mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-06 05:44:20 +08:00
4fbb67e3c8
Instead of ballooning up and down dom0 memory this remaps the existing mfns that were replaced by the identity map. The reason for this is that the existing implementation ballooned memory up and and down which caused dom0 to have discontiguous pages. In some cases this resulted in the use of bounce buffers which reduced network I/O performance significantly. This change will honor the existing order of the pages with the exception of some boundary conditions. To do this we need to update both the Linux p2m table and the Xen m2p table. Particular care must be taken when updating the p2m table since it's important to limit table memory consumption and reuse the existing leaf pages which get freed when an entire leaf page is set to the identity map. To implement this, mapping updates are grouped into blocks with table entries getting cached temporarily and then released. On my test system before: Total pages: 2105014 Total contiguous: 1640635 After: Total pages: 2105014 Total contiguous: 2098904 Signed-off-by: Matthew Rushton <mrushton@amazon.com> Signed-off-by: David Vrabel <david.vrabel@citrix.com>
862 lines
24 KiB
C
862 lines
24 KiB
C
/*
|
|
* Machine specific setup for xen
|
|
*
|
|
* Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/cpuidle.h>
|
|
#include <linux/cpufreq.h>
|
|
|
|
#include <asm/elf.h>
|
|
#include <asm/vdso.h>
|
|
#include <asm/e820.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/acpi.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/xen/hypervisor.h>
|
|
#include <asm/xen/hypercall.h>
|
|
|
|
#include <xen/xen.h>
|
|
#include <xen/page.h>
|
|
#include <xen/interface/callback.h>
|
|
#include <xen/interface/memory.h>
|
|
#include <xen/interface/physdev.h>
|
|
#include <xen/features.h>
|
|
#include "xen-ops.h"
|
|
#include "vdso.h"
|
|
#include "p2m.h"
|
|
|
|
/* These are code, but not functions. Defined in entry.S */
|
|
extern const char xen_hypervisor_callback[];
|
|
extern const char xen_failsafe_callback[];
|
|
#ifdef CONFIG_X86_64
|
|
extern asmlinkage void nmi(void);
|
|
#endif
|
|
extern void xen_sysenter_target(void);
|
|
extern void xen_syscall_target(void);
|
|
extern void xen_syscall32_target(void);
|
|
|
|
/* Amount of extra memory space we add to the e820 ranges */
|
|
struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata;
|
|
|
|
/* Number of pages released from the initial allocation. */
|
|
unsigned long xen_released_pages;
|
|
|
|
/* Buffer used to remap identity mapped pages */
|
|
unsigned long xen_remap_buf[P2M_PER_PAGE] __initdata;
|
|
|
|
/*
|
|
* The maximum amount of extra memory compared to the base size. The
|
|
* main scaling factor is the size of struct page. At extreme ratios
|
|
* of base:extra, all the base memory can be filled with page
|
|
* structures for the extra memory, leaving no space for anything
|
|
* else.
|
|
*
|
|
* 10x seems like a reasonable balance between scaling flexibility and
|
|
* leaving a practically usable system.
|
|
*/
|
|
#define EXTRA_MEM_RATIO (10)
|
|
|
|
static void __init xen_add_extra_mem(u64 start, u64 size)
|
|
{
|
|
unsigned long pfn;
|
|
int i;
|
|
|
|
for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
|
|
/* Add new region. */
|
|
if (xen_extra_mem[i].size == 0) {
|
|
xen_extra_mem[i].start = start;
|
|
xen_extra_mem[i].size = size;
|
|
break;
|
|
}
|
|
/* Append to existing region. */
|
|
if (xen_extra_mem[i].start + xen_extra_mem[i].size == start) {
|
|
xen_extra_mem[i].size += size;
|
|
break;
|
|
}
|
|
}
|
|
if (i == XEN_EXTRA_MEM_MAX_REGIONS)
|
|
printk(KERN_WARNING "Warning: not enough extra memory regions\n");
|
|
