mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-29 22:14:41 +08:00
990b454704
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
1662 lines
42 KiB
C
1662 lines
42 KiB
C
/*
|
|
* Copyright 2007 Dave Airlied
|
|
* All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
/*
|
|
* Authors: Dave Airlied <airlied@linux.ie>
|
|
* Ben Skeggs <darktama@iinet.net.au>
|
|
* Jeremy Kolb <jkolb@brandeis.edu>
|
|
*/
|
|
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/swiotlb.h>
|
|
|
|
#include "nouveau_drm.h"
|
|
#include "nouveau_dma.h"
|
|
#include "nouveau_fence.h"
|
|
|
|
#include "nouveau_bo.h"
|
|
#include "nouveau_ttm.h"
|
|
#include "nouveau_gem.h"
|
|
|
|
/*
|
|
* NV10-NV40 tiling helpers
|
|
*/
|
|
|
|
static void
|
|
nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg,
|
|
u32 addr, u32 size, u32 pitch, u32 flags)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_drm(dev);
|
|
int i = reg - drm->tile.reg;
|
|
struct nvkm_fb *pfb = nvxx_fb(&drm->device);
|
|
struct nvkm_fb_tile *tile = &pfb->tile.region[i];
|
|
struct nvkm_engine *engine;
|
|
|
|
nouveau_fence_unref(®->fence);
|
|
|
|
if (tile->pitch)
|
|
pfb->tile.fini(pfb, i, tile);
|
|
|
|
if (pitch)
|
|
pfb->tile.init(pfb, i, addr, size, pitch, flags, tile);
|
|
|
|
pfb->tile.prog(pfb, i, tile);
|
|
|
|
if ((engine = nvkm_engine(pfb, NVDEV_ENGINE_GR)))
|
|
engine->tile_prog(engine, i);
|
|
if ((engine = nvkm_engine(pfb, NVDEV_ENGINE_MPEG)))
|
|
engine->tile_prog(engine, i);
|
|
}
|
|
|
|
static struct nouveau_drm_tile *
|
|
nv10_bo_get_tile_region(struct drm_device *dev, int i)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_drm(dev);
|
|
struct nouveau_drm_tile *tile = &drm->tile.reg[i];
|
|
|
|
spin_lock(&drm->tile.lock);
|
|
|
|
if (!tile->used &&
|
|
(!tile->fence || nouveau_fence_done(tile->fence)))
|
|
tile->used = true;
|
|
else
|
|
tile = NULL;
|
|
|
|
spin_unlock(&drm->tile.lock);
|
|
return tile;
|
|
}
|
|
|
|
static void
|
|
nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile,
|
|
struct fence *fence)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_drm(dev);
|
|
|
|
if (tile) {
|
|
spin_lock(&drm->tile.lock);
|
|
tile->fence = (struct nouveau_fence *)fence_get(fence);
|
|
tile->used = false;
|
|
spin_unlock(&drm->tile.lock);
|
|
}
|
|
}
|
|
|
|
static struct nouveau_drm_tile *
|
|
nv10_bo_set_tiling(struct drm_device *dev, u32 addr,
|
|
u32 size, u32 pitch, u32 flags)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_drm(dev);
|
|
struct nvkm_fb *pfb = nvxx_fb(&drm->device);
|
|
struct nouveau_drm_tile *tile, *found = NULL;
|
|
int i;
|
|
|
|
for (i = 0; i < pfb->tile.regions; i++) {
|
|
tile = nv10_bo_get_tile_region(dev, i);
|
|
|
|
if (pitch && !found) {
|
|
found = tile;
|
|
continue;
|
|
|
|
} else if (tile && pfb->tile.region[i].pitch) {
|
|
/* Kill an unused tile region. */
|
|
nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0);
|
|
}
|
|
|
|
nv10_bo_put_tile_region(dev, tile, NULL);
|
|
}
|
|
|
|
if (found)
|
|
nv10_bo_update_tile_region(dev, found, addr, size,
|
|
pitch, flags);
|
|
return found;
|
|
}
|
|
|
|
static void
|
|
nouveau_bo_del_ttm(struct ttm_buffer_object *bo)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
|
|
struct drm_device *dev = drm->dev;
|
|
struct nouveau_bo *nvbo = nouveau_bo(bo);
|
|
|
|
if (unlikely(nvbo->gem.filp))
|
|
DRM_ERROR("bo %p still attached to GEM object\n", bo);
|
|
WARN_ON(nvbo->pin_refcnt > 0);
|
|
nv10_bo_put_tile_region(dev, nvbo->tile, NULL);
|
|
kfree(nvbo);
|
|
}
|
|
|
|
static void
|
|
nouveau_bo_fixup_align(struct nouveau_bo *nvbo, u32 flags,
|
|
int *align, int *size)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
|
|
struct nvif_device *device = &drm->device;
|
|
|
|
if (device->info.family < NV_DEVICE_INFO_V0_TESLA) {
|
|
if (nvbo->tile_mode) {
|
|
if (device->info.chipset >= 0x40) {
|
|
*align = 65536;
|
|
*size = roundup(*size, 64 * nvbo->tile_mode);
|
|
|
|
} else if (device->info.chipset >= 0x30) {
|
|
*align = 32768;
|
|
*size = roundup(*size, 64 * nvbo->tile_mode);
|
|
|
|
} else if (device->info.chipset >= 0x20) {
|
|
*align = 16384;
|
|
*size = roundup(*size, 64 * nvbo->tile_mode);
|
|
|
|
} else if (device->info.chipset >= 0x10) {
|
|
*align = 16384;
|
|
*size = roundup(*size, 32 * nvbo->tile_mode);
|
|
}
|
|
}
|
|
} else {
|
|
*size = roundup(*size, (1 << nvbo->page_shift));
|
|
*align = max((1 << nvbo->page_shift), *align);
|
|
}
|
|
|
|
*size = roundup(*size, PAGE_SIZE);
|
|
}
|
|
|
|
int
|
|
nouveau_bo_new(struct drm_device *dev, int size, int align,
|
|
uint32_t flags, uint32_t tile_mode, uint32_t tile_flags,
|
|
struct sg_table *sg, struct reservation_object *robj,
|
|
struct nouveau_bo **pnvbo)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_drm(dev);
|
|
struct nouveau_bo *nvbo;
|
|
size_t acc_size;
|
|
int ret;
|
|
int type = ttm_bo_type_device;
|
|
int lpg_shift = 12;
|
|
int max_size;
|
|
|
|
if (drm->client.vm)
|
|
lpg_shift = drm->client.vm->mmu->lpg_shift;
|
|
max_size = INT_MAX & ~((1 << lpg_shift) - 1);
|
|
|
|
if (size <= 0 || size > max_size) {
|
|
NV_WARN(drm, "skipped size %x\n", (u32)size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (sg)
|
|
type = ttm_bo_type_sg;
|
|
|
|
nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL);
|
|
if (!nvbo)
|
|
return -ENOMEM;
|
|
INIT_LIST_HEAD(&nvbo->head);
|
|
INIT_LIST_HEAD(&nvbo->entry);
|
|
INIT_LIST_HEAD(&nvbo->vma_list);
|
|
nvbo->tile_mode = tile_mode;
|
|
nvbo->tile_flags = tile_flags;
|
|
nvbo->bo.bdev = &drm->ttm.bdev;
|
|
|
|
if (!nv_device_is_cpu_coherent(nvxx_device(&drm->device)))
|
|
nvbo->force_coherent = flags & TTM_PL_FLAG_UNCACHED;
|
|
|
|
nvbo->page_shift = 12;
|
|
if (drm->client.vm) {
