mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-16 23:45:31 +08:00
eb52286634
different nodes Date: Thu, 22 Feb 2024 22:04:17 +0800 When a group of tasks that access different nodes are scheduled on the same node, they may encounter bandwidth bottlenecks and access latency. Thus, numa_aware flag is introduced here, allowing tasks to be distributed across different nodes to fully utilize the advantage of multi-node systems. Link: https://lkml.kernel.org/r/20240222140422.393911-5-gang.li@linux.dev Signed-off-by: Gang Li <ligang.bdlg@bytedance.com> Tested-by: David Rientjes <rientjes@google.com> Reviewed-by: Muchun Song <muchun.song@linux.dev> Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jane Chu <jane.chu@oracle.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Steffen Klassert <steffen.klassert@secunet.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2797 lines
78 KiB
C
2797 lines
78 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* mm_init.c - Memory initialisation verification and debugging
|
|
*
|
|
* Copyright 2008 IBM Corporation, 2008
|
|
* Author Mel Gorman <mel@csn.ul.ie>
|
|
*
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kobject.h>
|
|
#include <linux/export.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/page-isolation.h>
|
|
#include <linux/padata.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <linux/kfence.h>
|
|
#include <linux/page_ext.h>
|
|
#include <linux/pti.h>
|
|
#include <linux/pgtable.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/cma.h>
|
|
#include <linux/crash_dump.h>
|
|
#include "internal.h"
|
|
#include "slab.h"
|
|
#include "shuffle.h"
|
|
|
|
#include <asm/setup.h>
|
|
|
|
#ifdef CONFIG_DEBUG_MEMORY_INIT
|
|
int __meminitdata mminit_loglevel;
|
|
|
|
/* The zonelists are simply reported, validation is manual. */
|
|
void __init mminit_verify_zonelist(void)
|
|
{
|
|
int nid;
|
|
|
|
if (mminit_loglevel < MMINIT_VERIFY)
|
|
return;
|
|
|
|
for_each_online_node(nid) {
|
|
pg_data_t *pgdat = NODE_DATA(nid);
|
|
struct zone *zone;
|
|
struct zoneref *z;
|
|
struct zonelist *zonelist;
|
|
int i, listid, zoneid;
|
|
|
|
BUILD_BUG_ON(MAX_ZONELISTS > 2);
|
|
for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
|
|
|
|
/* Identify the zone and nodelist */
|
|
zoneid = i % MAX_NR_ZONES;
|
|
listid = i / MAX_NR_ZONES;
|
|
zonelist = &pgdat->node_zonelists[listid];
|
|
zone = &pgdat->node_zones[zoneid];
|
|
if (!populated_zone(zone))
|
|
continue;
|
|
|
|
/* Print information about the zonelist */
|
|
printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
|
|
listid > 0 ? "thisnode" : "general", nid,
|
|
zone->name);
|
|
|
|
/* Iterate the zonelist */
|
|
for_each_zone_zonelist(zone, z, zonelist, zoneid)
|
|
pr_cont("%d:%s ", zone_to_nid(zone), zone->name);
|
|
pr_cont("\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
void __init mminit_verify_pageflags_layout(void)
|
|
{
|
|
int shift, width;
|
|
unsigned long or_mask, add_mask;
|
|
|
|
shift = BITS_PER_LONG;
|
|
width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH
|
|
- LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH;
|
|
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
|
|
"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
|
|
SECTIONS_WIDTH,
|
|
NODES_WIDTH,
|
|
ZONES_WIDTH,
|
|
LAST_CPUPID_WIDTH,
|
|
KASAN_TAG_WIDTH,
|
|
LRU_GEN_WIDTH,
|
|
LRU_REFS_WIDTH,
|
|
NR_PAGEFLAGS);
|
|
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
|
|
"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
|
|
SECTIONS_SHIFT,
|
|
NODES_SHIFT,
|
|
ZONES_SHIFT,
|
|
LAST_CPUPID_SHIFT,
|
|
KASAN_TAG_WIDTH);
|
|
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
|
|
"Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n",
|
|
(unsigned long)SECTIONS_PGSHIFT,
|
|
(unsigned long)NODES_PGSHIFT,
|
|
(unsigned long)ZONES_PGSHIFT,
|
|
(unsigned long)LAST_CPUPID_PGSHIFT,
|
|
(unsigned long)KASAN_TAG_PGSHIFT);
|
|
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
|
|
"Node/Zone ID: %lu -> %lu\n",
|
|
(unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
|
|
(unsigned long)ZONEID_PGOFF);
|
|
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
|
|
"location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
|
|
shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
|
|
#ifdef NODE_NOT_IN_PAGE_FLAGS
|
|
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
|
|
"Node not in page flags");
|
|
#endif
|
|
#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
|
|
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
|
|
"Last cpupid not in page flags");
|
|
#endif
|
|
|
|
if (SECTIONS_WIDTH) {
|
|
shift -= SECTIONS_WIDTH;
|
|
BUG_ON(shift != SECTIONS_PGSHIFT);
|
|
}
|
|
if (NODES_WIDTH) {
|
|
shift -= NODES_WIDTH;
|
|
BUG_ON(shift != NODES_PGSHIFT);
|
|
}
|
|
if (ZONES_WIDTH) {
|
|
shift -= ZONES_WIDTH;
|
|
BUG_ON(shift != ZONES_PGSHIFT);
|
|
}
|
|
|
|
/* Check for bitmask overlaps */
|
|
or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
|
|
(NODES_MASK << NODES_PGSHIFT) |
|
|
(SECTIONS_MASK << SECTIONS_PGSHIFT);
|
|
add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
|
|
(NODES_MASK << NODES_PGSHIFT) +
|
|
(SECTIONS_MASK << SECTIONS_PGSHIFT);
|
|
BUG_ON(or_mask != add_mask);
|
|
}
|
|
|
|
static __init int set_mminit_loglevel(char *str)
|
|
{
|
|
get_option(&str, &mminit_loglevel);
|
|
return 0;
|
|
}
|
|
early_param("mminit_loglevel", set_mminit_loglevel);
|
|
#endif /* CONFIG_DEBUG_MEMORY_INIT */
|
|
|
|
struct kobject *mm_kobj;
|
|
|
|
#ifdef CONFIG_SMP
|
|
s32 vm_committed_as_batch = 32;
|
|
|
|
void mm_compute_batch(int overcommit_policy)
|
|
{
|
|
u64 memsized_batch;
|
|
s32 nr = num_present_cpus();
|
|
s32 batch = max_t(s32, nr*2, 32);
|
|
unsigned long ram_pages = totalram_pages();
|
|
|
|
/*
|
|
* For policy OVERCOMMIT_NEVER, set batch size to 0.4% of
|
|
* (total memory/#cpus), and lift it to 25% for other policies
|
|
* to easy the possible lock contention for percpu_counter
|
|
* vm_committed_as, while the max limit is INT_MAX
|
|
*/
|
|
if (overcommit_policy == OVERCOMMIT_NEVER)
|
|
memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX);
|
|
else
|
|
memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX);
|
|
|
|
vm_committed_as_batch = max_t(s32, memsized_batch, batch);
|
|
}
|
|
|
|
static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
|
|
unsigned long action, void *arg)
|
|
{
|
|
switch (action) {
|
|
case MEM_ONLINE:
|
|
case MEM_OFFLINE:
|
|
mm_compute_batch(sysctl_overcommit_memory);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static int __init mm_compute_batch_init(void)
|
|
{
|
|
mm_compute_batch(sysctl_overcommit_memory);
|
|
hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
|
|
return 0;
|
|
}
|
|
|
|
__initcall(mm_compute_batch_init);
|
|
|
|
#endif
|
|
|
|
static int __init mm_sysfs_init(void)
|
|
{
|
|
mm_kobj = kobject_create_and_add("mm", kernel_kobj);
|
|
if (!mm_kobj)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
postcore_initcall(mm_sysfs_init);
|
|
|
|
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
|
|
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
|
|
static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
|
|
|
|
static unsigned long required_kernelcore __initdata;
|
|
static unsigned long required_kernelcore_percent __initdata;
|
|
static unsigned long required_movablecore __initdata;
|
|
static unsigned long required_movablecore_percent __initdata;
|
|
|
|
static unsigned long nr_kernel_pages __initdata;
|
|
static unsigned long nr_all_pages __initdata;
|
|
static unsigned long dma_reserve __initdata;
|
|
|
|
static bool deferred_struct_pages __meminitdata;
|
|
|
|
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
|
|
|
|
static int __init cmdline_parse_core(char *p, unsigned long *core,
|
|
unsigned long *percent)
|
|
{
|
|
unsigned long long coremem;
|
|
char *endptr;
|
|
|
|
if (!p)
|
|
return -EINVAL;
|
|
|
|
/* Value may be a percentage of total memory, otherwise bytes */
|
|
coremem = simple_strtoull(p, &endptr, 0);
|
|
if (*endptr == '%') {
|
|
/* Paranoid check for percent values greater than 100 */
|
|
WARN_ON(coremem > 100);
|
|
|
|
*percent = coremem;
|
|
} else {
|
|
coremem = memparse(p, &p);
|
|
/* Paranoid check that UL is enough for the coremem value */
|
|
WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
|
|
|
|
*core = coremem >> PAGE_SHIFT;
|
|
*percent = 0UL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool mirrored_kernelcore __initdata_memblock;
|
|
|
|
/*
|
|
* kernelcore=size sets the amount of memory for use for allocations that
|
|
* cannot be reclaimed or migrated.
|
|
*/
|
|
static int __init cmdline_parse_kernelcore(char *p)
|
|
{
|
|
/* parse kernelcore=mirror */
|
|
if (parse_option_str(p, "mirror")) {
|
|
mirrored_kernelcore = true;
|
|
return 0;
|
|
}
|
|
|
|
return cmdline_parse_core(p, &required_kernelcore,
|
|
&required_kernelcore_percent);
|
|
}
|
|
early_param("kernelcore", cmdline_parse_kernelcore);
|
|
|
|
/*
|
|
* movablecore=size sets the amount of memory for use for allocations that
|
|
* can be reclaimed or migrated.
|
|
*/
|
|
static int __init cmdline_parse_movablecore(char *p)
|
|
{
|
|
return cmdline_parse_core(p, &required_movablecore,
|
|
&required_movablecore_percent);
|
|
}
|
|
early_param("movablecore", cmdline_parse_movablecore);
|
|
|
|
/*
|
|
* early_calculate_totalpages()
|
|
* Sum pages in active regions for movable zone.
|
|
* Populate N_MEMORY for calculating usable_nodes.
|
|
*/
|
|
static unsigned long __init early_calculate_totalpages(void)
|
|
{
|
|
unsigned long totalpages = 0;
|
|
unsigned long start_pfn, end_pfn;
|
|
int i, nid;
|
|
|
|
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
|
|
unsigned long pages = end_pfn - start_pfn;
|
|
|
|
totalpages += pages;
|
|
if (pages)
|
|
node_set_state(nid, N_MEMORY);
|
|
}
|
|
return totalpages;
|
|
}
|
|
|
|
/*
|
|
* This finds a zone that can be used for ZONE_MOVABLE pages. The
|
|
* assumption is made that zones within a node are ordered in monotonic
|
|
* increasing memory addresses so that the "highest" populated zone is used
|
|
*/
|
|
static void __init find_usable_zone_for_movable(void)
|
|
{
|
|
int zone_index;
|
|
for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
|
|
if (zone_index == ZONE_MOVABLE)
|
|
continue;
|
|
|
|
if (arch_zone_highest_possible_pfn[zone_index] >
|
|
arch_zone_lowest_possible_pfn[zone_index])
|
|
break;
|
|
}
|
|
|
|
VM_BUG_ON(zone_index == -1);
|
|
movable_zone = zone_index;
|
|
}
|
|
|
|
/*
|
|
* Find the PFN the Movable zone begins in each node. Kernel memory
|
|
* is spread evenly between nodes as long as the nodes have enough
|
|
* memory. When they don't, some nodes will have more kernelcore than
|
|
* others
|
|
*/
|
|
static void __init find_zone_movable_pfns_for_nodes(void)
|
|
{
|
|
int i, nid;
|
|
unsigned long usable_startpfn;
|
|
unsigned long kernelcore_node, kernelcore_remaining;
|
|
/* save the state before borrow the nodemask */
|
|
nodemask_t saved_node_state = node_states[N_MEMORY];
|
|
unsigned long totalpages = early_calculate_totalpages();
|
|
int usable_nodes = nodes_weight(node_states[N_MEMORY]);
|
|
struct memblock_region *r;
|
|
|
|
/* Need to find movable_zone earlier when movable_node is specified. */
|
|
find_usable_zone_for_movable();
|
|
|
|
/*
|
|
* If movable_node is specified, ignore kernelcore and movablecore
|
|
* options.
