mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-07 22:34:18 +08:00
924a3541ea
Many times in libsas, and in LLDDs which use libsas, the check for an expander device is re-implemented or open coded. Use dev_is_expander() instead. We rename this from sas_dev_type_is_expander() to not spill so many lines in referencing. Signed-off-by: John Garry <john.garry@huawei.com> Reviewed-by: Jason Yan <yanaijie@huawei.com> Reviewed-by: Jack Wang <jinpu.wang@cloud.ionos.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
3532 lines
102 KiB
C
3532 lines
102 KiB
C
/*
|
|
* This file is provided under a dual BSD/GPLv2 license. When using or
|
|
* redistributing this file, you may do so under either license.
|
|
*
|
|
* GPL LICENSE SUMMARY
|
|
*
|
|
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
|
* The full GNU General Public License is included in this distribution
|
|
* in the file called LICENSE.GPL.
|
|
*
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <scsi/scsi_cmnd.h>
|
|
#include "isci.h"
|
|
#include "task.h"
|
|
#include "request.h"
|
|
#include "scu_completion_codes.h"
|
|
#include "scu_event_codes.h"
|
|
#include "sas.h"
|
|
|
|
#undef C
|
|
#define C(a) (#a)
|
|
const char *req_state_name(enum sci_base_request_states state)
|
|
{
|
|
static const char * const strings[] = REQUEST_STATES;
|
|
|
|
return strings[state];
|
|
}
|
|
#undef C
|
|
|
|
static struct scu_sgl_element_pair *to_sgl_element_pair(struct isci_request *ireq,
|
|
int idx)
|
|
{
|
|
if (idx == 0)
|
|
return &ireq->tc->sgl_pair_ab;
|
|
else if (idx == 1)
|
|
return &ireq->tc->sgl_pair_cd;
|
|
else if (idx < 0)
|
|
return NULL;
|
|
else
|
|
return &ireq->sg_table[idx - 2];
|
|
}
|
|
|
|
static dma_addr_t to_sgl_element_pair_dma(struct isci_host *ihost,
|
|
struct isci_request *ireq, u32 idx)
|
|
{
|
|
u32 offset;
|
|
|
|
if (idx == 0) {
|
|
offset = (void *) &ireq->tc->sgl_pair_ab -
|
|
(void *) &ihost->task_context_table[0];
|
|
return ihost->tc_dma + offset;
|
|
} else if (idx == 1) {
|
|
offset = (void *) &ireq->tc->sgl_pair_cd -
|
|
(void *) &ihost->task_context_table[0];
|
|
return ihost->tc_dma + offset;
|
|
}
|
|
|
|
return sci_io_request_get_dma_addr(ireq, &ireq->sg_table[idx - 2]);
|
|
}
|
|
|
|
static void init_sgl_element(struct scu_sgl_element *e, struct scatterlist *sg)
|
|
{
|
|
e->length = sg_dma_len(sg);
|
|
e->address_upper = upper_32_bits(sg_dma_address(sg));
|
|
e->address_lower = lower_32_bits(sg_dma_address(sg));
|
|
e->address_modifier = 0;
|
|
}
|
|
|
|
static void sci_request_build_sgl(struct isci_request *ireq)
|
|
{
|
|
struct isci_host *ihost = ireq->isci_host;
|
|
struct sas_task *task = isci_request_access_task(ireq);
|
|
struct scatterlist *sg = NULL;
|
|
dma_addr_t dma_addr;
|
|
u32 sg_idx = 0;
|
|
struct scu_sgl_element_pair *scu_sg = NULL;
|
|
struct scu_sgl_element_pair *prev_sg = NULL;
|
|
|
|
if (task->num_scatter > 0) {
|
|
sg = task->scatter;
|
|
|
|
while (sg) {
|
|
scu_sg = to_sgl_element_pair(ireq, sg_idx);
|
|
init_sgl_element(&scu_sg->A, sg);
|
|
sg = sg_next(sg);
|
|
if (sg) {
|
|
init_sgl_element(&scu_sg->B, sg);
|
|
sg = sg_next(sg);
|
|
} else
|
|
memset(&scu_sg->B, 0, sizeof(scu_sg->B));
|
|
|
|
if (prev_sg) {
|
|
dma_addr = to_sgl_element_pair_dma(ihost,
|
|
ireq,
|
|
sg_idx);
|
|
|
|
prev_sg->next_pair_upper =
|
|
upper_32_bits(dma_addr);
|
|
prev_sg->next_pair_lower =
|
|
lower_32_bits(dma_addr);
|
|
}
|
|
|
|
prev_sg = scu_sg;
|
|
sg_idx++;
|
|
}
|
|
} else { /* handle when no sg */
|
|
scu_sg = to_sgl_element_pair(ireq, sg_idx);
|
|
|
|
dma_addr = dma_map_single(&ihost->pdev->dev,
|
|
task->scatter,
|
|
task->total_xfer_len,
|
|
task->data_dir);
|
|
|
|
ireq->zero_scatter_daddr = dma_addr;
|
|
|
|
scu_sg->A.length = task->total_xfer_len;
|
|
scu_sg->A.address_upper = upper_32_bits(dma_addr);
|
|
scu_sg->A.address_lower = lower_32_bits(dma_addr);
|
|
}
|
|
|
|
if (scu_sg) {
|
|
scu_sg->next_pair_upper = 0;
|
|
scu_sg->next_pair_lower = 0;
|
|
}
|
|
}
|
|
|
|
static void sci_io_request_build_ssp_command_iu(struct isci_request *ireq)
|
|
{
|
|
struct ssp_cmd_iu *cmd_iu;
|
|
struct sas_task *task = isci_request_access_task(ireq);
|
|
|
|
cmd_iu = &ireq->ssp.cmd;
|
|
|
|
memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8);
|
|
cmd_iu->add_cdb_len = 0;
|
|
cmd_iu->_r_a = 0;
|
|
cmd_iu->_r_b = 0;
|
|
cmd_iu->en_fburst = 0; /* unsupported */
|
|
cmd_iu->task_prio = task->ssp_task.task_prio;
|
|
cmd_iu->task_attr = task->ssp_task.task_attr;
|
|
cmd_iu->_r_c = 0;
|
|
|
|
sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cmd->cmnd,
|
|
(task->ssp_task.cmd->cmd_len+3) / sizeof(u32));
|
|
}
|
|
|
|
static void sci_task_request_build_ssp_task_iu(struct isci_request *ireq)
|
|
{
|
|
struct ssp_task_iu *task_iu;
|
|
struct sas_task *task = isci_request_access_task(ireq);
|
|
struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
|
|
|
|
task_iu = &ireq->ssp.tmf;
|
|
|
|
memset(task_iu, 0, sizeof(struct ssp_task_iu));
|
|
|
|
memcpy(task_iu->LUN, task->ssp_task.LUN, 8);
|
|
|
|
task_iu->task_func = isci_tmf->tmf_code;
|
|
task_iu->task_tag =
|
|
(test_bit(IREQ_TMF, &ireq->flags)) ?
|
|
isci_tmf->io_tag :
|
|
SCI_CONTROLLER_INVALID_IO_TAG;
|
|
}
|
|
|
|
/**
|
|
* This method is will fill in the SCU Task Context for any type of SSP request.
|
|
* @sci_req:
|
|
* @task_context:
|
|
*
|
|
*/
|
|
static void scu_ssp_request_construct_task_context(
|
|
struct isci_request *ireq,
|
|
struct scu_task_context *task_context)
|
|
{
|
|
dma_addr_t dma_addr;
|
|
struct isci_remote_device *idev;
|
|
struct isci_port *iport;
|
|
|
|
idev = ireq->target_device;
|
|
iport = idev->owning_port;
|
|
|
|
/* Fill in the TC with its required data */
|
|
task_context->abort = 0;
|
|
task_context->priority = 0;
|
|
task_context->initiator_request = 1;
|
|
task_context->connection_rate = idev->connection_rate;
|
|
task_context->protocol_engine_index = ISCI_PEG;
|
|
task_context->logical_port_index = iport->physical_port_index;
|
|
task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP;
|
|
task_context->valid = SCU_TASK_CONTEXT_VALID;
|
|
task_context->context_type = SCU_TASK_CONTEXT_TYPE;
|
|
|
|
task_context->remote_node_index = idev->rnc.remote_node_index;
|
|
task_context->command_code = 0;
|
|
|
|
task_context->link_layer_control = 0;
|
|
task_context->do_not_dma_ssp_good_response = 1;
|
|
task_context->strict_ordering = 0;
|
|
task_context->control_frame = 0;
|
|
task_context->timeout_enable = 0;
|
|
task_context->block_guard_enable = 0;
|
|
|
|
task_context->address_modifier = 0;
|
|
|
|
/* task_context->type.ssp.tag = ireq->io_tag; */
|
|
task_context->task_phase = 0x01;
|
|
|
|
ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
|
|
(ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
|
|
(iport->physical_port_index <<
|
|
SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
|
|
ISCI_TAG_TCI(ireq->io_tag));
|
|
|
|
/*
|
|
* Copy the physical address for the command buffer to the
|
|
* SCU Task Context
|
|
*/
|
|
dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.cmd);
|
|
|
|
task_context->command_iu_upper = upper_32_bits(dma_addr);
|
|
task_context->command_iu_lower = lower_32_bits(dma_addr);
|
|
|
|
/*
|
|
* Copy the physical address for the response buffer to the
|
|
* SCU Task Context
|
|
*/
|
|
dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.rsp);
|
|
|
|
task_context->response_iu_upper = upper_32_bits(dma_addr);
|
|
task_context->response_iu_lower = lower_32_bits(dma_addr);
|
|
}
|
|
|
|
static u8 scu_bg_blk_size(struct scsi_device *sdp)
|
|
{
|
|
switch (sdp->sector_size) {
|
|
case 512:
|
|
return 0;
|
|
case 1024:
|
|
return 1;
|
|
case 4096:
|
|
return 3;
|
|
default:
|
|
return 0xff;
|
|
}
|
|
}
|
|
|
|
static u32 scu_dif_bytes(u32 len, u32 sector_size)
|
|
{
|
|
return (len >> ilog2(sector_size)) * 8;
|
|
}
|
|
|
|
static void scu_ssp_ireq_dif_insert(struct isci_request *ireq, u8 type, u8 op)
|
|
{
|
|
struct scu_task_context *tc = ireq->tc;
|
|
struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
|
|
u8 blk_sz = scu_bg_blk_size(scmd->device);
|
|
|
|
tc->block_guard_enable = 1;
|
|
tc->blk_prot_en = 1;
|
|
tc->blk_sz = blk_sz;
|
|
/* DIF write insert */
|
|
tc->blk_prot_func = 0x2;
|
|
|
|
tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
|
|
scmd->device->sector_size);
|
|
|
|
/* always init to 0, used by hw */
|
|
tc->interm_crc_val = 0;
|
|
|
|
tc->init_crc_seed = 0;
|
|
tc->app_tag_verify = 0;
|
|
tc->app_tag_gen = 0;
|
|
tc->ref_tag_seed_verify = 0;
|
|
|
|
/* always init to same as bg_blk_sz */
|
|
tc->UD_bytes_immed_val = scmd->device->sector_size;
|
|
|
|
tc->reserved_DC_0 = 0;
|
|
|
|
/* always init to 8 */
|
|
tc->DIF_bytes_immed_val = 8;
|
|
|
|
tc->reserved_DC_1 = 0;
|
|
tc->bgc_blk_sz = scmd->device->sector_size;
|
|
tc->reserved_E0_0 = 0;
|
|
tc->app_tag_gen_mask = 0;
|
|
|
|
/** setup block guard control **/
|
|
tc->bgctl = 0;
|
|
|
|
/* DIF write insert */
|
|
tc->bgctl_f.op = 0x2;
|
|
|
|
tc->app_tag_verify_mask = 0;
|
|
|
|
/* must init to 0 for hw */
|
|
tc->blk_guard_err = 0;
|
|
|
|
tc->reserved_E8_0 = 0;
|
|
|
|
if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
|
|
tc->ref_tag_seed_gen = scsi_get_lba(scmd) & 0xffffffff;
|
|
else if (type & SCSI_PROT_DIF_TYPE3)
|
|
tc->ref_tag_seed_gen = 0;
|
|
}
|
|
|
|
static void scu_ssp_ireq_dif_strip(struct isci_request *ireq, u8 type, u8 op)
|
|
{
|
|
struct scu_task_context *tc = ireq->tc;
|
|
struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
|
|
u8 blk_sz = scu_bg_blk_size(scmd->device);
|
|
|
|
tc->block_guard_enable = 1;
|
|
tc->blk_prot_en = 1;
|
|
tc->blk_sz = blk_sz;
|
|
/* DIF read strip */
|
|
tc->blk_prot_func = 0x1;
|
|
|
|
tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
|
|
scmd->device->sector_size);
|
|
|
|
/* always init to 0, used by hw */
|
|
tc->interm_crc_val = 0;
|
|
|
|
tc->init_crc_seed = 0;
|
|
tc->app_tag_verify = 0;
|
|
tc->app_tag_gen = 0;
|
|
|
|
if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
|
|
tc->ref_tag_seed_verify = scsi_get_lba(scmd) & 0xffffffff;
|
|
else if (type & SCSI_PROT_DIF_TYPE3)
|
|
tc->ref_tag_seed_verify = 0;
|
|
|
|
/* always init to same as bg_blk_sz */
|
|
tc->UD_bytes_immed_val = scmd->device->sector_size;
|
|
|
|
tc->reserved_DC_0 = 0;
|
|
|
|
/* always init to 8 */
|
|
tc->DIF_bytes_immed_val = 8;
|
|
|
|
tc->reserved_DC_1 = 0;
|
|
tc->bgc_blk_sz = scmd->device->sector_size;
|
|
tc->reserved_E0_0 = 0;
|
|
tc->app_tag_gen_mask = 0;
|
|
|
|
/** setup block guard control **/
|
|
tc->bgctl = 0;
|
|
|
|
/* DIF read strip */
|
|
tc->bgctl_f.crc_verify = 1;
|
|
tc->bgctl_f.op = 0x1;
|
|
if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2)) {
|
|
tc->bgctl_f.ref_tag_chk = 1;
|
|
tc->bgctl_f.app_f_detect = 1;
|
|
} else if (type & SCSI_PROT_DIF_TYPE3)
|
|
tc->bgctl_f.app_ref_f_detect = 1;
|
|
|
|
tc->app_tag_verify_mask = 0;
|
|
|
|
/* must init to 0 for hw */
|
|
tc->blk_guard_err = 0;
|
|
|
|
tc->reserved_E8_0 = 0;
|
|
tc->ref_tag_seed_gen = 0;
|
|
}
|
|
|
|
/**
|
|
* This method is will fill in the SCU Task Context for a SSP IO request.
|
|
* @sci_req:
|
|
*
|
|
*/
|
|
static void scu_ssp_io_request_construct_task_context(struct isci_request *ireq,
|
|
enum dma_data_direction dir,
|
|
u32 len)
|
|
{
|
|
struct scu_task_context *task_context = ireq->tc;
|
|
struct sas_task *sas_task = ireq->ttype_ptr.io_task_ptr;
|
|
struct scsi_cmnd *scmd = sas_task->uldd_task;
|
|
u8 prot_type = scsi_get_prot_type(scmd);
|
|
u8 prot_op = scsi_get_prot_op(scmd);
|
|
|
|
scu_ssp_request_construct_task_context(ireq, task_context);
|
|
|
|
task_context->ssp_command_iu_length =
|
|
sizeof(struct ssp_cmd_iu) / sizeof(u32);
|
|
task_context->type.ssp.frame_type = SSP_COMMAND;
|
|
|
|
switch (dir) {
|
|
case DMA_FROM_DEVICE:
|
|
case DMA_NONE:
|
|
default:
|
|
task_context->task_type = SCU_TASK_TYPE_IOREAD;
|
|
break;
|
|
case DMA_TO_DEVICE:
|
|
task_context->task_type = SCU_TASK_TYPE_IOWRITE;
|
|
break;
|
|
}
|
|
|
|
task_context->transfer_length_bytes = len;
|
|
|
|
if (task_context->transfer_length_bytes > 0)
|
|
sci_request_build_sgl(ireq);
|
|
|
|
if (prot_type != SCSI_PROT_DIF_TYPE0) {
|
|
if (prot_op == SCSI_PROT_READ_STRIP)
|
|
scu_ssp_ireq_dif_strip(ireq, prot_type, prot_op);
|
|
else if (prot_op == SCSI_PROT_WRITE_INSERT)
|
|
scu_ssp_ireq_dif_insert(ireq, prot_type, prot_op);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This method will fill in the SCU Task Context for a SSP Task request. The
|
|
* following important settings are utilized: -# priority ==
|
|
* SCU_TASK_PRIORITY_HIGH. This ensures that the task request is issued
|
|
* ahead of other task destined for the same Remote Node. -# task_type ==
|
|
* SCU_TASK_TYPE_IOREAD. This simply indicates that a normal request type
|
|
* (i.e. non-raw frame) is being utilized to perform task management. -#
|
|
* control_frame == 1. This ensures that the proper endianess is set so
|
|
* that the bytes are transmitted in the right order for a task frame.
