mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-22 13:54:57 +08:00
15f8c604a7
The way the current CPM binding describes available multi-user (a.k.a. dual-ported) RAM doesn't work well when there are multiple free regions, and it doesn't work at all if the region doesn't begin at the start of the muram area (as the hardware needs to be programmed with offsets into this area). The latter situation can happen with SMC UARTs on CPM2, as its parameter RAM is relocatable, u-boot puts it at zero, and the kernel doesn't support moving it. It is now described with a muram node, similar to QE. The current CPM binding is sufficiently recent (i.e. never appeared in an official release) that compatibility with existing device trees is not an issue. The code supporting the new binding is shared between cpm1 and cpm2, rather than remain separated. QE should be able to use this code as well, once minor fixes are made to its device trees. Signed-off-by: Scott Wood <scottwood@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
610 lines
14 KiB
C
610 lines
14 KiB
C
/*
|
|
* General Purpose functions for the global management of the
|
|
* Communication Processor Module.
|
|
* Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
|
|
*
|
|
* In addition to the individual control of the communication
|
|
* channels, there are a few functions that globally affect the
|
|
* communication processor.
|
|
*
|
|
* Buffer descriptors must be allocated from the dual ported memory
|
|
* space. The allocator for that is here. When the communication
|
|
* process is reset, we reclaim the memory available. There is
|
|
* currently no deallocator for this memory.
|
|
* The amount of space available is platform dependent. On the
|
|
* MBX, the EPPC software loads additional microcode into the
|
|
* communication processor, and uses some of the DP ram for this
|
|
* purpose. Current, the first 512 bytes and the last 256 bytes of
|
|
* memory are used. Right now I am conservative and only use the
|
|
* memory that can never be used for microcode. If there are
|
|
* applications that require more DP ram, we can expand the boundaries
|
|
* but then we have to be careful of any downloaded microcode.
|
|
*/
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/param.h>
|
|
#include <linux/string.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/module.h>
|
|
#include <asm/mpc8xx.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/8xx_immap.h>
|
|
#include <asm/commproc.h>
|
|
#include <asm/io.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/rheap.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/cpm.h>
|
|
|
|
#include <asm/fs_pd.h>
|
|
|
|
#define CPM_MAP_SIZE (0x4000)
|
|
|
|
#ifndef CONFIG_PPC_CPM_NEW_BINDING
|
|
static void m8xx_cpm_dpinit(void);
|
|
#endif
|
|
static uint host_buffer; /* One page of host buffer */
|
|
static uint host_end; /* end + 1 */
|
|
cpm8xx_t __iomem *cpmp; /* Pointer to comm processor space */
|
|
immap_t __iomem *mpc8xx_immr;
|
|
static cpic8xx_t __iomem *cpic_reg;
|
|
|
|
static struct irq_host *cpm_pic_host;
|
|
|
|
static void cpm_mask_irq(unsigned int irq)
|
|
{
|
|
unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
|
|
|
|
clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
|
|
}
|
|
|
|
static void cpm_unmask_irq(unsigned int irq)
|
|
{
|
|
unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
|
|
|
|
setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
|
|
}
|
|
|
|
static void cpm_end_irq(unsigned int irq)
|
|
{
|
|
unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
|
|
|
|
out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
|
|
}
|
|
|
|
static struct irq_chip cpm_pic = {
|
|
.typename = " CPM PIC ",
|
|
.mask = cpm_mask_irq,
|
|
.unmask = cpm_unmask_irq,
|
|
.eoi = cpm_end_irq,
|
|
};
|
|
|
|
int cpm_get_irq(void)
|
|
{
|
|
int cpm_vec;
|
|
|
|
/* Get the vector by setting the ACK bit and then reading
|
|
* the register.
