linux/drivers/fsi/fsi-master-ast-cf.c
Benjamin Herrenschmidt 537052df22 fsi: master-ast-cf: Rename dump_trace() to avoid name collision
s390 defines a global dump_trace() symbol. Rename ours to
dump_ucode_trace() to avoid a collision in build tests.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2018-07-26 14:49:50 +10:00

1441 lines
37 KiB
C

// SPDX-License-Identifier: GPL-2.0+
// Copyright 2018 IBM Corp
/*
* A FSI master controller, using a simple GPIO bit-banging interface
*/
#include <linux/crc4.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/fsi.h>
#include <linux/gpio/consumer.h>
#include <linux/io.h>
#include <linux/irqflags.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/regmap.h>
#include <linux/firmware.h>
#include <linux/gpio/aspeed.h>
#include <linux/mfd/syscon.h>
#include <linux/of_address.h>
#include <linux/genalloc.h>
#include "fsi-master.h"
#include "cf-fsi-fw.h"
#define FW_FILE_NAME "cf-fsi-fw.bin"
/* Common SCU based coprocessor control registers */
#define SCU_COPRO_CTRL 0x100
#define SCU_COPRO_RESET 0x00000002
#define SCU_COPRO_CLK_EN 0x00000001
/* AST2500 specific ones */
#define SCU_2500_COPRO_SEG0 0x104
#define SCU_2500_COPRO_SEG1 0x108
#define SCU_2500_COPRO_SEG2 0x10c
#define SCU_2500_COPRO_SEG3 0x110
#define SCU_2500_COPRO_SEG4 0x114
#define SCU_2500_COPRO_SEG5 0x118
#define SCU_2500_COPRO_SEG6 0x11c
#define SCU_2500_COPRO_SEG7 0x120
#define SCU_2500_COPRO_SEG8 0x124
#define SCU_2500_COPRO_SEG_SWAP 0x00000001
#define SCU_2500_COPRO_CACHE_CTL 0x128
#define SCU_2500_COPRO_CACHE_EN 0x00000001
#define SCU_2500_COPRO_SEG0_CACHE_EN 0x00000002
#define SCU_2500_COPRO_SEG1_CACHE_EN 0x00000004
#define SCU_2500_COPRO_SEG2_CACHE_EN 0x00000008
#define SCU_2500_COPRO_SEG3_CACHE_EN 0x00000010
#define SCU_2500_COPRO_SEG4_CACHE_EN 0x00000020
#define SCU_2500_COPRO_SEG5_CACHE_EN 0x00000040
#define SCU_2500_COPRO_SEG6_CACHE_EN 0x00000080
#define SCU_2500_COPRO_SEG7_CACHE_EN 0x00000100
#define SCU_2500_COPRO_SEG8_CACHE_EN 0x00000200
#define SCU_2400_COPRO_SEG0 0x104
#define SCU_2400_COPRO_SEG2 0x108
#define SCU_2400_COPRO_SEG4 0x10c
#define SCU_2400_COPRO_SEG6 0x110
#define SCU_2400_COPRO_SEG8 0x114
#define SCU_2400_COPRO_SEG_SWAP 0x80000000
#define SCU_2400_COPRO_CACHE_CTL 0x118
#define SCU_2400_COPRO_CACHE_EN 0x00000001
#define SCU_2400_COPRO_SEG0_CACHE_EN 0x00000002
#define SCU_2400_COPRO_SEG2_CACHE_EN 0x00000004
#define SCU_2400_COPRO_SEG4_CACHE_EN 0x00000008
#define SCU_2400_COPRO_SEG6_CACHE_EN 0x00000010
#define SCU_2400_COPRO_SEG8_CACHE_EN 0x00000020
/* CVIC registers */
#define CVIC_EN_REG 0x10
#define CVIC_TRIG_REG 0x18
/*
* System register base address (needed for configuring the
* coldfire maps)
*/
#define SYSREG_BASE 0x1e600000
/* Amount of SRAM required */
#define SRAM_SIZE 0x1000
#define LAST_ADDR_INVALID 0x1
struct fsi_master_acf {
struct fsi_master master;
struct device *dev;
struct regmap *scu;
struct mutex lock; /* mutex for command ordering */
struct gpio_desc *gpio_clk;
struct gpio_desc *gpio_data;
struct gpio_desc *gpio_trans; /* Voltage translator */
struct gpio_desc *gpio_enable; /* FSI enable */
struct gpio_desc *gpio_mux; /* Mux control */
uint16_t gpio_clk_vreg;
uint16_t gpio_clk_dreg;
uint16_t gpio_dat_vreg;
uint16_t gpio_dat_dreg;
uint16_t gpio_tra_vreg;
uint16_t gpio_tra_dreg;
uint8_t gpio_clk_bit;
uint8_t gpio_dat_bit;
uint8_t gpio_tra_bit;
uint32_t cf_mem_addr;
size_t cf_mem_size;
void __iomem *cf_mem;
void __iomem *cvic;
struct gen_pool *sram_pool;
void __iomem *sram;
bool is_ast2500;
bool external_mode;
bool trace_enabled;
uint32_t last_addr;
uint8_t t_send_delay;
uint8_t t_echo_delay;
uint32_t cvic_sw_irq;
};
#define to_fsi_master_acf(m) container_of(m, struct fsi_master_acf, master)
struct fsi_msg {
uint64_t msg;
uint8_t bits;
};
#define CREATE_TRACE_POINTS
#include <trace/events/fsi_master_ast_cf.h>
static void msg_push_bits(struct fsi_msg *msg, uint64_t data, int bits)
{
msg->msg <<= bits;
msg->msg |= data & ((1ull << bits) - 1);
msg->bits += bits;
}
static void msg_push_crc(struct fsi_msg *msg)
{
uint8_t crc;
int top;
top = msg->bits & 0x3;
/* start bit, and any non-aligned top bits */
crc = crc4(0, 1 << top | msg->msg >> (msg->bits - top), top + 1);
/* aligned bits */
crc = crc4(crc, msg->msg, msg->bits - top);
msg_push_bits(msg, crc, 4);
}
static void msg_finish_cmd(struct fsi_msg *cmd)
{
/* Left align message */
cmd->msg <<= (64 - cmd->bits);
}
static bool check_same_address(struct fsi_master_acf *master, int id,
uint32_t addr)
{
/* this will also handle LAST_ADDR_INVALID */
return master->last_addr == (((id & 0x3) << 21) | (addr & ~0x3));
}
static bool check_relative_address(struct fsi_master_acf *master, int id,
uint32_t addr, uint32_t *rel_addrp)
{
uint32_t last_addr = master->last_addr;
int32_t rel_addr;
if (last_addr == LAST_ADDR_INVALID)
return false;
/* We may be in 23-bit addressing mode, which uses the id as the
* top two address bits. So, if we're referencing a different ID,
* use absolute addresses.