|
|
* @sci_req: This parameter specifies the task request object being
|
|
* constructed.
|
|
*
|
|
*/
|
|
static void scu_ssp_task_request_construct_task_context(struct isci_request *ireq)
|
|
{
|
|
struct scu_task_context *task_context = ireq->tc;
|
|
|
|
scu_ssp_request_construct_task_context(ireq, task_context);
|
|
|
|
task_context->control_frame = 1;
|
|
task_context->priority = SCU_TASK_PRIORITY_HIGH;
|
|
task_context->task_type = SCU_TASK_TYPE_RAW_FRAME;
|
|
task_context->transfer_length_bytes = 0;
|
|
task_context->type.ssp.frame_type = SSP_TASK;
|
|
task_context->ssp_command_iu_length =
|
|
sizeof(struct ssp_task_iu) / sizeof(u32);
|
|
}
|
|
|
|
/**
|
|
* This method is will fill in the SCU Task Context for any type of SATA
|
|
* request. This is called from the various SATA constructors.
|
|
* @sci_req: The general IO request object which is to be used in
|
|
* constructing the SCU task context.
|
|
* @task_context: The buffer pointer for the SCU task context which is being
|
|
* constructed.
|
|
*
|
|
* The general io request construction is complete. The buffer assignment for
|
|
* the command buffer is complete. none Revisit task context construction to
|
|
* determine what is common for SSP/SMP/STP task context structures.
|
|
*/
|
|
static void scu_sata_request_construct_task_context(
|
|
struct isci_request *ireq,
|
|
struct scu_task_context *task_context)
|
|
{
|
|
dma_addr_t dma_addr;
|
|
struct isci_remote_device *idev;
|
|
struct isci_port *iport;
|
|
|
|
idev = ireq->target_device;
|
|
iport = idev->owning_port;
|
|
|
|
/* Fill in the TC with its required data */
|
|
task_context->abort = 0;
|
|
task_context->priority = SCU_TASK_PRIORITY_NORMAL;
|
|
task_context->initiator_request = 1;
|
|
task_context->connection_rate = idev->connection_rate;
|
|
task_context->protocol_engine_index = ISCI_PEG;
|
|
task_context->logical_port_index = iport->physical_port_index;
|
|
task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_STP;
|
|
task_context->valid = SCU_TASK_CONTEXT_VALID;
|
|
task_context->context_type = SCU_TASK_CONTEXT_TYPE;
|
|
|
|
task_context->remote_node_index = idev->rnc.remote_node_index;
|
|
task_context->command_code = 0;
|
|
|
|
task_context->link_layer_control = 0;
|
|
task_context->do_not_dma_ssp_good_response = 1;
|
|
task_context->strict_ordering = 0;
|
|
task_context->control_frame = 0;
|
|
task_context->timeout_enable = 0;
|
|
task_context->block_guard_enable = 0;
|
|
|
|
task_context->address_modifier = 0;
|
|
task_context->task_phase = 0x01;
|
|
|
|
task_context->ssp_command_iu_length =
|
|
(sizeof(struct host_to_dev_fis) - sizeof(u32)) / sizeof(u32);
|
|
|
|
/* Set the first word of the H2D REG FIS */
|
|
task_context->type.words[0] = *(u32 *)&ireq->stp.cmd;
|
|
|
|
ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
|
|
(ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
|
|
(iport->physical_port_index <<
|
|
SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
|
|
ISCI_TAG_TCI(ireq->io_tag));
|
|
/*
|
|
* Copy the physical address for the command buffer to the SCU Task
|
|
* Context. We must offset the command buffer by 4 bytes because the
|
|
* first 4 bytes are transfered in the body of the TC.
|
|
*/
|
|
dma_addr = sci_io_request_get_dma_addr(ireq,
|
|
((char *) &ireq->stp.cmd) +
|
|
sizeof(u32));
|
|
|
|
task_context->command_iu_upper = upper_32_bits(dma_addr);
|
|
task_context->command_iu_lower = lower_32_bits(dma_addr);
|
|
|
|
/* SATA Requests do not have a response buffer */
|
|
task_context->response_iu_upper = 0;
|
|
task_context->response_iu_lower = 0;
|
|
}
|
|
|
|
static void scu_stp_raw_request_construct_task_context(struct isci_request *ireq)
|
|
{
|
|
struct scu_task_context *task_context = ireq->tc;
|
|
|
|
scu_sata_request_construct_task_context(ireq, task_context);
|
|
|
|
task_context->control_frame = 0;
|
|
task_context->priority = SCU_TASK_PRIORITY_NORMAL;
|
|
task_context->task_type = SCU_TASK_TYPE_SATA_RAW_FRAME;
|
|
task_context->type.stp.fis_type = FIS_REGH2D;
|
|
task_context->transfer_length_bytes = sizeof(struct host_to_dev_fis) - sizeof(u32);
|
|
}
|
|
|
|
static enum sci_status sci_stp_pio_request_construct(struct isci_request *ireq,
|
|
bool copy_rx_frame)
|
|
{
|
|
struct isci_stp_request *stp_req = &ireq->stp.req;
|
|
|
|
scu_stp_raw_request_construct_task_context(ireq);
|
|
|
|
stp_req->status = 0;
|
|
stp_req->sgl.offset = 0;
|
|
stp_req->sgl.set = SCU_SGL_ELEMENT_PAIR_A;
|
|
|
|
if (copy_rx_frame) {
|
|
sci_request_build_sgl(ireq);
|
|
stp_req->sgl.index = 0;
|
|
} else {
|
|
/* The user does not want the data copied to the SGL buffer location */
|
|
stp_req->sgl.index = -1;
|
|
}
|
|
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @sci_req: This parameter specifies the request to be constructed as an
|
|
* optimized request.
|
|
* @optimized_task_type: This parameter specifies whether the request is to be
|
|
* an UDMA request or a NCQ request. - A value of 0 indicates UDMA. - A
|
|
* value of 1 indicates NCQ.
|
|
*
|
|
* This method will perform request construction common to all types of STP
|
|
* requests that are optimized by the silicon (i.e. UDMA, NCQ). This method
|
|
* returns an indication as to whether the construction was successful.
|
|
*/
|
|
static void sci_stp_optimized_request_construct(struct isci_request *ireq,
|
|
u8 optimized_task_type,
|
|
u32 len,
|
|
enum dma_data_direction dir)
|
|
{
|
|
struct scu_task_context *task_context = ireq->tc;
|
|
|
|
/* Build the STP task context structure */
|
|
scu_sata_request_construct_task_context(ireq, task_context);
|
|
|
|
/* Copy over the SGL elements */
|
|
sci_request_build_sgl(ireq);
|
|
|
|
/* Copy over the number of bytes to be transfered */
|
|
task_context->transfer_length_bytes = len;
|
|
|
|
if (dir == DMA_TO_DEVICE) {
|
|
/*
|
|
* The difference between the DMA IN and DMA OUT request task type
|
|
* values are consistent with the difference between FPDMA READ
|
|
* and FPDMA WRITE values. Add the supplied task type parameter
|
|
* to this difference to set the task type properly for this
|
|
* DATA OUT (WRITE) case. */
|
|
task_context->task_type = optimized_task_type + (SCU_TASK_TYPE_DMA_OUT
|
|
- SCU_TASK_TYPE_DMA_IN);
|
|
} else {
|
|
/*
|
|
* For the DATA IN (READ) case, simply save the supplied
|
|
* optimized task type. */
|
|
task_context->task_type = optimized_task_type;
|
|
}
|
|
}
|
|
|
|
static void sci_atapi_construct(struct isci_request *ireq)
|
|
{
|
|
struct host_to_dev_fis *h2d_fis = &ireq->stp.cmd;
|
|
struct sas_task *task;
|
|
|
|
/* To simplify the implementation we take advantage of the
|
|
* silicon's partial acceleration of atapi protocol (dma data
|
|
* transfers), so we promote all commands to dma protocol. This
|
|
* breaks compatibility with ATA_HORKAGE_ATAPI_MOD16_DMA drives.
|
|
*/
|
|
h2d_fis->features |= ATAPI_PKT_DMA;
|
|
|
|
scu_stp_raw_request_construct_task_context(ireq);
|
|
|
|
task = isci_request_access_task(ireq);
|
|
if (task->data_dir == DMA_NONE)
|
|
task->total_xfer_len = 0;
|
|
|
|
/* clear the response so we can detect arrivial of an
|
|
* unsolicited h2d fis
|
|
*/
|
|
ireq->stp.rsp.fis_type = 0;
|
|
}
|
|
|
|
static enum sci_status
|
|
sci_io_request_construct_sata(struct isci_request *ireq,
|
|
u32 len,
|
|
enum dma_data_direction dir,
|
|
bool copy)
|
|
{
|
|
enum sci_status status = SCI_SUCCESS;
|
|
struct sas_task *task = isci_request_access_task(ireq);
|
|
struct domain_device *dev = ireq->target_device->domain_dev;
|
|
|
|
/* check for management protocols */
|
|
if (test_bit(IREQ_TMF, &ireq->flags)) {
|
|
struct isci_tmf *tmf = isci_request_access_tmf(ireq);
|
|
|
|
dev_err(&ireq->owning_controller->pdev->dev,
|
|
"%s: Request 0x%p received un-handled SAT "
|
|
"management protocol 0x%x.\n",
|
|
__func__, ireq, tmf->tmf_code);
|
|
|
|
return SCI_FAILURE;
|
|
}
|
|
|
|
if (!sas_protocol_ata(task->task_proto)) {
|
|
dev_err(&ireq->owning_controller->pdev->dev,
|
|
"%s: Non-ATA protocol in SATA path: 0x%x\n",
|
|
__func__,
|
|
task->task_proto);
|
|
return SCI_FAILURE;
|
|
|
|
}
|
|
|
|
/* ATAPI */
|
|
if (dev->sata_dev.class == ATA_DEV_ATAPI &&
|
|
task->ata_task.fis.command == ATA_CMD_PACKET) {
|
|
sci_atapi_construct(ireq);
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
/* non data */
|
|
if (task->data_dir == DMA_NONE) {
|
|
scu_stp_raw_request_construct_task_context(ireq);
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
/* NCQ */
|
|
if (task->ata_task.use_ncq) {
|
|
sci_stp_optimized_request_construct(ireq,
|
|
SCU_TASK_TYPE_FPDMAQ_READ,
|
|
len, dir);
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
/* DMA */
|
|
if (task->ata_task.dma_xfer) {
|
|
sci_stp_optimized_request_construct(ireq,
|
|
SCU_TASK_TYPE_DMA_IN,
|
|
len, dir);
|
|
return SCI_SUCCESS;
|
|
} else /* PIO */
|
|
return sci_stp_pio_request_construct(ireq, copy);
|
|
|
|
return status;
|
|
}
|
|
|
|
static enum sci_status sci_io_request_construct_basic_ssp(struct isci_request *ireq)
|
|
{
|
|
struct sas_task *task = isci_request_access_task(ireq);
|
|
|
|
ireq->protocol = SAS_PROTOCOL_SSP;
|
|
|
|
scu_ssp_io_request_construct_task_context(ireq,
|
|
task->data_dir,
|
|
task->total_xfer_len);
|
|
|
|
sci_io_request_build_ssp_command_iu(ireq);
|
|
|
|
sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
|
|
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
enum sci_status sci_task_request_construct_ssp(
|
|
struct isci_request *ireq)
|
|
{
|
|
/* Construct the SSP Task SCU Task Context */
|
|
scu_ssp_task_request_construct_task_context(ireq);
|
|
|
|
/* Fill in the SSP Task IU */
|
|
sci_task_request_build_ssp_task_iu(ireq);
|
|
|
|
sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
|
|
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
static enum sci_status sci_io_request_construct_basic_sata(struct isci_request *ireq)
|
|
{
|
|
enum sci_status status;
|
|
bool copy = false;
|
|
struct sas_task *task = isci_request_access_task(ireq);
|
|
|
|
ireq->protocol = SAS_PROTOCOL_STP;
|
|
|
|
copy = (task->data_dir == DMA_NONE) ? false : true;
|
|
|
|
status = sci_io_request_construct_sata(ireq,
|
|
task->total_xfer_len,
|
|
task->data_dir,
|
|
copy);
|
|
|
|
if (status == SCI_SUCCESS)
|
|
sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* sci_req_tx_bytes - bytes transferred when reply underruns request
|
|
* @ireq: request that was terminated early
|
|
*/
|
|
#define SCU_TASK_CONTEXT_SRAM 0x200000
|
|
static u32 sci_req_tx_bytes(struct isci_request *ireq)
|
|
{
|
|
struct isci_host *ihost = ireq->owning_controller;
|
|
u32 ret_val = 0;
|
|
|
|
if (readl(&ihost->smu_registers->address_modifier) == 0) {
|
|
void __iomem *scu_reg_base = ihost->scu_registers;
|
|
|
|
/* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
|
|
* BAR1 is the scu_registers
|
|
* 0x20002C = 0x200000 + 0x2c
|
|
* = start of task context SRAM + offset of (type.ssp.data_offset)
|
|
* TCi is the io_tag of struct sci_request
|
|
*/
|
|
ret_val = readl(scu_reg_base +
|
|
(SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) +
|
|
((sizeof(struct scu_task_context)) * ISCI_TAG_TCI(ireq->io_tag)));
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
enum sci_status sci_request_start(struct isci_request *ireq)
|
|
{
|
|
enum sci_base_request_states state;
|
|
struct scu_task_context *tc = ireq->tc;
|
|
struct isci_host *ihost = ireq->owning_controller;
|
|
|
|
state = ireq->sm.current_state_id;
|
|
if (state != SCI_REQ_CONSTRUCTED) {
|
|
dev_warn(&ihost->pdev->dev,
|
|
"%s: SCIC IO Request requested to start while in wrong "
|
|
"state %d\n", __func__, state);
|
|
return SCI_FAILURE_INVALID_STATE;
|
|
}
|
|
|
|
tc->task_index = ISCI_TAG_TCI(ireq->io_tag);
|
|
|
|
switch (tc->protocol_type) {
|
|
case SCU_TASK_CONTEXT_PROTOCOL_SMP:
|
|
case SCU_TASK_CONTEXT_PROTOCOL_SSP:
|
|
/* SSP/SMP Frame */
|
|
tc->type.ssp.tag = ireq->io_tag;
|
|
tc->type.ssp.target_port_transfer_tag = 0xFFFF;
|
|
break;
|
|
|
|
case SCU_TASK_CONTEXT_PROTOCOL_STP:
|
|
/* STP/SATA Frame
|
|
* tc->type.stp.ncq_tag = ireq->ncq_tag;
|
|
*/
|
|
break;
|
|
|
|
case SCU_TASK_CONTEXT_PROTOCOL_NONE:
|
|
/* / @todo When do we set no protocol type? */
|
|
break;
|
|
|
|
default:
|
|
/* This should never happen since we build the IO
|
|
* requests */
|
|
break;
|
|
}
|
|
|
|
/* Add to the post_context the io tag value */
|
|
ireq->post_context |= ISCI_TAG_TCI(ireq->io_tag);
|
|
|
|
/* Everything is good go ahead and change state */
|
|
sci_change_state(&ireq->sm, SCI_REQ_STARTED);
|
|
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
enum sci_status
|
|
sci_io_request_terminate(struct isci_request *ireq)
|
|
{
|
|
enum sci_base_request_states state;
|
|
|
|
state = ireq->sm.current_state_id;
|
|
|
|
switch (state) {
|
|
case SCI_REQ_CONSTRUCTED:
|
|
/* Set to make sure no HW terminate posting is done: */
|
|
set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags);
|
|
ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
|
|
ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
|
|
sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
|
|
return SCI_SUCCESS;
|
|
case SCI_REQ_STARTED:
|
|
case SCI_REQ_TASK_WAIT_TC_COMP:
|
|
case SCI_REQ_SMP_WAIT_RESP:
|
|
case SCI_REQ_SMP_WAIT_TC_COMP:
|
|
case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
|
|
case SCI_REQ_STP_UDMA_WAIT_D2H:
|
|
case SCI_REQ_STP_NON_DATA_WAIT_H2D:
|
|
case SCI_REQ_STP_NON_DATA_WAIT_D2H:
|
|
case SCI_REQ_STP_PIO_WAIT_H2D:
|
|
case SCI_REQ_STP_PIO_WAIT_FRAME:
|
|
case SCI_REQ_STP_PIO_DATA_IN:
|
|
case SCI_REQ_STP_PIO_DATA_OUT:
|
|
case SCI_REQ_ATAPI_WAIT_H2D:
|
|
case SCI_REQ_ATAPI_WAIT_PIO_SETUP:
|
|
case SCI_REQ_ATAPI_WAIT_D2H:
|
|
case SCI_REQ_ATAPI_WAIT_TC_COMP:
|
|
/* Fall through and change state to ABORTING... */
|
|
case SCI_REQ_TASK_WAIT_TC_RESP:
|
|
/* The task frame was already confirmed to have been
|
|
* sent by the SCU HW. Since the state machine is
|
|
* now only waiting for the task response itself,
|
|
* abort the request and complete it immediately
|
|
* and don't wait for the task response.