|
|
*/
|
|
out_be16(&cpic_reg->cpic_civr, 1);
|
|
cpm_vec = in_be16(&cpic_reg->cpic_civr);
|
|
cpm_vec >>= 11;
|
|
|
|
return irq_linear_revmap(cpm_pic_host, cpm_vec);
|
|
}
|
|
|
|
static int cpm_pic_host_map(struct irq_host *h, unsigned int virq,
|
|
irq_hw_number_t hw)
|
|
{
|
|
pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
|
|
|
|
get_irq_desc(virq)->status |= IRQ_LEVEL;
|
|
set_irq_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
|
|
return 0;
|
|
}
|
|
|
|
/* The CPM can generate the error interrupt when there is a race condition
|
|
* between generating and masking interrupts. All we have to do is ACK it
|
|
* and return. This is a no-op function so we don't need any special
|
|
* tests in the interrupt handler.
|
|
*/
|
|
static irqreturn_t cpm_error_interrupt(int irq, void *dev)
|
|
{
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static struct irqaction cpm_error_irqaction = {
|
|
.handler = cpm_error_interrupt,
|
|
.mask = CPU_MASK_NONE,
|
|
.name = "error",
|
|
};
|
|
|
|
static struct irq_host_ops cpm_pic_host_ops = {
|
|
.map = cpm_pic_host_map,
|
|
};
|
|
|
|
unsigned int cpm_pic_init(void)
|
|
{
|
|
struct device_node *np = NULL;
|
|
struct resource res;
|
|
unsigned int sirq = NO_IRQ, hwirq, eirq;
|
|
int ret;
|
|
|
|
pr_debug("cpm_pic_init\n");
|
|
|
|
np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
|
|
if (np == NULL)
|
|
np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
|
|
if (np == NULL) {
|
|
printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
|
|
return sirq;
|
|
}
|
|
|
|
ret = of_address_to_resource(np, 0, &res);
|
|
if (ret)
|
|
goto end;
|
|
|
|
cpic_reg = ioremap(res.start, res.end - res.start + 1);
|
|
if (cpic_reg == NULL)
|
|
goto end;
|
|
|
|
sirq = irq_of_parse_and_map(np, 0);
|
|
if (sirq == NO_IRQ)
|
|
goto end;
|
|
|
|
/* Initialize the CPM interrupt controller. */
|
|
hwirq = (unsigned int)irq_map[sirq].hwirq;
|
|
out_be32(&cpic_reg->cpic_cicr,
|
|
(CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
|
|
((hwirq/2) << 13) | CICR_HP_MASK);
|
|
|
|
out_be32(&cpic_reg->cpic_cimr, 0);
|
|
|
|
cpm_pic_host = irq_alloc_host(of_node_get(np), IRQ_HOST_MAP_LINEAR,
|
|
64, &cpm_pic_host_ops, 64);
|
|
if (cpm_pic_host == NULL) {
|
|
printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
|
|
sirq = NO_IRQ;
|
|
goto end;
|
|
}
|
|
|
|
/* Install our own error handler. */
|
|
np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
|
|
if (np == NULL)
|
|
np = of_find_node_by_type(NULL, "cpm");
|
|
if (np == NULL) {
|
|
printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
|
|
goto end;
|
|
}
|
|
|
|
eirq = irq_of_parse_and_map(np, 0);
|
|
if (eirq == NO_IRQ)
|
|
goto end;
|
|
|
|
if (setup_irq(eirq, &cpm_error_irqaction))
|
|
printk(KERN_ERR "Could not allocate CPM error IRQ!");
|
|
|
|
setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
|
|
|
|
end:
|
|
of_node_put(np);
|
|
return sirq;
|
|
}
|
|
|
|
void __init cpm_reset(void)
|
|
{
|
|
sysconf8xx_t __iomem *siu_conf;
|
|
|
|
mpc8xx_immr = ioremap(get_immrbase(), 0x4000);
|
|
if (!mpc8xx_immr) {
|
|
printk(KERN_CRIT "Could not map IMMR\n");
|
|
return;
|
|
}
|
|
|
|
cpmp = &mpc8xx_immr->im_cpm;
|
|
|
|
#ifndef CONFIG_PPC_EARLY_DEBUG_CPM
|
|
/* Perform a reset.