|
|
memblock_reserve(start, size);
|
|
|
|
xen_max_p2m_pfn = PFN_DOWN(start + size);
|
|
for (pfn = PFN_DOWN(start); pfn < xen_max_p2m_pfn; pfn++) {
|
|
unsigned long mfn = pfn_to_mfn(pfn);
|
|
|
|
if (WARN_ONCE(mfn == pfn, "Trying to over-write 1-1 mapping (pfn: %lx)\n", pfn))
|
|
continue;
|
|
WARN_ONCE(mfn != INVALID_P2M_ENTRY, "Trying to remove %lx which has %lx mfn!\n",
|
|
pfn, mfn);
|
|
|
|
__set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
|
|
}
|
|
}
|
|
|
|
static unsigned long __init xen_do_chunk(unsigned long start,
|
|
unsigned long end, bool release)
|
|
{
|
|
struct xen_memory_reservation reservation = {
|
|
.address_bits = 0,
|
|
.extent_order = 0,
|
|
.domid = DOMID_SELF
|
|
};
|
|
unsigned long len = 0;
|
|
unsigned long pfn;
|
|
int ret;
|
|
|
|
for (pfn = start; pfn < end; pfn++) {
|
|
unsigned long frame;
|
|
unsigned long mfn = pfn_to_mfn(pfn);
|
|
|
|
if (release) {
|
|
/* Make sure pfn exists to start with */
|
|
if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn)
|
|
continue;
|
|
frame = mfn;
|
|
} else {
|
|
if (mfn != INVALID_P2M_ENTRY)
|
|
continue;
|
|
frame = pfn;
|
|
}
|
|
set_xen_guest_handle(reservation.extent_start, &frame);
|
|
reservation.nr_extents = 1;
|
|
|
|
ret = HYPERVISOR_memory_op(release ? XENMEM_decrease_reservation : XENMEM_populate_physmap,
|
|
&reservation);
|
|
WARN(ret != 1, "Failed to %s pfn %lx err=%d\n",
|
|
release ? "release" : "populate", pfn, ret);
|
|
|
|
if (ret == 1) {
|
|
if (!early_set_phys_to_machine(pfn, release ? INVALID_P2M_ENTRY : frame)) {
|
|
if (release)
|
|
break;
|
|
set_xen_guest_handle(reservation.extent_start, &frame);
|
|
reservation.nr_extents = 1;
|
|
ret = HYPERVISOR_memory_op(XENMEM_decrease_reservation,
|
|
&reservation);
|
|
break;
|
|
}
|
|
len++;
|
|
} else
|
|
break;
|
|
}
|
|
if (len)
|
|
printk(KERN_INFO "%s %lx-%lx pfn range: %lu pages %s\n",
|
|
release ? "Freeing" : "Populating",
|
|
start, end, len,
|
|
release ? "freed" : "added");
|
|
|
|
return len;
|
|
}
|
|
|
|
/*
|
|
* Finds the next RAM pfn available in the E820 map after min_pfn.
|
|
* This function updates min_pfn with the pfn found and returns
|
|
* the size of that range or zero if not found.
|
|
*/
|
|
static unsigned long __init xen_find_pfn_range(
|
|
const struct e820entry *list, size_t map_size,
|
|
unsigned long *min_pfn)
|
|
{
|
|
const struct e820entry *entry;
|
|
unsigned int i;
|
|
unsigned long done = 0;
|
|
|
|
for (i = 0, entry = list; i < map_size; i++, entry++) {
|
|
unsigned long s_pfn;
|
|
unsigned long e_pfn;
|
|
|
|
if (entry->type != E820_RAM)
|
|
continue;
|
|
|
|
e_pfn = PFN_DOWN(entry->addr + entry->size);
|
|
|
|
/* We only care about E820 after this */
|
|
if (e_pfn < *min_pfn)
|
|
continue;
|
|
|
|
s_pfn = PFN_UP(entry->addr);
|
|
|
|
/* If min_pfn falls within the E820 entry, we want to start
|
|
* at the min_pfn PFN.
|
|
*/
|
|
if (s_pfn <= *min_pfn) {
|
|
done = e_pfn - *min_pfn;
|
|
} else {
|
|
done = e_pfn - s_pfn;
|
|
*min_pfn = s_pfn;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return done;
|
|
}
|
|
|
|
/*
|
|
* This releases a chunk of memory and then does the identity map. It's used as
|
|
* as a fallback if the remapping fails.
|
|
*/
|
|
static void __init xen_set_identity_and_release_chunk(unsigned long start_pfn,
|
|
unsigned long end_pfn, unsigned long nr_pages, unsigned long *identity,
|
|
unsigned long *released)
|
|
{
|
|
WARN_ON(start_pfn > end_pfn);
|
|
|
|
/* Need to release pages first */
|
|
*released += xen_do_chunk(start_pfn, min(end_pfn, nr_pages), true);
|
|
*identity += set_phys_range_identity(start_pfn, end_pfn);
|
|
}
|
|
|
|
/*
|
|
* Helper function to update both the p2m and m2p tables.