|
|
*/
|
|
sci_change_state(&ireq->sm, SCI_REQ_ABORTING);
|
|
/* Fall through - and handle like ABORTING... */
|
|
case SCI_REQ_ABORTING:
|
|
if (!isci_remote_device_is_safe_to_abort(ireq->target_device))
|
|
set_bit(IREQ_PENDING_ABORT, &ireq->flags);
|
|
else
|
|
clear_bit(IREQ_PENDING_ABORT, &ireq->flags);
|
|
/* If the request is only waiting on the remote device
|
|
* suspension, return SUCCESS so the caller will wait too.
|
|
*/
|
|
return SCI_SUCCESS;
|
|
case SCI_REQ_COMPLETED:
|
|
default:
|
|
dev_warn(&ireq->owning_controller->pdev->dev,
|
|
"%s: SCIC IO Request requested to abort while in wrong "
|
|
"state %d\n", __func__, ireq->sm.current_state_id);
|
|
break;
|
|
}
|
|
|
|
return SCI_FAILURE_INVALID_STATE;
|
|
}
|
|
|
|
enum sci_status sci_request_complete(struct isci_request *ireq)
|
|
{
|
|
enum sci_base_request_states state;
|
|
struct isci_host *ihost = ireq->owning_controller;
|
|
|
|
state = ireq->sm.current_state_id;
|
|
if (WARN_ONCE(state != SCI_REQ_COMPLETED,
|
|
"isci: request completion from wrong state (%s)\n",
|
|
req_state_name(state)))
|
|
return SCI_FAILURE_INVALID_STATE;
|
|
|
|
if (ireq->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX)
|
|
sci_controller_release_frame(ihost,
|
|
ireq->saved_rx_frame_index);
|
|
|
|
/* XXX can we just stop the machine and remove the 'final' state? */
|
|
sci_change_state(&ireq->sm, SCI_REQ_FINAL);
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
enum sci_status sci_io_request_event_handler(struct isci_request *ireq,
|
|
u32 event_code)
|
|
{
|
|
enum sci_base_request_states state;
|
|
struct isci_host *ihost = ireq->owning_controller;
|
|
|
|
state = ireq->sm.current_state_id;
|
|
|
|
if (state != SCI_REQ_STP_PIO_DATA_IN) {
|
|
dev_warn(&ihost->pdev->dev, "%s: (%x) in wrong state %s\n",
|
|
__func__, event_code, req_state_name(state));
|
|
|
|
return SCI_FAILURE_INVALID_STATE;
|
|
}
|
|
|
|
switch (scu_get_event_specifier(event_code)) {
|
|
case SCU_TASK_DONE_CRC_ERR << SCU_EVENT_SPECIFIC_CODE_SHIFT:
|
|
/* We are waiting for data and the SCU has R_ERR the data frame.
|
|
* Go back to waiting for the D2H Register FIS
|
|
*/
|
|
sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
|
|
return SCI_SUCCESS;
|
|
default:
|
|
dev_err(&ihost->pdev->dev,
|
|
"%s: pio request unexpected event %#x\n",
|
|
__func__, event_code);
|
|
|
|
/* TODO Should we fail the PIO request when we get an
|
|
* unexpected event?
|
|
*/
|
|
return SCI_FAILURE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function copies response data for requests returning response data
|
|
* instead of sense data.
|
|
* @sci_req: This parameter specifies the request object for which to copy
|
|
* the response data.
|
|
*/
|
|
static void sci_io_request_copy_response(struct isci_request *ireq)
|
|
{
|
|
void *resp_buf;
|
|
u32 len;
|
|
struct ssp_response_iu *ssp_response;
|
|
struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
|
|
|
|
ssp_response = &ireq->ssp.rsp;
|
|
|
|
resp_buf = &isci_tmf->resp.resp_iu;
|
|
|
|
len = min_t(u32,
|
|
SSP_RESP_IU_MAX_SIZE,
|
|
be32_to_cpu(ssp_response->response_data_len));
|
|
|
|
memcpy(resp_buf, ssp_response->resp_data, len);
|
|
}
|
|
|
|
static enum sci_status
|
|
request_started_state_tc_event(struct isci_request *ireq,
|
|
u32 completion_code)
|
|
{
|
|
struct ssp_response_iu *resp_iu;
|
|
u8 datapres;
|
|
|
|
/* TODO: Any SDMA return code of other than 0 is bad decode 0x003C0000
|
|
* to determine SDMA status
|
|
*/
|
|
switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
|
|
ireq->scu_status = SCU_TASK_DONE_GOOD;
|
|
ireq->sci_status = SCI_SUCCESS;
|
|
break;
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP): {
|
|
/* There are times when the SCU hardware will return an early
|
|
* response because the io request specified more data than is
|
|
* returned by the target device (mode pages, inquiry data,
|
|
* etc.). We must check the response stats to see if this is
|
|
* truly a failed request or a good request that just got
|
|
* completed early.
|
|
*/
|
|
struct ssp_response_iu *resp = &ireq->ssp.rsp;
|
|
ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
|
|
|
|
sci_swab32_cpy(&ireq->ssp.rsp,
|
|
&ireq->ssp.rsp,
|
|
word_cnt);
|
|
|
|
if (resp->status == 0) {
|
|
ireq->scu_status = SCU_TASK_DONE_GOOD;
|
|
ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
|
|
} else {
|
|
ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
|
|
ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
|
|
}
|
|
break;
|
|
}
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE): {
|
|
ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
|
|
|
|
sci_swab32_cpy(&ireq->ssp.rsp,
|
|
&ireq->ssp.rsp,
|
|
word_cnt);
|
|
|
|
ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
|
|
ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
|
|
break;
|
|
}
|
|
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR):
|
|
/* TODO With TASK_DONE_RESP_LEN_ERR is the response frame
|
|
* guaranteed to be received before this completion status is
|
|
* posted?
|
|
*/
|
|
resp_iu = &ireq->ssp.rsp;
|
|
datapres = resp_iu->datapres;
|
|
|
|
if (datapres == 1 || datapres == 2) {
|
|
ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
|
|
ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
|
|
} else {
|
|
ireq->scu_status = SCU_TASK_DONE_GOOD;
|
|
ireq->sci_status = SCI_SUCCESS;
|
|
}
|
|
break;
|
|
/* only stp device gets suspended. */
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR):
|
|
if (ireq->protocol == SAS_PROTOCOL_STP) {
|
|
ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
|
|
SCU_COMPLETION_TL_STATUS_SHIFT;
|
|
ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
|
|
} else {
|
|
ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
|
|
SCU_COMPLETION_TL_STATUS_SHIFT;
|
|
ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
|
|
}
|
|
break;
|
|
|
|
/* both stp/ssp device gets suspended */
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED):
|
|
ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
|
|
SCU_COMPLETION_TL_STATUS_SHIFT;
|
|
ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
|
|
break;
|
|
|
|
/* neither ssp nor stp gets suspended. */
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND):
|
|
default:
|
|
ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
|
|
SCU_COMPLETION_TL_STATUS_SHIFT;
|
|
ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* TODO: This is probably wrong for ACK/NAK timeout conditions
|
|
*/
|
|
|
|
/* In all cases we will treat this as the completion of the IO req. */
|
|
sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
static enum sci_status
|
|
request_aborting_state_tc_event(struct isci_request *ireq,
|
|
u32 completion_code)
|
|
{
|
|
switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
|
|
case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
|
|
case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT):
|
|
ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
|
|
ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
|
|
sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
|
|
break;
|
|
|
|
default:
|
|
/* Unless we get some strange error wait for the task abort to complete
|
|
* TODO: Should there be a state change for this completion?
|
|
*/
|
|
break;
|
|
}
|
|
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
static enum sci_status ssp_task_request_await_tc_event(struct isci_request *ireq,
|
|
u32 completion_code)
|
|
{
|
|
switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
|
|
ireq->scu_status = SCU_TASK_DONE_GOOD;
|
|
ireq->sci_status = SCI_SUCCESS;
|
|
sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
|
|
break;
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
|
|
/* Currently, the decision is to simply allow the task request
|
|
* to timeout if the task IU wasn't received successfully.
|
|
* There is a potential for receiving multiple task responses if
|
|
* we decide to send the task IU again.
|
|
*/
|
|
dev_warn(&ireq->owning_controller->pdev->dev,
|
|
"%s: TaskRequest:0x%p CompletionCode:%x - "
|
|
"ACK/NAK timeout\n", __func__, ireq,
|
|
completion_code);
|
|
|
|
sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
|
|
break;
|
|
default:
|
|
/*
|
|
* All other completion status cause the IO to be complete.
|
|
* If a NAK was received, then it is up to the user to retry
|
|
* the request.
|
|
*/
|
|
ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
|
|
ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
|
|
sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
|
|
break;
|
|
}
|
|
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
static enum sci_status
|
|
smp_request_await_response_tc_event(struct isci_request *ireq,
|
|
u32 completion_code)
|
|
{
|
|
switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
|
|
/* In the AWAIT RESPONSE state, any TC completion is
|
|
* unexpected. but if the TC has success status, we
|
|
* complete the IO anyway.
|
|
*/
|
|
ireq->scu_status = SCU_TASK_DONE_GOOD;
|
|
ireq->sci_status = SCI_SUCCESS;
|
|
sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
|
|
break;
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
|
|
/* These status has been seen in a specific LSI
|
|
* expander, which sometimes is not able to send smp
|
|
* response within 2 ms. This causes our hardware break
|
|
* the connection and set TC completion with one of
|
|
* these SMP_XXX_XX_ERR status. For these type of error,
|
|
* we ask ihost user to retry the request.
|
|
*/
|
|
ireq->scu_status = SCU_TASK_DONE_SMP_RESP_TO_ERR;
|
|
ireq->sci_status = SCI_FAILURE_RETRY_REQUIRED;
|
|
sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
|
|
break;
|
|
default:
|
|
/* All other completion status cause the IO to be complete. If a NAK
|
|
* was received, then it is up to the user to retry the request
|
|
*/
|
|
ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
|
|
ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
|
|
sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
|
|
break;
|
|
}
|
|
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
static enum sci_status
|
|
smp_request_await_tc_event(struct isci_request *ireq,
|
|
u32 completion_code)
|
|
{
|
|
switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
|
|
ireq->scu_status = SCU_TASK_DONE_GOOD;
|
|
ireq->sci_status = SCI_SUCCESS;
|
|
sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
|
|
break;
|
|
default:
|
|
/* All other completion status cause the IO to be
|
|
* complete. If a NAK was received, then it is up to
|
|
* the user to retry the request.
|
|
*/
|
|
ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
|
|
ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
|
|
sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
|
|
break;
|
|
}
|
|
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
static struct scu_sgl_element *pio_sgl_next(struct isci_stp_request *stp_req)
|
|
{
|
|
struct scu_sgl_element *sgl;
|
|
struct scu_sgl_element_pair *sgl_pair;
|
|
struct isci_request *ireq = to_ireq(stp_req);
|
|
struct isci_stp_pio_sgl *pio_sgl = &stp_req->sgl;
|
|
|
|
sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
|
|
if (!sgl_pair)
|
|
sgl = NULL;
|
|
else if (pio_sgl->set == SCU_SGL_ELEMENT_PAIR_A) {
|
|
if (sgl_pair->B.address_lower == 0 &&
|
|
sgl_pair->B.address_upper == 0) {
|
|
sgl = NULL;
|
|
} else {
|
|
pio_sgl->set = SCU_SGL_ELEMENT_PAIR_B;
|
|
sgl = &sgl_pair->B;
|
|
}
|
|
} else {
|
|
if (sgl_pair->next_pair_lower == 0 &&
|
|
sgl_pair->next_pair_upper == 0) {
|
|
sgl = NULL;
|
|
} else {
|
|
pio_sgl->index++;
|
|
pio_sgl->set = SCU_SGL_ELEMENT_PAIR_A;
|
|
sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
|
|
sgl = &sgl_pair->A;
|
|
}
|
|
}
|
|
|
|
return sgl;
|
|
}
|
|
|
|
static enum sci_status
|
|
stp_request_non_data_await_h2d_tc_event(struct isci_request *ireq,
|
|
u32 completion_code)
|
|
{
|
|
switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
|
|
ireq->scu_status = SCU_TASK_DONE_GOOD;
|
|
ireq->sci_status = SCI_SUCCESS;
|
|
sci_change_state(&ireq->sm, SCI_REQ_STP_NON_DATA_WAIT_D2H);
|
|
break;
|
|
|
|
default:
|
|
/* All other completion status cause the IO to be
|
|
* complete. If a NAK was received, then it is up to
|
|
* the user to retry the request.