|
|
if (!(flags & TTM_PL_FLAG_TT) && size > 256 * 1024)
|
|
nvbo->page_shift = drm->client.vm->mmu->lpg_shift;
|
|
}
|
|
|
|
nouveau_bo_fixup_align(nvbo, flags, &align, &size);
|
|
nvbo->bo.mem.num_pages = size >> PAGE_SHIFT;
|
|
nouveau_bo_placement_set(nvbo, flags, 0);
|
|
|
|
acc_size = ttm_bo_dma_acc_size(&drm->ttm.bdev, size,
|
|
sizeof(struct nouveau_bo));
|
|
|
|
ret = ttm_bo_init(&drm->ttm.bdev, &nvbo->bo, size,
|
|
type, &nvbo->placement,
|
|
align >> PAGE_SHIFT, false, NULL, acc_size, sg,
|
|
robj, nouveau_bo_del_ttm);
|
|
if (ret) {
|
|
/* ttm will call nouveau_bo_del_ttm if it fails.. */
|
|
return ret;
|
|
}
|
|
|
|
*pnvbo = nvbo;
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
set_placement_list(struct ttm_place *pl, unsigned *n, uint32_t type, uint32_t flags)
|
|
{
|
|
*n = 0;
|
|
|
|
if (type & TTM_PL_FLAG_VRAM)
|
|
pl[(*n)++].flags = TTM_PL_FLAG_VRAM | flags;
|
|
if (type & TTM_PL_FLAG_TT)
|
|
pl[(*n)++].flags = TTM_PL_FLAG_TT | flags;
|
|
if (type & TTM_PL_FLAG_SYSTEM)
|
|
pl[(*n)++].flags = TTM_PL_FLAG_SYSTEM | flags;
|
|
}
|
|
|
|
static void
|
|
set_placement_range(struct nouveau_bo *nvbo, uint32_t type)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
|
|
u32 vram_pages = drm->device.info.ram_size >> PAGE_SHIFT;
|
|
unsigned i, fpfn, lpfn;
|
|
|
|
if (drm->device.info.family == NV_DEVICE_INFO_V0_CELSIUS &&
|
|
nvbo->tile_mode && (type & TTM_PL_FLAG_VRAM) &&
|
|
nvbo->bo.mem.num_pages < vram_pages / 4) {
|
|
/*
|
|
* Make sure that the color and depth buffers are handled
|
|
* by independent memory controller units. Up to a 9x
|
|
* speed up when alpha-blending and depth-test are enabled
|
|
* at the same time.
|
|
*/
|
|
if (nvbo->tile_flags & NOUVEAU_GEM_TILE_ZETA) {
|
|
fpfn = vram_pages / 2;
|
|
lpfn = ~0;
|
|
} else {
|
|
fpfn = 0;
|
|
lpfn = vram_pages / 2;
|
|
}
|
|
for (i = 0; i < nvbo->placement.num_placement; ++i) {
|
|
nvbo->placements[i].fpfn = fpfn;
|
|
nvbo->placements[i].lpfn = lpfn;
|
|
}
|
|
for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
|
|
nvbo->busy_placements[i].fpfn = fpfn;
|
|
nvbo->busy_placements[i].lpfn = lpfn;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t type, uint32_t busy)
|
|
{
|
|
struct ttm_placement *pl = &nvbo->placement;
|
|
uint32_t flags = (nvbo->force_coherent ? TTM_PL_FLAG_UNCACHED :
|
|
TTM_PL_MASK_CACHING) |
|
|
(nvbo->pin_refcnt ? TTM_PL_FLAG_NO_EVICT : 0);
|
|
|
|
pl->placement = nvbo->placements;
|
|
set_placement_list(nvbo->placements, &pl->num_placement,
|
|
type, flags);
|
|
|
|
pl->busy_placement = nvbo->busy_placements;
|
|
set_placement_list(nvbo->busy_placements, &pl->num_busy_placement,
|
|
type | busy, flags);
|
|
|
|
set_placement_range(nvbo, type);
|
|
}
|
|
|
|
int
|
|
nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t memtype, bool contig)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
|
|
struct ttm_buffer_object *bo = &nvbo->bo;
|
|
bool force = false, evict = false;
|
|
int ret;
|
|
|
|
ret = ttm_bo_reserve(bo, false, false, false, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
|
|
memtype == TTM_PL_FLAG_VRAM && contig) {
|
|
if (nvbo->tile_flags & NOUVEAU_GEM_TILE_NONCONTIG) {
|
|
if (bo->mem.mem_type == TTM_PL_VRAM) {
|
|
struct nvkm_mem *mem = bo->mem.mm_node;
|
|
if (!list_is_singular(&mem->regions))
|
|
evict = true;
|
|
}
|
|
nvbo->tile_flags &= ~NOUVEAU_GEM_TILE_NONCONTIG;
|
|
force = true;
|
|
}
|
|
}
|
|
|
|
if (nvbo->pin_refcnt) {
|
|
if (!(memtype & (1 << bo->mem.mem_type)) || evict) {
|
|
NV_ERROR(drm, "bo %p pinned elsewhere: "
|
|
"0x%08x vs 0x%08x\n", bo,
|
|
1 << bo->mem.mem_type, memtype);
|
|
ret = -EBUSY;
|
|
}
|
|
nvbo->pin_refcnt++;
|
|
goto out;
|
|
}
|
|
|
|
if (evict) {
|
|
nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT, 0);
|
|
ret = nouveau_bo_validate(nvbo, false, false);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
nvbo->pin_refcnt++;
|
|
nouveau_bo_placement_set(nvbo, memtype, 0);
|
|
|
|
/* drop pin_refcnt temporarily, so we don't trip the assertion
|
|
* in nouveau_bo_move() that makes sure we're not trying to
|
|
* move a pinned buffer
|
|
*/
|
|
nvbo->pin_refcnt--;
|
|
ret = nouveau_bo_validate(nvbo, false, false);
|
|
if (ret)
|
|
goto out;
|
|
nvbo->pin_refcnt++;
|
|
|
|
switch (bo->mem.mem_type) {
|
|
case TTM_PL_VRAM:
|
|
drm->gem.vram_available -= bo->mem.size;
|
|
break;
|
|
case TTM_PL_TT:
|
|
drm->gem.gart_available -= bo->mem.size;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
out:
|
|
if (force && ret)
|
|
nvbo->tile_flags |= NOUVEAU_GEM_TILE_NONCONTIG;
|
|
ttm_bo_unreserve(bo);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
nouveau_bo_unpin(struct nouveau_bo *nvbo)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
|
|
struct ttm_buffer_object *bo = &nvbo->bo;
|
|
int ret, ref;
|
|
|
|
ret = ttm_bo_reserve(bo, false, false, false, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ref = --nvbo->pin_refcnt;
|
|
WARN_ON_ONCE(ref < 0);
|
|
if (ref)
|
|
goto out;
|
|
|
|
nouveau_bo_placement_set(nvbo, bo->mem.placement, 0);
|
|
|
|
ret = nouveau_bo_validate(nvbo, false, false);
|
|
if (ret == 0) {
|
|
switch (bo->mem.mem_type) {
|
|
case TTM_PL_VRAM:
|
|
drm->gem.vram_available += bo->mem.size;
|
|
break;
|
|
case TTM_PL_TT:
|
|
drm->gem.gart_available += bo->mem.size;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
out:
|
|
ttm_bo_unreserve(bo);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
nouveau_bo_map(struct nouveau_bo *nvbo)
|
|
{
|
|
int ret;
|
|
|
|
ret = ttm_bo_reserve(&nvbo->bo, false, false, false, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* TTM buffers allocated using the DMA API already have a mapping, let's
|
|
* use it instead.