|
|
*/
|
|
if (movable_node_is_enabled()) {
|
|
for_each_mem_region(r) {
|
|
if (!memblock_is_hotpluggable(r))
|
|
continue;
|
|
|
|
nid = memblock_get_region_node(r);
|
|
|
|
usable_startpfn = PFN_DOWN(r->base);
|
|
zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
|
|
min(usable_startpfn, zone_movable_pfn[nid]) :
|
|
usable_startpfn;
|
|
}
|
|
|
|
goto out2;
|
|
}
|
|
|
|
/*
|
|
* If kernelcore=mirror is specified, ignore movablecore option
|
|
*/
|
|
if (mirrored_kernelcore) {
|
|
bool mem_below_4gb_not_mirrored = false;
|
|
|
|
if (!memblock_has_mirror()) {
|
|
pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n");
|
|
goto out;
|
|
}
|
|
|
|
if (is_kdump_kernel()) {
|
|
pr_warn("The system is under kdump, ignore kernelcore=mirror.\n");
|
|
goto out;
|
|
}
|
|
|
|
for_each_mem_region(r) {
|
|
if (memblock_is_mirror(r))
|
|
continue;
|
|
|
|
nid = memblock_get_region_node(r);
|
|
|
|
usable_startpfn = memblock_region_memory_base_pfn(r);
|
|
|
|
if (usable_startpfn < PHYS_PFN(SZ_4G)) {
|
|
mem_below_4gb_not_mirrored = true;
|
|
continue;
|
|
}
|
|
|
|
zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
|
|
min(usable_startpfn, zone_movable_pfn[nid]) :
|
|
usable_startpfn;
|
|
}
|
|
|
|
if (mem_below_4gb_not_mirrored)
|
|
pr_warn("This configuration results in unmirrored kernel memory.\n");
|
|
|
|
goto out2;
|
|
}
|
|
|
|
/*
|
|
* If kernelcore=nn% or movablecore=nn% was specified, calculate the
|
|
* amount of necessary memory.
|
|
*/
|
|
if (required_kernelcore_percent)
|
|
required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
|
|
10000UL;
|
|
if (required_movablecore_percent)
|
|
required_movablecore = (totalpages * 100 * required_movablecore_percent) /
|
|
10000UL;
|
|
|
|
/*
|
|
* If movablecore= was specified, calculate what size of
|
|
* kernelcore that corresponds so that memory usable for
|
|
* any allocation type is evenly spread. If both kernelcore
|
|
* and movablecore are specified, then the value of kernelcore
|
|
* will be used for required_kernelcore if it's greater than
|
|
* what movablecore would have allowed.
|
|
*/
|
|
if (required_movablecore) {
|
|
unsigned long corepages;
|
|
|
|
/*
|
|
* Round-up so that ZONE_MOVABLE is at least as large as what
|
|
* was requested by the user
|
|
*/
|
|
required_movablecore =
|
|
roundup(required_movablecore, MAX_ORDER_NR_PAGES);
|
|
required_movablecore = min(totalpages, required_movablecore);
|
|
corepages = totalpages - required_movablecore;
|
|
|
|
required_kernelcore = max(required_kernelcore, corepages);
|
|
}
|
|
|
|
/*
|
|
* If kernelcore was not specified or kernelcore size is larger
|
|
* than totalpages, there is no ZONE_MOVABLE.
|
|
*/
|
|
if (!required_kernelcore || required_kernelcore >= totalpages)
|
|
goto out;
|
|
|
|
/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
|
|
usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
|
|
|
|
restart:
|
|
/* Spread kernelcore memory as evenly as possible throughout nodes */
|
|
kernelcore_node = required_kernelcore / usable_nodes;
|
|
for_each_node_state(nid, N_MEMORY) {
|
|
unsigned long start_pfn, end_pfn;
|
|
|
|
/*
|
|
* Recalculate kernelcore_node if the division per node
|
|
* now exceeds what is necessary to satisfy the requested
|
|
* amount of memory for the kernel
|
|
*/
|
|
if (required_kernelcore < kernelcore_node)
|
|
kernelcore_node = required_kernelcore / usable_nodes;
|
|
|
|
/*
|
|
* As the map is walked, we track how much memory is usable
|
|
* by the kernel using kernelcore_remaining. When it is
|
|
* 0, the rest of the node is usable by ZONE_MOVABLE
|
|
*/
|
|
kernelcore_remaining = kernelcore_node;
|
|
|
|
/* Go through each range of PFNs within this node */
|
|
for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
|
|
unsigned long size_pages;
|
|
|
|
start_pfn = max(start_pfn, zone_movable_pfn[nid]);
|
|
if (start_pfn >= end_pfn)
|
|
continue;
|
|
|
|
/* Account for what is only usable for kernelcore */
|
|
if (start_pfn < usable_startpfn) {
|
|
unsigned long kernel_pages;
|
|
kernel_pages = min(end_pfn, usable_startpfn)
|
|
- start_pfn;
|
|
|
|
kernelcore_remaining -= min(kernel_pages,
|
|
kernelcore_remaining);
|
|
required_kernelcore -= min(kernel_pages,
|
|
required_kernelcore);
|
|
|
|
/* Continue if range is now fully accounted */
|
|
if (end_pfn <= usable_startpfn) {
|
|
|
|
/*
|
|
* Push zone_movable_pfn to the end so
|
|
* that if we have to rebalance
|
|
* kernelcore across nodes, we will
|
|
* not double account here
|
|
*/
|
|
zone_movable_pfn[nid] = end_pfn;
|
|
continue;
|
|
}
|
|
start_pfn = usable_startpfn;
|
|
}
|
|
|
|
/*
|
|
* The usable PFN range for ZONE_MOVABLE is from
|
|
* start_pfn->end_pfn. Calculate size_pages as the
|
|
* number of pages used as kernelcore
|
|
*/
|
|
size_pages = end_pfn - start_pfn;
|
|
if (size_pages > kernelcore_remaining)
|
|
size_pages = kernelcore_remaining;
|
|
zone_movable_pfn[nid] = start_pfn + size_pages;
|
|
|
|
/*
|
|
* Some kernelcore has been met, update counts and
|
|
* break if the kernelcore for this node has been
|
|
* satisfied
|
|
*/
|
|
required_kernelcore -= min(required_kernelcore,
|
|
size_pages);
|
|
kernelcore_remaining -= size_pages;
|
|
if (!kernelcore_remaining)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If there is still required_kernelcore, we do another pass with one
|
|
* less node in the count. This will push zone_movable_pfn[nid] further
|
|
* along on the nodes that still have memory until kernelcore is
|
|
* satisfied
|
|
*/
|
|
usable_nodes--;
|
|
if (usable_nodes && required_kernelcore > usable_nodes)
|
|
goto restart;
|
|
|
|
out2:
|
|
/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
|
|
for (nid = 0; nid < MAX_NUMNODES; nid++) {
|
|
unsigned long start_pfn, end_pfn;
|
|
|
|
zone_movable_pfn[nid] =
|
|
roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
|
|
|
|
get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
|
|
if (zone_movable_pfn[nid] >= end_pfn)
|
|
zone_movable_pfn[nid] = 0;
|
|
}
|
|
|
|
out:
|
|
/* restore the node_state */
|
|
node_states[N_MEMORY] = saved_node_state;
|
|
}
|
|
|
|
void __meminit __init_single_page(struct page *page, unsigned long pfn,
|
|
unsigned long zone, int nid)
|
|
{
|
|
mm_zero_struct_page(page);
|
|
set_page_links(page, zone, nid, pfn);
|
|
init_page_count(page);
|
|
page_mapcount_reset(page);
|
|
page_cpupid_reset_last(page);
|
|
page_kasan_tag_reset(page);
|
|
|
|
INIT_LIST_HEAD(&page->lru);
|
|
#ifdef WANT_PAGE_VIRTUAL
|
|
/* The shift won't overflow because ZONE_NORMAL is below 4G. */
|
|
if (!is_highmem_idx(zone))
|
|
set_page_address(page, __va(pfn << PAGE_SHIFT));
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* During memory init memblocks map pfns to nids. The search is expensive and
|
|
* this caches recent lookups. The implementation of __early_pfn_to_nid
|
|
* treats start/end as pfns.
|
|
*/
|
|
struct mminit_pfnnid_cache {
|
|
unsigned long last_start;
|
|
unsigned long last_end;
|
|
int last_nid;
|
|
};
|
|
|
|
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
|
|
|
|
/*
|
|
* Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
|
|
*/
|
|
static int __meminit __early_pfn_to_nid(unsigned long pfn,
|
|
struct mminit_pfnnid_cache *state)
|
|
{
|
|
unsigned long start_pfn, end_pfn;
|
|
int nid;
|
|
|
|
if (state->last_start <= pfn && pfn < state->last_end)
|
|
return state->last_nid;
|
|
|
|
nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
|
|
if (nid != NUMA_NO_NODE) {
|
|
state->last_start = start_pfn;
|
|
state->last_end = end_pfn;
|
|
state->last_nid = nid;
|
|
}
|
|
|
|
return nid;
|
|
}
|
|
|
|
int __meminit early_pfn_to_nid(unsigned long pfn)
|
|
{
|
|
static DEFINE_SPINLOCK(early_pfn_lock);
|
|
int nid;
|
|
|
|
spin_lock(&early_pfn_lock);
|
|
nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
|
|
if (nid < 0)
|
|
nid = first_online_node;
|
|
spin_unlock(&early_pfn_lock);
|
|
|
|
return nid;
|
|
}
|
|
|
|
int hashdist = HASHDIST_DEFAULT;
|
|
|
|
static int __init set_hashdist(char *str)
|
|
{
|
|
if (!str)
|
|
return 0;
|
|
hashdist = simple_strtoul(str, &str, 0);
|
|
return 1;
|
|
}
|
|
__setup("hashdist=", set_hashdist);
|
|
|
|
static inline void fixup_hashdist(void)
|
|
{
|
|
if (num_node_state(N_MEMORY) == 1)
|
|
hashdist = 0;
|
|
}
|
|
#else
|
|
static inline void fixup_hashdist(void) {}
|
|
#endif /* CONFIG_NUMA */
|
|
|
|
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
|
|
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
|
|
{
|
|
pgdat->first_deferred_pfn = ULONG_MAX;
|
|
}
|
|
|
|
/* Returns true if the struct page for the pfn is initialised */
|
|
static inline bool __meminit early_page_initialised(unsigned long pfn, int nid)
|
|
{
|
|
if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Returns true when the remaining initialisation should be deferred until
|
|
* later in the boot cycle when it can be parallelised.
|
|
*/
|
|
static bool __meminit
|
|
defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
|
|
{
|
|
static unsigned long prev_end_pfn, nr_initialised;
|
|
|
|
if (early_page_ext_enabled())
|
|
return false;
|
|
/*
|
|
* prev_end_pfn static that contains the end of previous zone
|
|
* No need to protect because called very early in boot before smp_init.
|
|
*/
|
|
if (prev_end_pfn != end_pfn) {
|
|
prev_end_pfn = end_pfn;
|
|
nr_initialised = 0;
|
|
}
|
|
|
|
/* Always populate low zones for address-constrained allocations */
|
|
if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
|
|
return false;
|
|
|
|
if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
|
|
return true;
|
|
/*
|
|
* We start only with one section of pages, more pages are added as
|
|
* needed until the rest of deferred pages are initialized.