|
|
*/
|
|
ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
|
|
ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
|
|
sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
|
|
break;
|
|
}
|
|
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
#define SCU_MAX_FRAME_BUFFER_SIZE 0x400 /* 1K is the maximum SCU frame data payload */
|
|
|
|
/* transmit DATA_FIS from (current sgl + offset) for input
|
|
* parameter length. current sgl and offset is alreay stored in the IO request
|
|
*/
|
|
static enum sci_status sci_stp_request_pio_data_out_trasmit_data_frame(
|
|
struct isci_request *ireq,
|
|
u32 length)
|
|
{
|
|
struct isci_stp_request *stp_req = &ireq->stp.req;
|
|
struct scu_task_context *task_context = ireq->tc;
|
|
struct scu_sgl_element_pair *sgl_pair;
|
|
struct scu_sgl_element *current_sgl;
|
|
|
|
/* Recycle the TC and reconstruct it for sending out DATA FIS containing
|
|
* for the data from current_sgl+offset for the input length
|
|
*/
|
|
sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
|
|
if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A)
|
|
current_sgl = &sgl_pair->A;
|
|
else
|
|
current_sgl = &sgl_pair->B;
|
|
|
|
/* update the TC */
|
|
task_context->command_iu_upper = current_sgl->address_upper;
|
|
task_context->command_iu_lower = current_sgl->address_lower;
|
|
task_context->transfer_length_bytes = length;
|
|
task_context->type.stp.fis_type = FIS_DATA;
|
|
|
|
/* send the new TC out. */
|
|
return sci_controller_continue_io(ireq);
|
|
}
|
|
|
|
static enum sci_status sci_stp_request_pio_data_out_transmit_data(struct isci_request *ireq)
|
|
{
|
|
struct isci_stp_request *stp_req = &ireq->stp.req;
|
|
struct scu_sgl_element_pair *sgl_pair;
|
|
enum sci_status status = SCI_SUCCESS;
|
|
struct scu_sgl_element *sgl;
|
|
u32 offset;
|
|
u32 len = 0;
|
|
|
|
offset = stp_req->sgl.offset;
|
|
sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
|
|
if (WARN_ONCE(!sgl_pair, "%s: null sgl element", __func__))
|
|
return SCI_FAILURE;
|
|
|
|
if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A) {
|
|
sgl = &sgl_pair->A;
|
|
len = sgl_pair->A.length - offset;
|
|
} else {
|
|
sgl = &sgl_pair->B;
|
|
len = sgl_pair->B.length - offset;
|
|
}
|
|
|
|
if (stp_req->pio_len == 0)
|
|
return SCI_SUCCESS;
|
|
|
|
if (stp_req->pio_len >= len) {
|
|
status = sci_stp_request_pio_data_out_trasmit_data_frame(ireq, len);
|
|
if (status != SCI_SUCCESS)
|
|
return status;
|
|
stp_req->pio_len -= len;
|
|
|
|
/* update the current sgl, offset and save for future */
|
|
sgl = pio_sgl_next(stp_req);
|
|
offset = 0;
|
|
} else if (stp_req->pio_len < len) {
|
|
sci_stp_request_pio_data_out_trasmit_data_frame(ireq, stp_req->pio_len);
|
|
|
|
/* Sgl offset will be adjusted and saved for future */
|
|
offset += stp_req->pio_len;
|
|
sgl->address_lower += stp_req->pio_len;
|
|
stp_req->pio_len = 0;
|
|
}
|
|
|
|
stp_req->sgl.offset = offset;
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @stp_request: The request that is used for the SGL processing.
|
|
* @data_buffer: The buffer of data to be copied.
|
|
* @length: The length of the data transfer.
|
|
*
|
|
* Copy the data from the buffer for the length specified to the IO request SGL
|
|
* specified data region. enum sci_status
|
|
*/
|
|
static enum sci_status
|
|
sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request *stp_req,
|
|
u8 *data_buf, u32 len)
|
|
{
|
|
struct isci_request *ireq;
|
|
u8 *src_addr;
|
|
int copy_len;
|
|
struct sas_task *task;
|
|
struct scatterlist *sg;
|
|
void *kaddr;
|
|
int total_len = len;
|
|
|
|
ireq = to_ireq(stp_req);
|
|
task = isci_request_access_task(ireq);
|
|
src_addr = data_buf;
|
|
|
|
if (task->num_scatter > 0) {
|
|
sg = task->scatter;
|
|
|
|
while (total_len > 0) {
|
|
struct page *page = sg_page(sg);
|
|
|
|
copy_len = min_t(int, total_len, sg_dma_len(sg));
|
|
kaddr = kmap_atomic(page);
|
|
memcpy(kaddr + sg->offset, src_addr, copy_len);
|
|
kunmap_atomic(kaddr);
|
|
total_len -= copy_len;
|
|
src_addr += copy_len;
|
|
sg = sg_next(sg);
|
|
}
|
|
} else {
|
|
BUG_ON(task->total_xfer_len < total_len);
|
|
memcpy(task->scatter, src_addr, total_len);
|
|
}
|
|
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @sci_req: The PIO DATA IN request that is to receive the data.
|
|
* @data_buffer: The buffer to copy from.
|
|
*
|
|
* Copy the data buffer to the io request data region. enum sci_status
|
|
*/
|
|
static enum sci_status sci_stp_request_pio_data_in_copy_data(
|
|
struct isci_stp_request *stp_req,
|
|
u8 *data_buffer)
|
|
{
|
|
enum sci_status status;
|
|
|
|
/*
|
|
* If there is less than 1K remaining in the transfer request
|
|
* copy just the data for the transfer */
|
|
if (stp_req->pio_len < SCU_MAX_FRAME_BUFFER_SIZE) {
|
|
status = sci_stp_request_pio_data_in_copy_data_buffer(
|
|
stp_req, data_buffer, stp_req->pio_len);
|
|
|
|
if (status == SCI_SUCCESS)
|
|
stp_req->pio_len = 0;
|
|
} else {
|
|
/* We are transfering the whole frame so copy */
|
|
status = sci_stp_request_pio_data_in_copy_data_buffer(
|
|
stp_req, data_buffer, SCU_MAX_FRAME_BUFFER_SIZE);
|
|
|
|
if (status == SCI_SUCCESS)
|
|
stp_req->pio_len -= SCU_MAX_FRAME_BUFFER_SIZE;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static enum sci_status
|
|
stp_request_pio_await_h2d_completion_tc_event(struct isci_request *ireq,
|
|
u32 completion_code)
|
|
{
|
|
enum sci_status status = SCI_SUCCESS;
|
|
|
|
switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
|
|
ireq->scu_status = SCU_TASK_DONE_GOOD;
|
|
ireq->sci_status = SCI_SUCCESS;
|
|
sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
|
|
break;
|
|
|
|
default:
|
|
/* All other completion status cause the IO to be
|
|
* complete. If a NAK was received, then it is up to
|
|
* the user to retry the request.
|
|
*/
|
|
ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
|
|
ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
|
|
sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
|
|
break;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static enum sci_status
|
|
pio_data_out_tx_done_tc_event(struct isci_request *ireq,
|
|
u32 completion_code)
|
|
{
|
|
enum sci_status status = SCI_SUCCESS;
|
|
bool all_frames_transferred = false;
|
|
struct isci_stp_request *stp_req = &ireq->stp.req;
|
|
|
|
switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
|
|
/* Transmit data */
|
|
if (stp_req->pio_len != 0) {
|
|
status = sci_stp_request_pio_data_out_transmit_data(ireq);
|
|
if (status == SCI_SUCCESS) {
|
|
if (stp_req->pio_len == 0)
|
|
all_frames_transferred = true;
|
|
}
|
|
} else if (stp_req->pio_len == 0) {
|
|
/*
|
|
* this will happen if the all data is written at the
|
|
* first time after the pio setup fis is received
|
|
*/
|
|
all_frames_transferred = true;
|
|
}
|
|
|
|
/* all data transferred. */
|
|
if (all_frames_transferred) {
|
|
/*
|
|
* Change the state to SCI_REQ_STP_PIO_DATA_IN
|
|
* and wait for PIO_SETUP fis / or D2H REg fis. */
|
|
sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
/*
|
|
* All other completion status cause the IO to be complete.
|
|
* If a NAK was received, then it is up to the user to retry
|
|
* the request.
|
|
*/
|
|
ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
|
|
ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
|
|
sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
|
|
break;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static enum sci_status sci_stp_request_udma_general_frame_handler(struct isci_request *ireq,
|
|
u32 frame_index)
|
|
{
|
|
struct isci_host *ihost = ireq->owning_controller;
|
|
struct dev_to_host_fis *frame_header;
|
|
enum sci_status status;
|
|
u32 *frame_buffer;
|
|
|
|
status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
|
|
frame_index,
|
|
(void **)&frame_header);
|
|
|
|
if ((status == SCI_SUCCESS) &&
|
|
(frame_header->fis_type == FIS_REGD2H)) {
|
|
sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
|
|
frame_index,
|
|
(void **)&frame_buffer);
|
|
|
|
sci_controller_copy_sata_response(&ireq->stp.rsp,
|
|
frame_header,
|
|
frame_buffer);
|
|
}
|
|
|
|
sci_controller_release_frame(ihost, frame_index);
|
|
|
|
return status;
|
|
}
|
|
|
|
static enum sci_status process_unsolicited_fis(struct isci_request *ireq,
|
|
u32 frame_index)
|
|
{
|
|
struct isci_host *ihost = ireq->owning_controller;
|
|
enum sci_status status;
|
|
struct dev_to_host_fis *frame_header;
|
|
u32 *frame_buffer;
|
|
|
|
status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
|
|
frame_index,
|
|
(void **)&frame_header);
|
|
|
|
if (status != SCI_SUCCESS)
|
|
return status;
|
|
|
|
if (frame_header->fis_type != FIS_REGD2H) {
|
|
dev_err(&ireq->isci_host->pdev->dev,
|
|
"%s ERROR: invalid fis type 0x%X\n",
|
|
__func__, frame_header->fis_type);
|
|
return SCI_FAILURE;
|
|
}
|
|
|
|
sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
|
|
frame_index,
|
|
(void **)&frame_buffer);
|
|
|
|
sci_controller_copy_sata_response(&ireq->stp.rsp,
|
|
(u32 *)frame_header,
|
|
frame_buffer);
|
|
|
|
/* Frame has been decoded return it to the controller */
|
|
sci_controller_release_frame(ihost, frame_index);
|
|
|
|
return status;
|
|
}
|
|
|
|
static enum sci_status atapi_d2h_reg_frame_handler(struct isci_request *ireq,
|
|
u32 frame_index)
|
|
{
|
|
struct sas_task *task = isci_request_access_task(ireq);
|
|
enum sci_status status;
|
|
|
|
status = process_unsolicited_fis(ireq, frame_index);
|
|
|
|
if (status == SCI_SUCCESS) {
|
|
if (ireq->stp.rsp.status & ATA_ERR)
|
|
status = SCI_FAILURE_IO_RESPONSE_VALID;
|
|
} else {
|
|
status = SCI_FAILURE_IO_RESPONSE_VALID;
|
|
}
|
|
|
|
if (status != SCI_SUCCESS) {
|
|
ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
|
|
ireq->sci_status = status;
|
|
} else {
|
|
ireq->scu_status = SCU_TASK_DONE_GOOD;
|
|
ireq->sci_status = SCI_SUCCESS;
|
|
}
|
|
|
|
/* the d2h ufi is the end of non-data commands */
|
|
if (task->data_dir == DMA_NONE)
|
|
sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
|
|
|
|
return status;
|
|
}
|
|
|
|
static void scu_atapi_reconstruct_raw_frame_task_context(struct isci_request *ireq)
|
|
{
|
|
struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
|
|
void *atapi_cdb = ireq->ttype_ptr.io_task_ptr->ata_task.atapi_packet;
|
|
struct scu_task_context *task_context = ireq->tc;
|
|
|
|
/* fill in the SCU Task Context for a DATA fis containing CDB in Raw Frame
|
|
* type. The TC for previous Packet fis was already there, we only need to
|
|
* change the H2D fis content.
|
|
*/
|
|
memset(&ireq->stp.cmd, 0, sizeof(struct host_to_dev_fis));
|
|
memcpy(((u8 *)&ireq->stp.cmd + sizeof(u32)), atapi_cdb, ATAPI_CDB_LEN);
|
|
memset(&(task_context->type.stp), 0, sizeof(struct stp_task_context));
|
|
task_context->type.stp.fis_type = FIS_DATA;
|
|
task_context->transfer_length_bytes = dev->cdb_len;
|
|
}
|
|
|
|
static void scu_atapi_construct_task_context(struct isci_request *ireq)
|
|
{
|
|
struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
|
|
struct sas_task *task = isci_request_access_task(ireq);
|
|
struct scu_task_context *task_context = ireq->tc;
|
|
int cdb_len = dev->cdb_len;
|
|
|
|
/* reference: SSTL 1.13.4.2
|
|
* task_type, sata_direction
|
|
*/
|
|
if (task->data_dir == DMA_TO_DEVICE) {
|
|
task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_OUT;
|
|
task_context->sata_direction = 0;
|
|
} else {
|
|
/* todo: for NO_DATA command, we need to send out raw frame. */
|
|
task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_IN;
|
|
task_context->sata_direction = 1;
|
|
}
|
|
|
|
memset(&task_context->type.stp, 0, sizeof(task_context->type.stp));
|
|
task_context->type.stp.fis_type = FIS_DATA;
|
|
|
|
memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
|
|
memcpy(&ireq->stp.cmd.lbal, task->ata_task.atapi_packet, cdb_len);
|
|
task_context->ssp_command_iu_length = cdb_len / sizeof(u32);
|
|
|
|
/* task phase is set to TX_CMD */
|
|
task_context->task_phase = 0x1;
|
|
|
|
/* retry counter */
|
|
task_context->stp_retry_count = 0;
|
|
|
|
/* data transfer size. */
|
|
task_context->transfer_length_bytes = task->total_xfer_len;
|
|
|
|
/* setup sgl */
|
|
sci_request_build_sgl(ireq);
|
|
}
|
|
|
|
enum sci_status
|
|
sci_io_request_frame_handler(struct isci_request *ireq,
|
|
u32 frame_index)
|
|
{
|
|
struct isci_host *ihost = ireq->owning_controller;
|
|
struct isci_stp_request *stp_req = &ireq->stp.req;
|
|
enum sci_base_request_states state;
|
|
enum sci_status status;
|
|
ssize_t word_cnt;
|
|
|
|
state = ireq->sm.current_state_id;
|
|
switch (state) {
|
|
case SCI_REQ_STARTED: {
|
|
struct ssp_frame_hdr ssp_hdr;
|
|
void *frame_header;
|
|
|
|
sci_unsolicited_frame_control_get_header(&ihost->uf_control,
|
|
frame_index,
|
|
&frame_header);
|
|
|
|
word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32);
|
|
sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt);
|
|
|
|
if (ssp_hdr.frame_type == SSP_RESPONSE) {
|
|
struct ssp_response_iu *resp_iu;
|
|
ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
|
|
|
|
sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
|
|
frame_index,
|
|
(void **)&resp_iu);
|
|
|
|
sci_swab32_cpy(&ireq->ssp.rsp, resp_iu, word_cnt);
|
|
|
|
resp_iu = &ireq->ssp.rsp;
|
|
|
|
if (resp_iu->datapres == 0x01 ||
|
|
resp_iu->datapres == 0x02) {
|
|
ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
|
|
ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
|
|
} else {
|
|
ireq->scu_status = SCU_TASK_DONE_GOOD;
|
|
ireq->sci_status = SCI_SUCCESS;
|
|
}
|
|
} else {
|
|
/* not a response frame, why did it get forwarded? */
|
|
dev_err(&ihost->pdev->dev,
|
|
"%s: SCIC IO Request 0x%p received unexpected "
|
|
"frame %d type 0x%02x\n", __func__, ireq,
|
|
frame_index, ssp_hdr.frame_type);
|
|
}
|
|
|
|
/*
|
|
* In any case we are done with this frame buffer return it to
|
|
* the controller
|
|
*/
|
|
sci_controller_release_frame(ihost, frame_index);
|
|
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
case SCI_REQ_TASK_WAIT_TC_RESP:
|
|
sci_io_request_copy_response(ireq);
|
|
sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
|
|
sci_controller_release_frame(ihost, frame_index);
|
|
return SCI_SUCCESS;
|
|
|
|
case SCI_REQ_SMP_WAIT_RESP: {
|
|
struct sas_task *task = isci_request_access_task(ireq);
|
|
struct scatterlist *sg = &task->smp_task.smp_resp;
|
|
void *frame_header, *kaddr;
|
|
u8 *rsp;
|
|
|
|
sci_unsolicited_frame_control_get_header(&ihost->uf_control,
|
|
frame_index,
|
|
&frame_header);
|
|
kaddr = kmap_atomic(sg_page(sg));
|
|
rsp = kaddr + sg->offset;
|
|
sci_swab32_cpy(rsp, frame_header, 1);
|
|
|
|
if (rsp[0] == SMP_RESPONSE) {
|
|
void *smp_resp;
|
|
|
|
sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
|
|
frame_index,
|
|
&smp_resp);
|
|
|
|
word_cnt = (sg->length/4)-1;
|
|
if (word_cnt > 0)
|
|
word_cnt = min_t(unsigned int, word_cnt,
|
|
SCU_UNSOLICITED_FRAME_BUFFER_SIZE/4);
|
|
sci_swab32_cpy(rsp + 4, smp_resp, word_cnt);
|
|
|
|
ireq->scu_status = SCU_TASK_DONE_GOOD;
|
|
ireq->sci_status = SCI_SUCCESS;
|
|
sci_change_state(&ireq->sm, SCI_REQ_SMP_WAIT_TC_COMP);
|
|
} else {
|
|
/*
|
|
* This was not a response frame why did it get
|
|
* forwarded?