*/
if (((last_addr >> 21) & 0x3) != id)
return false;
/* remove the top two bits from any 23-bit addressing */
last_addr &= (1 << 21) - 1;
/* We know that the addresses are limited to 21 bits, so this won't
* overflow the signed rel_addr */
rel_addr = addr - last_addr;
if (rel_addr > 255 || rel_addr < -256)
return false;
*rel_addrp = (uint32_t)rel_addr;
return true;
}
static void last_address_update(struct fsi_master_acf *master,
int id, bool valid, uint32_t addr)
{
if (!valid)
master->last_addr = LAST_ADDR_INVALID;
else
master->last_addr = ((id & 0x3) << 21) | (addr & ~0x3);
}
/*
* Encode an Absolute/Relative/Same Address command
*/
static void build_ar_command(struct fsi_master_acf *master,
struct fsi_msg *cmd, uint8_t id,
uint32_t addr, size_t size,
const void *data)
{
int i, addr_bits, opcode_bits;
bool write = !!data;
uint8_t ds, opcode;
uint32_t rel_addr;
cmd->bits = 0;
cmd->msg = 0;
/* we have 21 bits of address max */
addr &= ((1 << 21) - 1);
/* cmd opcodes are variable length - SAME_AR is only two bits */
opcode_bits = 3;
if (check_same_address(master, id, addr)) {
/* we still address the byte offset within the word */
addr_bits = 2;
opcode_bits = 2;
opcode = FSI_CMD_SAME_AR;
trace_fsi_master_acf_cmd_same_addr(master);
} else if (check_relative_address(master, id, addr, &rel_addr)) {
/* 8 bits plus sign */
addr_bits = 9;
addr = rel_addr;
opcode = FSI_CMD_REL_AR;
trace_fsi_master_acf_cmd_rel_addr(master, rel_addr);
} else {
addr_bits = 21;
opcode = FSI_CMD_ABS_AR;
trace_fsi_master_acf_cmd_abs_addr(master, addr);
}
/*
* The read/write size is encoded in the lower bits of the address
* (as it must be naturally-aligned), and the following ds bit.
*
* size addr:1 addr:0 ds
* 1 x x 0
* 2 x 0 1
* 4 0 1 1
*
*/
ds = size > 1 ? 1 : 0;
addr &= ~(size - 1);
if (size == 4)
addr |= 1;
msg_push_bits(cmd, id, 2);
msg_push_bits(cmd, opcode, opcode_bits);
msg_push_bits(cmd, write ? 0 : 1, 1);
msg_push_bits(cmd, addr, addr_bits);
msg_push_bits(cmd, ds, 1);
for (i = 0; write && i < size; i++)
msg_push_bits(cmd, ((uint8_t *)data)[i], 8);
msg_push_crc(cmd);
msg_finish_cmd(cmd);
}
static void build_dpoll_command(struct fsi_msg *cmd, uint8_t slave_id)
{
cmd->bits = 0;
cmd->msg = 0;
msg_push_bits(cmd, slave_id, 2);
msg_push_bits(cmd, FSI_CMD_DPOLL, 3);
msg_push_crc(cmd);
msg_finish_cmd(cmd);
}
static void build_epoll_command(struct fsi_msg *cmd, uint8_t slave_id)
{
cmd->bits = 0;
cmd->msg = 0;
msg_push_bits(cmd, slave_id, 2);
msg_push_bits(cmd, FSI_CMD_EPOLL, 3);
msg_push_crc(cmd);
msg_finish_cmd(cmd);
}
static void build_term_command(struct fsi_msg *cmd, uint8_t slave_id)
{
cmd->bits = 0;
cmd->msg = 0;
msg_push_bits(cmd, slave_id, 2);
msg_push_bits(cmd, FSI_CMD_TERM, 6);
msg_push_crc(cmd);
msg_finish_cmd(cmd);
}
static int do_copro_command(struct fsi_master_acf *master, uint32_t op)
{
uint32_t timeout = 10000000;
uint8_t stat;
trace_fsi_master_acf_copro_command(master, op);
/* Send command */
iowrite32be(op, master->sram + CMD_STAT_REG);
/* Ring doorbell if any */
if (master->cvic)
iowrite32(0x2, master->cvic + CVIC_TRIG_REG);
/* Wait for status to indicate completion (or error) */
do {
if (timeout-- == 0) {
dev_warn(master->dev,
"Timeout waiting for coprocessor completion\n");
return -ETIMEDOUT;
}
stat = ioread8(master->sram + CMD_STAT_REG);
} while(stat < STAT_COMPLETE || stat == 0xff);
if (stat == STAT_COMPLETE)
return 0;
switch(stat) {
case STAT_ERR_INVAL_CMD:
return -EINVAL;
case STAT_ERR_INVAL_IRQ:
return -EIO;
case STAT_ERR_MTOE:
return -ESHUTDOWN;
}
return -ENXIO;
}
static int clock_zeros(struct fsi_master_acf *master, int count)
{
while (count) {
int rc, lcnt = min(count, 255);
rc = do_copro_command(master,
CMD_IDLE_CLOCKS | (lcnt << CMD_REG_CLEN_SHIFT));
if (rc)
return rc;
count -= lcnt;
}
return 0;
}