|
|
*/
|
|
nr_initialised++;
|
|
if ((nr_initialised > PAGES_PER_SECTION) &&
|
|
(pfn & (PAGES_PER_SECTION - 1)) == 0) {
|
|
NODE_DATA(nid)->first_deferred_pfn = pfn;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void __meminit init_reserved_page(unsigned long pfn, int nid)
|
|
{
|
|
pg_data_t *pgdat;
|
|
int zid;
|
|
|
|
if (early_page_initialised(pfn, nid))
|
|
return;
|
|
|
|
pgdat = NODE_DATA(nid);
|
|
|
|
for (zid = 0; zid < MAX_NR_ZONES; zid++) {
|
|
struct zone *zone = &pgdat->node_zones[zid];
|
|
|
|
if (zone_spans_pfn(zone, pfn))
|
|
break;
|
|
}
|
|
__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
|
|
}
|
|
#else
|
|
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
|
|
|
|
static inline bool early_page_initialised(unsigned long pfn, int nid)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline void init_reserved_page(unsigned long pfn, int nid)
|
|
{
|
|
}
|
|
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
|
|
|
|
/*
|
|
* Initialised pages do not have PageReserved set. This function is
|
|
* called for each range allocated by the bootmem allocator and
|
|
* marks the pages PageReserved. The remaining valid pages are later
|
|
* sent to the buddy page allocator.
|
|
*/
|
|
void __meminit reserve_bootmem_region(phys_addr_t start,
|
|
phys_addr_t end, int nid)
|
|
{
|
|
unsigned long start_pfn = PFN_DOWN(start);
|
|
unsigned long end_pfn = PFN_UP(end);
|
|
|
|
for (; start_pfn < end_pfn; start_pfn++) {
|
|
if (pfn_valid(start_pfn)) {
|
|
struct page *page = pfn_to_page(start_pfn);
|
|
|
|
init_reserved_page(start_pfn, nid);
|
|
|
|
/* Avoid false-positive PageTail() */
|
|
INIT_LIST_HEAD(&page->lru);
|
|
|
|
/*
|
|
* no need for atomic set_bit because the struct
|
|
* page is not visible yet so nobody should
|
|
* access it yet.
|
|
*/
|
|
__SetPageReserved(page);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
|
|
static bool __meminit
|
|
overlap_memmap_init(unsigned long zone, unsigned long *pfn)
|
|
{
|
|
static struct memblock_region *r;
|
|
|
|
if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
|
|
if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
|
|
for_each_mem_region(r) {
|
|
if (*pfn < memblock_region_memory_end_pfn(r))
|
|
break;
|
|
}
|
|
}
|
|
if (*pfn >= memblock_region_memory_base_pfn(r) &&
|
|
memblock_is_mirror(r)) {
|
|
*pfn = memblock_region_memory_end_pfn(r);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Only struct pages that correspond to ranges defined by memblock.memory
|
|
* are zeroed and initialized by going through __init_single_page() during
|
|
* memmap_init_zone_range().
|
|
*
|
|
* But, there could be struct pages that correspond to holes in
|
|
* memblock.memory. This can happen because of the following reasons:
|
|
* - physical memory bank size is not necessarily the exact multiple of the
|
|
* arbitrary section size
|
|
* - early reserved memory may not be listed in memblock.memory
|
|
* - non-memory regions covered by the contigious flatmem mapping
|
|
* - memory layouts defined with memmap= kernel parameter may not align
|
|
* nicely with memmap sections
|
|
*
|
|
* Explicitly initialize those struct pages so that:
|
|
* - PG_Reserved is set
|
|
* - zone and node links point to zone and node that span the page if the
|
|
* hole is in the middle of a zone
|
|
* - zone and node links point to adjacent zone/node if the hole falls on
|
|
* the zone boundary; the pages in such holes will be prepended to the
|
|
* zone/node above the hole except for the trailing pages in the last
|
|
* section that will be appended to the zone/node below.
|
|
*/
|
|
static void __init init_unavailable_range(unsigned long spfn,
|
|
unsigned long epfn,
|
|
int zone, int node)
|
|
{
|
|
unsigned long pfn;
|
|
u64 pgcnt = 0;
|
|
|
|
for (pfn = spfn; pfn < epfn; pfn++) {
|
|
if (!pfn_valid(pageblock_start_pfn(pfn))) {
|
|
pfn = pageblock_end_pfn(pfn) - 1;
|
|
continue;
|
|
}
|
|
__init_single_page(pfn_to_page(pfn), pfn, zone, node);
|
|
__SetPageReserved(pfn_to_page(pfn));
|
|
pgcnt++;
|
|
}
|
|
|
|
if (pgcnt)
|
|
pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n",
|
|
node, zone_names[zone], pgcnt);
|
|
}
|
|
|
|
/*
|
|
* Initially all pages are reserved - free ones are freed
|
|
* up by memblock_free_all() once the early boot process is
|
|
* done. Non-atomic initialization, single-pass.
|
|
*
|
|
* All aligned pageblocks are initialized to the specified migratetype
|
|
* (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
|
|
* zone stats (e.g., nr_isolate_pageblock) are touched.
|
|
*/
|
|
void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
|
|
unsigned long start_pfn, unsigned long zone_end_pfn,
|
|
enum meminit_context context,
|
|
struct vmem_altmap *altmap, int migratetype)
|
|
{
|
|
unsigned long pfn, end_pfn = start_pfn + size;
|
|
struct page *page;
|
|
|
|
if (highest_memmap_pfn < end_pfn - 1)
|
|
highest_memmap_pfn = end_pfn - 1;
|
|
|
|
#ifdef CONFIG_ZONE_DEVICE
|
|
/*
|
|
* Honor reservation requested by the driver for this ZONE_DEVICE
|
|
* memory. We limit the total number of pages to initialize to just
|
|
* those that might contain the memory mapping. We will defer the
|
|
* ZONE_DEVICE page initialization until after we have released
|
|
* the hotplug lock.
|
|
*/
|
|
if (zone == ZONE_DEVICE) {
|
|
if (!altmap)
|
|
return;
|
|
|
|
if (start_pfn == altmap->base_pfn)
|
|
start_pfn += altmap->reserve;
|
|
end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
|
|
}
|
|
#endif
|
|
|
|
for (pfn = start_pfn; pfn < end_pfn; ) {
|
|
/*
|
|
* There can be holes in boot-time mem_map[]s handed to this
|
|
* function. They do not exist on hotplugged memory.
|
|
*/
|
|
if (context == MEMINIT_EARLY) {
|
|
if (overlap_memmap_init(zone, &pfn))
|
|
continue;
|
|
if (defer_init(nid, pfn, zone_end_pfn)) {
|
|
deferred_struct_pages = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
page = pfn_to_page(pfn);
|
|
__init_single_page(page, pfn, zone, nid);
|
|
if (context == MEMINIT_HOTPLUG)
|
|
__SetPageReserved(page);
|
|
|
|
/*
|
|
* Usually, we want to mark the pageblock MIGRATE_MOVABLE,
|
|
* such that unmovable allocations won't be scattered all
|
|
* over the place during system boot.
|
|
*/
|
|
if (pageblock_aligned(pfn)) {
|
|
set_pageblock_migratetype(page, migratetype);
|
|
cond_resched();
|
|
}
|
|
pfn++;
|
|
}
|
|
}
|
|
|
|
static void __init memmap_init_zone_range(struct zone *zone,
|
|
unsigned long start_pfn,
|
|
unsigned long end_pfn,
|
|
unsigned long *hole_pfn)
|
|
{
|
|
unsigned long zone_start_pfn = zone->zone_start_pfn;
|
|
unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
|
|
int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
|
|
|
|
start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
|
|
end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
|
|
|
|
if (start_pfn >= end_pfn)
|
|
return;
|
|
|
|
memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
|
|
zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
|
|
|
|
if (*hole_pfn < start_pfn)
|
|
init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
|
|
|
|
*hole_pfn = end_pfn;
|
|
}
|
|
|
|
static void __init memmap_init(void)
|
|
{
|
|
unsigned long start_pfn, end_pfn;
|
|
unsigned long hole_pfn = 0;
|
|
int i, j, zone_id = 0, nid;
|
|
|
|
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
|
|
struct pglist_data *node = NODE_DATA(nid);
|
|
|
|
for (j = 0; j < MAX_NR_ZONES; j++) {
|
|
struct zone *zone = node->node_zones + j;
|
|
|
|
if (!populated_zone(zone))
|
|
continue;
|
|
|
|
memmap_init_zone_range(zone, start_pfn, end_pfn,
|
|
&hole_pfn);
|
|
zone_id = j;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SPARSEMEM
|
|
/*
|
|
* Initialize the memory map for hole in the range [memory_end,
|
|
* section_end].
|
|
* Append the pages in this hole to the highest zone in the last
|
|
* node.
|
|
* The call to init_unavailable_range() is outside the ifdef to
|
|
* silence the compiler warining about zone_id set but not used;
|
|
* for FLATMEM it is a nop anyway
|
|
*/
|
|
end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
|
|
if (hole_pfn < end_pfn)
|
|
#endif
|
|
init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
|
|
}
|
|
|
|
#ifdef CONFIG_ZONE_DEVICE
|
|
static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
|
|
unsigned long zone_idx, int nid,
|
|
struct dev_pagemap *pgmap)
|
|
{
|
|
|
|
__init_single_page(page, pfn, zone_idx, nid);
|
|
|
|
/*
|
|
* Mark page reserved as it will need to wait for onlining
|
|
* phase for it to be fully associated with a zone.
|
|
*
|
|
* We can use the non-atomic __set_bit operation for setting
|
|
* the flag as we are still initializing the pages.
|
|
*/
|
|
__SetPageReserved(page);
|
|
|
|
/*
|
|
* ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
|
|
* and zone_device_data. It is a bug if a ZONE_DEVICE page is
|
|
* ever freed or placed on a driver-private list.
|
|
*/
|
|
page->pgmap = pgmap;
|
|
page->zone_device_data = NULL;
|
|
|
|
/*
|
|
* Mark the block movable so that blocks are reserved for
|
|
* movable at startup. This will force kernel allocations
|
|
* to reserve their blocks rather than leaking throughout
|
|
* the address space during boot when many long-lived
|
|
* kernel allocations are made.
|
|
*
|
|
* Please note that MEMINIT_HOTPLUG path doesn't clear memmap
|
|
* because this is done early in section_activate()
|
|
*/
|
|
if (pageblock_aligned(pfn)) {
|
|
set_pageblock_migratetype(page, MIGRATE_MOVABLE);
|
|
cond_resched();
|
|
}
|
|
|
|
/*
|
|
* ZONE_DEVICE pages are released directly to the driver page allocator
|
|
* which will set the page count to 1 when allocating the page.
|
|
*/
|
|
if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
|
|
pgmap->type == MEMORY_DEVICE_COHERENT)
|
|
set_page_count(page, 0);
|
|
}
|
|
|
|
/*
|
|
* With compound page geometry and when struct pages are stored in ram most
|
|
* tail pages are reused. Consequently, the amount of unique struct pages to
|
|
* initialize is a lot smaller that the total amount of struct pages being
|
|
* mapped. This is a paired / mild layering violation with explicit knowledge
|
|
* of how the sparse_vmemmap internals handle compound pages in the lack
|
|
* of an altmap. See vmemmap_populate_compound_pages().
|
|
*/
|
|
static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
|
|
struct dev_pagemap *pgmap)
|
|
{
|
|
if (!vmemmap_can_optimize(altmap, pgmap))
|
|
return pgmap_vmemmap_nr(pgmap);
|
|
|
|
return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page));
|
|
}
|
|
|
|
static void __ref memmap_init_compound(struct page *head,
|
|
unsigned long head_pfn,
|
|
unsigned long zone_idx, int nid,
|
|
struct dev_pagemap *pgmap,
|
|
unsigned long nr_pages)
|
|
{
|
|
unsigned long pfn, end_pfn = head_pfn + nr_pages;
|
|
unsigned int order = pgmap->vmemmap_shift;
|
|
|
|
__SetPageHead(head);
|
|
for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
|
|
struct page *page = pfn_to_page(pfn);
|
|
|
|
__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
|
|
prep_compound_tail(head, pfn - head_pfn);
|
|
set_page_count(page, 0);
|
|
|
|
/*
|
|
* The first tail page stores important compound page info.
|
|
* Call prep_compound_head() after the first tail page has
|
|
* been initialized, to not have the data overwritten.