|
|
*/
|
|
static unsigned long __init xen_update_mem_tables(unsigned long pfn,
|
|
unsigned long mfn)
|
|
{
|
|
struct mmu_update update = {
|
|
.ptr = ((unsigned long long)mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE,
|
|
.val = pfn
|
|
};
|
|
|
|
/* Update p2m */
|
|
if (!early_set_phys_to_machine(pfn, mfn)) {
|
|
WARN(1, "Failed to set p2m mapping for pfn=%ld mfn=%ld\n",
|
|
pfn, mfn);
|
|
return false;
|
|
}
|
|
|
|
/* Update m2p */
|
|
if (HYPERVISOR_mmu_update(&update, 1, NULL, DOMID_SELF) < 0) {
|
|
WARN(1, "Failed to set m2p mapping for mfn=%ld pfn=%ld\n",
|
|
mfn, pfn);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* This function updates the p2m and m2p tables with an identity map from
|
|
* start_pfn to start_pfn+size and remaps the underlying RAM of the original
|
|
* allocation at remap_pfn. It must do so carefully in P2M_PER_PAGE sized blocks
|
|
* to not exhaust the reserved brk space. Doing it in properly aligned blocks
|
|
* ensures we only allocate the minimum required leaf pages in the p2m table. It
|
|
* copies the existing mfns from the p2m table under the 1:1 map, overwrites
|
|
* them with the identity map and then updates the p2m and m2p tables with the
|
|
* remapped memory.
|
|
*/
|
|
static unsigned long __init xen_do_set_identity_and_remap_chunk(
|
|
unsigned long start_pfn, unsigned long size, unsigned long remap_pfn)
|
|
{
|
|
unsigned long ident_pfn_iter, remap_pfn_iter;
|
|
unsigned long ident_start_pfn_align, remap_start_pfn_align;
|
|
unsigned long ident_end_pfn_align, remap_end_pfn_align;
|
|
unsigned long ident_boundary_pfn, remap_boundary_pfn;
|
|
unsigned long ident_cnt = 0;
|
|
unsigned long remap_cnt = 0;
|
|
unsigned long left = size;
|
|
unsigned long mod;
|
|
int i;
|
|
|
|
WARN_ON(size == 0);
|
|
|
|
BUG_ON(xen_feature(XENFEAT_auto_translated_physmap));
|
|
|
|
/*
|
|
* Determine the proper alignment to remap memory in P2M_PER_PAGE sized
|
|
* blocks. We need to keep track of both the existing pfn mapping and
|
|
* the new pfn remapping.
|
|
*/
|
|
mod = start_pfn % P2M_PER_PAGE;
|
|
ident_start_pfn_align =
|
|
mod ? (start_pfn - mod + P2M_PER_PAGE) : start_pfn;
|
|
mod = remap_pfn % P2M_PER_PAGE;
|
|
remap_start_pfn_align =
|
|
mod ? (remap_pfn - mod + P2M_PER_PAGE) : remap_pfn;
|
|
mod = (start_pfn + size) % P2M_PER_PAGE;
|
|
ident_end_pfn_align = start_pfn + size - mod;
|
|
mod = (remap_pfn + size) % P2M_PER_PAGE;
|
|
remap_end_pfn_align = remap_pfn + size - mod;
|
|
|
|
/* Iterate over each p2m leaf node in each range */
|
|
for (ident_pfn_iter = ident_start_pfn_align, remap_pfn_iter = remap_start_pfn_align;
|
|
ident_pfn_iter < ident_end_pfn_align && remap_pfn_iter < remap_end_pfn_align;
|
|
ident_pfn_iter += P2M_PER_PAGE, remap_pfn_iter += P2M_PER_PAGE) {
|
|
/* Check we aren't past the end */
|
|
BUG_ON(ident_pfn_iter + P2M_PER_PAGE > start_pfn + size);
|
|
BUG_ON(remap_pfn_iter + P2M_PER_PAGE > remap_pfn + size);
|
|
|
|
/* Save p2m mappings */
|
|
for (i = 0; i < P2M_PER_PAGE; i++)
|
|
xen_remap_buf[i] = pfn_to_mfn(ident_pfn_iter + i);