static int send_request(struct fsi_master_acf *master, struct fsi_msg *cmd,
unsigned int resp_bits)
{
uint32_t op;
trace_fsi_master_acf_send_request(master, cmd, resp_bits);
/* Store message into SRAM */
iowrite32be((cmd->msg >> 32), master->sram + CMD_DATA);
iowrite32be((cmd->msg & 0xffffffff), master->sram + CMD_DATA + 4);
op = CMD_COMMAND;
op |= cmd->bits << CMD_REG_CLEN_SHIFT;
if (resp_bits)
op |= resp_bits << CMD_REG_RLEN_SHIFT;
return do_copro_command(master, op);
}
static int read_copro_response(struct fsi_master_acf *master, uint8_t size,
uint32_t *response, u8 *tag)
{
uint8_t rtag = ioread8(master->sram + STAT_RTAG) & 0xf;
uint8_t rcrc = ioread8(master->sram + STAT_RCRC) & 0xf;
uint32_t rdata = 0;
uint32_t crc;
uint8_t ack;
*tag = ack = rtag & 3;
/* we have a whole message now; check CRC */
crc = crc4(0, 1, 1);
crc = crc4(crc, rtag, 4);
if (ack == FSI_RESP_ACK && size) {
rdata = ioread32be(master->sram + RSP_DATA);
crc = crc4(crc, rdata, size);
if (response)
*response = rdata;
}
crc = crc4(crc, rcrc, 4);
trace_fsi_master_acf_copro_response(master, rtag, rcrc, rdata, crc == 0);
if (crc) {
/*
* Check if it's all 1's or all 0's, that probably means
* the host is off
*/
if ((rtag == 0xf && rcrc == 0xf) || (rtag == 0 && rcrc == 0))
return -ENODEV;
dev_dbg(master->dev, "Bad response CRC !\n");
return -EAGAIN;
}
return 0;
}
static int send_term(struct fsi_master_acf *master, uint8_t slave)
{
struct fsi_msg cmd;
uint8_t tag;
int rc;
build_term_command(&cmd, slave);
rc = send_request(master, &cmd, 0);
if (rc) {
dev_warn(master->dev, "Error %d sending term\n", rc);
return rc;
}
rc = read_copro_response(master, 0, NULL, &tag);
if (rc < 0) {
dev_err(master->dev,
"TERM failed; lost communication with slave\n");
return -EIO;
} else if (tag != FSI_RESP_ACK) {
dev_err(master->dev, "TERM failed; response %d\n", tag);
return -EIO;
}
return 0;
}
static void dump_ucode_trace(struct fsi_master_acf *master)
{
char trbuf[52];
char *p;
int i;
dev_dbg(master->dev,
"CMDSTAT:%08x RTAG=%02x RCRC=%02x RDATA=%02x #INT=%08x\n",
ioread32be(master->sram + CMD_STAT_REG),
ioread8(master->sram + STAT_RTAG),
ioread8(master->sram + STAT_RCRC),
ioread32be(master->sram + RSP_DATA),
ioread32be(master->sram + INT_CNT));
for (i = 0; i < 512; i++) {
uint8_t v;
if ((i % 16) == 0)
p = trbuf;
v = ioread8(master->sram + TRACEBUF + i);
p += sprintf(p, "%02x ", v);
if (((i % 16) == 15) || v == TR_END)
dev_dbg(master->dev, "%s\n", trbuf);
if (v == TR_END)
break;
}
}
static int handle_response(struct fsi_master_acf *master,
uint8_t slave, uint8_t size, void *data)
{
int busy_count = 0, rc;
int crc_err_retries = 0;
struct fsi_msg cmd;
uint32_t response;
uint8_t tag;
retry:
rc = read_copro_response(master, size, &response, &tag);
/* Handle retries on CRC errors */
if (rc == -EAGAIN) {
/* Too many retries ? */
if (crc_err_retries++ > FSI_CRC_ERR_RETRIES) {
/*
* Pass it up as a -EIO otherwise upper level will retry
* the whole command which isn't what we want here.
*/
rc = -EIO;
goto bail;
}
trace_fsi_master_acf_crc_rsp_error(master, crc_err_retries);
if (master->trace_enabled)
dump_ucode_trace(master);
rc = clock_zeros(master, FSI_MASTER_EPOLL_CLOCKS);
if (rc) {
dev_warn(master->dev,
"Error %d clocking zeros for E_POLL\n", rc);
return rc;
}
build_epoll_command(&cmd, slave);
rc = send_request(master, &cmd, size);
if (rc) {
dev_warn(master->dev, "Error %d sending E_POLL\n", rc);
return -EIO;
}
goto retry;
}
if (rc)
return rc;
switch (tag) {
case FSI_RESP_ACK:
if (size && data) {
if (size == 32)
*(__be32 *)data = cpu_to_be32(response);
else if (size == 16)
*(__be16 *)data = cpu_to_be16(response);
else
*(u8 *)data = response;
}
break;
case FSI_RESP_BUSY:
/*
* Its necessary to clock slave before issuing
* d-poll, not indicated in the hardware protocol
* spec. < 20 clocks causes slave to hang, 21 ok.