|
|
*/
|
|
if (!nvbo->force_coherent)
|
|
ret = ttm_bo_kmap(&nvbo->bo, 0, nvbo->bo.mem.num_pages,
|
|
&nvbo->kmap);
|
|
|
|
ttm_bo_unreserve(&nvbo->bo);
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
nouveau_bo_unmap(struct nouveau_bo *nvbo)
|
|
{
|
|
if (!nvbo)
|
|
return;
|
|
|
|
/*
|
|
* TTM buffers allocated using the DMA API already had a coherent
|
|
* mapping which we used, no need to unmap.
|
|
*/
|
|
if (!nvbo->force_coherent)
|
|
ttm_bo_kunmap(&nvbo->kmap);
|
|
}
|
|
|
|
void
|
|
nouveau_bo_sync_for_device(struct nouveau_bo *nvbo)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
|
|
struct nvkm_device *device = nvxx_device(&drm->device);
|
|
struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm;
|
|
int i;
|
|
|
|
if (!ttm_dma)
|
|
return;
|
|
|
|
/* Don't waste time looping if the object is coherent */
|
|
if (nvbo->force_coherent)
|
|
return;
|
|
|
|
for (i = 0; i < ttm_dma->ttm.num_pages; i++)
|
|
dma_sync_single_for_device(nv_device_base(device),
|
|
ttm_dma->dma_address[i], PAGE_SIZE, DMA_TO_DEVICE);
|
|
}
|
|
|
|
void
|
|
nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
|
|
struct nvkm_device *device = nvxx_device(&drm->device);
|
|
struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm;
|
|
int i;
|
|
|
|
if (!ttm_dma)
|
|
return;
|
|
|
|
/* Don't waste time looping if the object is coherent */
|
|
if (nvbo->force_coherent)
|
|
return;
|
|
|
|
for (i = 0; i < ttm_dma->ttm.num_pages; i++)
|
|
dma_sync_single_for_cpu(nv_device_base(device),
|
|
ttm_dma->dma_address[i], PAGE_SIZE, DMA_FROM_DEVICE);
|
|
}
|
|
|
|
int
|
|
nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible,
|
|
bool no_wait_gpu)
|
|
{
|
|
int ret;
|
|
|
|
ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement,
|
|
interruptible, no_wait_gpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
nouveau_bo_sync_for_device(nvbo);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void *
|
|
_nouveau_bo_mem_index(struct nouveau_bo *nvbo, unsigned index, void *mem, u8 sz)
|
|
{
|
|
struct ttm_dma_tt *dma_tt;
|
|
u8 *m = mem;
|
|
|
|
index *= sz;
|
|
|
|
if (m) {
|
|
/* kmap'd address, return the corresponding offset */
|
|
m += index;
|
|
} else {
|
|
/* DMA-API mapping, lookup the right address */
|
|
dma_tt = (struct ttm_dma_tt *)nvbo->bo.ttm;
|
|
m = dma_tt->cpu_address[index / PAGE_SIZE];
|
|
m += index % PAGE_SIZE;
|
|
}
|
|
|
|
return m;
|
|
}
|
|
#define nouveau_bo_mem_index(o, i, m) _nouveau_bo_mem_index(o, i, m, sizeof(*m))
|
|
|
|
void
|
|
nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val)
|
|
{
|
|
bool is_iomem;
|
|
u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
|
|
|
|
mem = nouveau_bo_mem_index(nvbo, index, mem);
|
|
|
|
if (is_iomem)
|
|
iowrite16_native(val, (void __force __iomem *)mem);
|
|
else
|
|
*mem = val;
|
|
}
|
|
|
|
u32
|
|
nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index)
|
|
{
|
|
bool is_iomem;
|
|
u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
|
|
|
|
mem = nouveau_bo_mem_index(nvbo, index, mem);
|
|
|
|
if (is_iomem)
|
|
return ioread32_native((void __force __iomem *)mem);
|
|
else
|
|
return *mem;
|
|
}
|
|
|
|
void
|
|
nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val)
|
|
{
|
|
bool is_iomem;
|
|
u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
|
|
|
|
mem = nouveau_bo_mem_index(nvbo, index, mem);
|
|
|
|
if (is_iomem)
|
|
iowrite32_native(val, (void __force __iomem *)mem);
|
|
else
|
|
*mem = val;
|
|
}
|
|
|
|
static struct ttm_tt *
|
|
nouveau_ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size,
|
|
uint32_t page_flags, struct page *dummy_read)
|
|
{
|
|
#if __OS_HAS_AGP
|
|
struct nouveau_drm *drm = nouveau_bdev(bdev);
|
|
struct drm_device *dev = drm->dev;
|
|
|
|
if (drm->agp.stat == ENABLED) {
|
|
return ttm_agp_tt_create(bdev, dev->agp->bridge, size,
|
|
page_flags, dummy_read);
|
|
}
|
|
#endif
|
|
|
|
return nouveau_sgdma_create_ttm(bdev, size, page_flags, dummy_read);
|
|
}
|
|
|
|
static int
|
|
nouveau_bo_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
|
|
{
|
|
/* We'll do this from user space. */
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nouveau_bo_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
|
|
struct ttm_mem_type_manager *man)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_bdev(bdev);
|
|
|
|
switch (type) {
|
|
case TTM_PL_SYSTEM:
|
|
man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
|
|
man->available_caching = TTM_PL_MASK_CACHING;
|
|
man->default_caching = TTM_PL_FLAG_CACHED;
|
|
break;
|
|
case TTM_PL_VRAM:
|
|
man->flags = TTM_MEMTYPE_FLAG_FIXED |
|
|
TTM_MEMTYPE_FLAG_MAPPABLE;
|
|
man->available_caching = TTM_PL_FLAG_UNCACHED |
|
|
TTM_PL_FLAG_WC;
|
|
man->default_caching = TTM_PL_FLAG_WC;
|
|
|
|
if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
|
|
/* Some BARs do not support being ioremapped WC */
|
|
if (nvxx_bar(&drm->device)->iomap_uncached) {
|
|
man->available_caching = TTM_PL_FLAG_UNCACHED;
|
|
man->default_caching = TTM_PL_FLAG_UNCACHED;
|
|
}
|
|
|
|
man->func = &nouveau_vram_manager;
|
|
man->io_reserve_fastpath = false;
|
|
man->use_io_reserve_lru = true;
|
|
} else {
|
|
man->func = &ttm_bo_manager_func;
|
|
}
|
|
break;
|
|
case TTM_PL_TT:
|
|
if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA)
|
|
man->func = &nouveau_gart_manager;
|
|
else
|
|
if (drm->agp.stat != ENABLED)
|
|
man->func = &nv04_gart_manager;
|
|
else
|
|
man->func = &ttm_bo_manager_func;
|
|
|
|
if (drm->agp.stat == ENABLED) {
|
|
man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
|
|