|
|
*/
|
|
out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
|
|
|
|
/* Wait for it.
|
|
*/
|
|
while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
|
|
#endif
|
|
|
|
#ifdef CONFIG_UCODE_PATCH
|
|
cpm_load_patch(cpmp);
|
|
#endif
|
|
|
|
/* Set SDMA Bus Request priority 5.
|
|
* On 860T, this also enables FEC priority 6. I am not sure
|
|
* this is what we realy want for some applications, but the
|
|
* manual recommends it.
|
|
* Bit 25, FAM can also be set to use FEC aggressive mode (860T).
|
|
*/
|
|
siu_conf = immr_map(im_siu_conf);
|
|
out_be32(&siu_conf->sc_sdcr, 1);
|
|
immr_unmap(siu_conf);
|
|
|
|
#ifdef CONFIG_PPC_CPM_NEW_BINDING
|
|
cpm_muram_init();
|
|
#else
|
|
/* Reclaim the DP memory for our use. */
|
|
m8xx_cpm_dpinit();
|
|
#endif
|
|
}
|
|
|
|
/* We used to do this earlier, but have to postpone as long as possible
|
|
* to ensure the kernel VM is now running.
|
|
*/
|
|
static void
|
|
alloc_host_memory(void)
|
|
{
|
|
dma_addr_t physaddr;
|
|
|
|
/* Set the host page for allocation.
|
|
*/
|
|
host_buffer = (uint)dma_alloc_coherent(NULL, PAGE_SIZE, &physaddr,
|
|
GFP_KERNEL);
|
|
host_end = host_buffer + PAGE_SIZE;
|
|
}
|
|
|
|
/* We also own one page of host buffer space for the allocation of
|
|
* UART "fifos" and the like.
|
|
*/
|
|
uint
|
|
m8xx_cpm_hostalloc(uint size)
|
|
{
|
|
uint retloc;
|
|
|
|
if (host_buffer == 0)
|
|
alloc_host_memory();
|
|
|
|
if ((host_buffer + size) >= host_end)
|
|
return(0);
|
|
|
|
retloc = host_buffer;
|
|
host_buffer += size;
|
|
|
|
return(retloc);
|
|
}
|
|
|
|
/* Set a baud rate generator. This needs lots of work. There are
|
|
* four BRGs, any of which can be wired to any channel.
|
|
* The internal baud rate clock is the system clock divided by 16.
|
|
* This assumes the baudrate is 16x oversampled by the uart.
|
|
*/
|
|
#define BRG_INT_CLK (get_brgfreq())
|
|
#define BRG_UART_CLK (BRG_INT_CLK/16)
|
|
#define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16)
|
|
|
|
void
|
|
cpm_setbrg(uint brg, uint rate)
|
|
{
|
|
u32 __iomem *bp;
|
|
|
|
/* This is good enough to get SMCs running.....
|
|
*/
|
|
bp = &cpmp->cp_brgc1;
|
|
bp += brg;
|
|
/* The BRG has a 12-bit counter. For really slow baud rates (or
|
|
* really fast processors), we may have to further divide by 16.
|
|
*/
|
|
if (((BRG_UART_CLK / rate) - 1) < 4096)
|
|
out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
|
|
else
|
|
out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
|
|
CPM_BRG_EN | CPM_BRG_DIV16);
|
|
}
|
|
|
|
#ifndef CONFIG_PPC_CPM_NEW_BINDING
|
|
/*
|
|
* dpalloc / dpfree bits.
|
|
*/
|
|
static spinlock_t cpm_dpmem_lock;
|
|
/*
|
|
* 16 blocks should be enough to satisfy all requests
|
|
* until the memory subsystem goes up...