*/
dev_dbg(master->dev, "Busy, retrying...\n");
if (master->trace_enabled)
dump_ucode_trace(master);
rc = clock_zeros(master, FSI_MASTER_DPOLL_CLOCKS);
if (rc) {
dev_warn(master->dev,
"Error %d clocking zeros for D_POLL\n", rc);
break;
}
if (busy_count++ < FSI_MASTER_MAX_BUSY) {
build_dpoll_command(&cmd, slave);
rc = send_request(master, &cmd, size);
if (rc) {
dev_warn(master->dev, "Error %d sending D_POLL\n", rc);
break;
}
goto retry;
}
dev_dbg(master->dev,
"ERR slave is stuck in busy state, issuing TERM\n");
send_term(master, slave);
rc = -EIO;
break;
case FSI_RESP_ERRA:
dev_dbg(master->dev, "ERRA received\n");
if (master->trace_enabled)
dump_ucode_trace(master);
rc = -EIO;
break;
case FSI_RESP_ERRC:
dev_dbg(master->dev, "ERRC received\n");
if (master->trace_enabled)
dump_ucode_trace(master);
rc = -EAGAIN;
break;
}
bail:
if (busy_count > 0) {
trace_fsi_master_acf_poll_response_busy(master, busy_count);
}
return rc;
}
static int fsi_master_acf_xfer(struct fsi_master_acf *master, uint8_t slave,
struct fsi_msg *cmd, size_t resp_len, void *resp)
{
int rc = -EAGAIN, retries = 0;
resp_len <<= 3;
while ((retries++) < FSI_CRC_ERR_RETRIES) {
rc = send_request(master, cmd, resp_len);
if (rc) {
if (rc != -ESHUTDOWN)
dev_warn(master->dev, "Error %d sending command\n", rc);
break;
}
rc = handle_response(master, slave, resp_len, resp);
if (rc != -EAGAIN)
break;
rc = -EIO;
dev_dbg(master->dev, "ECRC retry %d\n", retries);
/* Pace it a bit before retry */
msleep(1);
}
return rc;
}
static int fsi_master_acf_read(struct fsi_master *_master, int link,
uint8_t id, uint32_t addr, void *val,
size_t size)
{
struct fsi_master_acf *master = to_fsi_master_acf(_master);
struct fsi_msg cmd;
int rc;
if (link != 0)
return -ENODEV;
mutex_lock(&master->lock);
dev_dbg(master->dev, "read id %d addr %x size %zd\n", id, addr, size);
build_ar_command(master, &cmd, id, addr, size, NULL);
rc = fsi_master_acf_xfer(master, id, &cmd, size, val);
last_address_update(master, id, rc == 0, addr);
if (rc)
dev_dbg(master->dev, "read id %d addr 0x%08x err: %d\n",
id, addr, rc);
mutex_unlock(&master->lock);
return rc;
}
static int fsi_master_acf_write(struct fsi_master *_master, int link,
uint8_t id, uint32_t addr, const void *val,
size_t size)
{
struct fsi_master_acf *master = to_fsi_master_acf(_master);
struct fsi_msg cmd;
int rc;
if (link != 0)
return -ENODEV;
mutex_lock(&master->lock);
build_ar_command(master, &cmd, id, addr, size, val);
dev_dbg(master->dev, "write id %d addr %x size %zd raw_data: %08x\n",
id, addr, size, *(uint32_t *)val);
rc = fsi_master_acf_xfer(master, id, &cmd, 0, NULL);
last_address_update(master, id, rc == 0, addr);
if (rc)
dev_dbg(master->dev, "write id %d addr 0x%08x err: %d\n",
id, addr, rc);
mutex_unlock(&master->lock);
return rc;
}
static int fsi_master_acf_term(struct fsi_master *_master,
int link, uint8_t id)
{
struct fsi_master_acf *master = to_fsi_master_acf(_master);
struct fsi_msg cmd;
int rc;
if (link != 0)
return -ENODEV;
mutex_lock(&master->lock);
build_term_command(&cmd, id);
dev_dbg(master->dev, "term id %d\n", id);
rc = fsi_master_acf_xfer(master, id, &cmd, 0, NULL);
last_address_update(master, id, false, 0);
mutex_unlock(&master->lock);
return rc;
}
static int fsi_master_acf_break(struct fsi_master *_master, int link)
{
struct fsi_master_acf *master = to_fsi_master_acf(_master);
int rc;
if (link != 0)
return -ENODEV;
mutex_lock(&master->lock);
if (master->external_mode) {
mutex_unlock(&master->lock);
return -EBUSY;
}
dev_dbg(master->dev, "sending BREAK\n");
rc = do_copro_command(master, CMD_BREAK);
last_address_update(master, 0, false, 0);
mutex_unlock(&master->lock);
/* Wait for logic reset to take effect */
udelay(200);
return rc;
}
static void reset_cf(struct fsi_master_acf *master)
{
regmap_write(master->scu, SCU_COPRO_CTRL, SCU_COPRO_RESET);
usleep_range(20,20);
regmap_write(master->scu, SCU_COPRO_CTRL, 0);
usleep_range(20,20);
}
static void start_cf(struct fsi_master_acf *master)
{
regmap_write(master->scu, SCU_COPRO_CTRL, SCU_COPRO_CLK_EN);
}
static void setup_ast2500_cf_maps(struct fsi_master_acf *master)
{
/*
* Note about byteswap setting: the bus is wired backwards,
* so setting the byteswap bit actually makes the ColdFire
* work "normally" for a BE processor, ie, put the MSB in
* the lowest address byte.
*
* We thus need to set the bit for our main memory which
* contains our program code. We create two mappings for
* the register, one with each setting.
*
* Segments 2 and 3 has a "swapped" mapping (BE)
* and 6 and 7 have a non-swapped mapping (LE) which allows
* us to avoid byteswapping register accesses since the
* registers are all LE.