|
|
|
|
/* Set identity map which will free a p2m leaf */
|
|
ident_cnt += set_phys_range_identity(ident_pfn_iter,
|
|
ident_pfn_iter + P2M_PER_PAGE);
|
|
|
|
#ifdef DEBUG
|
|
/* Helps verify a p2m leaf has been freed */
|
|
for (i = 0; i < P2M_PER_PAGE; i++) {
|
|
unsigned int pfn = ident_pfn_iter + i;
|
|
BUG_ON(pfn_to_mfn(pfn) != pfn);
|
|
}
|
|
#endif
|
|
/* Now remap memory */
|
|
for (i = 0; i < P2M_PER_PAGE; i++) {
|
|
unsigned long mfn = xen_remap_buf[i];
|
|
|
|
/* This will use the p2m leaf freed above */
|
|
if (!xen_update_mem_tables(remap_pfn_iter + i, mfn)) {
|
|
WARN(1, "Failed to update mem mapping for pfn=%ld mfn=%ld\n",
|
|
remap_pfn_iter + i, mfn);
|
|
return 0;
|
|
}
|
|
|
|
remap_cnt++;
|
|
}
|
|
|
|
left -= P2M_PER_PAGE;
|
|
}
|
|
|
|
/* Max boundary space possible */
|
|
BUG_ON(left > (P2M_PER_PAGE - 1) * 2);
|
|
|
|
/* Now handle the boundary conditions */
|
|
ident_boundary_pfn = start_pfn;
|
|
remap_boundary_pfn = remap_pfn;
|
|
for (i = 0; i < left; i++) {
|
|
unsigned long mfn;
|
|
|
|
/* These two checks move from the start to end boundaries */
|
|
if (ident_boundary_pfn == ident_start_pfn_align)
|
|
ident_boundary_pfn = ident_pfn_iter;
|
|
if (remap_boundary_pfn == remap_start_pfn_align)
|
|
remap_boundary_pfn = remap_pfn_iter;
|
|
|
|
/* Check we aren't past the end */
|
|
BUG_ON(ident_boundary_pfn >= start_pfn + size);
|
|
BUG_ON(remap_boundary_pfn >= remap_pfn + size);
|
|
|
|
mfn = pfn_to_mfn(ident_boundary_pfn);
|
|
|
|
if (!xen_update_mem_tables(remap_boundary_pfn, mfn)) {
|
|
WARN(1, "Failed to update mem mapping for pfn=%ld mfn=%ld\n",
|
|
remap_pfn_iter + i, mfn);
|
|
return 0;
|
|
}
|
|
remap_cnt++;
|
|
|
|
ident_boundary_pfn++;
|
|
remap_boundary_pfn++;
|
|
}
|
|
|
|
/* Finish up the identity map */
|
|
if (ident_start_pfn_align >= ident_end_pfn_align) {
|
|
/*
|
|
* In this case we have an identity range which does not span an
|
|
* aligned block so everything needs to be identity mapped here.
|
|
* If we didn't check this we might remap too many pages since
|
|
* the align boundaries are not meaningful in this case.
|
|
*/
|
|
ident_cnt += set_phys_range_identity(start_pfn,
|
|
start_pfn + size);
|
|
} else {
|
|
/* Remapped above so check each end of the chunk */
|
|
if (start_pfn < ident_start_pfn_align)
|
|
ident_cnt += set_phys_range_identity(start_pfn,
|
|
ident_start_pfn_align);
|
|
if (start_pfn + size > ident_pfn_iter)
|
|
ident_cnt += set_phys_range_identity(ident_pfn_iter,
|
|
start_pfn + size);
|
|
}
|
|
|
|
BUG_ON(ident_cnt != size);
|
|
BUG_ON(remap_cnt != size);
|
|
|
|
return size;
|
|
}
|
|
|
|
/*
|
|
* This function takes a contiguous pfn range that needs to be identity mapped
|
|
* and:
|
|
*
|
|
* 1) Finds a new range of pfns to use to remap based on E820 and remap_pfn.
|
|
* 2) Calls the do_ function to actually do the mapping/remapping work.
|
|
*
|
|
* The goal is to not allocate additional memory but to remap the existing
|
|
* pages. In the case of an error the underlying memory is simply released back
|
|
* to Xen and not remapped.