|
|
*/
|
|
static rh_block_t cpm_boot_dpmem_rh_block[16];
|
|
static rh_info_t cpm_dpmem_info;
|
|
|
|
#define CPM_DPMEM_ALIGNMENT 8
|
|
static u8 __iomem *dpram_vbase;
|
|
static phys_addr_t dpram_pbase;
|
|
|
|
static void m8xx_cpm_dpinit(void)
|
|
{
|
|
spin_lock_init(&cpm_dpmem_lock);
|
|
|
|
dpram_vbase = cpmp->cp_dpmem;
|
|
dpram_pbase = get_immrbase() + offsetof(immap_t, im_cpm.cp_dpmem);
|
|
|
|
/* Initialize the info header */
|
|
rh_init(&cpm_dpmem_info, CPM_DPMEM_ALIGNMENT,
|
|
sizeof(cpm_boot_dpmem_rh_block) /
|
|
sizeof(cpm_boot_dpmem_rh_block[0]),
|
|
cpm_boot_dpmem_rh_block);
|
|
|
|
/*
|
|
* Attach the usable dpmem area.
|
|
* XXX: This is actually crap. CPM_DATAONLY_BASE and
|
|
* CPM_DATAONLY_SIZE are a subset of the available dparm. It varies
|
|
* with the processor and the microcode patches applied / activated.
|
|
* But the following should be at least safe.
|
|
*/
|
|
rh_attach_region(&cpm_dpmem_info, CPM_DATAONLY_BASE, CPM_DATAONLY_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Allocate the requested size worth of DP memory.
|
|
* This function returns an offset into the DPRAM area.
|
|
* Use cpm_dpram_addr() to get the virtual address of the area.
|
|
*/
|
|
unsigned long cpm_dpalloc(uint size, uint align)
|
|
{
|
|
unsigned long start;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&cpm_dpmem_lock, flags);
|
|
cpm_dpmem_info.alignment = align;
|
|
start = rh_alloc(&cpm_dpmem_info, size, "commproc");
|
|
spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
|
|
|
|
return (uint)start;
|
|
}
|
|
EXPORT_SYMBOL(cpm_dpalloc);
|
|
|
|
int cpm_dpfree(unsigned long offset)
|
|
{
|
|
int ret;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&cpm_dpmem_lock, flags);
|
|
ret = rh_free(&cpm_dpmem_info, offset);
|
|
spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(cpm_dpfree);
|
|
|
|
unsigned long cpm_dpalloc_fixed(unsigned long offset, uint size, uint align)
|
|
{
|
|
unsigned long start;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&cpm_dpmem_lock, flags);
|
|
cpm_dpmem_info.alignment = align;
|
|
start = rh_alloc_fixed(&cpm_dpmem_info, offset, size, "commproc");
|
|
spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
|
|
|
|
return start;
|
|
}
|
|
EXPORT_SYMBOL(cpm_dpalloc_fixed);
|
|
|
|
void cpm_dpdump(void)
|
|
{
|
|
rh_dump(&cpm_dpmem_info);
|
|
}
|
|
EXPORT_SYMBOL(cpm_dpdump);
|
|
|
|
void *cpm_dpram_addr(unsigned long offset)
|
|
{
|
|
return (void *)(dpram_vbase + offset);
|
|
}
|
|