*/
/* Setup segment 0 to our memory region */
regmap_write(master->scu, SCU_2500_COPRO_SEG0, master->cf_mem_addr |
SCU_2500_COPRO_SEG_SWAP);
/* Segments 2 and 3 to sysregs with byteswap (for SRAM) */
regmap_write(master->scu, SCU_2500_COPRO_SEG2, SYSREG_BASE |
SCU_2500_COPRO_SEG_SWAP);
regmap_write(master->scu, SCU_2500_COPRO_SEG3, SYSREG_BASE | 0x100000 |
SCU_2500_COPRO_SEG_SWAP);
/* And segment 6 and 7 to sysregs no byteswap */
regmap_write(master->scu, SCU_2500_COPRO_SEG6, SYSREG_BASE);
regmap_write(master->scu, SCU_2500_COPRO_SEG7, SYSREG_BASE | 0x100000);
/* Memory cachable, regs and SRAM not cachable */
regmap_write(master->scu, SCU_2500_COPRO_CACHE_CTL,
SCU_2500_COPRO_SEG0_CACHE_EN | SCU_2500_COPRO_CACHE_EN);
}
static void setup_ast2400_cf_maps(struct fsi_master_acf *master)
{
/* Setup segment 0 to our memory region */
regmap_write(master->scu, SCU_2400_COPRO_SEG0, master->cf_mem_addr |
SCU_2400_COPRO_SEG_SWAP);
/* Segments 2 to sysregs with byteswap (for SRAM) */
regmap_write(master->scu, SCU_2400_COPRO_SEG2, SYSREG_BASE |
SCU_2400_COPRO_SEG_SWAP);
/* And segment 6 to sysregs no byteswap */
regmap_write(master->scu, SCU_2400_COPRO_SEG6, SYSREG_BASE);
/* Memory cachable, regs and SRAM not cachable */
regmap_write(master->scu, SCU_2400_COPRO_CACHE_CTL,
SCU_2400_COPRO_SEG0_CACHE_EN | SCU_2400_COPRO_CACHE_EN);
}
static void setup_common_fw_config(struct fsi_master_acf *master,
void __iomem *base)
{
iowrite16be(master->gpio_clk_vreg, base + HDR_CLOCK_GPIO_VADDR);
iowrite16be(master->gpio_clk_dreg, base + HDR_CLOCK_GPIO_DADDR);
iowrite16be(master->gpio_dat_vreg, base + HDR_DATA_GPIO_VADDR);
iowrite16be(master->gpio_dat_dreg, base + HDR_DATA_GPIO_DADDR);
iowrite16be(master->gpio_tra_vreg, base + HDR_TRANS_GPIO_VADDR);
iowrite16be(master->gpio_tra_dreg, base + HDR_TRANS_GPIO_DADDR);
iowrite8(master->gpio_clk_bit, base + HDR_CLOCK_GPIO_BIT);
iowrite8(master->gpio_dat_bit, base + HDR_DATA_GPIO_BIT);
iowrite8(master->gpio_tra_bit, base + HDR_TRANS_GPIO_BIT);
}
static void setup_ast2500_fw_config(struct fsi_master_acf *master)
{
void __iomem *base = master->cf_mem + HDR_OFFSET;
setup_common_fw_config(master, base);
iowrite32be(FW_CONTROL_USE_STOP, base + HDR_FW_CONTROL);
}
static void setup_ast2400_fw_config(struct fsi_master_acf *master)
{
void __iomem *base = master->cf_mem + HDR_OFFSET;
setup_common_fw_config(master, base);
iowrite32be(FW_CONTROL_CONT_CLOCK|FW_CONTROL_DUMMY_RD, base + HDR_FW_CONTROL);
}
static int setup_gpios_for_copro(struct fsi_master_acf *master)
{
int rc;
/* This aren't under ColdFire control, just set them up appropriately */
gpiod_direction_output(master->gpio_mux, 1);
gpiod_direction_output(master->gpio_enable, 1);
/* Those are under ColdFire control, let it configure them */
rc = aspeed_gpio_copro_grab_gpio(master->gpio_clk, &master->gpio_clk_vreg,
&master->gpio_clk_dreg, &master->gpio_clk_bit);
if (rc) {
dev_err(master->dev, "failed to assign clock gpio to coprocessor\n");
return rc;
}
rc = aspeed_gpio_copro_grab_gpio(master->gpio_data, &master->gpio_dat_vreg,
&master->gpio_dat_dreg, &master->gpio_dat_bit);
if (rc) {
dev_err(master->dev, "failed to assign data gpio to coprocessor\n");
aspeed_gpio_copro_release_gpio(master->gpio_clk);
return rc;
}
rc = aspeed_gpio_copro_grab_gpio(master->gpio_trans, &master->gpio_tra_vreg,
&master->gpio_tra_dreg, &master->gpio_tra_bit);
if (rc) {
dev_err(master->dev, "failed to assign trans gpio to coprocessor\n");
aspeed_gpio_copro_release_gpio(master->gpio_clk);
aspeed_gpio_copro_release_gpio(master->gpio_data);
return rc;
}
return 0;
}
static void release_copro_gpios(struct fsi_master_acf *master)
{
aspeed_gpio_copro_release_gpio(master->gpio_clk);
aspeed_gpio_copro_release_gpio(master->gpio_data);
aspeed_gpio_copro_release_gpio(master->gpio_trans);
}
static int load_copro_firmware(struct fsi_master_acf *master)
{
const struct firmware *fw;
uint16_t sig = 0, wanted_sig;
const u8 *data;
size_t size = 0;
int rc;
/* Get the binary */
rc = request_firmware(&fw, FW_FILE_NAME, master->dev);
if (rc) {
dev_err(
master->dev, "Error %d to load firwmare '%s' !\n",
rc, FW_FILE_NAME);
return rc;
}
/* Which image do we want ? (shared vs. split clock/data GPIOs) */
if (master->gpio_clk_vreg == master->gpio_dat_vreg)
wanted_sig = SYS_SIG_SHARED;
else
wanted_sig = SYS_SIG_SPLIT;
dev_dbg(master->dev, "Looking for image sig %04x\n", wanted_sig);
/* Try to find it */
for (data = fw->data; data < (fw->data + fw->size);) {
sig = be16_to_cpup((__be16 *)(data + HDR_OFFSET + HDR_SYS_SIG));
size = be32_to_cpup((__be32 *)(data + HDR_OFFSET + HDR_FW_SIZE));
if (sig == wanted_sig)
break;
data += size;
}
if (sig != wanted_sig) {
dev_err(master->dev, "Failed to locate image sig %04x in FW blob\n",
wanted_sig);
rc = -ENODEV;
goto release_fw;
}
if (size > master->cf_mem_size) {
dev_err(master->dev, "FW size (%zd) bigger than memory reserve (%zd)\n",
fw->size, master->cf_mem_size);
rc = -ENOMEM;
} else {
memcpy_toio(master->cf_mem, data, size);
}
release_fw:
release_firmware(fw);
return rc;
}
static int check_firmware_image(struct fsi_master_acf *master)
{
uint32_t fw_vers, fw_api, fw_options;
fw_vers = ioread16be(master->cf_mem + HDR_OFFSET + HDR_FW_VERS);
fw_api = ioread16be(master->cf_mem + HDR_OFFSET + HDR_API_VERS);
fw_options = ioread32be(master->cf_mem + HDR_OFFSET + HDR_FW_OPTIONS);
master->trace_enabled = !!(fw_options & FW_OPTION_TRACE_EN);
/* Check version and signature */
dev_info(master->dev, "ColdFire initialized, firmware v%d API v%d.%d (trace %s)\n",