|
|
*/
|
|
dev_err(&ihost->pdev->dev,
|
|
"%s: SCIC SMP Request 0x%p received unexpected "
|
|
"frame %d type 0x%02x\n",
|
|
__func__,
|
|
ireq,
|
|
frame_index,
|
|
rsp[0]);
|
|
|
|
ireq->scu_status = SCU_TASK_DONE_SMP_FRM_TYPE_ERR;
|
|
ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
|
|
sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
|
|
}
|
|
kunmap_atomic(kaddr);
|
|
|
|
sci_controller_release_frame(ihost, frame_index);
|
|
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
|
|
return sci_stp_request_udma_general_frame_handler(ireq,
|
|
frame_index);
|
|
|
|
case SCI_REQ_STP_UDMA_WAIT_D2H:
|
|
/* Use the general frame handler to copy the resposne data */
|
|
status = sci_stp_request_udma_general_frame_handler(ireq, frame_index);
|
|
|
|
if (status != SCI_SUCCESS)
|
|
return status;
|
|
|
|
ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
|
|
ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
|
|
sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
|
|
return SCI_SUCCESS;
|
|
|
|
case SCI_REQ_STP_NON_DATA_WAIT_D2H: {
|
|
struct dev_to_host_fis *frame_header;
|
|
u32 *frame_buffer;
|
|
|
|
status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
|
|
frame_index,
|
|
(void **)&frame_header);
|
|
|
|
if (status != SCI_SUCCESS) {
|
|
dev_err(&ihost->pdev->dev,
|
|
"%s: SCIC IO Request 0x%p could not get frame "
|
|
"header for frame index %d, status %x\n",
|
|
__func__,
|
|
stp_req,
|
|
frame_index,
|
|
status);
|
|
|
|
return status;
|
|
}
|
|
|
|
switch (frame_header->fis_type) {
|
|
case FIS_REGD2H:
|
|
sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
|
|
frame_index,
|
|
(void **)&frame_buffer);
|
|
|
|
sci_controller_copy_sata_response(&ireq->stp.rsp,
|
|
frame_header,
|
|
frame_buffer);
|
|
|
|
/* The command has completed with error */
|
|
ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
|
|
ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
|
|
break;
|
|
|
|
default:
|
|
dev_warn(&ihost->pdev->dev,
|
|
"%s: IO Request:0x%p Frame Id:%d protocol "
|
|
"violation occurred\n", __func__, stp_req,
|
|
frame_index);
|
|
|
|
ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS;
|
|
ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION;
|
|
break;
|
|
}
|
|
|
|
sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
|
|
|
|
/* Frame has been decoded return it to the controller */
|
|
sci_controller_release_frame(ihost, frame_index);
|
|
|
|
return status;
|
|
}
|
|
|
|
case SCI_REQ_STP_PIO_WAIT_FRAME: {
|
|
struct sas_task *task = isci_request_access_task(ireq);
|
|
struct dev_to_host_fis *frame_header;
|
|
u32 *frame_buffer;
|
|
|
|
status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
|
|
frame_index,
|
|
(void **)&frame_header);
|
|
|
|
if (status != SCI_SUCCESS) {
|
|
dev_err(&ihost->pdev->dev,
|
|
"%s: SCIC IO Request 0x%p could not get frame "
|
|
"header for frame index %d, status %x\n",
|
|
__func__, stp_req, frame_index, status);
|
|
return status;
|
|
}
|
|
|
|
switch (frame_header->fis_type) {
|
|
case FIS_PIO_SETUP:
|
|
/* Get from the frame buffer the PIO Setup Data */
|
|
sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
|
|
frame_index,
|
|
(void **)&frame_buffer);
|
|
|
|
/* Get the data from the PIO Setup The SCU Hardware
|
|
* returns first word in the frame_header and the rest
|
|
* of the data is in the frame buffer so we need to
|
|
* back up one dword
|
|
*/
|
|
|
|
/* transfer_count: first 16bits in the 4th dword */
|
|
stp_req->pio_len = frame_buffer[3] & 0xffff;
|
|
|
|
/* status: 4th byte in the 3rd dword */
|
|
stp_req->status = (frame_buffer[2] >> 24) & 0xff;
|
|
|
|
sci_controller_copy_sata_response(&ireq->stp.rsp,
|
|
frame_header,
|
|
frame_buffer);
|
|
|
|
ireq->stp.rsp.status = stp_req->status;
|
|
|
|
/* The next state is dependent on whether the
|
|
* request was PIO Data-in or Data out
|
|
*/
|
|
if (task->data_dir == DMA_FROM_DEVICE) {
|
|
sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_IN);
|
|
} else if (task->data_dir == DMA_TO_DEVICE) {
|
|
/* Transmit data */
|
|
status = sci_stp_request_pio_data_out_transmit_data(ireq);
|
|
if (status != SCI_SUCCESS)
|
|
break;
|
|
sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_OUT);
|
|
}
|
|
break;
|
|
|
|
case FIS_SETDEVBITS:
|
|
sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
|
|
break;
|
|
|
|
case FIS_REGD2H:
|
|
if (frame_header->status & ATA_BUSY) {
|
|
/*
|
|
* Now why is the drive sending a D2H Register
|
|
* FIS when it is still busy? Do nothing since
|
|
* we are still in the right state.
|
|
*/
|
|
dev_dbg(&ihost->pdev->dev,
|
|
"%s: SCIC PIO Request 0x%p received "
|
|
"D2H Register FIS with BSY status "
|
|
"0x%x\n",
|
|
__func__,
|
|
stp_req,
|
|
frame_header->status);
|
|
break;
|
|
}
|
|
|
|
sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
|
|
frame_index,
|
|
(void **)&frame_buffer);
|
|
|
|
sci_controller_copy_sata_response(&ireq->stp.rsp,
|
|
frame_header,
|
|
frame_buffer);
|
|
|
|
ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
|
|
ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
|
|
sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
|
|
break;
|
|
|
|
default:
|
|
/* FIXME: what do we do here? */
|
|
break;
|
|
}
|
|
|
|
/* Frame is decoded return it to the controller */
|
|
sci_controller_release_frame(ihost, frame_index);
|
|
|
|
return status;
|
|
}
|
|
|
|
case SCI_REQ_STP_PIO_DATA_IN: {
|
|
struct dev_to_host_fis *frame_header;
|
|
struct sata_fis_data *frame_buffer;
|
|
|
|
status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
|
|
frame_index,
|
|
(void **)&frame_header);
|
|
|
|
if (status != SCI_SUCCESS) {
|
|
dev_err(&ihost->pdev->dev,
|
|
"%s: SCIC IO Request 0x%p could not get frame "
|
|
"header for frame index %d, status %x\n",
|
|
__func__,
|
|
stp_req,
|
|
frame_index,
|
|
status);
|
|
return status;
|
|
}
|
|
|
|
if (frame_header->fis_type != FIS_DATA) {
|
|
dev_err(&ihost->pdev->dev,
|
|
"%s: SCIC PIO Request 0x%p received frame %d "
|
|
"with fis type 0x%02x when expecting a data "
|
|
"fis.\n",
|
|
__func__,
|
|
stp_req,
|
|
frame_index,
|
|
frame_header->fis_type);
|
|
|
|
ireq->scu_status = SCU_TASK_DONE_GOOD;
|
|
ireq->sci_status = SCI_FAILURE_IO_REQUIRES_SCSI_ABORT;
|
|
sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
|
|
|
|
/* Frame is decoded return it to the controller */
|
|
sci_controller_release_frame(ihost, frame_index);
|
|
return status;
|
|
}
|
|
|
|
if (stp_req->sgl.index < 0) {
|
|
ireq->saved_rx_frame_index = frame_index;
|
|
stp_req->pio_len = 0;
|
|
} else {
|
|
sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
|
|
frame_index,
|
|
(void **)&frame_buffer);
|
|
|
|
status = sci_stp_request_pio_data_in_copy_data(stp_req,
|
|
(u8 *)frame_buffer);
|
|
|
|
/* Frame is decoded return it to the controller */
|
|
sci_controller_release_frame(ihost, frame_index);
|
|
}
|
|
|
|
/* Check for the end of the transfer, are there more
|
|
* bytes remaining for this data transfer
|
|
*/
|
|
if (status != SCI_SUCCESS || stp_req->pio_len != 0)
|
|
return status;
|
|
|
|
if ((stp_req->status & ATA_BUSY) == 0) {
|
|
ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
|
|
ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
|
|
sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
|
|
} else {
|
|
sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
case SCI_REQ_ATAPI_WAIT_PIO_SETUP: {
|
|
struct sas_task *task = isci_request_access_task(ireq);
|
|
|
|
sci_controller_release_frame(ihost, frame_index);
|
|
ireq->target_device->working_request = ireq;
|
|
if (task->data_dir == DMA_NONE) {
|
|
sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_TC_COMP);
|
|
scu_atapi_reconstruct_raw_frame_task_context(ireq);
|
|
} else {
|
|
sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
|
|
scu_atapi_construct_task_context(ireq);
|
|
}
|
|
|
|
sci_controller_continue_io(ireq);
|
|
return SCI_SUCCESS;
|
|
}
|
|
case SCI_REQ_ATAPI_WAIT_D2H:
|
|
return atapi_d2h_reg_frame_handler(ireq, frame_index);
|
|
case SCI_REQ_ABORTING:
|
|
/*
|
|
* TODO: Is it even possible to get an unsolicited frame in the
|
|
* aborting state?
|
|
*/
|
|
sci_controller_release_frame(ihost, frame_index);
|
|
return SCI_SUCCESS;
|
|
|
|
default:
|
|
dev_warn(&ihost->pdev->dev,
|
|
"%s: SCIC IO Request given unexpected frame %x while "
|
|
"in state %d\n",
|
|
__func__,
|
|
frame_index,
|
|
state);
|
|
|
|
sci_controller_release_frame(ihost, frame_index);
|
|
return SCI_FAILURE_INVALID_STATE;
|
|
}
|
|
}
|
|
|
|
static enum sci_status stp_request_udma_await_tc_event(struct isci_request *ireq,
|
|
u32 completion_code)
|
|
{
|
|
enum sci_status status = SCI_SUCCESS;
|
|
|
|
switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
|
|
ireq->scu_status = SCU_TASK_DONE_GOOD;
|
|
ireq->sci_status = SCI_SUCCESS;
|
|
sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
|
|
break;
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_FIS):
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
|
|
/* We must check ther response buffer to see if the D2H
|
|
* Register FIS was received before we got the TC
|
|
* completion.
|
|
*/
|
|
if (ireq->stp.rsp.fis_type == FIS_REGD2H) {
|
|
sci_remote_device_suspend(ireq->target_device,
|
|
SCI_SW_SUSPEND_NORMAL);
|
|
|
|
ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
|
|
ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
|
|
sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
|
|
} else {
|
|
/* If we have an error completion status for the
|
|
* TC then we can expect a D2H register FIS from
|
|
* the device so we must change state to wait
|
|
* for it
|
|
*/
|
|
sci_change_state(&ireq->sm, SCI_REQ_STP_UDMA_WAIT_D2H);
|
|
}
|
|
break;
|
|
|
|
/* TODO Check to see if any of these completion status need to
|
|
* wait for the device to host register fis.
|
|
*/
|
|
/* TODO We can retry the command for SCU_TASK_DONE_CMD_LL_R_ERR
|
|
* - this comes only for B0
|
|
*/
|
|
default:
|
|
/* All other completion status cause the IO to be complete. */
|
|
ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
|
|
ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
|
|
sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
|
|
break;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static enum sci_status atapi_raw_completion(struct isci_request *ireq, u32 completion_code,
|
|
enum sci_base_request_states next)
|
|
{
|
|
enum sci_status status = SCI_SUCCESS;
|
|
|
|
switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
|
|
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
|
|
ireq->scu_status = SCU_TASK_DONE_GOOD;
|
|
ireq->sci_status = SCI_SUCCESS;
|
|
sci_change_state(&ireq->sm, next);
|
|
break;
|
|
default:
|
|
/* All other completion status cause the IO to be complete.
|
|
* If a NAK was received, then it is up to the user to retry
|
|
* the request.
|
|
*/
|
|
ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
|
|
ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
|
|
|
|
sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
|
|
break;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static enum sci_status atapi_data_tc_completion_handler(struct isci_request *ireq,
|
|
u32 completion_code)
|
|
{
|
|
struct isci_remote_device *idev = ireq->target_device;
|
|
struct dev_to_host_fis *d2h = &ireq->stp.rsp;
|
|
enum sci_status status = SCI_SUCCESS;
|
|
|
|
switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
|
|
case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
|
|
sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
|
|
break;
|
|
|
|
case (SCU_TASK_DONE_UNEXP_FIS << SCU_COMPLETION_TL_STATUS_SHIFT): {
|
|
u16 len = sci_req_tx_bytes(ireq);
|
|
|
|
/* likely non-error data underrrun, workaround missing
|
|
* d2h frame from the controller
|
|
*/
|
|
if (d2h->fis_type != FIS_REGD2H) {
|
|
d2h->fis_type = FIS_REGD2H;
|
|
d2h->flags = (1 << 6);
|
|
d2h->status = 0x50;
|
|
d2h->error = 0;
|
|
d2h->lbal = 0;
|
|
d2h->byte_count_low = len & 0xff;
|
|
d2h->byte_count_high = len >> 8;
|
|
d2h->device = 0xa0;
|
|
d2h->lbal_exp = 0;
|
|
d2h->lbam_exp = 0;
|
|
d2h->lbah_exp = 0;
|
|
d2h->_r_a = 0;
|
|
d2h->sector_count = 0x3;
|
|
d2h->sector_count_exp = 0;
|
|
d2h->_r_b = 0;
|
|
d2h->_r_c = 0;
|
|
d2h->_r_d = 0;
|
|
}
|
|
|
|
ireq->scu_status = SCU_TASK_DONE_GOOD;
|
|
ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
|
|
status = ireq->sci_status;
|
|
|
|
/* the hw will have suspended the rnc, so complete the
|
|
* request upon pending resume
|
|
*/
|
|
sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
|
|
break;
|
|
}
|
|
case (SCU_TASK_DONE_EXCESS_DATA << SCU_COMPLETION_TL_STATUS_SHIFT):
|
|
/* In this case, there is no UF coming after.
|
|
* compelte the IO now.