man->available_caching = TTM_PL_FLAG_UNCACHED |
|
|
TTM_PL_FLAG_WC;
|
|
man->default_caching = TTM_PL_FLAG_WC;
|
|
} else {
|
|
man->flags = TTM_MEMTYPE_FLAG_MAPPABLE |
|
|
TTM_MEMTYPE_FLAG_CMA;
|
|
man->available_caching = TTM_PL_MASK_CACHING;
|
|
man->default_caching = TTM_PL_FLAG_CACHED;
|
|
}
|
|
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl)
|
|
{
|
|
struct nouveau_bo *nvbo = nouveau_bo(bo);
|
|
|
|
switch (bo->mem.mem_type) {
|
|
case TTM_PL_VRAM:
|
|
nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT,
|
|
TTM_PL_FLAG_SYSTEM);
|
|
break;
|
|
default:
|
|
nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_SYSTEM, 0);
|
|
break;
|
|
}
|
|
|
|
*pl = nvbo->placement;
|
|
}
|
|
|
|
|
|
static int
|
|
nve0_bo_move_init(struct nouveau_channel *chan, u32 handle)
|
|
{
|
|
int ret = RING_SPACE(chan, 2);
|
|
if (ret == 0) {
|
|
BEGIN_NVC0(chan, NvSubCopy, 0x0000, 1);
|
|
OUT_RING (chan, handle & 0x0000ffff);
|
|
FIRE_RING (chan);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
nve0_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
|
|
struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
|
|
{
|
|
struct nvkm_mem *node = old_mem->mm_node;
|
|
int ret = RING_SPACE(chan, 10);
|
|
if (ret == 0) {
|
|
BEGIN_NVC0(chan, NvSubCopy, 0x0400, 8);
|
|
OUT_RING (chan, upper_32_bits(node->vma[0].offset));
|
|
OUT_RING (chan, lower_32_bits(node->vma[0].offset));
|
|
OUT_RING (chan, upper_32_bits(node->vma[1].offset));
|
|
OUT_RING (chan, lower_32_bits(node->vma[1].offset));
|
|
OUT_RING (chan, PAGE_SIZE);
|
|
OUT_RING (chan, PAGE_SIZE);
|
|
OUT_RING (chan, PAGE_SIZE);
|
|
OUT_RING (chan, new_mem->num_pages);
|
|
BEGIN_IMC0(chan, NvSubCopy, 0x0300, 0x0386);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
nvc0_bo_move_init(struct nouveau_channel *chan, u32 handle)
|
|
{
|
|
int ret = RING_SPACE(chan, 2);
|
|
if (ret == 0) {
|
|
BEGIN_NVC0(chan, NvSubCopy, 0x0000, 1);
|
|
OUT_RING (chan, handle);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
nvc0_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
|
|
struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
|
|
{
|
|
struct nvkm_mem *node = old_mem->mm_node;
|
|
u64 src_offset = node->vma[0].offset;
|
|
u64 dst_offset = node->vma[1].offset;
|
|
u32 page_count = new_mem->num_pages;
|
|
int ret;
|
|
|
|
page_count = new_mem->num_pages;
|
|
while (page_count) {
|
|
int line_count = (page_count > 8191) ? 8191 : page_count;
|
|
|
|
ret = RING_SPACE(chan, 11);
|
|
if (ret)
|
|
return ret;
|
|
|
|
BEGIN_NVC0(chan, NvSubCopy, 0x030c, 8);
|
|
OUT_RING (chan, upper_32_bits(src_offset));
|
|
OUT_RING (chan, lower_32_bits(src_offset));
|
|
OUT_RING (chan, upper_32_bits(dst_offset));
|
|
OUT_RING (chan, lower_32_bits(dst_offset));
|
|
OUT_RING (chan, PAGE_SIZE);
|
|
OUT_RING (chan, PAGE_SIZE);
|
|
OUT_RING (chan, PAGE_SIZE);
|
|
OUT_RING (chan, line_count);
|
|
BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
|
|
OUT_RING (chan, 0x00000110);
|
|
|
|
page_count -= line_count;
|
|
src_offset += (PAGE_SIZE * line_count);
|
|
dst_offset += (PAGE_SIZE * line_count);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvc0_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
|
|
struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
|
|
{
|
|
struct nvkm_mem *node = old_mem->mm_node;
|
|
u64 src_offset = node->vma[0].offset;
|
|
u64 dst_offset = node->vma[1].offset;
|
|
u32 page_count = new_mem->num_pages;
|
|
int ret;
|
|
|
|
page_count = new_mem->num_pages;
|
|
while (page_count) {
|
|
int line_count = (page_count > 2047) ? 2047 : page_count;
|
|
|
|
ret = RING_SPACE(chan, 12);
|
|
if (ret)
|
|
return ret;
|
|
|
|
BEGIN_NVC0(chan, NvSubCopy, 0x0238, 2);
|
|
OUT_RING (chan, upper_32_bits(dst_offset));
|
|
OUT_RING (chan, lower_32_bits(dst_offset));
|
|
BEGIN_NVC0(chan, NvSubCopy, 0x030c, 6);
|
|
OUT_RING (chan, upper_32_bits(src_offset));
|
|
OUT_RING (chan, lower_32_bits(src_offset));
|
|
OUT_RING (chan, PAGE_SIZE); /* src_pitch */
|
|
OUT_RING (chan, PAGE_SIZE); /* dst_pitch */
|
|
OUT_RING (chan, PAGE_SIZE); /* line_length */
|
|
OUT_RING (chan, line_count);
|
|
BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
|
|
OUT_RING (chan, 0x00100110);
|
|
|
|
page_count -= line_count;
|
|
src_offset += (PAGE_SIZE * line_count);
|
|
dst_offset += (PAGE_SIZE * line_count);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nva3_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
|
|
struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
|
|
{
|
|
struct nvkm_mem *node = old_mem->mm_node;
|
|
u64 src_offset = node->vma[0].offset;
|
|
u64 dst_offset = node->vma[1].offset;
|
|
u32 page_count = new_mem->num_pages;
|
|
int ret;
|
|
|
|
page_count = new_mem->num_pages;
|
|
while (page_count) {
|
|
int line_count = (page_count > 8191) ? 8191 : page_count;
|
|
|
|
ret = RING_SPACE(chan, 11);
|
|
if (ret)
|
|
return ret;
|
|
|
|
BEGIN_NV04(chan, NvSubCopy, 0x030c, 8);
|
|
OUT_RING (chan, upper_32_bits(src_offset));
|
|
OUT_RING (chan, lower_32_bits(src_offset));
|
|
OUT_RING (chan, upper_32_bits(dst_offset));
|
|
OUT_RING (chan, lower_32_bits(dst_offset));
|
|
OUT_RING (chan, PAGE_SIZE);
|
|
OUT_RING (chan, PAGE_SIZE);
|
|
OUT_RING (chan, PAGE_SIZE);
|
|
OUT_RING (chan, line_count);
|
|
BEGIN_NV04(chan, NvSubCopy, 0x0300, 1);
|
|
OUT_RING (chan, 0x00000110);
|
|
|
|
page_count -= line_count;
|
|
src_offset += (PAGE_SIZE * line_count);
|
|
dst_offset += (PAGE_SIZE * line_count);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nv98_bo_move_exec(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
|
|
struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
|
|
{
|
|
struct nvkm_mem *node = old_mem->mm_node;
|
|
int ret = RING_SPACE(chan, 7);
|
|
if (ret == 0) {
|
|
BEGIN_NV04(chan, NvSubCopy, 0x0320, 6);
|
|
OUT_RING (chan, upper_32_bits(node->vma[0].offset));
|
|
OUT_RING (chan, lower_32_bits(node->vma[0].offset));
|
|
OUT_RING (chan, upper_32_bits(node->vma[1].offset));
|
|
OUT_RING (chan, lower_32_bits(node->vma[1].offset));
|
|
OUT_RING (chan, 0x00000000 /* COPY */);
|
|
OUT_RING (chan, new_mem->num_pages << PAGE_SHIFT);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
nv84_bo_move_exec(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
|
|
struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
|
|
{
|
|
struct nvkm_mem *node = old_mem->mm_node;
|
|
int ret = RING_SPACE(chan, 7);
|
|
if (ret == 0) {
|
|
BEGIN_NV04(chan, NvSubCopy, 0x0304, 6);
|
|
OUT_RING (chan, new_mem->num_pages << PAGE_SHIFT);
|
|
OUT_RING (chan, upper_32_bits(node->vma[0].offset));
|
|
OUT_RING (chan, lower_32_bits(node->vma[0].offset));
|
|
OUT_RING (chan, upper_32_bits(node->vma[1].offset));
|
|
OUT_RING (chan, lower_32_bits(node->vma[1].offset));
|
|
OUT_RING (chan, 0x00000000 /* MODE_COPY, QUERY_NONE */);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
nv50_bo_move_init(struct nouveau_channel *chan, u32 handle)
|
|
{
|
|
int ret = RING_SPACE(chan, 6);
|
|
if (ret == 0) {
|
|
BEGIN_NV04(chan, NvSubCopy, 0x0000, 1);
|
|
OUT_RING (chan, handle);
|
|
BEGIN_NV04(chan, NvSubCopy, 0x0180, 3);
|
|
OUT_RING (chan, chan->drm->ntfy.handle);
|
|
OUT_RING (chan, chan->vram.handle);
|
|
OUT_RING (chan, chan->vram.handle);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
nv50_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
|
|
struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
|
|
{
|
|
struct nvkm_mem *node = old_mem->mm_node;
|
|
u64 length = (new_mem->num_pages << PAGE_SHIFT);
|
|
u64 src_offset = node->vma[0].offset;
|
|
u64 dst_offset = node->vma[1].offset;
|
|
int src_tiled = !!node->memtype;
|
|
int dst_tiled = !!((struct nvkm_mem *)new_mem->mm_node)->memtype;
|
|
int ret;
|
|
|
|
while (length) {
|
|
u32 amount, stride, height;
|
|
|
|
ret = RING_SPACE(chan, 18 + 6 * (src_tiled + dst_tiled));
|
|
if (ret)
|
|
return ret;
|
|
|
|
amount = min(length, (u64)(4 * 1024 * 1024));
|
|
stride = 16 * 4;
|
|
height = amount / stride;
|
|
|
|
if (src_tiled) {
|
|
BEGIN_NV04(chan, NvSubCopy, 0x0200, 7);
|
|
OUT_RING (chan, 0);
|
|
OUT_RING (chan, 0);
|
|
OUT_RING (chan, stride);
|
|
OUT_RING (chan, height);
|
|
OUT_RING (chan, 1);
|
|
OUT_RING (chan, 0);
|
|
OUT_RING (chan, 0);
|
|
} else {
|
|
BEGIN_NV04(chan, NvSubCopy, 0x0200, 1);
|
|
OUT_RING (chan, 1);
|
|
}
|
|
if (dst_tiled) {
|
|
BEGIN_NV04(chan, NvSubCopy, 0x021c, 7);
|
|
OUT_RING (chan, 0);
|
|
OUT_RING (chan, 0);
|
|
OUT_RING (chan, stride);
|
|
OUT_RING (chan, height);
|
|
OUT_RING (chan, 1);
|
|
OUT_RING (chan, 0);
|
|
OUT_RING (chan, 0);
|
|
} else {
|
|
BEGIN_NV04(chan, NvSubCopy, 0x021c, 1);
|
|
OUT_RING (chan, 1);
|
|
}
|
|
|
|
BEGIN_NV04(chan, NvSubCopy, 0x0238, 2);
|
|
OUT_RING (chan, upper_32_bits(src_offset));
|
|
OUT_RING (chan, upper_32_bits(dst_offset));
|
|
BEGIN_NV04(chan, NvSubCopy, 0x030c, 8);
|
|
OUT_RING (chan, lower_32_bits(src_offset));
|
|
OUT_RING (chan, lower_32_bits(dst_offset));
|
|
OUT_RING (chan, stride);
|
|
OUT_RING (chan, stride);
|
|
OUT_RING (chan, stride);
|
|
OUT_RING (chan, height);
|
|
OUT_RING (chan, 0x00000101);
|
|
OUT_RING (chan, 0x00000000);
|
|
BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1);
|
|
OUT_RING (chan, 0);
|
|
|
|
length -= amount;
|
|
src_offset += amount;
|
|
dst_offset += amount;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nv04_bo_move_init(struct nouveau_channel *chan, u32 handle)
|
|
{
|
|
int ret = RING_SPACE(chan, 4);
|
|
if (ret == 0) {
|
|
BEGIN_NV04(chan, NvSubCopy, 0x0000, 1);
|
|
OUT_RING (chan, handle);
|
|
BEGIN_NV04(chan, NvSubCopy, 0x0180, 1);
|
|
OUT_RING (chan, chan->drm->ntfy.handle);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline uint32_t
|
|
nouveau_bo_mem_ctxdma(struct ttm_buffer_object *bo,
|
|
struct nouveau_channel *chan, struct ttm_mem_reg *mem)
|
|
{
|
|
if (mem->mem_type == TTM_PL_TT)
|
|
return NvDmaTT;
|
|
return chan->vram.handle;
|
|
}
|
|
|
|
static int
|
|
nv04_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
|
|
struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
|
|
{
|
|
u32 src_offset = old_mem->start << PAGE_SHIFT;
|
|
u32 dst_offset = new_mem->start << PAGE_SHIFT;
|
|
u32 page_count = new_mem->num_pages;
|
|
int ret;
|
|
|
|
ret = RING_SPACE(chan, 3);
|
|
if (ret)
|
|
return ret;
|
|
|
|
BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_DMA_SOURCE, 2);
|
|
OUT_RING (chan, nouveau_bo_mem_ctxdma(bo, chan, old_mem));
|
|
OUT_RING (chan, nouveau_bo_mem_ctxdma(bo, chan, new_mem));
|
|
|
|
page_count = new_mem->num_pages;
|
|
while (page_count) {
|
|
int line_count = (page_count > 2047) ? 2047 : page_count;
|
|
|
|
ret = RING_SPACE(chan, 11);
|
|
if (ret)
|
|
return ret;
|
|
|
|
BEGIN_NV04(chan, NvSubCopy,
|
|
NV_MEMORY_TO_MEMORY_FORMAT_OFFSET_IN, 8);
|
|
OUT_RING (chan, src_offset);
|
|
OUT_RING (chan, dst_offset);
|
|
OUT_RING (chan, PAGE_SIZE); /* src_pitch */
|
|
OUT_RING (chan, PAGE_SIZE); /* dst_pitch */
|
|
OUT_RING (chan, PAGE_SIZE); /* line_length */
|
|
OUT_RING (chan, line_count);
|
|
OUT_RING (chan, 0x00000101);
|
|
OUT_RING (chan, 0x00000000);
|
|
BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1);
|
|
OUT_RING (chan, 0);
|
|
|
|
page_count -= line_count;
|
|
