* get the corresponding prefix for WWNN/WWPN */
|
|
offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
|
|
hw->eeprom.ops.read(hw, offset, wwnn_prefix);
|
|
|
|
offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
|
|
hw->eeprom.ops.read(hw, offset, wwpn_prefix);
|
|
|
|
wwn_prefix_out:
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
|
|
* @hw: pointer to hardware structure
|
|
* @enable: enable or disable switch for anti-spoofing
|
|
* @pf: Physical Function pool - do not enable anti-spoofing for the PF
|
|
*
|
|
**/
|
|
void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
|
|
{
|
|
int j;
|
|
int pf_target_reg = pf >> 3;
|
|
int pf_target_shift = pf % 8;
|
|
u32 pfvfspoof = 0;
|
|
|
|
if (hw->mac.type == ixgbe_mac_82598EB)
|
|
return;
|
|
|
|
if (enable)
|
|
pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
|
|
|
|
/*
|
|
* PFVFSPOOF register array is size 8 with 8 bits assigned to
|
|
* MAC anti-spoof enables in each register array element.
|
|
*/
|
|
for (j = 0; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
|
|
IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
|
|
|
|
/* If not enabling anti-spoofing then done */
|
|
if (!enable)
|
|
return;
|
|
|
|
/*
|
|
* The PF should be allowed to spoof so that it can support
|
|
* emulation mode NICs. Reset the bit assigned to the PF
|
|
*/
|
|
pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg));
|
|
pfvfspoof ^= (1 << pf_target_shift);
|
|
IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg), pfvfspoof);
|
|
}
|
|
|
|
/**
|
|
* ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
|
|
* @hw: pointer to hardware structure
|
|
* @enable: enable or disable switch for VLAN anti-spoofing
|
|
* @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
|
|
*
|
|
**/
|
|
void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
|
|
{
|
|
int vf_target_reg = vf >> 3;
|
|
int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
|
|
u32 pfvfspoof;
|
|
|
|
if (hw->mac.type == ixgbe_mac_82598EB)
|
|
return;
|
|
|
|
pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
|
|
if (enable)
|
|
pfvfspoof |= (1 << vf_target_shift);
|
|
else
|
|
pfvfspoof &= ~(1 << vf_target_shift);
|
|
IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
|
|
}
|