|
|
*/
|
|
ireq->scu_status = SCU_TASK_DONE_GOOD;
|
|
ireq->sci_status = SCI_SUCCESS;
|
|
sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
|
|
break;
|
|
|
|
default:
|
|
if (d2h->fis_type == FIS_REGD2H) {
|
|
/* UF received change the device state to ATAPI_ERROR */
|
|
status = ireq->sci_status;
|
|
sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
|
|
} else {
|
|
/* If receiving any non-success TC status, no UF
|
|
* received yet, then an UF for the status fis
|
|
* is coming after (XXX: suspect this is
|
|
* actually a protocol error or a bug like the
|
|
* DONE_UNEXP_FIS case)
|
|
*/
|
|
ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
|
|
ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
|
|
|
|
sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
|
|
}
|
|
break;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static int sci_request_smp_completion_status_is_tx_suspend(
|
|
unsigned int completion_status)
|
|
{
|
|
switch (completion_status) {
|
|
case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
|
|
case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
|
|
case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
|
|
case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
|
|
case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
|
|
case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int sci_request_smp_completion_status_is_tx_rx_suspend(
|
|
unsigned int completion_status)
|
|
{
|
|
return 0; /* There are no Tx/Rx SMP suspend conditions. */
|
|
}
|
|
|
|
static int sci_request_ssp_completion_status_is_tx_suspend(
|
|
unsigned int completion_status)
|
|
{
|
|
switch (completion_status) {
|
|
case SCU_TASK_DONE_TX_RAW_CMD_ERR:
|
|
case SCU_TASK_DONE_LF_ERR:
|
|
case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
|
|
case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
|
|
case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
|
|
case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
|
|
case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
|
|
case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
|
|
case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
|
|
case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
|
|
case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int sci_request_ssp_completion_status_is_tx_rx_suspend(
|
|
unsigned int completion_status)
|
|
{
|
|
return 0; /* There are no Tx/Rx SSP suspend conditions. */
|
|
}
|
|
|
|
static int sci_request_stpsata_completion_status_is_tx_suspend(
|
|
unsigned int completion_status)
|
|
{
|
|
switch (completion_status) {
|
|
case SCU_TASK_DONE_TX_RAW_CMD_ERR:
|
|
case SCU_TASK_DONE_LL_R_ERR:
|
|
case SCU_TASK_DONE_LL_PERR:
|
|
case SCU_TASK_DONE_REG_ERR:
|
|
case SCU_TASK_DONE_SDB_ERR:
|
|
case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
|
|
case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
|
|
case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
|
|
case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
|
|
case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
|
|
case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
|
|
case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
|
|
case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
|
|
case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int sci_request_stpsata_completion_status_is_tx_rx_suspend(
|
|
unsigned int completion_status)
|
|
{
|
|
switch (completion_status) {
|
|
case SCU_TASK_DONE_LF_ERR:
|
|
case SCU_TASK_DONE_LL_SY_TERM:
|
|
case SCU_TASK_DONE_LL_LF_TERM:
|
|
case SCU_TASK_DONE_BREAK_RCVD:
|
|
case SCU_TASK_DONE_INV_FIS_LEN:
|
|
case SCU_TASK_DONE_UNEXP_FIS:
|
|
case SCU_TASK_DONE_UNEXP_SDBFIS:
|
|
case SCU_TASK_DONE_MAX_PLD_ERR:
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void sci_request_handle_suspending_completions(
|
|
struct isci_request *ireq,
|
|
u32 completion_code)
|
|
{
|
|
int is_tx = 0;
|
|
int is_tx_rx = 0;
|
|
|
|
switch (ireq->protocol) {
|
|
case SAS_PROTOCOL_SMP:
|
|
is_tx = sci_request_smp_completion_status_is_tx_suspend(
|
|
completion_code);
|
|
is_tx_rx = sci_request_smp_completion_status_is_tx_rx_suspend(
|
|
completion_code);
|
|
break;
|
|
case SAS_PROTOCOL_SSP:
|
|
is_tx = sci_request_ssp_completion_status_is_tx_suspend(
|
|
completion_code);
|
|
is_tx_rx = sci_request_ssp_completion_status_is_tx_rx_suspend(
|
|
completion_code);
|
|
break;
|
|
case SAS_PROTOCOL_STP:
|
|
is_tx = sci_request_stpsata_completion_status_is_tx_suspend(
|
|
completion_code);
|
|
is_tx_rx =
|
|
sci_request_stpsata_completion_status_is_tx_rx_suspend(
|
|
completion_code);
|
|
break;
|
|
default:
|
|
dev_warn(&ireq->isci_host->pdev->dev,
|
|
"%s: request %p has no valid protocol\n",
|
|
__func__, ireq);
|
|
break;
|
|
}
|
|
if (is_tx || is_tx_rx) {
|
|
BUG_ON(is_tx && is_tx_rx);
|
|
|
|
sci_remote_node_context_suspend(
|
|
&ireq->target_device->rnc,
|
|
SCI_HW_SUSPEND,
|
|
(is_tx_rx) ? SCU_EVENT_TL_RNC_SUSPEND_TX_RX
|
|
: SCU_EVENT_TL_RNC_SUSPEND_TX);
|
|
}
|
|
}
|
|
|
|
enum sci_status
|
|
sci_io_request_tc_completion(struct isci_request *ireq,
|
|
u32 completion_code)
|
|
{
|
|
enum sci_base_request_states state;
|
|
struct isci_host *ihost = ireq->owning_controller;
|
|
|
|
state = ireq->sm.current_state_id;
|
|
|
|
/* Decode those completions that signal upcoming suspension events. */
|
|
sci_request_handle_suspending_completions(
|
|
ireq, SCU_GET_COMPLETION_TL_STATUS(completion_code));
|
|
|
|
switch (state) {
|
|
case SCI_REQ_STARTED:
|
|
return request_started_state_tc_event(ireq, completion_code);
|
|
|
|
case SCI_REQ_TASK_WAIT_TC_COMP:
|
|
return ssp_task_request_await_tc_event(ireq,
|
|
completion_code);
|
|
|
|
case SCI_REQ_SMP_WAIT_RESP:
|
|
return smp_request_await_response_tc_event(ireq,
|
|
completion_code);
|
|
|
|
case SCI_REQ_SMP_WAIT_TC_COMP:
|
|
return smp_request_await_tc_event(ireq, completion_code);
|
|
|
|
case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
|
|
return stp_request_udma_await_tc_event(ireq,
|
|
completion_code);
|
|
|
|
case SCI_REQ_STP_NON_DATA_WAIT_H2D:
|
|
return stp_request_non_data_await_h2d_tc_event(ireq,
|
|
completion_code);
|
|
|
|
case SCI_REQ_STP_PIO_WAIT_H2D:
|
|
return stp_request_pio_await_h2d_completion_tc_event(ireq,
|
|
completion_code);
|
|
|
|
case SCI_REQ_STP_PIO_DATA_OUT:
|
|
return pio_data_out_tx_done_tc_event(ireq, completion_code);
|
|
|
|
case SCI_REQ_ABORTING:
|
|
return request_aborting_state_tc_event(ireq,
|
|
completion_code);
|
|
|
|
case SCI_REQ_ATAPI_WAIT_H2D:
|
|
return atapi_raw_completion(ireq, completion_code,
|
|
SCI_REQ_ATAPI_WAIT_PIO_SETUP);
|
|
|
|
case SCI_REQ_ATAPI_WAIT_TC_COMP:
|
|
return atapi_raw_completion(ireq, completion_code,
|
|
SCI_REQ_ATAPI_WAIT_D2H);
|
|
|
|
case SCI_REQ_ATAPI_WAIT_D2H:
|
|
return atapi_data_tc_completion_handler(ireq, completion_code);
|
|
|
|
default:
|
|
dev_warn(&ihost->pdev->dev, "%s: %x in wrong state %s\n",
|
|
__func__, completion_code, req_state_name(state));
|
|
return SCI_FAILURE_INVALID_STATE;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* isci_request_process_response_iu() - This function sets the status and
|
|
* response iu, in the task struct, from the request object for the upper
|
|
* layer driver.
|
|
* @sas_task: This parameter is the task struct from the upper layer driver.
|
|
* @resp_iu: This parameter points to the response iu of the completed request.
|
|
* @dev: This parameter specifies the linux device struct.
|
|
*
|
|
* none.
|
|
*/
|
|
static void isci_request_process_response_iu(
|
|
struct sas_task *task,
|
|
struct ssp_response_iu *resp_iu,
|
|
struct device *dev)
|
|
{
|
|
dev_dbg(dev,
|
|
"%s: resp_iu = %p "
|
|
"resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
|
|
"resp_iu->response_data_len = %x, "
|
|
"resp_iu->sense_data_len = %x\nresponse data: ",
|
|
__func__,
|
|
resp_iu,
|
|
resp_iu->status,
|
|
resp_iu->datapres,
|
|
resp_iu->response_data_len,
|
|
resp_iu->sense_data_len);
|
|
|
|
task->task_status.stat = resp_iu->status;
|
|
|
|
/* libsas updates the task status fields based on the response iu. */
|
|
sas_ssp_task_response(dev, task, resp_iu);
|
|
}
|
|
|
|
/**
|
|
* isci_request_set_open_reject_status() - This function prepares the I/O
|
|
* completion for OPEN_REJECT conditions.
|
|
* @request: This parameter is the completed isci_request object.
|
|
* @response_ptr: This parameter specifies the service response for the I/O.
|
|
* @status_ptr: This parameter specifies the exec status for the I/O.
|
|
* @open_rej_reason: This parameter specifies the encoded reason for the
|
|
* abandon-class reject.
|
|
*
|
|
* none.
|
|
*/
|
|
static void isci_request_set_open_reject_status(
|
|
struct isci_request *request,
|
|
struct sas_task *task,
|
|
enum service_response *response_ptr,
|
|
enum exec_status *status_ptr,
|
|
enum sas_open_rej_reason open_rej_reason)
|
|
{
|
|
/* Task in the target is done. */
|
|
set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
|
|
*response_ptr = SAS_TASK_UNDELIVERED;
|
|
*status_ptr = SAS_OPEN_REJECT;
|
|
task->task_status.open_rej_reason = open_rej_reason;
|
|
}
|
|
|
|
/**
|
|
* isci_request_handle_controller_specific_errors() - This function decodes
|
|
* controller-specific I/O completion error conditions.
|
|
* @request: This parameter is the completed isci_request object.
|
|
* @response_ptr: This parameter specifies the service response for the I/O.
|
|
* @status_ptr: This parameter specifies the exec status for the I/O.
|
|
*
|
|
* none.
|
|
*/
|
|
static void isci_request_handle_controller_specific_errors(
|
|
struct isci_remote_device *idev,
|
|
struct isci_request *request,
|
|
struct sas_task *task,
|
|
enum service_response *response_ptr,
|
|
enum exec_status *status_ptr)
|
|
{
|
|
unsigned int cstatus;
|
|
|
|
cstatus = request->scu_status;
|
|
|
|
dev_dbg(&request->isci_host->pdev->dev,
|
|
"%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
|
|
"- controller status = 0x%x\n",
|
|
__func__, request, cstatus);
|
|
|
|
/* Decode the controller-specific errors; most
|
|
* important is to recognize those conditions in which
|
|
* the target may still have a task outstanding that
|
|
* must be aborted.
|
|
*
|
|
* Note that there are SCU completion codes being
|
|
* named in the decode below for which SCIC has already
|
|
* done work to handle them in a way other than as
|
|
* a controller-specific completion code; these are left
|
|
* in the decode below for completeness sake.
|
|
*/
|
|
switch (cstatus) {
|
|
case SCU_TASK_DONE_DMASETUP_DIRERR:
|
|
/* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
|
|
case SCU_TASK_DONE_XFERCNT_ERR:
|
|
/* Also SCU_TASK_DONE_SMP_UFI_ERR: */
|
|
if (task->task_proto == SAS_PROTOCOL_SMP) {
|
|
/* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
|
|
*response_ptr = SAS_TASK_COMPLETE;
|
|
|
|
/* See if the device has been/is being stopped. Note
|
|
* that we ignore the quiesce state, since we are
|
|
* concerned about the actual device state.
|
|
*/
|
|
if (!idev)
|
|
*status_ptr = SAS_DEVICE_UNKNOWN;
|
|
else
|
|
*status_ptr = SAS_ABORTED_TASK;
|
|
|
|
set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
|
|
} else {
|
|
/* Task in the target is not done. */
|
|
*response_ptr = SAS_TASK_UNDELIVERED;
|
|
|
|
if (!idev)
|
|
*status_ptr = SAS_DEVICE_UNKNOWN;
|
|
else
|
|
*status_ptr = SAM_STAT_TASK_ABORTED;
|
|
|
|
clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
|
|
}
|
|
|
|
break;
|
|
|
|
case SCU_TASK_DONE_CRC_ERR:
|
|
case SCU_TASK_DONE_NAK_CMD_ERR:
|
|
case SCU_TASK_DONE_EXCESS_DATA:
|
|
case SCU_TASK_DONE_UNEXP_FIS:
|
|
/* Also SCU_TASK_DONE_UNEXP_RESP: */
|
|
case SCU_TASK_DONE_VIIT_ENTRY_NV: /* TODO - conditions? */
|
|
case SCU_TASK_DONE_IIT_ENTRY_NV: /* TODO - conditions? */
|
|
case SCU_TASK_DONE_RNCNV_OUTBOUND: /* TODO - conditions? */
|
|
/* These are conditions in which the target
|
|
* has completed the task, so that no cleanup
|
|
* is necessary.
|
|
*/
|
|
*response_ptr = SAS_TASK_COMPLETE;
|
|
|
|
/* See if the device has been/is being stopped. Note
|
|
* that we ignore the quiesce state, since we are
|
|
* concerned about the actual device state.
|
|
*/
|
|
if (!idev)
|
|
*status_ptr = SAS_DEVICE_UNKNOWN;
|
|
else
|
|
*status_ptr = SAS_ABORTED_TASK;
|
|
|
|
set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
|
|
break;
|
|
|
|
|
|
/* Note that the only open reject completion codes seen here will be
|
|
* abandon-class codes; all others are automatically retried in the SCU.
|
|
*/
|
|
case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
|
|
|
|
isci_request_set_open_reject_status(
|
|
request, task, response_ptr, status_ptr,
|
|
SAS_OREJ_WRONG_DEST);
|
|
break;
|
|
|
|
case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
|
|
|
|
/* Note - the return of AB0 will change when
|
|
* libsas implements detection of zone violations.