src_offset += (PAGE_SIZE * line_count);
|
|
dst_offset += (PAGE_SIZE * line_count);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo,
|
|
struct ttm_mem_reg *mem)
|
|
{
|
|
struct nvkm_mem *old_node = bo->mem.mm_node;
|
|
struct nvkm_mem *new_node = mem->mm_node;
|
|
u64 size = (u64)mem->num_pages << PAGE_SHIFT;
|
|
int ret;
|
|
|
|
ret = nvkm_vm_get(drm->client.vm, size, old_node->page_shift,
|
|
NV_MEM_ACCESS_RW, &old_node->vma[0]);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nvkm_vm_get(drm->client.vm, size, new_node->page_shift,
|
|
NV_MEM_ACCESS_RW, &old_node->vma[1]);
|
|
if (ret) {
|
|
nvkm_vm_put(&old_node->vma[0]);
|
|
return ret;
|
|
}
|
|
|
|
nvkm_vm_map(&old_node->vma[0], old_node);
|
|
nvkm_vm_map(&old_node->vma[1], new_node);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict, bool intr,
|
|
bool no_wait_gpu, struct ttm_mem_reg *new_mem)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
|
|
struct nouveau_channel *chan = drm->ttm.chan;
|
|
struct nouveau_cli *cli = (void *)nvif_client(&chan->device->base);
|
|
struct nouveau_fence *fence;
|
|
int ret;
|
|
|
|
/* create temporary vmas for the transfer and attach them to the
|
|
* old nvkm_mem node, these will get cleaned up after ttm has
|
|
* destroyed the ttm_mem_reg
|
|
*/
|
|
if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
|
|
ret = nouveau_bo_move_prep(drm, bo, new_mem);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING);
|
|
ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, intr);
|
|
if (ret == 0) {
|
|
ret = drm->ttm.move(chan, bo, &bo->mem, new_mem);
|
|
if (ret == 0) {
|
|
ret = nouveau_fence_new(chan, false, &fence);
|
|
if (ret == 0) {
|
|
ret = ttm_bo_move_accel_cleanup(bo,
|
|
&fence->base,
|
|
evict,
|
|
no_wait_gpu,
|
|
new_mem);
|
|
nouveau_fence_unref(&fence);
|
|
}
|
|
}
|
|
}
|
|
mutex_unlock(&cli->mutex);
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
nouveau_bo_move_init(struct nouveau_drm *drm)
|
|
{
|
|
static const struct {
|
|
const char *name;
|
|
int engine;
|
|
u32 oclass;
|
|
int (*exec)(struct nouveau_channel *,
|
|
struct ttm_buffer_object *,
|
|
struct ttm_mem_reg *, struct ttm_mem_reg *);
|
|
int (*init)(struct nouveau_channel *, u32 handle);
|
|
} _methods[] = {
|
|
{ "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init },
|
|
{ "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init },
|
|
{ "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init },
|
|
{ "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init },
|
|
{ "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init },
|
|
{ "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init },
|
|
{ "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init },
|
|
{ "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init },
|
|
{ "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init },
|
|
{ "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init },
|
|
{ "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init },
|
|
{},
|
|
{ "CRYPT", 0, 0x88b4, nv98_bo_move_exec, nv50_bo_move_init },
|
|
}, *mthd = _methods;
|
|
const char *name = "CPU";
|
|
int ret;
|
|
|
|
do {
|
|
struct nouveau_channel *chan;
|
|
|
|
if (mthd->engine)
|
|
chan = drm->cechan;
|
|
else
|
|
chan = drm->channel;
|
|
if (chan == NULL)
|
|
continue;
|
|
|
|
ret = nvif_object_init(chan->object, NULL,
|
|
mthd->oclass | (mthd->engine << 16),
|
|
mthd->oclass, NULL, 0,
|
|
&drm->ttm.copy);
|
|
if (ret == 0) {
|
|
ret = mthd->init(chan, drm->ttm.copy.handle);
|
|
if (ret) {
|
|
nvif_object_fini(&drm->ttm.copy);
|
|
continue;
|
|
}
|
|
|
|
drm->ttm.move = mthd->exec;
|
|
drm->ttm.chan = chan;
|
|
name = mthd->name;
|
|
break;
|
|
}
|
|
} while ((++mthd)->exec);
|
|
|
|
NV_INFO(drm, "MM: using %s for buffer copies\n", name);
|
|
}
|
|
|
|
static int
|
|
nouveau_bo_move_flipd(struct ttm_buffer_object *bo, bool evict, bool intr,
|
|
bool no_wait_gpu, struct ttm_mem_reg *new_mem)
|
|
{
|
|
struct ttm_place placement_memtype = {
|
|
.fpfn = 0,
|
|
.lpfn = 0,
|
|
.flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING
|
|
};
|
|
struct ttm_placement placement;
|
|
struct ttm_mem_reg tmp_mem;
|
|
int ret;
|
|
|
|
placement.num_placement = placement.num_busy_placement = 1;
|
|
placement.placement = placement.busy_placement = &placement_memtype;
|
|
|
|
tmp_mem = *new_mem;
|
|
tmp_mem.mm_node = NULL;
|
|
ret = ttm_bo_mem_space(bo, &placement, &tmp_mem, intr, no_wait_gpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = ttm_tt_bind(bo->ttm, &tmp_mem);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, &tmp_mem);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = ttm_bo_move_ttm(bo, true, no_wait_gpu, new_mem);
|
|
out:
|
|
ttm_bo_mem_put(bo, &tmp_mem);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
nouveau_bo_move_flips(struct ttm_buffer_object *bo, bool evict, bool intr,
|
|
bool no_wait_gpu, struct ttm_mem_reg *new_mem)
|
|
{
|
|
struct ttm_place placement_memtype = {
|
|
.fpfn = 0,
|
|
.lpfn = 0,
|
|
.flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING
|
|
};
|
|
struct ttm_placement placement;
|
|
struct ttm_mem_reg tmp_mem;
|
|
int ret;
|
|
|
|
placement.num_placement = placement.num_busy_placement = 1;
|
|
placement.placement = placement.busy_placement = &placement_memtype;
|
|
|
|
tmp_mem = *new_mem;
|
|
tmp_mem.mm_node = NULL;
|
|
ret = ttm_bo_mem_space(bo, &placement, &tmp_mem, intr, no_wait_gpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = ttm_bo_move_ttm(bo, true, no_wait_gpu, &tmp_mem);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, new_mem);