|
|
*/
|
|
if (pfn == head_pfn + 1)
|
|
prep_compound_head(head, order);
|
|
}
|
|
}
|
|
|
|
void __ref memmap_init_zone_device(struct zone *zone,
|
|
unsigned long start_pfn,
|
|
unsigned long nr_pages,
|
|
struct dev_pagemap *pgmap)
|
|
{
|
|
unsigned long pfn, end_pfn = start_pfn + nr_pages;
|
|
struct pglist_data *pgdat = zone->zone_pgdat;
|
|
struct vmem_altmap *altmap = pgmap_altmap(pgmap);
|
|
unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
|
|
unsigned long zone_idx = zone_idx(zone);
|
|
unsigned long start = jiffies;
|
|
int nid = pgdat->node_id;
|
|
|
|
if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
|
|
return;
|
|
|
|
/*
|
|
* The call to memmap_init should have already taken care
|
|
* of the pages reserved for the memmap, so we can just jump to
|
|
* the end of that region and start processing the device pages.
|
|
*/
|
|
if (altmap) {
|
|
start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
|
|
nr_pages = end_pfn - start_pfn;
|
|
}
|
|
|
|
for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
|
|
struct page *page = pfn_to_page(pfn);
|
|
|
|
__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
|
|
|
|
if (pfns_per_compound == 1)
|
|
continue;
|
|
|
|
memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
|
|
compound_nr_pages(altmap, pgmap));
|
|
}
|
|
|
|
pr_debug("%s initialised %lu pages in %ums\n", __func__,
|
|
nr_pages, jiffies_to_msecs(jiffies - start));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* The zone ranges provided by the architecture do not include ZONE_MOVABLE
|
|
* because it is sized independent of architecture. Unlike the other zones,
|
|
* the starting point for ZONE_MOVABLE is not fixed. It may be different
|
|
* in each node depending on the size of each node and how evenly kernelcore
|
|
* is distributed. This helper function adjusts the zone ranges
|
|
* provided by the architecture for a given node by using the end of the
|
|
* highest usable zone for ZONE_MOVABLE. This preserves the assumption that
|
|
* zones within a node are in order of monotonic increases memory addresses
|
|
*/
|
|
static void __init adjust_zone_range_for_zone_movable(int nid,
|
|
unsigned long zone_type,
|
|
unsigned long node_end_pfn,
|
|
unsigned long *zone_start_pfn,
|
|
unsigned long *zone_end_pfn)
|
|
{
|
|
/* Only adjust if ZONE_MOVABLE is on this node */
|
|
if (zone_movable_pfn[nid]) {
|
|
/* Size ZONE_MOVABLE */
|
|
if (zone_type == ZONE_MOVABLE) {
|
|
*zone_start_pfn = zone_movable_pfn[nid];
|
|
*zone_end_pfn = min(node_end_pfn,
|
|
arch_zone_highest_possible_pfn[movable_zone]);
|
|
|
|
/* Adjust for ZONE_MOVABLE starting within this range */
|
|
} else if (!mirrored_kernelcore &&
|
|
*zone_start_pfn < zone_movable_pfn[nid] &&
|
|
*zone_end_pfn > zone_movable_pfn[nid]) {
|
|
*zone_end_pfn = zone_movable_pfn[nid];
|
|
|
|
/* Check if this whole range is within ZONE_MOVABLE */
|
|
} else if (*zone_start_pfn >= zone_movable_pfn[nid])
|
|
*zone_start_pfn = *zone_end_pfn;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
|
|
* then all holes in the requested range will be accounted for.
|
|
*/
|
|
unsigned long __init __absent_pages_in_range(int nid,
|
|
unsigned long range_start_pfn,
|
|
unsigned long range_end_pfn)
|
|
{
|
|
unsigned long nr_absent = range_end_pfn - range_start_pfn;
|
|
unsigned long start_pfn, end_pfn;
|
|
int i;
|
|
|
|
for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
|
|
start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
|
|
end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
|
|
nr_absent -= end_pfn - start_pfn;
|
|
}
|
|
return nr_absent;
|
|
}
|
|
|
|
/**
|
|
* absent_pages_in_range - Return number of page frames in holes within a range
|
|
* @start_pfn: The start PFN to start searching for holes
|
|
* @end_pfn: The end PFN to stop searching for holes
|
|
*
|
|
* Return: the number of pages frames in memory holes within a range.
|
|
*/
|
|
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
|
|
unsigned long end_pfn)
|
|
{
|
|
return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
|
|
}
|
|
|
|
/* Return the number of page frames in holes in a zone on a node */
|
|
static unsigned long __init zone_absent_pages_in_node(int nid,
|
|
unsigned long zone_type,
|
|
unsigned long zone_start_pfn,
|
|
unsigned long zone_end_pfn)
|
|
{
|
|
unsigned long nr_absent;
|
|
|
|
/* zone is empty, we don't have any absent pages */
|
|
if (zone_start_pfn == zone_end_pfn)
|
|
return 0;
|
|
|
|
nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
|
|
|
|
/*
|
|
* ZONE_MOVABLE handling.
|
|
* Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
|
|
* and vice versa.
|
|
*/
|
|
if (mirrored_kernelcore && zone_movable_pfn[nid]) {
|
|
unsigned long start_pfn, end_pfn;
|
|
struct memblock_region *r;
|
|
|
|
for_each_mem_region(r) {
|
|
start_pfn = clamp(memblock_region_memory_base_pfn(r),
|
|
zone_start_pfn, zone_end_pfn);
|
|
end_pfn = clamp(memblock_region_memory_end_pfn(r),
|
|
zone_start_pfn, zone_end_pfn);
|
|
|
|
if (zone_type == ZONE_MOVABLE &&
|
|
memblock_is_mirror(r))
|
|
nr_absent += end_pfn - start_pfn;
|
|
|
|
if (zone_type == ZONE_NORMAL &&
|
|
!memblock_is_mirror(r))
|
|
nr_absent += end_pfn - start_pfn;
|
|
}
|
|
}
|
|
|
|
return nr_absent;
|
|
}
|
|
|
|
/*
|
|
* Return the number of pages a zone spans in a node, including holes
|
|
* present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
|
|
*/
|
|
static unsigned long __init zone_spanned_pages_in_node(int nid,
|
|
unsigned long zone_type,
|
|
unsigned long node_start_pfn,
|
|
unsigned long node_end_pfn,
|
|
unsigned long *zone_start_pfn,
|
|
unsigned long *zone_end_pfn)
|
|
{
|
|
unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
|
|
unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
|
|
|
|
/* Get the start and end of the zone */
|
|
*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
|
|
*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
|
|
adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn,
|
|
zone_start_pfn, zone_end_pfn);
|
|
|
|
/* Check that this node has pages within the zone's required range */
|
|
if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
|
|
return 0;
|
|
|
|
/* Move the zone boundaries inside the node if necessary */
|
|
*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
|
|
*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
|
|
|
|
/* Return the spanned pages */
|
|
return *zone_end_pfn - *zone_start_pfn;
|
|
}
|
|
|
|
static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat)
|
|
{
|
|
struct zone *z;
|
|
|
|
for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) {
|
|
z->zone_start_pfn = 0;
|
|
z->spanned_pages = 0;
|
|
z->present_pages = 0;
|
|
#if defined(CONFIG_MEMORY_HOTPLUG)
|
|
z->present_early_pages = 0;
|
|
#endif
|
|
}
|
|
|
|
pgdat->node_spanned_pages = 0;
|
|
pgdat->node_present_pages = 0;
|
|
pr_debug("On node %d totalpages: 0\n", pgdat->node_id);
|
|
}
|
|
|
|
static void __init calculate_node_totalpages(struct pglist_data *pgdat,
|
|
unsigned long node_start_pfn,
|
|
unsigned long node_end_pfn)
|
|
{
|
|
unsigned long realtotalpages = 0, totalpages = 0;
|
|
enum zone_type i;
|
|
|
|
for (i = 0; i < MAX_NR_ZONES; i++) {
|
|
struct zone *zone = pgdat->node_zones + i;
|
|
unsigned long zone_start_pfn, zone_end_pfn;
|
|
unsigned long spanned, absent;
|
|
unsigned long real_size;
|
|
|
|
spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
|
|
node_start_pfn,
|
|
node_end_pfn,
|
|
&zone_start_pfn,
|
|
&zone_end_pfn);
|
|
absent = zone_absent_pages_in_node(pgdat->node_id, i,
|
|
zone_start_pfn,
|
|
zone_end_pfn);
|
|
|
|
real_size = spanned - absent;
|
|
|
|
if (spanned)
|
|
zone->zone_start_pfn = zone_start_pfn;
|
|
else
|
|
zone->zone_start_pfn = 0;
|
|
zone->spanned_pages = spanned;
|
|
zone->present_pages = real_size;
|
|
#if defined(CONFIG_MEMORY_HOTPLUG)
|
|
zone->present_early_pages = real_size;
|
|
#endif
|
|
|
|
totalpages += spanned;
|
|
realtotalpages += real_size;
|
|
}
|
|
|
|
pgdat->node_spanned_pages = totalpages;
|
|
pgdat->node_present_pages = realtotalpages;
|
|
pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
|
|
}
|
|
|
|
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
|
|
unsigned long present_pages)
|
|
{
|
|
unsigned long pages = spanned_pages;
|
|
|
|
/*
|
|
* Provide a more accurate estimation if there are holes within
|
|
* the zone and SPARSEMEM is in use. If there are holes within the
|
|
* zone, each populated memory region may cost us one or two extra
|
|
* memmap pages due to alignment because memmap pages for each
|
|
* populated regions may not be naturally aligned on page boundary.
|
|
* So the (present_pages >> 4) heuristic is a tradeoff for that.
|
|
*/
|
|
if (spanned_pages > present_pages + (present_pages >> 4) &&
|
|
IS_ENABLED(CONFIG_SPARSEMEM))
|
|
pages = present_pages;
|
|
|
|
return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
static void pgdat_init_split_queue(struct pglist_data *pgdat)
|
|
{
|
|
struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
|
|
|
|
spin_lock_init(&ds_queue->split_queue_lock);
|
|
INIT_LIST_HEAD(&ds_queue->split_queue);
|
|
ds_queue->split_queue_len = 0;
|
|
}
|
|
#else
|
|
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
|
|
#endif
|
|
|
|
#ifdef CONFIG_COMPACTION
|
|
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
|
|
{
|
|
init_waitqueue_head(&pgdat->kcompactd_wait);
|
|
}
|
|
#else
|
|
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
|
|
#endif
|
|
|
|
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
|
|
{
|
|
int i;
|
|
|
|
pgdat_resize_init(pgdat);
|
|
pgdat_kswapd_lock_init(pgdat);
|
|
|
|
pgdat_init_split_queue(pgdat);
|
|
pgdat_init_kcompactd(pgdat);
|
|
|
|
init_waitqueue_head(&pgdat->kswapd_wait);
|
|
init_waitqueue_head(&pgdat->pfmemalloc_wait);
|
|
|
|
for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
|
|
init_waitqueue_head(&pgdat->reclaim_wait[i]);
|
|
|
|
pgdat_page_ext_init(pgdat);
|
|
lruvec_init(&pgdat->__lruvec);
|
|
}
|
|
|
|
static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
|
|
unsigned long remaining_pages)
|
|
{
|
|
atomic_long_set(&zone->managed_pages, remaining_pages);
|
|
zone_set_nid(zone, nid);
|
|
zone->name = zone_names[idx];
|
|
zone->zone_pgdat = NODE_DATA(nid);
|
|
spin_lock_init(&zone->lock);
|
|
zone_seqlock_init(zone);
|
|
zone_pcp_init(zone);
|
|
}
|
|
|
|
static void __meminit zone_init_free_lists(struct zone *zone)
|
|
{
|
|
unsigned int order, t;
|
|
for_each_migratetype_order(order, t) {
|
|
INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
|
|
zone->free_area[order].nr_free = 0;
|
|
}
|
|
|
|
#ifdef CONFIG_UNACCEPTED_MEMORY
|
|
INIT_LIST_HEAD(&zone->unaccepted_pages);
|
|
#endif
|
|
}
|
|
|
|
void __meminit init_currently_empty_zone(struct zone *zone,
|
|
unsigned long zone_start_pfn,
|
|
unsigned long size)
|
|
{
|
|
struct pglist_data *pgdat = zone->zone_pgdat;
|
|
int zone_idx = zone_idx(zone) + 1;
|
|
|
|
if (zone_idx > pgdat->nr_zones)
|
|
pgdat->nr_zones = zone_idx;
|
|
|
|
zone->zone_start_pfn = zone_start_pfn;
|
|
|
|
mminit_dprintk(MMINIT_TRACE, "memmap_init",
|
|
"Initialising map node %d zone %lu pfns %lu -> %lu\n",
|
|
pgdat->node_id,
|
|
(unsigned long)zone_idx(zone),
|
|
zone_start_pfn, (zone_start_pfn + size));
|
|
|
|
zone_init_free_lists(zone);
|
|
zone->initialized = 1;
|
|
}
|
|
|
|
#ifndef CONFIG_SPARSEMEM
|
|
/*
|
|
* Calculate the size of the zone->blockflags rounded to an unsigned long
|
|
* Start by making sure zonesize is a multiple of pageblock_order by rounding
|
|
* up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
|
|
* round what is now in bits to nearest long in bits, then return it in
|
|
* bytes.