|
|
*/
|
|
isci_request_set_open_reject_status(
|
|
request, task, response_ptr, status_ptr,
|
|
SAS_OREJ_RESV_AB0);
|
|
break;
|
|
|
|
case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
|
|
|
|
isci_request_set_open_reject_status(
|
|
request, task, response_ptr, status_ptr,
|
|
SAS_OREJ_RESV_AB1);
|
|
break;
|
|
|
|
case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
|
|
|
|
isci_request_set_open_reject_status(
|
|
request, task, response_ptr, status_ptr,
|
|
SAS_OREJ_RESV_AB2);
|
|
break;
|
|
|
|
case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
|
|
|
|
isci_request_set_open_reject_status(
|
|
request, task, response_ptr, status_ptr,
|
|
SAS_OREJ_RESV_AB3);
|
|
break;
|
|
|
|
case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
|
|
|
|
isci_request_set_open_reject_status(
|
|
request, task, response_ptr, status_ptr,
|
|
SAS_OREJ_BAD_DEST);
|
|
break;
|
|
|
|
case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
|
|
|
|
isci_request_set_open_reject_status(
|
|
request, task, response_ptr, status_ptr,
|
|
SAS_OREJ_STP_NORES);
|
|
break;
|
|
|
|
case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
|
|
|
|
isci_request_set_open_reject_status(
|
|
request, task, response_ptr, status_ptr,
|
|
SAS_OREJ_EPROTO);
|
|
break;
|
|
|
|
case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
|
|
|
|
isci_request_set_open_reject_status(
|
|
request, task, response_ptr, status_ptr,
|
|
SAS_OREJ_CONN_RATE);
|
|
break;
|
|
|
|
case SCU_TASK_DONE_LL_R_ERR:
|
|
/* Also SCU_TASK_DONE_ACK_NAK_TO: */
|
|
case SCU_TASK_DONE_LL_PERR:
|
|
case SCU_TASK_DONE_LL_SY_TERM:
|
|
/* Also SCU_TASK_DONE_NAK_ERR:*/
|
|
case SCU_TASK_DONE_LL_LF_TERM:
|
|
/* Also SCU_TASK_DONE_DATA_LEN_ERR: */
|
|
case SCU_TASK_DONE_LL_ABORT_ERR:
|
|
case SCU_TASK_DONE_SEQ_INV_TYPE:
|
|
/* Also SCU_TASK_DONE_UNEXP_XR: */
|
|
case SCU_TASK_DONE_XR_IU_LEN_ERR:
|
|
case SCU_TASK_DONE_INV_FIS_LEN:
|
|
/* Also SCU_TASK_DONE_XR_WD_LEN: */
|
|
case SCU_TASK_DONE_SDMA_ERR:
|
|
case SCU_TASK_DONE_OFFSET_ERR:
|
|
case SCU_TASK_DONE_MAX_PLD_ERR:
|
|
case SCU_TASK_DONE_LF_ERR:
|
|
case SCU_TASK_DONE_SMP_RESP_TO_ERR: /* Escalate to dev reset? */
|
|
case SCU_TASK_DONE_SMP_LL_RX_ERR:
|
|
case SCU_TASK_DONE_UNEXP_DATA:
|
|
case SCU_TASK_DONE_UNEXP_SDBFIS:
|
|
case SCU_TASK_DONE_REG_ERR:
|
|
case SCU_TASK_DONE_SDB_ERR:
|
|
case SCU_TASK_DONE_TASK_ABORT:
|
|
default:
|
|
/* Task in the target is not done. */
|
|
*response_ptr = SAS_TASK_UNDELIVERED;
|
|
*status_ptr = SAM_STAT_TASK_ABORTED;
|
|
|
|
if (task->task_proto == SAS_PROTOCOL_SMP)
|
|
set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
|
|
else
|
|
clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void isci_process_stp_response(struct sas_task *task, struct dev_to_host_fis *fis)
|
|
{
|
|
struct task_status_struct *ts = &task->task_status;
|
|
struct ata_task_resp *resp = (void *)&ts->buf[0];
|
|
|
|
resp->frame_len = sizeof(*fis);
|
|
memcpy(resp->ending_fis, fis, sizeof(*fis));
|
|
ts->buf_valid_size = sizeof(*resp);
|
|
|
|
/* If an error is flagged let libata decode the fis */
|
|
if (ac_err_mask(fis->status))
|
|
ts->stat = SAS_PROTO_RESPONSE;
|
|
else
|
|
ts->stat = SAM_STAT_GOOD;
|
|
|
|
ts->resp = SAS_TASK_COMPLETE;
|
|
}
|
|
|
|
static void isci_request_io_request_complete(struct isci_host *ihost,
|
|
struct isci_request *request,
|
|
enum sci_io_status completion_status)
|
|
{
|
|
struct sas_task *task = isci_request_access_task(request);
|
|
struct ssp_response_iu *resp_iu;
|
|
unsigned long task_flags;
|
|
struct isci_remote_device *idev = request->target_device;
|
|
enum service_response response = SAS_TASK_UNDELIVERED;
|
|
enum exec_status status = SAS_ABORTED_TASK;
|
|
|
|
dev_dbg(&ihost->pdev->dev,
|
|
"%s: request = %p, task = %p, "
|
|
"task->data_dir = %d completion_status = 0x%x\n",
|
|
__func__, request, task, task->data_dir, completion_status);
|
|
|
|
/* The request is done from an SCU HW perspective. */
|
|
|
|
/* This is an active request being completed from the core. */
|
|
switch (completion_status) {
|
|
|
|
case SCI_IO_FAILURE_RESPONSE_VALID:
|
|
dev_dbg(&ihost->pdev->dev,
|
|
"%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
|
|
__func__, request, task);
|
|
|
|
if (sas_protocol_ata(task->task_proto)) {
|
|
isci_process_stp_response(task, &request->stp.rsp);
|
|
} else if (SAS_PROTOCOL_SSP == task->task_proto) {
|
|
|
|
/* crack the iu response buffer. */
|
|
resp_iu = &request->ssp.rsp;
|
|
isci_request_process_response_iu(task, resp_iu,
|
|
&ihost->pdev->dev);
|
|
|
|
} else if (SAS_PROTOCOL_SMP == task->task_proto) {
|
|
|
|
dev_err(&ihost->pdev->dev,
|
|
"%s: SCI_IO_FAILURE_RESPONSE_VALID: "
|
|
"SAS_PROTOCOL_SMP protocol\n",
|
|
__func__);
|
|
|
|
} else
|
|
dev_err(&ihost->pdev->dev,
|
|
"%s: unknown protocol\n", __func__);
|
|
|
|
/* use the task status set in the task struct by the
|
|
* isci_request_process_response_iu call.
|
|
*/
|
|
set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
|
|
response = task->task_status.resp;
|
|
status = task->task_status.stat;
|
|
break;
|
|
|
|
case SCI_IO_SUCCESS:
|
|
case SCI_IO_SUCCESS_IO_DONE_EARLY:
|
|
|
|
response = SAS_TASK_COMPLETE;
|
|
status = SAM_STAT_GOOD;
|
|
set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
|
|
|
|
if (completion_status == SCI_IO_SUCCESS_IO_DONE_EARLY) {
|
|
|
|
/* This was an SSP / STP / SATA transfer.
|
|
* There is a possibility that less data than
|
|
* the maximum was transferred.
|
|
*/
|
|
u32 transferred_length = sci_req_tx_bytes(request);
|
|
|
|
task->task_status.residual
|
|
= task->total_xfer_len - transferred_length;
|
|
|
|
/* If there were residual bytes, call this an
|
|
* underrun.
|
|
*/
|
|
if (task->task_status.residual != 0)
|
|
status = SAS_DATA_UNDERRUN;
|
|
|
|
dev_dbg(&ihost->pdev->dev,
|
|
"%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
|
|
__func__, status);
|
|
|
|
} else
|
|
dev_dbg(&ihost->pdev->dev, "%s: SCI_IO_SUCCESS\n",
|
|
__func__);
|
|
break;
|
|
|
|
case SCI_IO_FAILURE_TERMINATED:
|
|
|
|
dev_dbg(&ihost->pdev->dev,
|
|
"%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
|
|
__func__, request, task);
|
|
|
|
/* The request was terminated explicitly. */
|
|
set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
|
|
response = SAS_TASK_UNDELIVERED;
|
|
|
|
/* See if the device has been/is being stopped. Note
|
|
* that we ignore the quiesce state, since we are
|
|
* concerned about the actual device state.
|
|
*/
|
|
if (!idev)
|
|
status = SAS_DEVICE_UNKNOWN;
|
|
else
|
|
status = SAS_ABORTED_TASK;
|
|
break;
|
|
|
|
case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR:
|
|
|
|
isci_request_handle_controller_specific_errors(idev, request,
|
|
task, &response,
|
|
&status);
|
|
break;
|
|
|
|
case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED:
|
|
/* This is a special case, in that the I/O completion
|
|
* is telling us that the device needs a reset.
|
|
* In order for the device reset condition to be
|
|
* noticed, the I/O has to be handled in the error
|
|
* handler. Set the reset flag and cause the
|
|
* SCSI error thread to be scheduled.
|
|
*/
|
|
spin_lock_irqsave(&task->task_state_lock, task_flags);
|
|
task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
|
|
spin_unlock_irqrestore(&task->task_state_lock, task_flags);
|
|
|
|
/* Fail the I/O. */
|
|
response = SAS_TASK_UNDELIVERED;
|
|
status = SAM_STAT_TASK_ABORTED;
|
|
|
|
clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
|
|
break;
|
|
|
|
case SCI_FAILURE_RETRY_REQUIRED:
|
|
|
|
/* Fail the I/O so it can be retried. */
|
|
response = SAS_TASK_UNDELIVERED;
|
|
if (!idev)
|
|
status = SAS_DEVICE_UNKNOWN;
|
|
else
|
|
status = SAS_ABORTED_TASK;
|
|
|
|
set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
|
|
break;
|
|
|
|
|
|
default:
|
|
/* Catch any otherwise unhandled error codes here. */
|
|
dev_dbg(&ihost->pdev->dev,
|
|
"%s: invalid completion code: 0x%x - "
|
|
"isci_request = %p\n",
|
|
__func__, completion_status, request);
|
|
|
|
response = SAS_TASK_UNDELIVERED;
|
|
|
|
/* See if the device has been/is being stopped. Note
|
|
* that we ignore the quiesce state, since we are
|
|
* concerned about the actual device state.
|
|
*/
|
|
if (!idev)
|
|
status = SAS_DEVICE_UNKNOWN;
|
|
else
|
|
status = SAS_ABORTED_TASK;
|
|
|
|
if (SAS_PROTOCOL_SMP == task->task_proto)
|
|
set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
|
|
else
|
|
clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
|
|
break;
|
|
}
|
|
|
|
switch (task->task_proto) {
|
|
case SAS_PROTOCOL_SSP:
|
|
if (task->data_dir == DMA_NONE)
|
|
break;
|
|
if (task->num_scatter == 0)
|
|
/* 0 indicates a single dma address */
|
|
dma_unmap_single(&ihost->pdev->dev,
|
|
request->zero_scatter_daddr,
|
|
task->total_xfer_len, task->data_dir);
|
|
else /* unmap the sgl dma addresses */
|
|
dma_unmap_sg(&ihost->pdev->dev, task->scatter,
|
|
request->num_sg_entries, task->data_dir);
|
|
break;
|
|
case SAS_PROTOCOL_SMP: {
|
|
struct scatterlist *sg = &task->smp_task.smp_req;
|
|
struct smp_req *smp_req;
|
|
void *kaddr;
|
|
|
|
dma_unmap_sg(&ihost->pdev->dev, sg, 1, DMA_TO_DEVICE);
|
|
|
|
/* need to swab it back in case the command buffer is re-used */
|
|
kaddr = kmap_atomic(sg_page(sg));
|
|
smp_req = kaddr + sg->offset;
|
|
sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
|
|
kunmap_atomic(kaddr);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
spin_lock_irqsave(&task->task_state_lock, task_flags);
|
|
|
|
task->task_status.resp = response;
|
|
task->task_status.stat = status;
|
|
|
|
if (test_bit(IREQ_COMPLETE_IN_TARGET, &request->flags)) {
|
|
/* Normal notification (task_done) */
|
|
task->task_state_flags |= SAS_TASK_STATE_DONE;
|
|
task->task_state_flags &= ~(SAS_TASK_AT_INITIATOR |
|
|
SAS_TASK_STATE_PENDING);
|
|
}
|
|
spin_unlock_irqrestore(&task->task_state_lock, task_flags);
|
|
|
|
/* complete the io request to the core. */
|
|
sci_controller_complete_io(ihost, request->target_device, request);
|
|
|
|
/* set terminated handle so it cannot be completed or
|
|
* terminated again, and to cause any calls into abort
|
|
* task to recognize the already completed case.
|
|
*/
|
|
set_bit(IREQ_TERMINATED, &request->flags);
|
|
|
|
ireq_done(ihost, request, task);
|
|
}
|
|
|
|
static void sci_request_started_state_enter(struct sci_base_state_machine *sm)
|
|
{
|
|
struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
|
|
struct domain_device *dev = ireq->target_device->domain_dev;
|
|
enum sci_base_request_states state;
|
|
struct sas_task *task;
|
|
|
|
/* XXX as hch said always creating an internal sas_task for tmf
|
|
* requests would simplify the driver
|
|
*/
|
|
task = (test_bit(IREQ_TMF, &ireq->flags)) ? NULL : isci_request_access_task(ireq);
|
|
|
|
/* all unaccelerated request types (non ssp or ncq) handled with
|
|
* substates
|
|
*/
|
|
if (!task && dev->dev_type == SAS_END_DEVICE) {
|
|
state = SCI_REQ_TASK_WAIT_TC_COMP;
|
|
} else if (task && task->task_proto == SAS_PROTOCOL_SMP) {
|
|
state = SCI_REQ_SMP_WAIT_RESP;
|
|
} else if (task && sas_protocol_ata(task->task_proto) &&
|
|
!task->ata_task.use_ncq) {
|
|
if (dev->sata_dev.class == ATA_DEV_ATAPI &&
|
|
task->ata_task.fis.command == ATA_CMD_PACKET) {
|
|
state = SCI_REQ_ATAPI_WAIT_H2D;
|
|
} else if (task->data_dir == DMA_NONE) {
|
|
state = SCI_REQ_STP_NON_DATA_WAIT_H2D;
|
|
} else if (task->ata_task.dma_xfer) {
|
|
state = SCI_REQ_STP_UDMA_WAIT_TC_COMP;
|
|
} else /* PIO */ {
|
|
state = SCI_REQ_STP_PIO_WAIT_H2D;
|
|
}
|
|
} else {
|
|
/* SSP or NCQ are fully accelerated, no substates */
|
|
return;
|
|
}
|
|
sci_change_state(sm, state);
|
|
}
|
|
|
|
static void sci_request_completed_state_enter(struct sci_base_state_machine *sm)
|
|
{
|
|
struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
|
|
struct isci_host *ihost = ireq->owning_controller;
|
|
|
|
/* Tell the SCI_USER that the IO request is complete */
|
|
if (!test_bit(IREQ_TMF, &ireq->flags))
|
|
isci_request_io_request_complete(ihost, ireq,
|
|
ireq->sci_status);
|
|
else
|
|
isci_task_request_complete(ihost, ireq, ireq->sci_status);
|
|
}
|
|
|
|
static void sci_request_aborting_state_enter(struct sci_base_state_machine *sm)
|
|
{
|
|
struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
|
|
|
|
/* Setting the abort bit in the Task Context is required by the silicon. */
|
|
ireq->tc->abort = 1;
|
|
}
|
|
|
|
static void sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine *sm)
|
|
{
|
|
struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
|
|
|
|
ireq->target_device->working_request = ireq;
|
|
}
|
|
|
|
static void sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine *sm)
|
|
{
|
|
struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
|
|
|
|
ireq->target_device->working_request = ireq;
|
|
}
|
|
|
|
static const struct sci_base_state sci_request_state_table[] = {
|
|
[SCI_REQ_INIT] = { },
|
|
[SCI_REQ_CONSTRUCTED] = { },
|
|
[SCI_REQ_STARTED] = {
|
|
.enter_state = sci_request_started_state_enter,
|
|
},
|
|
[SCI_REQ_STP_NON_DATA_WAIT_H2D] = {
|
|
.enter_state = sci_stp_request_started_non_data_await_h2d_completion_enter,
|
|
},
|
|
[SCI_REQ_STP_NON_DATA_WAIT_D2H] = { },
|
|
[SCI_REQ_STP_PIO_WAIT_H2D] = {
|
|
.enter_state = sci_stp_request_started_pio_await_h2d_completion_enter,
|
|
},
|
|
[SCI_REQ_STP_PIO_WAIT_FRAME] = { },
|
|
[SCI_REQ_STP_PIO_DATA_IN] = { },
|
|
[SCI_REQ_STP_PIO_DATA_OUT] = { },
|
|
[SCI_REQ_STP_UDMA_WAIT_TC_COMP] = { },
|
|
[SCI_REQ_STP_UDMA_WAIT_D2H] = { },
|
|
[SCI_REQ_TASK_WAIT_TC_COMP] = { },
|
|
[SCI_REQ_TASK_WAIT_TC_RESP] = { },
|
|
[SCI_REQ_SMP_WAIT_RESP] = { },
|
|
[SCI_REQ_SMP_WAIT_TC_COMP] = { },
|
|
[SCI_REQ_ATAPI_WAIT_H2D] = { },
|
|
[SCI_REQ_ATAPI_WAIT_PIO_SETUP] = { },
|
|
[SCI_REQ_ATAPI_WAIT_D2H] = { },
|
|
[SCI_REQ_ATAPI_WAIT_TC_COMP] = { },
|
|
[SCI_REQ_COMPLETED] = {
|
|
.enter_state = sci_request_completed_state_enter,
|
|
},
|
|
[SCI_REQ_ABORTING] = {
|
|
.enter_state = sci_request_aborting_state_enter,
|
|
},
|
|
[SCI_REQ_FINAL] = { },
|
|
};
|
|
|
|
static void
|
|
sci_general_request_construct(struct isci_host *ihost,
|
|
struct isci_remote_device *idev,
|
|
struct isci_request *ireq)
|
|
{
|
|
sci_init_sm(&ireq->sm, sci_request_state_table, SCI_REQ_INIT);
|
|
|
|
ireq->target_device = idev;
|
|
ireq->protocol = SAS_PROTOCOL_NONE;
|
|
ireq->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX;
|
|
|
|
ireq->sci_status = SCI_SUCCESS;
|
|
ireq->scu_status = 0;
|
|
ireq->post_context = 0xFFFFFFFF;
|
|
}
|
|
|
|
static enum sci_status
|
|
sci_io_request_construct(struct isci_host *ihost,
|
|
struct isci_remote_device *idev,
|
|
struct isci_request *ireq)
|
|
{
|
|
struct domain_device *dev = idev->domain_dev;
|
|
enum sci_status status = SCI_SUCCESS;
|
|
|
|
/* Build the common part of the request */
|
|
sci_general_request_construct(ihost, idev, ireq);
|
|
|
|
if (idev->rnc.remote_node_index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX)
|
|
return SCI_FAILURE_INVALID_REMOTE_DEVICE;
|
|
|
|
if (dev->dev_type == SAS_END_DEVICE)
|
|
/* pass */;
|
|
else if (dev_is_sata(dev))
|
|
memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
|
|
else if (dev_is_expander(dev->dev_type))
|
|
/* pass */;
|
|
else
|
|
return SCI_FAILURE_UNSUPPORTED_PROTOCOL;
|
|
|
|
memset(ireq->tc, 0, offsetof(struct scu_task_context, sgl_pair_ab));
|
|
|
|
return status;
|
|
}
|
|
|
|
enum sci_status sci_task_request_construct(struct isci_host *ihost,
|
|
struct isci_remote_device *idev,
|
|
u16 io_tag, struct isci_request *ireq)
|
|
{
|
|
struct domain_device *dev = idev->domain_dev;
|
|
enum sci_status status = SCI_SUCCESS;
|
|
|
|
/* Build the common part of the request */
|
|
sci_general_request_construct(ihost, idev, ireq);
|
|
|
|
if (dev->dev_type == SAS_END_DEVICE || dev_is_sata(dev)) {
|
|
set_bit(IREQ_TMF, &ireq->flags);
|
|
memset(ireq->tc, 0, sizeof(struct scu_task_context));
|
|
|
|
/* Set the protocol indicator. */
|
|
if (dev_is_sata(dev))
|
|
ireq->protocol = SAS_PROTOCOL_STP;
|
|
else
|
|
ireq->protocol = SAS_PROTOCOL_SSP;
|
|
} else
|
|
status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
|
|
|
|
return status;
|
|
}
|
|
|
|
static enum sci_status isci_request_ssp_request_construct(
|
|
struct isci_request *request)
|
|
{
|
|
enum sci_status status;
|
|
|
|
dev_dbg(&request->isci_host->pdev->dev,
|
|
"%s: request = %p\n",
|
|
__func__,
|
|
request);
|
|
status = sci_io_request_construct_basic_ssp(request);
|
|
return status;
|
|
}
|
|
|
|
static enum sci_status isci_request_stp_request_construct(struct isci_request *ireq)
|
|
{
|
|
struct sas_task *task = isci_request_access_task(ireq);
|
|
struct host_to_dev_fis *fis = &ireq->stp.cmd;
|
|
struct ata_queued_cmd *qc = task->uldd_task;
|
|
enum sci_status status;
|
|
|
|
dev_dbg(&ireq->isci_host->pdev->dev,
|
|
"%s: ireq = %p\n",
|
|
__func__,
|
|
ireq);
|
|
|
|
memcpy(fis, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
|
|
if (!task->ata_task.device_control_reg_update)
|
|
fis->flags |= 0x80;
|
|
fis->flags &= 0xF0;
|
|
|
|
status = sci_io_request_construct_basic_sata(ireq);
|
|
|
|
if (qc && (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
|
|
qc->tf.command == ATA_CMD_FPDMA_READ ||
|
|
qc->tf.command == ATA_CMD_FPDMA_RECV ||
|
|
qc->tf.command == ATA_CMD_FPDMA_SEND ||
|
|
qc->tf.command == ATA_CMD_NCQ_NON_DATA)) {
|
|
fis->sector_count = qc->tag << 3;
|
|
ireq->tc->type.stp.ncq_tag = qc->tag;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static enum sci_status
|
|
sci_io_request_construct_smp(struct device *dev,
|
|
struct isci_request *ireq,
|
|
struct sas_task *task)
|
|
{
|
|
struct scatterlist *sg = &task->smp_task.smp_req;
|
|
struct isci_remote_device *idev;
|
|
struct scu_task_context *task_context;
|
|
struct isci_port *iport;
|
|
struct smp_req *smp_req;
|
|
void *kaddr;
|
|
u8 req_len;
|
|
u32 cmd;
|
|
|
|
kaddr = kmap_atomic(sg_page(sg));
|
|
smp_req = kaddr + sg->offset;
|
|
/*
|
|
* Look at the SMP requests' header fields; for certain SAS 1.x SMP
|
|
* functions under SAS 2.0, a zero request length really indicates
|
|
* a non-zero default length.