|
|
if (ret)
|
|
goto out;
|
|
|
|
out:
|
|
ttm_bo_mem_put(bo, &tmp_mem);
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
nouveau_bo_move_ntfy(struct ttm_buffer_object *bo, struct ttm_mem_reg *new_mem)
|
|
{
|
|
struct nouveau_bo *nvbo = nouveau_bo(bo);
|
|
struct nvkm_vma *vma;
|
|
|
|
/* ttm can now (stupidly) pass the driver bos it didn't create... */
|
|
if (bo->destroy != nouveau_bo_del_ttm)
|
|
return;
|
|
|
|
list_for_each_entry(vma, &nvbo->vma_list, head) {
|
|
if (new_mem && new_mem->mem_type != TTM_PL_SYSTEM &&
|
|
(new_mem->mem_type == TTM_PL_VRAM ||
|
|
nvbo->page_shift != vma->vm->mmu->lpg_shift)) {
|
|
nvkm_vm_map(vma, new_mem->mm_node);
|
|
} else {
|
|
nvkm_vm_unmap(vma);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_mem_reg *new_mem,
|
|
struct nouveau_drm_tile **new_tile)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
|
|
struct drm_device *dev = drm->dev;
|
|
struct nouveau_bo *nvbo = nouveau_bo(bo);
|
|
u64 offset = new_mem->start << PAGE_SHIFT;
|
|
|
|
*new_tile = NULL;
|
|
if (new_mem->mem_type != TTM_PL_VRAM)
|
|
return 0;
|
|
|
|
if (drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
|
|
*new_tile = nv10_bo_set_tiling(dev, offset, new_mem->size,
|
|
nvbo->tile_mode,
|
|
nvbo->tile_flags);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo,
|
|
struct nouveau_drm_tile *new_tile,
|
|
struct nouveau_drm_tile **old_tile)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
|
|
struct drm_device *dev = drm->dev;
|
|
struct fence *fence = reservation_object_get_excl(bo->resv);
|
|
|
|
nv10_bo_put_tile_region(dev, *old_tile, fence);
|
|
*old_tile = new_tile;
|
|
}
|
|
|
|
static int
|
|
nouveau_bo_move(struct ttm_buffer_object *bo, bool evict, bool intr,
|
|
bool no_wait_gpu, struct ttm_mem_reg *new_mem)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
|
|
struct nouveau_bo *nvbo = nouveau_bo(bo);
|
|
struct ttm_mem_reg *old_mem = &bo->mem;
|
|
struct nouveau_drm_tile *new_tile = NULL;
|
|
int ret = 0;
|
|
|
|
if (nvbo->pin_refcnt)
|
|
NV_WARN(drm, "Moving pinned object %p!\n", nvbo);
|
|
|
|
if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA) {
|
|
ret = nouveau_bo_vm_bind(bo, new_mem, &new_tile);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* Fake bo copy. */
|
|
if (old_mem->mem_type == TTM_PL_SYSTEM && !bo->ttm) {
|
|
BUG_ON(bo->mem.mm_node != NULL);
|
|
bo->mem = *new_mem;
|
|
new_mem->mm_node = NULL;
|
|
goto out;
|
|
}
|
|
|
|
/* Hardware assisted copy. */
|
|
if (drm->ttm.move) {
|
|
if (new_mem->mem_type == TTM_PL_SYSTEM)
|
|
ret = nouveau_bo_move_flipd(bo, evict, intr,
|
|
no_wait_gpu, new_mem);
|
|
else if (old_mem->mem_type == TTM_PL_SYSTEM)
|
|
ret = nouveau_bo_move_flips(bo, evict, intr,
|
|
no_wait_gpu, new_mem);
|
|
else
|
|
ret = nouveau_bo_move_m2mf(bo, evict, intr,
|
|
no_wait_gpu, new_mem);
|
|
if (!ret)
|
|
goto out;
|
|
}
|
|
|
|
/* Fallback to software copy. */
|
|
ret = ttm_bo_wait(bo, true, intr, no_wait_gpu);
|
|
if (ret == 0)
|
|
ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, new_mem);
|
|
|
|
out:
|
|
if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA) {
|
|
if (ret)
|
|
nouveau_bo_vm_cleanup(bo, NULL, &new_tile);
|
|
else
|
|
nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
nouveau_bo_verify_access(struct ttm_buffer_object *bo, struct file *filp)
|
|
{
|
|
struct nouveau_bo *nvbo = nouveau_bo(bo);
|
|
|
|
return drm_vma_node_verify_access(&nvbo->gem.vma_node, filp);
|
|
}
|
|
|
|
static int
|
|
nouveau_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
|
|
{
|
|
struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
|
|
struct nouveau_drm *drm = nouveau_bdev(bdev);
|
|
struct nvkm_mem *node = mem->mm_node;
|
|
int ret;
|
|
|
|
mem->bus.addr = NULL;
|
|
mem->bus.offset = 0;
|
|
mem->bus.size = mem->num_pages << PAGE_SHIFT;
|
|
mem->bus.base = 0;
|
|
mem->bus.is_iomem = false;
|
|
if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
|
|
return -EINVAL;
|
|
switch (mem->mem_type) {
|
|
case TTM_PL_SYSTEM:
|
|
/* System memory */
|
|
return 0;
|
|
case TTM_PL_TT:
|
|
#if __OS_HAS_AGP
|
|
if (drm->agp.stat == ENABLED) {
|
|
mem->bus.offset = mem->start << PAGE_SHIFT;
|
|
mem->bus.base = drm->agp.base;
|
|
mem->bus.is_iomem = !drm->dev->agp->cant_use_aperture;
|
|
}
|
|
#endif
|
|
if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA || !node->memtype)
|
|
/* untiled */
|
|
break;
|
|
/* fallthrough, tiled memory */
|
|
case TTM_PL_VRAM:
|
|
mem->bus.offset = mem->start << PAGE_SHIFT;
|
|
mem->bus.base = nv_device_resource_start(nvxx_device(&drm->device), 1);
|
|
mem->bus.is_iomem = true;
|
|
if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
|
|
struct nvkm_bar *bar = nvxx_bar(&drm->device);
|
|
|
|
ret = bar->umap(bar, node, NV_MEM_ACCESS_RW,
|
|
&node->bar_vma);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mem->bus.offset = node->bar_vma.offset;
|
|
}
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nouveau_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_bdev(bdev);
|
|
struct nvkm_bar *bar = nvxx_bar(&drm->device);
|
|
struct nvkm_mem *node = mem->mm_node;
|
|
|
|
if (!node->bar_vma.node)
|
|
return;
|
|
|
|
bar->unmap(bar, &node->bar_vma);
|
|
}
|
|
|
|
static int
|
|
nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
|
|
struct nouveau_bo *nvbo = nouveau_bo(bo);
|
|
struct nvif_device *device = &drm->device;
|
|
u32 mappable = nv_device_resource_len(nvxx_device(device), 1) >> PAGE_SHIFT;
|
|
int i, ret;
|
|
|
|
/* as long as the bo isn't in vram, and isn't tiled, we've got
|
|
* nothing to do here.