|
|
*/
|
|
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
|
|
{
|
|
unsigned long usemapsize;
|
|
|
|
zonesize += zone_start_pfn & (pageblock_nr_pages-1);
|
|
usemapsize = roundup(zonesize, pageblock_nr_pages);
|
|
usemapsize = usemapsize >> pageblock_order;
|
|
usemapsize *= NR_PAGEBLOCK_BITS;
|
|
usemapsize = roundup(usemapsize, BITS_PER_LONG);
|
|
|
|
return usemapsize / BITS_PER_BYTE;
|
|
}
|
|
|
|
static void __ref setup_usemap(struct zone *zone)
|
|
{
|
|
unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
|
|
zone->spanned_pages);
|
|
zone->pageblock_flags = NULL;
|
|
if (usemapsize) {
|
|
zone->pageblock_flags =
|
|
memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
|
|
zone_to_nid(zone));
|
|
if (!zone->pageblock_flags)
|
|
panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
|
|
usemapsize, zone->name, zone_to_nid(zone));
|
|
}
|
|
}
|
|
#else
|
|
static inline void setup_usemap(struct zone *zone) {}
|
|
#endif /* CONFIG_SPARSEMEM */
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
|
|
|
|
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
|
|
void __init set_pageblock_order(void)
|
|
{
|
|
unsigned int order = MAX_PAGE_ORDER;
|
|
|
|
/* Check that pageblock_nr_pages has not already been setup */
|
|
if (pageblock_order)
|
|
return;
|
|
|
|
/* Don't let pageblocks exceed the maximum allocation granularity. */
|
|
if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
|
|
order = HUGETLB_PAGE_ORDER;
|
|
|
|
/*
|
|
* Assume the largest contiguous order of interest is a huge page.
|
|
* This value may be variable depending on boot parameters on powerpc.
|
|
*/
|
|
pageblock_order = order;
|
|
}
|
|
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
|
|
|
|
/*
|
|
* When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
|
|
* is unused as pageblock_order is set at compile-time. See
|
|
* include/linux/pageblock-flags.h for the values of pageblock_order based on
|
|
* the kernel config
|
|
*/
|
|
void __init set_pageblock_order(void)
|
|
{
|
|
}
|
|
|
|
#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
|
|
|
|
/*
|
|
* Set up the zone data structures
|
|
* - init pgdat internals
|
|
* - init all zones belonging to this node
|
|
*
|
|
* NOTE: this function is only called during memory hotplug
|
|
*/
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
|
|
{
|
|
int nid = pgdat->node_id;
|
|
enum zone_type z;
|
|
int cpu;
|
|
|
|
pgdat_init_internals(pgdat);
|
|
|
|
if (pgdat->per_cpu_nodestats == &boot_nodestats)
|
|
pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
|
|
|
|
/*
|
|
* Reset the nr_zones, order and highest_zoneidx before reuse.
|
|
* Note that kswapd will init kswapd_highest_zoneidx properly
|
|
* when it starts in the near future.
|
|
*/
|
|
pgdat->nr_zones = 0;
|
|
pgdat->kswapd_order = 0;
|
|
pgdat->kswapd_highest_zoneidx = 0;
|
|
pgdat->node_start_pfn = 0;
|
|
pgdat->node_present_pages = 0;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
struct per_cpu_nodestat *p;
|
|
|
|
p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
|
|
memset(p, 0, sizeof(*p));
|
|
}
|
|
|
|
/*
|
|
* When memory is hot-added, all the memory is in offline state. So
|
|
* clear all zones' present_pages and managed_pages because they will
|
|
* be updated in online_pages() and offline_pages().
|
|
*/
|
|
for (z = 0; z < MAX_NR_ZONES; z++) {
|
|
struct zone *zone = pgdat->node_zones + z;
|
|
|
|
zone->present_pages = 0;
|
|
zone_init_internals(zone, z, nid, 0);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Set up the zone data structures:
|
|
* - mark all pages reserved
|
|
* - mark all memory queues empty
|
|
* - clear the memory bitmaps
|
|
*
|
|
* NOTE: pgdat should get zeroed by caller.
|
|
* NOTE: this function is only called during early init.
|
|
*/
|
|
static void __init free_area_init_core(struct pglist_data *pgdat)
|
|
{
|
|
enum zone_type j;
|
|
int nid = pgdat->node_id;
|
|
|
|
pgdat_init_internals(pgdat);
|
|
pgdat->per_cpu_nodestats = &boot_nodestats;
|
|
|
|
for (j = 0; j < MAX_NR_ZONES; j++) {
|
|
struct zone *zone = pgdat->node_zones + j;
|
|
unsigned long size, freesize, memmap_pages;
|
|
|
|
size = zone->spanned_pages;
|
|
freesize = zone->present_pages;
|
|
|
|
/*
|
|
* Adjust freesize so that it accounts for how much memory
|
|
* is used by this zone for memmap. This affects the watermark
|
|
* and per-cpu initialisations
|
|
*/
|
|
memmap_pages = calc_memmap_size(size, freesize);
|
|
if (!is_highmem_idx(j)) {
|
|
if (freesize >= memmap_pages) {
|
|
freesize -= memmap_pages;
|
|
if (memmap_pages)
|
|
pr_debug(" %s zone: %lu pages used for memmap\n",
|
|
zone_names[j], memmap_pages);
|
|
} else
|
|
pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
|
|
zone_names[j], memmap_pages, freesize);
|
|
}
|
|
|
|
/* Account for reserved pages */
|
|
if (j == 0 && freesize > dma_reserve) {
|
|
freesize -= dma_reserve;
|
|
pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
|
|
}
|
|
|
|
if (!is_highmem_idx(j))
|
|
nr_kernel_pages += freesize;
|
|
/* Charge for highmem memmap if there are enough kernel pages */
|
|
else if (nr_kernel_pages > memmap_pages * 2)
|
|
nr_kernel_pages -= memmap_pages;
|
|
nr_all_pages += freesize;
|
|
|
|
/*
|
|
* Set an approximate value for lowmem here, it will be adjusted
|
|
* when the bootmem allocator frees pages into the buddy system.
|
|
* And all highmem pages will be managed by the buddy system.
|
|
*/
|
|
zone_init_internals(zone, j, nid, freesize);
|
|
|
|
if (!size)
|
|
continue;
|
|
|
|
setup_usemap(zone);
|
|
init_currently_empty_zone(zone, zone->zone_start_pfn, size);
|
|
}
|
|
}
|
|
|
|
void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
|
|
phys_addr_t min_addr, int nid, bool exact_nid)
|
|
{
|
|
void *ptr;
|
|
|
|
if (exact_nid)
|
|
ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
|
|
MEMBLOCK_ALLOC_ACCESSIBLE,
|
|
nid);
|
|
else
|
|
ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
|
|
MEMBLOCK_ALLOC_ACCESSIBLE,
|
|
nid);
|
|
|
|
if (ptr && size > 0)
|
|
page_init_poison(ptr, size);
|
|
|
|
return ptr;
|
|
}
|
|
|
|
#ifdef CONFIG_FLATMEM
|
|
static void __init alloc_node_mem_map(struct pglist_data *pgdat)
|
|
{
|
|
unsigned long start, offset, size, end;
|
|
struct page *map;
|
|
|
|
/* Skip empty nodes */
|
|
if (!pgdat->node_spanned_pages)
|
|
return;
|
|
|
|
start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
|
|
offset = pgdat->node_start_pfn - start;
|
|
/*
|
|
* The zone's endpoints aren't required to be MAX_PAGE_ORDER
|
|
* aligned but the node_mem_map endpoints must be in order
|
|
* for the buddy allocator to function correctly.
|
|
*/
|
|
end = ALIGN(pgdat_end_pfn(pgdat), MAX_ORDER_NR_PAGES);
|
|
size = (end - start) * sizeof(struct page);
|
|
map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
|
|
pgdat->node_id, false);
|
|
if (!map)
|
|
panic("Failed to allocate %ld bytes for node %d memory map\n",
|
|
size, pgdat->node_id);
|
|
pgdat->node_mem_map = map + offset;
|
|
pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
|
|
__func__, pgdat->node_id, (unsigned long)pgdat,
|
|
(unsigned long)pgdat->node_mem_map);
|
|
#ifndef CONFIG_NUMA
|
|
/* the global mem_map is just set as node 0's */
|
|
if (pgdat == NODE_DATA(0)) {
|
|
mem_map = NODE_DATA(0)->node_mem_map;
|
|
if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
|
|
mem_map -= offset;
|
|
}
|
|
#endif
|
|
}
|
|
#else
|
|
static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
|
|
#endif /* CONFIG_FLATMEM */
|
|
|
|
/**
|
|
* get_pfn_range_for_nid - Return the start and end page frames for a node
|
|
* @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
|
|
* @start_pfn: Passed by reference. On return, it will have the node start_pfn.
|
|
* @end_pfn: Passed by reference. On return, it will have the node end_pfn.
|
|
*
|
|
* It returns the start and end page frame of a node based on information
|
|
* provided by memblock_set_node(). If called for a node
|
|
* with no available memory, the start and end PFNs will be 0.
|
|
*/
|
|
void __init get_pfn_range_for_nid(unsigned int nid,
|
|
unsigned long *start_pfn, unsigned long *end_pfn)
|
|
{
|
|
unsigned long this_start_pfn, this_end_pfn;
|
|
int i;
|
|
|
|
*start_pfn = -1UL;
|
|
*end_pfn = 0;
|
|
|
|
for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
|
|
*start_pfn = min(*start_pfn, this_start_pfn);
|
|
*end_pfn = max(*end_pfn, this_end_pfn);
|
|
}
|
|
|
|
if (*start_pfn == -1UL)
|
|
*start_pfn = 0;
|
|
}
|
|
|
|
static void __init free_area_init_node(int nid)
|
|
{
|
|
pg_data_t *pgdat = NODE_DATA(nid);
|
|
unsigned long start_pfn = 0;
|
|
unsigned long end_pfn = 0;
|
|
|
|
/* pg_data_t should be reset to zero when it's allocated */
|
|
WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
|
|
|
|
get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
|
|
|
|
pgdat->node_id = nid;
|
|
pgdat->node_start_pfn = start_pfn;
|
|
pgdat->per_cpu_nodestats = NULL;
|
|
|
|
if (start_pfn != end_pfn) {
|
|
pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
|
|
(u64)start_pfn << PAGE_SHIFT,
|
|
end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
|
|
|
|
calculate_node_totalpages(pgdat, start_pfn, end_pfn);
|
|
} else {
|
|
pr_info("Initmem setup node %d as memoryless\n", nid);
|
|
|
|
reset_memoryless_node_totalpages(pgdat);
|
|
}
|
|
|
|
alloc_node_mem_map(pgdat);
|
|
pgdat_set_deferred_range(pgdat);
|
|
|
|
free_area_init_core(pgdat);
|
|
lru_gen_init_pgdat(pgdat);
|
|
}
|
|
|
|
/* Any regular or high memory on that node ? */
|
|
static void __init check_for_memory(pg_data_t *pgdat)
|
|
{
|
|
enum zone_type zone_type;
|
|
|
|
for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
|
|
struct zone *zone = &pgdat->node_zones[zone_type];
|
|
if (populated_zone(zone)) {
|
|
if (IS_ENABLED(CONFIG_HIGHMEM))
|
|
node_set_state(pgdat->node_id, N_HIGH_MEMORY);
|
|
if (zone_type <= ZONE_NORMAL)
|
|
node_set_state(pgdat->node_id, N_NORMAL_MEMORY);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if MAX_NUMNODES > 1
|
|
/*
|
|
* Figure out the number of possible node ids.