fw_vers, fw_api >> 8, fw_api & 0xff,
master->trace_enabled ? "enabled" : "disabled");
if ((fw_api >> 8) != API_VERSION_MAJ) {
dev_err(master->dev, "Unsupported coprocessor API version !\n");
return -ENODEV;
}
return 0;
}
static int copro_enable_sw_irq(struct fsi_master_acf *master)
{
int timeout;
uint32_t val;
/*
* Enable coprocessor interrupt input. I've had problems getting the
* value to stick, so try in a loop
*/
for (timeout = 0; timeout < 10; timeout++) {
iowrite32(0x2, master->cvic + CVIC_EN_REG);
val = ioread32(master->cvic + CVIC_EN_REG);
if (val & 2)
break;
msleep(1);
}
if (!(val & 2)) {
dev_err(master->dev, "Failed to enable coprocessor interrupt !\n");
return -ENODEV;
}
return 0;
}
static int fsi_master_acf_setup(struct fsi_master_acf *master)
{
int timeout, rc;
uint32_t val;
/* Make sure the ColdFire is stopped */
reset_cf(master);
/*
* Clear SRAM. This needs to happen before we setup the GPIOs
* as we might start trying to arbitrate as soon as that happens.
*/
memset_io(master->sram, 0, SRAM_SIZE);
/* Configure GPIOs */
rc = setup_gpios_for_copro(master);
if (rc)
return rc;
/* Load the firmware into the reserved memory */
rc = load_copro_firmware(master);
if (rc)
return rc;
/* Read signature and check versions */
rc = check_firmware_image(master);
if (rc)
return rc;
/* Setup coldfire memory map */
if (master->is_ast2500) {
setup_ast2500_cf_maps(master);
setup_ast2500_fw_config(master);
} else {
setup_ast2400_cf_maps(master);
setup_ast2400_fw_config(master);
}
/* Start the ColdFire */
start_cf(master);
/* Wait for status register to indicate command completion
* which signals the initialization is complete
*/
for (timeout = 0; timeout < 10; timeout++) {
val = ioread8(master->sram + CF_STARTED);
if (val)
break;
msleep(1);
}
if (!val) {
dev_err(master->dev, "Coprocessor startup timeout !\n");
rc = -ENODEV;
goto err;
}
/* Configure echo & send delay */
iowrite8(master->t_send_delay, master->sram + SEND_DLY_REG);
iowrite8(master->t_echo_delay, master->sram + ECHO_DLY_REG);
/* Enable SW interrupt to copro if any */
if (master->cvic) {
rc = copro_enable_sw_irq(master);
if (rc)
goto err;
}
return 0;
err:
/* An error occurred, don't leave the coprocessor running */
reset_cf(master);
/* Release the GPIOs */
release_copro_gpios(master);
return rc;
}
static void fsi_master_acf_terminate(struct fsi_master_acf *master)
{
unsigned long flags;
/*
* A GPIO arbitration requestion could come in while this is
* happening. To avoid problems, we disable interrupts so it
* cannot preempt us on this CPU
*/
local_irq_save(flags);
/* Stop the coprocessor */
reset_cf(master);
/* We mark the copro not-started */
iowrite32(0, master->sram + CF_STARTED);
/* We mark the ARB register as having given up arbitration to
* deal with a potential race with the arbitration request
*/
iowrite8(ARB_ARM_ACK, master->sram + ARB_REG);
local_irq_restore(flags);
/* Return the GPIOs to the ARM */
release_copro_gpios(master);
}
static void fsi_master_acf_setup_external(struct fsi_master_acf *master)
{
/* Setup GPIOs for external FSI master (FSP box) */
gpiod_direction_output(master->gpio_mux, 0);
gpiod_direction_output(master->gpio_trans, 0);
gpiod_direction_output(master->gpio_enable, 1);
gpiod_direction_input(master->gpio_clk);
gpiod_direction_input(master->gpio_data);
}
static int fsi_master_acf_link_enable(struct fsi_master *_master, int link)
{
struct fsi_master_acf *master = to_fsi_master_acf(_master);
int rc = -EBUSY;
if (link != 0)
return -ENODEV;
mutex_lock(&master->lock);
if (!master->external_mode) {
gpiod_set_value(master->gpio_enable, 1);
rc = 0;
}
mutex_unlock(&master->lock);
return rc;
}
static int fsi_master_acf_link_config(struct fsi_master *_master, int link,
u8 t_send_delay, u8 t_echo_delay)
{
struct fsi_master_acf *master = to_fsi_master_acf(_master);
if (link != 0)
return -ENODEV;
mutex_lock(&master->lock);
master->t_send_delay = t_send_delay;
master->t_echo_delay = t_echo_delay;
dev_dbg(master->dev, "Changing delays: send=%d echo=%d\n",
t_send_delay, t_echo_delay);
iowrite8(master->t_send_delay, master->sram + SEND_DLY_REG);
iowrite8(master->t_echo_delay, master->sram + ECHO_DLY_REG);
mutex_unlock(&master->lock);
return 0;
}
static ssize_t external_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct fsi_master_acf *master = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE - 1, "%u\n",
master->external_mode ? 1 : 0);
}
static ssize_t external_mode_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct fsi_master_acf *master = dev_get_drvdata(dev);
unsigned long val;
bool external_mode;
int err;
err = kstrtoul(buf, 0, &val);
if (err)
return err;
external_mode = !!val;
mutex_lock(&master->lock);
if (external_mode == master->external_mode) {
mutex_unlock(&master->lock);
return count;
}
master->external_mode = external_mode;
if (master->external_mode) {
fsi_master_acf_terminate(master);
fsi_master_acf_setup_external(master);
} else
fsi_master_acf_setup(master);
mutex_unlock(&master->lock);
fsi_master_rescan(&master->master);
return count;
}
static DEVICE_ATTR(external_mode, 0664,
external_mode_show, external_mode_store);
static int fsi_master_acf_gpio_request(void *data)
{
struct fsi_master_acf *master = data;
int timeout;
u8 val;
/* Note: This doesn't require holding out mutex */
/* Write reqest */
iowrite8(ARB_ARM_REQ, master->sram + ARB_REG);
/*
* There is a race (which does happen at boot time) when we get an
* arbitration request as we are either about to or just starting
* the coprocessor.