EXPORT_SYMBOL(cpm_dpram_addr);
|
|
|
|
uint cpm_dpram_phys(u8 *addr)
|
|
{
|
|
return (dpram_pbase + (uint)(addr - dpram_vbase));
|
|
}
|
|
EXPORT_SYMBOL(cpm_dpram_phys);
|
|
#endif /* !CONFIG_PPC_CPM_NEW_BINDING */
|
|
|
|
struct cpm_ioport16 {
|
|
__be16 dir, par, sor, dat, intr;
|
|
__be16 res[3];
|
|
};
|
|
|
|
struct cpm_ioport32 {
|
|
__be32 dir, par, sor;
|
|
};
|
|
|
|
static void cpm1_set_pin32(int port, int pin, int flags)
|
|
{
|
|
struct cpm_ioport32 __iomem *iop;
|
|
pin = 1 << (31 - pin);
|
|
|
|
if (port == CPM_PORTB)
|
|
iop = (struct cpm_ioport32 __iomem *)
|
|
&mpc8xx_immr->im_cpm.cp_pbdir;
|
|
else
|
|
iop = (struct cpm_ioport32 __iomem *)
|
|
&mpc8xx_immr->im_cpm.cp_pedir;
|
|
|
|
if (flags & CPM_PIN_OUTPUT)
|
|
setbits32(&iop->dir, pin);
|
|
else
|
|
clrbits32(&iop->dir, pin);
|
|
|
|
if (!(flags & CPM_PIN_GPIO))
|
|
setbits32(&iop->par, pin);
|
|
else
|
|
clrbits32(&iop->par, pin);
|
|
|
|
if (port == CPM_PORTE) {
|
|
if (flags & CPM_PIN_SECONDARY)
|
|
setbits32(&iop->sor, pin);
|
|
else
|
|
clrbits32(&iop->sor, pin);
|
|
|
|
if (flags & CPM_PIN_OPENDRAIN)
|
|
setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
|
|
else
|
|
clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
|
|
}
|
|
}
|
|
|
|
static void cpm1_set_pin16(int port, int pin, int flags)
|
|
{
|
|
struct cpm_ioport16 __iomem *iop =
|
|
(struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;
|
|
|
|
pin = 1 << (15 - pin);
|
|
|
|
if (port != 0)
|
|
iop += port - 1;
|
|
|
|
if (flags & CPM_PIN_OUTPUT)
|
|
setbits16(&iop->dir, pin);
|
|
else
|
|
clrbits16(&iop->dir, pin);
|
|
|
|
if (!(flags & CPM_PIN_GPIO))
|
|
setbits16(&iop->par, pin);
|
|
else
|
|
clrbits16(&iop->par, pin);
|
|
|
|
if (port == CPM_PORTC) {
|
|
if (flags & CPM_PIN_SECONDARY)
|
|
setbits16(&iop->sor, pin);
|
|
else
|
|
clrbits16(&iop->sor, pin);
|
|
}
|
|
}
|
|
|
|
void cpm1_set_pin(enum cpm_port port, int pin, int flags)
|
|
{
|
|
if (port == CPM_PORTB || port == CPM_PORTE)
|
|
cpm1_set_pin32(port, pin, flags);
|
|
else
|
|
cpm1_set_pin16(port, pin, flags);
|
|
}
|
|
|
|
int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode)
|
|
{
|
|
int shift;
|
|
int i, bits = 0;
|
|
u32 __iomem *reg;
|
|
u32 mask = 7;
|
|
|
|
u8 clk_map[][3] = {
|
|
{CPM_CLK_SCC1, CPM_BRG1, 0},
|
|
{CPM_CLK_SCC1, CPM_BRG2, 1},
|
|
{CPM_CLK_SCC1, CPM_BRG3, 2},
|
|
{CPM_CLK_SCC1, CPM_BRG4, 3},
|
|
{CPM_CLK_SCC1, CPM_CLK1, 4},
|
|
{CPM_CLK_SCC1, CPM_CLK2, 5},
|
|
{CPM_CLK_SCC1, CPM_CLK3, 6},
|
|
{CPM_CLK_SCC1, CPM_CLK4, 7},