|
|
*/
|
|
void __init setup_nr_node_ids(void)
|
|
{
|
|
unsigned int highest;
|
|
|
|
highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
|
|
nr_node_ids = highest + 1;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
|
|
* such cases we allow max_zone_pfn sorted in the descending order
|
|
*/
|
|
static bool arch_has_descending_max_zone_pfns(void)
|
|
{
|
|
return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40);
|
|
}
|
|
|
|
/**
|
|
* free_area_init - Initialise all pg_data_t and zone data
|
|
* @max_zone_pfn: an array of max PFNs for each zone
|
|
*
|
|
* This will call free_area_init_node() for each active node in the system.
|
|
* Using the page ranges provided by memblock_set_node(), the size of each
|
|
* zone in each node and their holes is calculated. If the maximum PFN
|
|
* between two adjacent zones match, it is assumed that the zone is empty.
|
|
* For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
|
|
* that arch_max_dma32_pfn has no pages. It is also assumed that a zone
|
|
* starts where the previous one ended. For example, ZONE_DMA32 starts
|
|
* at arch_max_dma_pfn.
|
|
*/
|
|
void __init free_area_init(unsigned long *max_zone_pfn)
|
|
{
|
|
unsigned long start_pfn, end_pfn;
|
|
int i, nid, zone;
|
|
bool descending;
|
|
|
|
/* Record where the zone boundaries are */
|
|
memset(arch_zone_lowest_possible_pfn, 0,
|
|
sizeof(arch_zone_lowest_possible_pfn));
|
|
memset(arch_zone_highest_possible_pfn, 0,
|
|
sizeof(arch_zone_highest_possible_pfn));
|
|
|
|
start_pfn = PHYS_PFN(memblock_start_of_DRAM());
|
|
descending = arch_has_descending_max_zone_pfns();
|
|
|
|
for (i = 0; i < MAX_NR_ZONES; i++) {
|
|
if (descending)
|
|
zone = MAX_NR_ZONES - i - 1;
|
|
else
|
|
zone = i;
|
|
|
|
if (zone == ZONE_MOVABLE)
|
|
continue;
|
|
|
|
end_pfn = max(max_zone_pfn[zone], start_pfn);
|
|
arch_zone_lowest_possible_pfn[zone] = start_pfn;
|
|
arch_zone_highest_possible_pfn[zone] = end_pfn;
|
|
|
|
start_pfn = end_pfn;
|
|
}
|
|
|
|
/* Find the PFNs that ZONE_MOVABLE begins at in each node */
|
|
memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
|
|
find_zone_movable_pfns_for_nodes();
|
|
|
|
/* Print out the zone ranges */
|
|
pr_info("Zone ranges:\n");
|
|
for (i = 0; i < MAX_NR_ZONES; i++) {
|
|
if (i == ZONE_MOVABLE)
|
|
continue;
|
|
pr_info(" %-8s ", zone_names[i]);
|
|
if (arch_zone_lowest_possible_pfn[i] ==
|
|
arch_zone_highest_possible_pfn[i])
|
|
pr_cont("empty\n");
|
|
else
|
|
pr_cont("[mem %#018Lx-%#018Lx]\n",
|
|
(u64)arch_zone_lowest_possible_pfn[i]
|
|
<< PAGE_SHIFT,
|
|
((u64)arch_zone_highest_possible_pfn[i]
|
|
<< PAGE_SHIFT) - 1);
|
|
}
|
|
|
|
/* Print out the PFNs ZONE_MOVABLE begins at in each node */
|
|
pr_info("Movable zone start for each node\n");
|
|
for (i = 0; i < MAX_NUMNODES; i++) {
|
|
if (zone_movable_pfn[i])
|
|
pr_info(" Node %d: %#018Lx\n", i,
|
|
(u64)zone_movable_pfn[i] << PAGE_SHIFT);
|
|
}
|
|
|
|
/*
|
|
* Print out the early node map, and initialize the
|
|
* subsection-map relative to active online memory ranges to
|
|
* enable future "sub-section" extensions of the memory map.
|
|
*/
|
|
pr_info("Early memory node ranges\n");
|
|
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
|
|
pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
|
|
(u64)start_pfn << PAGE_SHIFT,
|
|
((u64)end_pfn << PAGE_SHIFT) - 1);
|
|
subsection_map_init(start_pfn, end_pfn - start_pfn);
|
|
}
|
|
|
|
/* Initialise every node */
|
|
mminit_verify_pageflags_layout();
|
|
setup_nr_node_ids();
|
|
set_pageblock_order();
|
|
|
|
for_each_node(nid) {
|
|
pg_data_t *pgdat;
|
|
|
|
if (!node_online(nid)) {
|
|
/* Allocator not initialized yet */
|
|
pgdat = arch_alloc_nodedata(nid);
|
|
if (!pgdat)
|
|
panic("Cannot allocate %zuB for node %d.\n",
|
|
sizeof(*pgdat), nid);
|
|
arch_refresh_nodedata(nid, pgdat);
|
|
free_area_init_node(nid);
|
|
|
|
/*
|
|
* We do not want to confuse userspace by sysfs
|
|
* files/directories for node without any memory
|
|
* attached to it, so this node is not marked as
|
|
* N_MEMORY and not marked online so that no sysfs
|
|
* hierarchy will be created via register_one_node for
|
|
* it. The pgdat will get fully initialized by
|
|
* hotadd_init_pgdat() when memory is hotplugged into
|
|
* this node.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
pgdat = NODE_DATA(nid);
|
|
free_area_init_node(nid);
|
|
|
|
/* Any memory on that node */
|
|
if (pgdat->node_present_pages)
|
|
node_set_state(nid, N_MEMORY);
|
|
check_for_memory(pgdat);
|
|
}
|
|
|
|
memmap_init();
|
|
|
|
/* disable hash distribution for systems with a single node */
|
|
fixup_hashdist();
|
|
}
|
|
|
|
/**
|
|
* node_map_pfn_alignment - determine the maximum internode alignment
|
|
*
|
|
* This function should be called after node map is populated and sorted.
|
|
* It calculates the maximum power of two alignment which can distinguish
|
|
* all the nodes.
|
|
*
|
|
* For example, if all nodes are 1GiB and aligned to 1GiB, the return value
|
|
* would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
|
|
* nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
|
|
* shifted, 1GiB is enough and this function will indicate so.
|
|
*
|
|
* This is used to test whether pfn -> nid mapping of the chosen memory
|
|
* model has fine enough granularity to avoid incorrect mapping for the
|
|
* populated node map.
|
|
*
|
|
* Return: the determined alignment in pfn's. 0 if there is no alignment
|
|
* requirement (single node).
|
|
*/
|
|
unsigned long __init node_map_pfn_alignment(void)
|
|
{
|
|
unsigned long accl_mask = 0, last_end = 0;
|
|
unsigned long start, end, mask;
|
|
int last_nid = NUMA_NO_NODE;
|
|
int i, nid;
|
|
|
|
for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
|
|
if (!start || last_nid < 0 || last_nid == nid) {
|
|
last_nid = nid;
|
|
last_end = end;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Start with a mask granular enough to pin-point to the
|
|
* start pfn and tick off bits one-by-one until it becomes
|
|
* too coarse to separate the current node from the last.
|
|
*/
|
|
mask = ~((1 << __ffs(start)) - 1);
|
|
while (mask && last_end <= (start & (mask << 1)))
|
|
mask <<= 1;
|
|
|
|
/* accumulate all internode masks */
|
|
accl_mask |= mask;
|
|
}
|
|
|
|
/* convert mask to number of pages */
|
|
return ~accl_mask + 1;
|
|
}
|
|
|
|
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
|
|
static void __init deferred_free_range(unsigned long pfn,
|
|
unsigned long nr_pages)
|
|
{
|
|
struct page *page;
|
|
unsigned long i;
|
|
|
|
if (!nr_pages)
|
|
return;
|
|
|
|
page = pfn_to_page(pfn);
|
|
|
|
/* Free a large naturally-aligned chunk if possible */
|
|
if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) {
|
|
for (i = 0; i < nr_pages; i += pageblock_nr_pages)
|
|
set_pageblock_migratetype(page + i, MIGRATE_MOVABLE);
|
|
__free_pages_core(page, MAX_PAGE_ORDER);
|
|
return;
|
|
}
|
|
|
|
/* Accept chunks smaller than MAX_PAGE_ORDER upfront */
|
|
accept_memory(PFN_PHYS(pfn), PFN_PHYS(pfn + nr_pages));
|
|
|
|
for (i = 0; i < nr_pages; i++, page++, pfn++) {
|
|
if (pageblock_aligned(pfn))
|
|
set_pageblock_migratetype(page, MIGRATE_MOVABLE);
|
|
__free_pages_core(page, 0);
|
|
}
|
|
}
|
|
|
|
/* Completion tracking for deferred_init_memmap() threads */
|
|
static atomic_t pgdat_init_n_undone __initdata;
|
|
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
|
|
|
|
static inline void __init pgdat_init_report_one_done(void)
|
|
{
|
|
if (atomic_dec_and_test(&pgdat_init_n_undone))
|
|
complete(&pgdat_init_all_done_comp);
|
|
}
|
|
|
|
/*
|
|
* Returns true if page needs to be initialized or freed to buddy allocator.
|
|
*
|
|
* We check if a current MAX_PAGE_ORDER block is valid by only checking the
|
|
* validity of the head pfn.
|
|
*/
|
|
static inline bool __init deferred_pfn_valid(unsigned long pfn)
|
|
{
|
|
if (IS_MAX_ORDER_ALIGNED(pfn) && !pfn_valid(pfn))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Free pages to buddy allocator. Try to free aligned pages in
|
|
* MAX_ORDER_NR_PAGES sizes.
|
|
*/
|
|
static void __init deferred_free_pages(unsigned long pfn,
|
|
unsigned long end_pfn)
|
|
{
|
|
unsigned long nr_free = 0;
|
|
|
|
for (; pfn < end_pfn; pfn++) {
|
|
if (!deferred_pfn_valid(pfn)) {
|
|
deferred_free_range(pfn - nr_free, nr_free);
|
|
nr_free = 0;
|
|
} else if (IS_MAX_ORDER_ALIGNED(pfn)) {
|
|
deferred_free_range(pfn - nr_free, nr_free);
|
|
nr_free = 1;
|
|
} else {
|
|
nr_free++;
|
|
}
|
|
}
|
|
/* Free the last block of pages to allocator */
|
|
deferred_free_range(pfn - nr_free, nr_free);
|
|
}
|
|
|
|
/*
|
|
* Initialize struct pages. We minimize pfn page lookups and scheduler checks
|
|
* by performing it only once every MAX_ORDER_NR_PAGES.
|
|
* Return number of pages initialized.
|
|
*/
|
|
static unsigned long __init deferred_init_pages(struct zone *zone,
|
|
unsigned long pfn,
|
|
unsigned long end_pfn)
|
|
{
|
|
int nid = zone_to_nid(zone);
|
|
unsigned long nr_pages = 0;
|
|
int zid = zone_idx(zone);
|
|
struct page *page = NULL;
|
|
|
|
for (; pfn < end_pfn; pfn++) {
|
|
if (!deferred_pfn_valid(pfn)) {
|
|
page = NULL;
|
|
continue;
|
|
} else if (!page || IS_MAX_ORDER_ALIGNED(pfn)) {
|
|
page = pfn_to_page(pfn);
|
|
} else {
|
|
page++;
|
|
}
|
|
__init_single_page(page, pfn, zid, nid);
|
|
nr_pages++;
|
|
}
|
|
return (nr_pages);
|
|
}
|
|
|
|
/*
|
|
* This function is meant to pre-load the iterator for the zone init.
|
|
* Specifically it walks through the ranges until we are caught up to the
|
|
* first_init_pfn value and exits there. If we never encounter the value we
|
|
* return false indicating there are no valid ranges left.
|
|
*/
|
|
static bool __init
|
|
deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
|
|
unsigned long *spfn, unsigned long *epfn,
|
|
unsigned long first_init_pfn)
|
|
{
|
|
u64 j;
|
|
|
|
/*
|
|
* Start out by walking through the ranges in this zone that have
|
|
* already been initialized. We don't need to do anything with them
|
|
* so we just need to flush them out of the system.