*
* To handle it, we first check if we are running. If not yet we
* check whether the copro is started in the SCU.
*
* If it's not started, we can basically just assume we have arbitration
* and return. Otherwise, we wait normally expecting for the arbitration
* to eventually complete.
*/
if (ioread32(master->sram + CF_STARTED) == 0) {
unsigned int reg = 0;
regmap_read(master->scu, SCU_COPRO_CTRL, &reg);
if (!(reg & SCU_COPRO_CLK_EN))
return 0;
}
/* Ring doorbell if any */
if (master->cvic)
iowrite32(0x2, master->cvic + CVIC_TRIG_REG);
for (timeout = 0; timeout < 10000; timeout++) {
val = ioread8(master->sram + ARB_REG);
if (val != ARB_ARM_REQ)
break;
udelay(1);
}
/* If it failed, override anyway */
if (val != ARB_ARM_ACK)
dev_warn(master->dev, "GPIO request arbitration timeout\n");
return 0;
}
static int fsi_master_acf_gpio_release(void *data)
{
struct fsi_master_acf *master = data;
/* Write release */
iowrite8(0, master->sram + ARB_REG);
/* Ring doorbell if any */
if (master->cvic)
iowrite32(0x2, master->cvic + CVIC_TRIG_REG);
return 0;
}
static void fsi_master_acf_release(struct device *dev)
{
struct fsi_master_acf *master = to_fsi_master_acf(dev_to_fsi_master(dev));
/* Cleanup, stop coprocessor */
mutex_lock(&master->lock);
fsi_master_acf_terminate(master);
aspeed_gpio_copro_set_ops(NULL, NULL);
mutex_unlock(&master->lock);
/* Free resources */
gen_pool_free(master->sram_pool, (unsigned long)master->sram, SRAM_SIZE);
of_node_put(dev_of_node(master->dev));
kfree(master);
}
static const struct aspeed_gpio_copro_ops fsi_master_acf_gpio_ops = {
.request_access = fsi_master_acf_gpio_request,
.release_access = fsi_master_acf_gpio_release,
};
static int fsi_master_acf_probe(struct platform_device *pdev)
{
struct device_node *np, *mnode = dev_of_node(&pdev->dev);
struct genpool_data_fixed gpdf;
struct fsi_master_acf *master;
struct gpio_desc *gpio;
struct resource res;
uint32_t cf_mem_align;
int rc;
master = kzalloc(sizeof(*master), GFP_KERNEL);
if (!master)
return -ENOMEM;
master->dev = &pdev->dev;
master->master.dev.parent = master->dev;
master->last_addr = LAST_ADDR_INVALID;
/* AST2400 vs. AST2500 */
master->is_ast2500 = of_device_is_compatible(mnode, "aspeed,ast2500-cf-fsi-master");
/* Grab the SCU, we'll need to access it to configure the coprocessor */
if (master->is_ast2500)
master->scu = syscon_regmap_lookup_by_compatible("aspeed,ast2500-scu");
else
master->scu = syscon_regmap_lookup_by_compatible("aspeed,ast2400-scu");
if (IS_ERR(master->scu)) {
dev_err(&pdev->dev, "failed to find SCU regmap\n");
rc = PTR_ERR(master->scu);
goto err_free;
}
/* Grab all the GPIOs we need */
gpio = devm_gpiod_get(&pdev->dev, "clock", 0);
if (IS_ERR(gpio)) {
dev_err(&pdev->dev, "failed to get clock gpio\n");
rc = PTR_ERR(gpio);
goto err_free;
}
master->gpio_clk = gpio;
gpio = devm_gpiod_get(&pdev->dev, "data", 0);
if (IS_ERR(gpio)) {
dev_err(&pdev->dev, "failed to get data gpio\n");
rc = PTR_ERR(gpio);
goto err_free;
}
master->gpio_data = gpio;
/* Optional GPIOs */
gpio = devm_gpiod_get_optional(&pdev->dev, "trans", 0);
if (IS_ERR(gpio)) {
dev_err(&pdev->dev, "failed to get trans gpio\n");
rc = PTR_ERR(gpio);
goto err_free;
}
master->gpio_trans = gpio;
gpio = devm_gpiod_get_optional(&pdev->dev, "enable", 0);
if (IS_ERR(gpio)) {
dev_err(&pdev->dev, "failed to get enable gpio\n");
rc = PTR_ERR(gpio);
goto err_free;
}
master->gpio_enable = gpio;
gpio = devm_gpiod_get_optional(&pdev->dev, "mux", 0);
if (IS_ERR(gpio)) {
dev_err(&pdev->dev, "failed to get mux gpio\n");
rc = PTR_ERR(gpio);
goto err_free;
}
master->gpio_mux = gpio;
/* Grab the reserved memory region (use DMA API instead ?) */
np = of_parse_phandle(mnode, "memory-region", 0);
if (!np) {
dev_err(&pdev->dev, "Didn't find reserved memory\n");
rc = -EINVAL;
goto err_free;
}
rc = of_address_to_resource(np, 0, &res);
of_node_put(np);
if (rc) {
dev_err(&pdev->dev, "Couldn't address to resource for reserved memory\n");
rc = -ENOMEM;
goto err_free;