|
|
*/
|
|
if (smp_req->req_len == 0) {
|
|
switch (smp_req->func) {
|
|
case SMP_DISCOVER:
|
|
case SMP_REPORT_PHY_ERR_LOG:
|
|
case SMP_REPORT_PHY_SATA:
|
|
case SMP_REPORT_ROUTE_INFO:
|
|
smp_req->req_len = 2;
|
|
break;
|
|
case SMP_CONF_ROUTE_INFO:
|
|
case SMP_PHY_CONTROL:
|
|
case SMP_PHY_TEST_FUNCTION:
|
|
smp_req->req_len = 9;
|
|
break;
|
|
/* Default - zero is a valid default for 2.0. */
|
|
}
|
|
}
|
|
req_len = smp_req->req_len;
|
|
sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
|
|
cmd = *(u32 *) smp_req;
|
|
kunmap_atomic(kaddr);
|
|
|
|
if (!dma_map_sg(dev, sg, 1, DMA_TO_DEVICE))
|
|
return SCI_FAILURE;
|
|
|
|
ireq->protocol = SAS_PROTOCOL_SMP;
|
|
|
|
/* byte swap the smp request. */
|
|
|
|
task_context = ireq->tc;
|
|
|
|
idev = ireq->target_device;
|
|
iport = idev->owning_port;
|
|
|
|
/*
|
|
* Fill in the TC with its required data
|
|
* 00h
|
|
*/
|
|
task_context->priority = 0;
|
|
task_context->initiator_request = 1;
|
|
task_context->connection_rate = idev->connection_rate;
|
|
task_context->protocol_engine_index = ISCI_PEG;
|
|
task_context->logical_port_index = iport->physical_port_index;
|
|
task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SMP;
|
|
task_context->abort = 0;
|
|
task_context->valid = SCU_TASK_CONTEXT_VALID;
|
|
task_context->context_type = SCU_TASK_CONTEXT_TYPE;
|
|
|
|
/* 04h */
|
|
task_context->remote_node_index = idev->rnc.remote_node_index;
|
|
task_context->command_code = 0;
|
|
task_context->task_type = SCU_TASK_TYPE_SMP_REQUEST;
|
|
|
|
/* 08h */
|
|
task_context->link_layer_control = 0;
|
|
task_context->do_not_dma_ssp_good_response = 1;
|
|
task_context->strict_ordering = 0;
|
|
task_context->control_frame = 1;
|
|
task_context->timeout_enable = 0;
|
|
task_context->block_guard_enable = 0;
|
|
|
|
/* 0ch */
|
|
task_context->address_modifier = 0;
|
|
|
|
/* 10h */
|
|
task_context->ssp_command_iu_length = req_len;
|
|
|
|
/* 14h */
|
|
task_context->transfer_length_bytes = 0;
|
|
|
|
/*
|
|
* 18h ~ 30h, protocol specific
|
|
* since commandIU has been build by framework at this point, we just
|
|
* copy the frist DWord from command IU to this location. */
|
|
memcpy(&task_context->type.smp, &cmd, sizeof(u32));
|
|
|
|
/*
|
|
* 40h
|
|
* "For SMP you could program it to zero. We would prefer that way
|
|
* so that done code will be consistent." - Venki
|
|
*/
|
|
task_context->task_phase = 0;
|
|
|
|
ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
|
|
(ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
|
|
(iport->physical_port_index <<
|
|
SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
|
|
ISCI_TAG_TCI(ireq->io_tag));
|
|
/*
|
|
* Copy the physical address for the command buffer to the SCU Task
|
|
* Context command buffer should not contain command header.
|
|
*/
|
|
task_context->command_iu_upper = upper_32_bits(sg_dma_address(sg));
|
|
task_context->command_iu_lower = lower_32_bits(sg_dma_address(sg) + sizeof(u32));
|
|
|
|
/* SMP response comes as UF, so no need to set response IU address. */
|
|
task_context->response_iu_upper = 0;
|
|
task_context->response_iu_lower = 0;
|
|
|
|
sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
|
|
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* isci_smp_request_build() - This function builds the smp request.
|
|
* @ireq: This parameter points to the isci_request allocated in the
|
|
* request construct function.
|
|
*
|
|
* SCI_SUCCESS on successfull completion, or specific failure code.
|
|
*/
|
|
static enum sci_status isci_smp_request_build(struct isci_request *ireq)
|
|
{
|
|
struct sas_task *task = isci_request_access_task(ireq);
|
|
struct device *dev = &ireq->isci_host->pdev->dev;
|
|
enum sci_status status = SCI_FAILURE;
|
|
|
|
status = sci_io_request_construct_smp(dev, ireq, task);
|
|
if (status != SCI_SUCCESS)
|
|
dev_dbg(&ireq->isci_host->pdev->dev,
|
|
"%s: failed with status = %d\n",
|
|
__func__,
|
|
status);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* isci_io_request_build() - This function builds the io request object.
|
|
* @ihost: This parameter specifies the ISCI host object
|
|
* @request: This parameter points to the isci_request object allocated in the
|
|
* request construct function.
|
|
* @sci_device: This parameter is the handle for the sci core's remote device
|
|
* object that is the destination for this request.
|
|
*
|
|
* SCI_SUCCESS on successfull completion, or specific failure code.
|
|
*/
|
|
static enum sci_status isci_io_request_build(struct isci_host *ihost,
|
|
struct isci_request *request,
|
|
struct isci_remote_device *idev)
|
|
{
|
|
enum sci_status status = SCI_SUCCESS;
|
|
struct sas_task *task = isci_request_access_task(request);
|
|
|
|
dev_dbg(&ihost->pdev->dev,
|
|
"%s: idev = 0x%p; request = %p, "
|
|
"num_scatter = %d\n",
|
|
__func__,
|
|
idev,
|
|
request,
|
|
task->num_scatter);
|
|
|
|
/* map the sgl addresses, if present.
|
|
* libata does the mapping for sata devices
|
|
* before we get the request.
|
|
*/
|
|
if (task->num_scatter &&
|
|
!sas_protocol_ata(task->task_proto) &&
|
|
!(SAS_PROTOCOL_SMP & task->task_proto)) {
|
|
|
|
request->num_sg_entries = dma_map_sg(
|
|
&ihost->pdev->dev,
|
|
task->scatter,
|
|
task->num_scatter,
|
|
task->data_dir
|
|
);
|
|
|
|
if (request->num_sg_entries == 0)
|
|
return SCI_FAILURE_INSUFFICIENT_RESOURCES;
|
|
}
|
|
|
|
status = sci_io_request_construct(ihost, idev, request);
|
|
|
|
if (status != SCI_SUCCESS) {
|
|
dev_dbg(&ihost->pdev->dev,
|
|
"%s: failed request construct\n",
|
|
__func__);
|
|
return SCI_FAILURE;
|
|
}
|
|
|
|
switch (task->task_proto) {
|
|
case SAS_PROTOCOL_SMP:
|
|
status = isci_smp_request_build(request);
|
|
break;
|
|
case SAS_PROTOCOL_SSP:
|
|
status = isci_request_ssp_request_construct(request);
|
|
break;
|
|
case SAS_PROTOCOL_SATA:
|
|
case SAS_PROTOCOL_STP:
|
|
case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
|
|
status = isci_request_stp_request_construct(request);
|
|
break;
|
|
default:
|
|
dev_dbg(&ihost->pdev->dev,
|
|
"%s: unknown protocol\n", __func__);
|
|
return SCI_FAILURE;
|
|
}
|
|
|
|
return SCI_SUCCESS;
|
|
}
|
|
|
|
static struct isci_request *isci_request_from_tag(struct isci_host *ihost, u16 tag)
|
|
{
|
|
struct isci_request *ireq;
|
|
|
|
ireq = ihost->reqs[ISCI_TAG_TCI(tag)];
|
|
ireq->io_tag = tag;
|
|
ireq->io_request_completion = NULL;
|
|
ireq->flags = 0;
|
|
ireq->num_sg_entries = 0;
|
|
|
|
return ireq;
|
|
}
|
|
|
|
static struct isci_request *isci_io_request_from_tag(struct isci_host *ihost,
|
|
struct sas_task *task,
|
|
u16 tag)
|
|
{
|
|
struct isci_request *ireq;
|
|
|
|
ireq = isci_request_from_tag(ihost, tag);
|
|
ireq->ttype_ptr.io_task_ptr = task;
|
|
clear_bit(IREQ_TMF, &ireq->flags);
|
|
task->lldd_task = ireq;
|
|
|
|
return ireq;
|
|
}
|
|
|
|
struct isci_request *isci_tmf_request_from_tag(struct isci_host *ihost,
|
|
struct isci_tmf *isci_tmf,
|
|
u16 tag)
|
|
{
|
|
struct isci_request *ireq;
|
|
|
|
ireq = isci_request_from_tag(ihost, tag);
|
|
ireq->ttype_ptr.tmf_task_ptr = isci_tmf;
|
|
set_bit(IREQ_TMF, &ireq->flags);
|
|
|
|
return ireq;
|
|
}
|
|
|
|
int isci_request_execute(struct isci_host *ihost, struct isci_remote_device *idev,
|
|
struct sas_task *task, u16 tag)
|
|
{
|
|
enum sci_status status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
|
|
struct isci_request *ireq;
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
/* do common allocation and init of request object. */
|
|
ireq = isci_io_request_from_tag(ihost, task, tag);
|
|
|
|
status = isci_io_request_build(ihost, ireq, idev);
|
|
if (status != SCI_SUCCESS) {
|
|
dev_dbg(&ihost->pdev->dev,
|
|
"%s: request_construct failed - status = 0x%x\n",
|
|
__func__,
|
|
status);
|
|
return status;
|
|
}
|
|
|
|
spin_lock_irqsave(&ihost->scic_lock, flags);
|
|
|
|
if (test_bit(IDEV_IO_NCQERROR, &idev->flags)) {
|
|
|
|
if (isci_task_is_ncq_recovery(task)) {
|
|
|
|
/* The device is in an NCQ recovery state. Issue the
|
|
* request on the task side. Note that it will
|
|
* complete on the I/O request side because the
|
|
* request was built that way (ie.
|
|
* ireq->is_task_management_request is false).
|
|
*/
|
|
status = sci_controller_start_task(ihost,
|
|
idev,
|
|
ireq);
|
|
} else {
|
|
status = SCI_FAILURE;
|
|
}
|
|
} else {
|
|
/* send the request, let the core assign the IO TAG. */
|
|
status = sci_controller_start_io(ihost, idev,
|
|
ireq);
|
|
}
|
|
|
|
if (status != SCI_SUCCESS &&
|
|
status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
|
|
dev_dbg(&ihost->pdev->dev,
|
|
"%s: failed request start (0x%x)\n",
|
|
__func__, status);
|
|
spin_unlock_irqrestore(&ihost->scic_lock, flags);
|
|
return status;
|
|
}
|
|
/* Either I/O started OK, or the core has signaled that
|
|
* the device needs a target reset.
|
|
*/
|
|
if (status != SCI_SUCCESS) {
|
|
/* The request did not really start in the
|
|
* hardware, so clear the request handle
|
|
* here so no terminations will be done.
|
|
*/
|
|
set_bit(IREQ_TERMINATED, &ireq->flags);
|
|
}
|
|
spin_unlock_irqrestore(&ihost->scic_lock, flags);
|
|
|
|
if (status ==
|
|
SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
|
|
/* Signal libsas that we need the SCSI error
|
|
* handler thread to work on this I/O and that
|
|
* we want a device reset.
|
|
*/
|
|
spin_lock_irqsave(&task->task_state_lock, flags);
|
|
task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
|
|
spin_unlock_irqrestore(&task->task_state_lock, flags);
|
|
|
|
/* Cause this task to be scheduled in the SCSI error
|
|
* handler thread.
|
|
*/
|
|
sas_task_abort(task);
|
|
|
|
/* Change the status, since we are holding
|
|
* the I/O until it is managed by the SCSI
|
|
* error handler.
|
|
*/
|
|
status = SCI_SUCCESS;
|
|
}
|
|
|
|
return ret;
|
|
}
|