|
|
*/
|
|
for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
|
|
if (*epfn <= first_init_pfn)
|
|
continue;
|
|
if (*spfn < first_init_pfn)
|
|
*spfn = first_init_pfn;
|
|
*i = j;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Initialize and free pages. We do it in two loops: first we initialize
|
|
* struct page, then free to buddy allocator, because while we are
|
|
* freeing pages we can access pages that are ahead (computing buddy
|
|
* page in __free_one_page()).
|
|
*
|
|
* In order to try and keep some memory in the cache we have the loop
|
|
* broken along max page order boundaries. This way we will not cause
|
|
* any issues with the buddy page computation.
|
|
*/
|
|
static unsigned long __init
|
|
deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
|
|
unsigned long *end_pfn)
|
|
{
|
|
unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
|
|
unsigned long spfn = *start_pfn, epfn = *end_pfn;
|
|
unsigned long nr_pages = 0;
|
|
u64 j = *i;
|
|
|
|
/* First we loop through and initialize the page values */
|
|
for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
|
|
unsigned long t;
|
|
|
|
if (mo_pfn <= *start_pfn)
|
|
break;
|
|
|
|
t = min(mo_pfn, *end_pfn);
|
|
nr_pages += deferred_init_pages(zone, *start_pfn, t);
|
|
|
|
if (mo_pfn < *end_pfn) {
|
|
*start_pfn = mo_pfn;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Reset values and now loop through freeing pages as needed */
|
|
swap(j, *i);
|
|
|
|
for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
|
|
unsigned long t;
|
|
|
|
if (mo_pfn <= spfn)
|
|
break;
|
|
|
|
t = min(mo_pfn, epfn);
|
|
deferred_free_pages(spfn, t);
|
|
|
|
if (mo_pfn <= epfn)
|
|
break;
|
|
}
|
|
|
|
return nr_pages;
|
|
}
|
|
|
|
static void __init
|
|
deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
|
|
void *arg)
|
|
{
|
|
unsigned long spfn, epfn;
|
|
struct zone *zone = arg;
|
|
u64 i;
|
|
|
|
deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
|
|
|
|
/*
|
|
* Initialize and free pages in MAX_PAGE_ORDER sized increments so that
|
|
* we can avoid introducing any issues with the buddy allocator.
|
|
*/
|
|
while (spfn < end_pfn) {
|
|
deferred_init_maxorder(&i, zone, &spfn, &epfn);
|
|
cond_resched();
|
|
}
|
|
}
|
|
|
|
/* An arch may override for more concurrency. */
|
|
__weak int __init
|
|
deferred_page_init_max_threads(const struct cpumask *node_cpumask)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
/* Initialise remaining memory on a node */
|
|
static int __init deferred_init_memmap(void *data)
|
|
{
|
|
pg_data_t *pgdat = data;
|
|
const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
|
|
unsigned long spfn = 0, epfn = 0;
|
|
unsigned long first_init_pfn, flags;
|
|
unsigned long start = jiffies;
|
|
struct zone *zone;
|
|
int zid, max_threads;
|
|
u64 i;
|
|
|
|
/* Bind memory initialisation thread to a local node if possible */
|
|
if (!cpumask_empty(cpumask))
|
|
set_cpus_allowed_ptr(current, cpumask);
|
|
|
|
pgdat_resize_lock(pgdat, &flags);
|
|
first_init_pfn = pgdat->first_deferred_pfn;
|
|
if (first_init_pfn == ULONG_MAX) {
|
|
pgdat_resize_unlock(pgdat, &flags);
|
|
pgdat_init_report_one_done();
|
|
return 0;
|
|
}
|
|
|
|
/* Sanity check boundaries */
|
|
BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
|
|
BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
|
|
pgdat->first_deferred_pfn = ULONG_MAX;
|
|
|
|
/*
|
|
* Once we unlock here, the zone cannot be grown anymore, thus if an
|
|
* interrupt thread must allocate this early in boot, zone must be
|
|
* pre-grown prior to start of deferred page initialization.
|
|
*/
|
|
pgdat_resize_unlock(pgdat, &flags);
|
|
|
|
/* Only the highest zone is deferred so find it */
|
|
for (zid = 0; zid < MAX_NR_ZONES; zid++) {
|
|
zone = pgdat->node_zones + zid;
|
|
if (first_init_pfn < zone_end_pfn(zone))
|
|
break;
|
|
}
|
|
|
|
/* If the zone is empty somebody else may have cleared out the zone */
|
|
if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
|
|
first_init_pfn))
|
|
goto zone_empty;
|
|
|
|
max_threads = deferred_page_init_max_threads(cpumask);
|
|
|
|
while (spfn < epfn) {
|
|
unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
|
|
struct padata_mt_job job = {
|
|
.thread_fn = deferred_init_memmap_chunk,
|
|
.fn_arg = zone,
|
|
.start = spfn,
|
|
.size = epfn_align - spfn,
|
|
.align = PAGES_PER_SECTION,
|
|
.min_chunk = PAGES_PER_SECTION,
|
|
.max_threads = max_threads,
|
|
.numa_aware = false,
|
|
};
|
|
|
|
padata_do_multithreaded(&job);
|
|
deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
|
|
epfn_align);
|
|
}
|
|
zone_empty:
|
|
/* Sanity check that the next zone really is unpopulated */
|
|
WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
|
|
|
|
pr_info("node %d deferred pages initialised in %ums\n",
|
|
pgdat->node_id, jiffies_to_msecs(jiffies - start));
|
|
|
|
pgdat_init_report_one_done();
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If this zone has deferred pages, try to grow it by initializing enough
|
|
* deferred pages to satisfy the allocation specified by order, rounded up to
|
|
* the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
|
|
* of SECTION_SIZE bytes by initializing struct pages in increments of
|
|
* PAGES_PER_SECTION * sizeof(struct page) bytes.
|
|
*
|
|
* Return true when zone was grown, otherwise return false. We return true even
|
|
* when we grow less than requested, to let the caller decide if there are
|
|
* enough pages to satisfy the allocation.
|
|
*
|
|
* Note: We use noinline because this function is needed only during boot, and
|
|
* it is called from a __ref function _deferred_grow_zone. This way we are
|
|
* making sure that it is not inlined into permanent text section.
|
|
*/
|
|
bool __init deferred_grow_zone(struct zone *zone, unsigned int order)
|
|
{
|
|
unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
|
|
pg_data_t *pgdat = zone->zone_pgdat;
|
|
unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
|
|
unsigned long spfn, epfn, flags;
|
|
unsigned long nr_pages = 0;
|
|
u64 i;
|
|
|
|
/* Only the last zone may have deferred pages */
|
|
if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
|
|
return false;
|
|
|
|
pgdat_resize_lock(pgdat, &flags);
|
|
|
|
/*
|
|
* If someone grew this zone while we were waiting for spinlock, return
|
|
* true, as there might be enough pages already.
|
|
*/
|
|
if (first_deferred_pfn != pgdat->first_deferred_pfn) {
|
|
pgdat_resize_unlock(pgdat, &flags);
|
|
return true;
|
|
}
|
|
|
|
/* If the zone is empty somebody else may have cleared out the zone */
|
|
if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
|
|
first_deferred_pfn)) {
|
|
pgdat->first_deferred_pfn = ULONG_MAX;
|
|
pgdat_resize_unlock(pgdat, &flags);
|
|
/* Retry only once. */
|
|
return first_deferred_pfn != ULONG_MAX;
|
|
}
|
|
|
|
/*
|
|
* Initialize and free pages in MAX_PAGE_ORDER sized increments so
|
|
* that we can avoid introducing any issues with the buddy
|
|
* allocator.
|
|
*/
|
|
while (spfn < epfn) {
|
|
/* update our first deferred PFN for this section */
|
|
first_deferred_pfn = spfn;
|
|
|
|
nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
|
|
touch_nmi_watchdog();
|
|
|
|
/* We should only stop along section boundaries */
|
|
if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
|
|
continue;
|
|
|
|
/* If our quota has been met we can stop here */
|
|
if (nr_pages >= nr_pages_needed)
|
|
break;
|
|
}
|
|
|
|
pgdat->first_deferred_pfn = spfn;
|
|
pgdat_resize_unlock(pgdat, &flags);
|
|
|
|
return nr_pages > 0;
|
|
}
|
|
|
|
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
|
|
|
|
#ifdef CONFIG_CMA
|
|
void __init init_cma_reserved_pageblock(struct page *page)
|
|
{
|
|
unsigned i = pageblock_nr_pages;
|
|
struct page *p = page;
|
|
|
|
do {
|
|
__ClearPageReserved(p);
|
|
set_page_count(p, 0);
|
|
} while (++p, --i);
|
|
|
|
set_pageblock_migratetype(page, MIGRATE_CMA);
|
|
set_page_refcounted(page);
|
|
__free_pages(page, pageblock_order);
|
|
|
|
adjust_managed_page_count(page, pageblock_nr_pages);
|
|
page_zone(page)->cma_pages += pageblock_nr_pages;
|
|
}
|
|
#endif
|
|
|
|
void set_zone_contiguous(struct zone *zone)
|
|
{
|
|
unsigned long block_start_pfn = zone->zone_start_pfn;
|
|
unsigned long block_end_pfn;
|
|
|
|
block_end_pfn = pageblock_end_pfn(block_start_pfn);
|
|
for (; block_start_pfn < zone_end_pfn(zone);
|
|
block_start_pfn = block_end_pfn,
|
|
block_end_pfn += pageblock_nr_pages) {
|
|
|
|
block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
|
|
|
|
if (!__pageblock_pfn_to_page(block_start_pfn,
|
|
block_end_pfn, zone))
|
|
return;
|
|
cond_resched();
|
|
}
|
|
|
|
/* We confirm that there is no hole */
|
|
zone->contiguous = true;
|
|
}
|
|
|
|
void __init page_alloc_init_late(void)
|
|
{
|
|
struct zone *zone;
|
|
int nid;
|
|
|
|
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
|
|
|
|
/* There will be num_node_state(N_MEMORY) threads */
|
|
atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
|
|
for_each_node_state(nid, N_MEMORY) {
|
|
kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
|
|
}
|
|
|
|
/* Block until all are initialised */
|
|
wait_for_completion(&pgdat_init_all_done_comp);
|
|
|
|
/*
|
|
* We initialized the rest of the deferred pages. Permanently disable
|
|
* on-demand struct page initialization.
|
|
*/
|
|
static_branch_disable(&deferred_pages);
|
|
|
|
/* Reinit limits that are based on free pages after the kernel is up */
|
|
files_maxfiles_init();
|
|
#endif
|
|
|
|
buffer_init();
|
|
|
|
/* Discard memblock private memory */
|
|
memblock_discard();
|
|
|
|
for_each_node_state(nid, N_MEMORY)
|
|
shuffle_free_memory(NODE_DATA(nid));
|
|
|
|
for_each_populated_zone(zone)
|
|
set_zone_contiguous(zone);
|
|
|
|
/* Initialize page ext after all struct pages are initialized. */
|
|
if (deferred_struct_pages)
|
|
page_ext_init();
|
|
|
|
page_alloc_sysctl_init();
|
|
}
|
|
|
|
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
|
|
/*
|
|
* Returns the number of pages that arch has reserved but
|
|
* is not known to alloc_large_system_hash().
|
|
*/
|
|
static unsigned long __init arch_reserved_kernel_pages(void)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Adaptive scale is meant to reduce sizes of hash tables on large memory
|
|
* machines. As memory size is increased the scale is also increased but at
|
|
* slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
|
|
* quadruples the scale is increased by one, which means the size of hash table
|
|
* only doubles, instead of quadrupling as well.
|
|
* Because 32-bit systems cannot have large physical memory, where this scaling
|
|
* makes sense, it is disabled on such platforms.