|
|
|
|
{CPM_CLK_SCC2, CPM_BRG1, 0},
|
|
{CPM_CLK_SCC2, CPM_BRG2, 1},
|
|
{CPM_CLK_SCC2, CPM_BRG3, 2},
|
|
{CPM_CLK_SCC2, CPM_BRG4, 3},
|
|
{CPM_CLK_SCC2, CPM_CLK1, 4},
|
|
{CPM_CLK_SCC2, CPM_CLK2, 5},
|
|
{CPM_CLK_SCC2, CPM_CLK3, 6},
|
|
{CPM_CLK_SCC2, CPM_CLK4, 7},
|
|
|
|
{CPM_CLK_SCC3, CPM_BRG1, 0},
|
|
{CPM_CLK_SCC3, CPM_BRG2, 1},
|
|
{CPM_CLK_SCC3, CPM_BRG3, 2},
|
|
{CPM_CLK_SCC3, CPM_BRG4, 3},
|
|
{CPM_CLK_SCC3, CPM_CLK5, 4},
|
|
{CPM_CLK_SCC3, CPM_CLK6, 5},
|
|
{CPM_CLK_SCC3, CPM_CLK7, 6},
|
|
{CPM_CLK_SCC3, CPM_CLK8, 7},
|
|
|
|
{CPM_CLK_SCC4, CPM_BRG1, 0},
|
|
{CPM_CLK_SCC4, CPM_BRG2, 1},
|
|
{CPM_CLK_SCC4, CPM_BRG3, 2},
|
|
{CPM_CLK_SCC4, CPM_BRG4, 3},
|
|
{CPM_CLK_SCC4, CPM_CLK5, 4},
|
|
{CPM_CLK_SCC4, CPM_CLK6, 5},
|
|
{CPM_CLK_SCC4, CPM_CLK7, 6},
|
|
{CPM_CLK_SCC4, CPM_CLK8, 7},
|
|
|
|
{CPM_CLK_SMC1, CPM_BRG1, 0},
|
|
{CPM_CLK_SMC1, CPM_BRG2, 1},
|
|
{CPM_CLK_SMC1, CPM_BRG3, 2},
|
|
{CPM_CLK_SMC1, CPM_BRG4, 3},
|
|
{CPM_CLK_SMC1, CPM_CLK1, 4},
|
|
{CPM_CLK_SMC1, CPM_CLK2, 5},
|
|
{CPM_CLK_SMC1, CPM_CLK3, 6},
|
|
{CPM_CLK_SMC1, CPM_CLK4, 7},
|
|
|
|
{CPM_CLK_SMC2, CPM_BRG1, 0},
|
|
{CPM_CLK_SMC2, CPM_BRG2, 1},
|
|
{CPM_CLK_SMC2, CPM_BRG3, 2},
|
|
{CPM_CLK_SMC2, CPM_BRG4, 3},
|
|
{CPM_CLK_SMC2, CPM_CLK5, 4},
|
|
{CPM_CLK_SMC2, CPM_CLK6, 5},
|
|
{CPM_CLK_SMC2, CPM_CLK7, 6},
|
|
{CPM_CLK_SMC2, CPM_CLK8, 7},
|
|
};
|
|
|
|
switch (target) {
|
|
case CPM_CLK_SCC1:
|
|
reg = &mpc8xx_immr->im_cpm.cp_sicr;
|
|
shift = 0;
|
|
break;
|
|
|
|
case CPM_CLK_SCC2:
|
|
reg = &mpc8xx_immr->im_cpm.cp_sicr;
|
|
shift = 8;
|
|
break;
|
|
|
|
case CPM_CLK_SCC3:
|
|
reg = &mpc8xx_immr->im_cpm.cp_sicr;
|
|
shift = 16;
|
|
break;
|
|
|
|
case CPM_CLK_SCC4:
|
|
reg = &mpc8xx_immr->im_cpm.cp_sicr;
|
|
shift = 24;
|
|
break;
|
|
|
|
case CPM_CLK_SMC1:
|
|
reg = &mpc8xx_immr->im_cpm.cp_simode;
|
|
shift = 12;
|
|
break;
|
|
|
|
case CPM_CLK_SMC2:
|
|
reg = &mpc8xx_immr->im_cpm.cp_simode;
|
|
shift = 28;
|
|
break;
|
|
|
|
default:
|
|
printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (reg == &mpc8xx_immr->im_cpm.cp_sicr && mode == CPM_CLK_RX)
|
|
shift += 3;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
|
|
if (clk_map[i][0] == target && clk_map[i][1] == clock) {
|
|
bits = clk_map[i][2];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == ARRAY_SIZE(clk_map)) {
|
|
printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
bits <<= shift;
|
|
mask <<= shift;
|
|
out_be32(reg, (in_be32(reg) & ~mask) | bits);
|
|
|
|
return 0;
|
|
}
|