}
master->cf_mem_size = resource_size(&res);
master->cf_mem_addr = (uint32_t)res.start;
cf_mem_align = master->is_ast2500 ? 0x00100000 : 0x00200000;
if (master->cf_mem_addr & (cf_mem_align - 1)) {
dev_err(&pdev->dev, "Reserved memory has insufficient alignment\n");
rc = -ENOMEM;
goto err_free;
}
master->cf_mem = devm_ioremap_resource(&pdev->dev, &res);
if (IS_ERR(master->cf_mem)) {
rc = PTR_ERR(master->cf_mem);
dev_err(&pdev->dev, "Error %d mapping coldfire memory\n", rc);
goto err_free;
}
dev_dbg(&pdev->dev, "DRAM allocation @%x\n", master->cf_mem_addr);
/* AST2500 has a SW interrupt to the coprocessor */
if (master->is_ast2500) {
/* Grab the CVIC (ColdFire interrupts controller) */
np = of_parse_phandle(mnode, "aspeed,cvic", 0);
if (!np) {
dev_err(&pdev->dev, "Didn't find CVIC\n");
rc = -EINVAL;
goto err_free;
}
master->cvic = devm_of_iomap(&pdev->dev, np, 0, NULL);
if (IS_ERR(master->cvic)) {
rc = PTR_ERR(master->cvic);
dev_err(&pdev->dev, "Error %d mapping CVIC\n", rc);
goto err_free;
}
rc = of_property_read_u32(np, "copro-sw-interrupts",
&master->cvic_sw_irq);
if (rc) {
dev_err(&pdev->dev, "Can't find coprocessor SW interrupt\n");
goto err_free;
}
}
/* Grab the SRAM */
master->sram_pool = of_gen_pool_get(dev_of_node(&pdev->dev), "aspeed,sram", 0);
if (!master->sram_pool) {
rc = -ENODEV;
dev_err(&pdev->dev, "Can't find sram pool\n");
goto err_free;
}
/* Current microcode only deals with fixed location in SRAM */
gpdf.offset = 0;
master->sram = (void __iomem *)gen_pool_alloc_algo(master->sram_pool, SRAM_SIZE,
gen_pool_fixed_alloc, &gpdf);
if (!master->sram) {
rc = -ENOMEM;
dev_err(&pdev->dev, "Failed to allocate sram from pool\n");
goto err_free;
}
dev_dbg(&pdev->dev, "SRAM allocation @%lx\n",
(unsigned long)gen_pool_virt_to_phys(master->sram_pool,
(unsigned long)master->sram));
/*
* Hookup with the GPIO driver for arbitration of GPIO banks
* ownership.
*/
aspeed_gpio_copro_set_ops(&fsi_master_acf_gpio_ops, master);
/* Default FSI command delays */
master->t_send_delay = FSI_SEND_DELAY_CLOCKS;
master->t_echo_delay = FSI_ECHO_DELAY_CLOCKS;
master->master.n_links = 1;
if (master->is_ast2500)
master->master.flags = FSI_MASTER_FLAG_SWCLOCK;
master->master.read = fsi_master_acf_read;
master->master.write = fsi_master_acf_write;
master->master.term = fsi_master_acf_term;
master->master.send_break = fsi_master_acf_break;
master->master.link_enable = fsi_master_acf_link_enable;
master->master.link_config = fsi_master_acf_link_config;
master->master.dev.of_node = of_node_get(dev_of_node(master->dev));
master->master.dev.release = fsi_master_acf_release;
platform_set_drvdata(pdev, master);
mutex_init(&master->lock);
mutex_lock(&master->lock);
rc = fsi_master_acf_setup(master);
mutex_unlock(&master->lock);
if (rc)
goto release_of_dev;
rc = device_create_file(&pdev->dev, &dev_attr_external_mode);
if (rc)
goto stop_copro;
rc = fsi_master_register(&master->master);
if (!rc)
return 0;
device_remove_file(master->dev, &dev_attr_external_mode);
put_device(&master->master.dev);
return rc;
stop_copro:
fsi_master_acf_terminate(master);
release_of_dev:
aspeed_gpio_copro_set_ops(NULL, NULL);
gen_pool_free(master->sram_pool, (unsigned long)master->sram, SRAM_SIZE);
of_node_put(dev_of_node(master->dev));
err_free:
kfree(master);
return rc;
}
static int fsi_master_acf_remove(struct platform_device *pdev)
{
struct fsi_master_acf *master = platform_get_drvdata(pdev);
device_remove_file(master->dev, &dev_attr_external_mode);
fsi_master_unregister(&master->master);
return 0;
}
static const struct of_device_id fsi_master_acf_match[] = {
{ .compatible = "aspeed,ast2400-cf-fsi-master" },
{ .compatible = "aspeed,ast2500-cf-fsi-master" },
{ },
};
static struct platform_driver fsi_master_acf = {
.driver = {
.name = "fsi-master-acf",
.of_match_table = fsi_master_acf_match,
},
.probe = fsi_master_acf_probe,
.remove = fsi_master_acf_remove,
};
module_platform_driver(fsi_master_acf);
MODULE_LICENSE("GPL");