|
|
*/
|
|
#if __BITS_PER_LONG > 32
|
|
#define ADAPT_SCALE_BASE (64ul << 30)
|
|
#define ADAPT_SCALE_SHIFT 2
|
|
#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
|
|
#endif
|
|
|
|
/*
|
|
* allocate a large system hash table from bootmem
|
|
* - it is assumed that the hash table must contain an exact power-of-2
|
|
* quantity of entries
|
|
* - limit is the number of hash buckets, not the total allocation size
|
|
*/
|
|
void *__init alloc_large_system_hash(const char *tablename,
|
|
unsigned long bucketsize,
|
|
unsigned long numentries,
|
|
int scale,
|
|
int flags,
|
|
unsigned int *_hash_shift,
|
|
unsigned int *_hash_mask,
|
|
unsigned long low_limit,
|
|
unsigned long high_limit)
|
|
{
|
|
unsigned long long max = high_limit;
|
|
unsigned long log2qty, size;
|
|
void *table;
|
|
gfp_t gfp_flags;
|
|
bool virt;
|
|
bool huge;
|
|
|
|
/* allow the kernel cmdline to have a say */
|
|
if (!numentries) {
|
|
/* round applicable memory size up to nearest megabyte */
|
|
numentries = nr_kernel_pages;
|
|
numentries -= arch_reserved_kernel_pages();
|
|
|
|
/* It isn't necessary when PAGE_SIZE >= 1MB */
|
|
if (PAGE_SIZE < SZ_1M)
|
|
numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
|
|
|
|
#if __BITS_PER_LONG > 32
|
|
if (!high_limit) {
|
|
unsigned long adapt;
|
|
|
|
for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
|
|
adapt <<= ADAPT_SCALE_SHIFT)
|
|
scale++;
|
|
}
|
|
#endif
|
|
|
|
/* limit to 1 bucket per 2^scale bytes of low memory */
|
|
if (scale > PAGE_SHIFT)
|
|
numentries >>= (scale - PAGE_SHIFT);
|
|
else
|
|
numentries <<= (PAGE_SHIFT - scale);
|
|
|
|
if (unlikely((numentries * bucketsize) < PAGE_SIZE))
|
|
numentries = PAGE_SIZE / bucketsize;
|
|
}
|
|
numentries = roundup_pow_of_two(numentries);
|
|
|
|
/* limit allocation size to 1/16 total memory by default */
|
|
if (max == 0) {
|
|
max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
|
|
do_div(max, bucketsize);
|
|
}
|
|
max = min(max, 0x80000000ULL);
|
|
|
|
if (numentries < low_limit)
|
|
numentries = low_limit;
|
|
if (numentries > max)
|
|
numentries = max;
|
|
|
|
log2qty = ilog2(numentries);
|
|
|
|
gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
|
|
do {
|
|
virt = false;
|
|
size = bucketsize << log2qty;
|
|
if (flags & HASH_EARLY) {
|
|
if (flags & HASH_ZERO)
|
|
table = memblock_alloc(size, SMP_CACHE_BYTES);
|
|
else
|
|
table = memblock_alloc_raw(size,
|
|
SMP_CACHE_BYTES);
|
|
} else if (get_order(size) > MAX_PAGE_ORDER || hashdist) {
|
|
table = vmalloc_huge(size, gfp_flags);
|
|
virt = true;
|
|
if (table)
|
|
huge = is_vm_area_hugepages(table);
|
|
} else {
|
|
/*
|
|
* If bucketsize is not a power-of-two, we may free
|
|
* some pages at the end of hash table which
|
|
* alloc_pages_exact() automatically does
|
|
*/
|
|
table = alloc_pages_exact(size, gfp_flags);
|
|
kmemleak_alloc(table, size, 1, gfp_flags);
|
|
}
|
|
} while (!table && size > PAGE_SIZE && --log2qty);
|
|
|
|
if (!table)
|
|
panic("Failed to allocate %s hash table\n", tablename);
|
|
|
|
pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
|
|
tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
|
|
virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
|
|
|
|
if (_hash_shift)
|
|
*_hash_shift = log2qty;
|
|
if (_hash_mask)
|
|
*_hash_mask = (1 << log2qty) - 1;
|
|
|
|
return table;
|
|
}
|
|
|
|
/**
|
|
* set_dma_reserve - set the specified number of pages reserved in the first zone
|
|
* @new_dma_reserve: The number of pages to mark reserved
|
|
*
|
|
* The per-cpu batchsize and zone watermarks are determined by managed_pages.
|
|
* In the DMA zone, a significant percentage may be consumed by kernel image
|
|
* and other unfreeable allocations which can skew the watermarks badly. This
|
|
* function may optionally be used to account for unfreeable pages in the
|
|
* first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
|
|
* smaller per-cpu batchsize.
|
|
*/
|
|
void __init set_dma_reserve(unsigned long new_dma_reserve)
|
|
{
|
|
dma_reserve = new_dma_reserve;
|
|
}
|
|
|
|
void __init memblock_free_pages(struct page *page, unsigned long pfn,
|
|
unsigned int order)
|
|
{
|
|
|
|
if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) {
|
|
int nid = early_pfn_to_nid(pfn);
|
|
|
|
if (!early_page_initialised(pfn, nid))
|
|
return;
|
|
}
|
|
|
|
if (!kmsan_memblock_free_pages(page, order)) {
|
|
/* KMSAN will take care of these pages. */
|
|
return;
|
|
}
|
|
__free_pages_core(page, order);
|
|
}
|
|
|
|
DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
|
|
EXPORT_SYMBOL(init_on_alloc);
|
|
|
|
DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
|
|
EXPORT_SYMBOL(init_on_free);
|
|
|
|
static bool _init_on_alloc_enabled_early __read_mostly
|
|
= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
|
|
static int __init early_init_on_alloc(char *buf)
|
|
{
|
|
|
|
return kstrtobool(buf, &_init_on_alloc_enabled_early);
|
|
}
|
|
early_param("init_on_alloc", early_init_on_alloc);
|
|
|
|
static bool _init_on_free_enabled_early __read_mostly
|
|
= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
|
|
static int __init early_init_on_free(char *buf)
|
|
{
|
|
return kstrtobool(buf, &_init_on_free_enabled_early);
|
|
}
|
|
early_param("init_on_free", early_init_on_free);
|
|
|
|
DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
|
|
|
|
/*
|
|
* Enable static keys related to various memory debugging and hardening options.
|
|
* Some override others, and depend on early params that are evaluated in the
|
|
* order of appearance. So we need to first gather the full picture of what was
|
|
* enabled, and then make decisions.
|
|
*/
|
|
static void __init mem_debugging_and_hardening_init(void)
|
|
{
|
|
bool page_poisoning_requested = false;
|
|
bool want_check_pages = false;
|
|
|
|
#ifdef CONFIG_PAGE_POISONING
|
|
/*
|
|
* Page poisoning is debug page alloc for some arches. If
|
|
* either of those options are enabled, enable poisoning.
|
|
*/
|
|
if (page_poisoning_enabled() ||
|
|
(!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
|
|
debug_pagealloc_enabled())) {
|
|
static_branch_enable(&_page_poisoning_enabled);
|
|
page_poisoning_requested = true;
|
|
want_check_pages = true;
|
|
}
|
|
#endif
|
|
|
|
if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
|
|
page_poisoning_requested) {
|
|
pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
|
|
"will take precedence over init_on_alloc and init_on_free\n");
|
|
_init_on_alloc_enabled_early = false;
|
|
_init_on_free_enabled_early = false;
|
|
}
|
|
|
|
if (_init_on_alloc_enabled_early) {
|
|
want_check_pages = true;
|
|
static_branch_enable(&init_on_alloc);
|
|
} else {
|
|
static_branch_disable(&init_on_alloc);
|
|
}
|
|
|
|
if (_init_on_free_enabled_early) {
|
|
want_check_pages = true;
|
|
static_branch_enable(&init_on_free);
|
|
} else {
|
|
static_branch_disable(&init_on_free);
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_KMSAN) &&
|
|
(_init_on_alloc_enabled_early || _init_on_free_enabled_early))
|
|
pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
if (debug_pagealloc_enabled()) {
|
|
want_check_pages = true;
|
|
static_branch_enable(&_debug_pagealloc_enabled);
|
|
|
|
if (debug_guardpage_minorder())
|
|
static_branch_enable(&_debug_guardpage_enabled);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Any page debugging or hardening option also enables sanity checking
|
|
* of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
|
|
* enabled already.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
|
|
static_branch_enable(&check_pages_enabled);
|
|
}
|
|
|
|
/* Report memory auto-initialization states for this boot. */
|
|
static void __init report_meminit(void)
|
|
{
|
|
const char *stack;
|
|
|
|
if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN))
|
|
stack = "all(pattern)";
|
|
else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO))
|
|
stack = "all(zero)";
|
|
else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL))
|
|
stack = "byref_all(zero)";
|
|
else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF))
|
|
stack = "byref(zero)";
|
|
else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER))
|
|
stack = "__user(zero)";
|
|
else
|
|
stack = "off";
|
|
|
|
pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n",
|
|
stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off",
|
|
want_init_on_free() ? "on" : "off");
|
|
if (want_init_on_free())
|
|
pr_info("mem auto-init: clearing system memory may take some time...\n");
|
|
}
|
|
|
|
static void __init mem_init_print_info(void)
|
|
{
|
|
unsigned long physpages, codesize, datasize, rosize, bss_size;
|
|
unsigned long init_code_size, init_data_size;
|
|
|
|
physpages = get_num_physpages();
|
|
codesize = _etext - _stext;
|
|
datasize = _edata - _sdata;
|
|
rosize = __end_rodata - __start_rodata;
|
|
bss_size = __bss_stop - __bss_start;
|
|
init_data_size = __init_end - __init_begin;
|
|
init_code_size = _einittext - _sinittext;
|
|
|
|
/*
|
|
* Detect special cases and adjust section sizes accordingly:
|
|
* 1) .init.* may be embedded into .data sections
|
|
* 2) .init.text.* may be out of [__init_begin, __init_end],
|
|
* please refer to arch/tile/kernel/vmlinux.lds.S.
|
|
* 3) .rodata.* may be embedded into .text or .data sections.
|
|
*/
|
|
#define adj_init_size(start, end, size, pos, adj) \
|
|
do { \
|
|
if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
|
|
size -= adj; \
|
|
} while (0)
|
|
|
|
adj_init_size(__init_begin, __init_end, init_data_size,
|
|
_sinittext, init_code_size);
|
|
adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
|
|
adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
|
|
adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
|
|
adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
|
|
|
|
#undef adj_init_size
|
|
|
|
pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
|
|
#ifdef CONFIG_HIGHMEM
|
|
", %luK highmem"
|
|
#endif
|
|
")\n",
|
|
K(nr_free_pages()), K(physpages),
|
|
codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
|
|
(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
|
|
K(physpages - totalram_pages() - totalcma_pages),
|
|
K(totalcma_pages)
|
|
#ifdef CONFIG_HIGHMEM
|
|
, K(totalhigh_pages())
|
|
#endif
|
|
);
|
|
}
|
|
|
|
/*
|
|
* Set up kernel memory allocators
|
|
*/
|
|
void __init mm_core_init(void)
|
|
{
|
|
/* Initializations relying on SMP setup */
|
|
build_all_zonelists(NULL);
|
|
page_alloc_init_cpuhp();
|
|
|
|
/*
|
|
* page_ext requires contiguous pages,
|
|
* bigger than MAX_PAGE_ORDER unless SPARSEMEM.
|
|
*/
|
|
page_ext_init_flatmem();
|
|
mem_debugging_and_hardening_init();
|
|
kfence_alloc_pool_and_metadata();
|
|
report_meminit();
|
|
kmsan_init_shadow();
|
|
stack_depot_early_init();
|
|
mem_init();
|
|
mem_init_print_info();
|
|
kmem_cache_init();
|
|
/*
|
|
* page_owner must be initialized after buddy is ready, and also after
|
|
* slab is ready so that stack_depot_init() works properly
|
|
*/
|
|
page_ext_init_flatmem_late();
|
|
kmemleak_init();
|
|
ptlock_cache_init();
|
|
pgtable_cache_init();
|
|
debug_objects_mem_init();
|
|
vmalloc_init();
|
|
/* If no deferred init page_ext now, as vmap is fully initialized */
|
|
if (!deferred_struct_pages)
|
|
page_ext_init();
|
|
/* Should be run before the first non-init thread is created */
|
|
init_espfix_bsp();
|
|
/* Should be run after espfix64 is set up. */
|
|
pti_init();
|
|
kmsan_init_runtime();
|
|
mm_cache_init();
|
|
}
|