|
|
*/
|
|
if (bo->mem.mem_type != TTM_PL_VRAM) {
|
|
if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA ||
|
|
!nouveau_bo_tile_layout(nvbo))
|
|
return 0;
|
|
|
|
if (bo->mem.mem_type == TTM_PL_SYSTEM) {
|
|
nouveau_bo_placement_set(nvbo, TTM_PL_TT, 0);
|
|
|
|
ret = nouveau_bo_validate(nvbo, false, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* make sure bo is in mappable vram */
|
|
if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA ||
|
|
bo->mem.start + bo->mem.num_pages < mappable)
|
|
return 0;
|
|
|
|
for (i = 0; i < nvbo->placement.num_placement; ++i) {
|
|
nvbo->placements[i].fpfn = 0;
|
|
nvbo->placements[i].lpfn = mappable;
|
|
}
|
|
|
|
for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
|
|
nvbo->busy_placements[i].fpfn = 0;
|
|
nvbo->busy_placements[i].lpfn = mappable;
|
|
}
|
|
|
|
nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_VRAM, 0);
|
|
return nouveau_bo_validate(nvbo, false, false);
|
|
}
|
|
|
|
static int
|
|
nouveau_ttm_tt_populate(struct ttm_tt *ttm)
|
|
{
|
|
struct ttm_dma_tt *ttm_dma = (void *)ttm;
|
|
struct nouveau_drm *drm;
|
|
struct nvkm_device *device;
|
|
struct drm_device *dev;
|
|
struct device *pdev;
|
|
unsigned i;
|
|
int r;
|
|
bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
|
|
|
|
if (ttm->state != tt_unpopulated)
|
|
return 0;
|
|
|
|
if (slave && ttm->sg) {
|
|
/* make userspace faulting work */
|
|
drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
|
|
ttm_dma->dma_address, ttm->num_pages);
|
|
ttm->state = tt_unbound;
|
|
return 0;
|
|
}
|
|
|
|
drm = nouveau_bdev(ttm->bdev);
|
|
device = nvxx_device(&drm->device);
|
|
dev = drm->dev;
|
|
pdev = nv_device_base(device);
|
|
|
|
/*
|
|
* Objects matching this condition have been marked as force_coherent,
|
|
* so use the DMA API for them.
|
|
*/
|
|
if (!nv_device_is_cpu_coherent(device) &&
|
|
ttm->caching_state == tt_uncached)
|
|
return ttm_dma_populate(ttm_dma, dev->dev);
|
|
|
|
#if __OS_HAS_AGP
|
|
if (drm->agp.stat == ENABLED) {
|
|
return ttm_agp_tt_populate(ttm);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SWIOTLB
|
|
if (swiotlb_nr_tbl()) {
|
|
return ttm_dma_populate((void *)ttm, dev->dev);
|
|
}
|
|
#endif
|
|
|
|
r = ttm_pool_populate(ttm);
|
|
if (r) {
|
|
return r;
|
|
}
|
|
|
|
for (i = 0; i < ttm->num_pages; i++) {
|
|
dma_addr_t addr;
|
|
|
|
addr = dma_map_page(pdev, ttm->pages[i], 0, PAGE_SIZE,
|
|
DMA_BIDIRECTIONAL);
|
|
|
|
if (dma_mapping_error(pdev, addr)) {
|
|
while (--i) {
|
|
dma_unmap_page(pdev, ttm_dma->dma_address[i],
|
|
PAGE_SIZE, DMA_BIDIRECTIONAL);
|
|
ttm_dma->dma_address[i] = 0;
|
|
}
|
|
ttm_pool_unpopulate(ttm);
|
|
return -EFAULT;
|
|
}
|
|
|
|
ttm_dma->dma_address[i] = addr;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nouveau_ttm_tt_unpopulate(struct ttm_tt *ttm)
|
|
{
|
|
struct ttm_dma_tt *ttm_dma = (void *)ttm;
|
|
struct nouveau_drm *drm;
|
|
struct nvkm_device *device;
|
|
struct drm_device *dev;
|
|
struct device *pdev;
|
|
unsigned i;
|
|
bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
|
|
|
|
if (slave)
|
|
return;
|
|
|
|
drm = nouveau_bdev(ttm->bdev);
|
|
device = nvxx_device(&drm->device);
|
|
dev = drm->dev;
|
|
pdev = nv_device_base(device);
|
|
|
|
/*
|
|
* Objects matching this condition have been marked as force_coherent,
|
|
* so use the DMA API for them.
|
|
*/
|
|
if (!nv_device_is_cpu_coherent(device) &&
|
|
ttm->caching_state == tt_uncached) {
|
|
ttm_dma_unpopulate(ttm_dma, dev->dev);
|
|
return;
|
|
}
|
|
|
|
#if __OS_HAS_AGP
|
|
if (drm->agp.stat == ENABLED) {
|
|
ttm_agp_tt_unpopulate(ttm);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SWIOTLB
|
|
if (swiotlb_nr_tbl()) {
|
|
ttm_dma_unpopulate((void *)ttm, dev->dev);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
for (i = 0; i < ttm->num_pages; i++) {
|
|
if (ttm_dma->dma_address[i]) {
|
|
dma_unmap_page(pdev, ttm_dma->dma_address[i], PAGE_SIZE,
|
|
DMA_BIDIRECTIONAL);
|
|
}
|
|
}
|
|
|
|
ttm_pool_unpopulate(ttm);
|
|
}
|
|
|
|
void
|
|
nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive)
|
|
{
|
|
struct reservation_object *resv = nvbo->bo.resv;
|
|
|
|
if (exclusive)
|
|
reservation_object_add_excl_fence(resv, &fence->base);
|
|
else if (fence)
|
|
reservation_object_add_shared_fence(resv, &fence->base);
|
|
}
|
|
|
|
struct ttm_bo_driver nouveau_bo_driver = {
|
|
.ttm_tt_create = &nouveau_ttm_tt_create,
|
|
.ttm_tt_populate = &nouveau_ttm_tt_populate,
|
|
.ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate,
|
|
.invalidate_caches = nouveau_bo_invalidate_caches,
|
|
.init_mem_type = nouveau_bo_init_mem_type,
|
|
.evict_flags = nouveau_bo_evict_flags,
|
|
.move_notify = nouveau_bo_move_ntfy,
|
|
.move = nouveau_bo_move,
|
|
.verify_access = nouveau_bo_verify_access,
|
|
.fault_reserve_notify = &nouveau_ttm_fault_reserve_notify,
|
|
.io_mem_reserve = &nouveau_ttm_io_mem_reserve,
|
|
.io_mem_free = &nouveau_ttm_io_mem_free,
|
|
};
|
|
|
|
struct nvkm_vma *
|
|
nouveau_bo_vma_find(struct nouveau_bo *nvbo, struct nvkm_vm *vm)
|
|
{
|
|
struct nvkm_vma *vma;
|
|
list_for_each_entry(vma, &nvbo->vma_list, head) {
|
|
if (vma->vm == vm)
|
|
return vma;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
int
|
|
nouveau_bo_vma_add(struct nouveau_bo *nvbo, struct nvkm_vm *vm,
|
|
struct nvkm_vma *vma)
|
|
{
|
|
const u32 size = nvbo->bo.mem.num_pages << PAGE_SHIFT;
|
|
int ret;
|
|
|
|
ret = nvkm_vm_get(vm, size, nvbo->page_shift,
|
|
NV_MEM_ACCESS_RW, vma);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if ( nvbo->bo.mem.mem_type != TTM_PL_SYSTEM &&
|
|
(nvbo->bo.mem.mem_type == TTM_PL_VRAM ||
|
|
nvbo->page_shift != vma->vm->mmu->lpg_shift))
|
|
nvkm_vm_map(vma, nvbo->bo.mem.mm_node);
|
|
|
|
list_add_tail(&vma->head, &nvbo->vma_list);
|
|
vma->refcount = 1;
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
nouveau_bo_vma_del(struct nouveau_bo *nvbo, struct nvkm_vma *vma)
|
|
{
|
|
if (vma->node) {
|
|
if (nvbo->bo.mem.mem_type != TTM_PL_SYSTEM)
|
|
nvkm_vm_unmap(vma);
|
|
nvkm_vm_put(vma);
|
|
list_del(&vma->head);
|
|
}
|
|
}
|