|
|
*/
|
|
static unsigned long __init xen_set_identity_and_remap_chunk(
|
|
const struct e820entry *list, size_t map_size, unsigned long start_pfn,
|
|
unsigned long end_pfn, unsigned long nr_pages, unsigned long remap_pfn,
|
|
unsigned long *identity, unsigned long *remapped,
|
|
unsigned long *released)
|
|
{
|
|
unsigned long pfn;
|
|
unsigned long i = 0;
|
|
unsigned long n = end_pfn - start_pfn;
|
|
|
|
while (i < n) {
|
|
unsigned long cur_pfn = start_pfn + i;
|
|
unsigned long left = n - i;
|
|
unsigned long size = left;
|
|
unsigned long remap_range_size;
|
|
|
|
/* Do not remap pages beyond the current allocation */
|
|
if (cur_pfn >= nr_pages) {
|
|
/* Identity map remaining pages */
|
|
*identity += set_phys_range_identity(cur_pfn,
|
|
cur_pfn + size);
|
|
break;
|
|
}
|
|
if (cur_pfn + size > nr_pages)
|
|
size = nr_pages - cur_pfn;
|
|
|
|
remap_range_size = xen_find_pfn_range(list, map_size,
|
|
&remap_pfn);
|
|
if (!remap_range_size) {
|
|
pr_warning("Unable to find available pfn range, not remapping identity pages\n");
|
|
xen_set_identity_and_release_chunk(cur_pfn,
|
|
cur_pfn + left, nr_pages, identity, released);
|
|
break;
|
|
}
|
|
/* Adjust size to fit in current e820 RAM region */
|
|
if (size > remap_range_size)
|
|
size = remap_range_size;
|
|
|
|
if (!xen_do_set_identity_and_remap_chunk(cur_pfn, size, remap_pfn)) {
|
|
WARN(1, "Failed to remap 1:1 memory cur_pfn=%ld size=%ld remap_pfn=%ld\n",
|
|
cur_pfn, size, remap_pfn);
|
|
xen_set_identity_and_release_chunk(cur_pfn,
|
|
cur_pfn + left, nr_pages, identity, released);
|
|
break;
|
|
}
|
|
|
|
/* Update variables to reflect new mappings. */
|
|
i += size;
|
|
remap_pfn += size;
|
|
*identity += size;
|
|
*remapped += size;
|
|
}
|
|
|
|
/*
|
|
* If the PFNs are currently mapped, the VA mapping also needs
|
|
* to be updated to be 1:1.
|
|
*/
|
|
for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++)
|
|
(void)HYPERVISOR_update_va_mapping(
|
|
(unsigned long)__va(pfn << PAGE_SHIFT),
|
|
mfn_pte(pfn, PAGE_KERNEL_IO), 0);
|
|
|
|
return remap_pfn;
|
|
}
|
|
|
|
static unsigned long __init xen_set_identity_and_remap(
|
|
const struct e820entry *list, size_t map_size, unsigned long nr_pages,
|
|
unsigned long *released)
|
|
{
|
|
phys_addr_t start = 0;
|
|
unsigned long identity = 0;
|
|
unsigned long remapped = 0;
|
|
unsigned long last_pfn = nr_pages;
|
|
const struct e820entry *entry;
|
|
unsigned long num_released = 0;
|
|
int i;
|
|
|
|
/*
|
|
* Combine non-RAM regions and gaps until a RAM region (or the
|
|
* end of the map) is reached, then set the 1:1 map and
|
|
* remap the memory in those non-RAM regions.
|
|
*
|
|
* The combined non-RAM regions are rounded to a whole number
|
|
* of pages so any partial pages are accessible via the 1:1
|
|
* mapping. This is needed for some BIOSes that put (for
|
|
* example) the DMI tables in a reserved region that begins on
|
|
* a non-page boundary.
|
|
*/
|
|
for (i = 0, entry = list; i < map_size; i++, entry++) {
|
|
phys_addr_t end = entry->addr + entry->size;
|
|
if (entry->type == E820_RAM || i == map_size - 1) {
|
|
unsigned long start_pfn = PFN_DOWN(start);
|
|
unsigned long end_pfn = PFN_UP(end);
|
|
|
|
if (entry->type == E820_RAM)
|
|
end_pfn = PFN_UP(entry->addr);
|
|
|
|
if (start_pfn < end_pfn)
|
|
last_pfn = xen_set_identity_and_remap_chunk(
|
|
list, map_size, start_pfn,
|
|
end_pfn, nr_pages, last_pfn,
|
|
&identity, &remapped,
|
|
&num_released);
|
|
start = end;
|
|
}
|
|
}
|
|
|
|
*released = num_released;
|
|
|
|
pr_info("Set %ld page(s) to 1-1 mapping\n", identity);
|
|
pr_info("Remapped %ld page(s), last_pfn=%ld\n", remapped,
|
|
last_pfn);
|
|
pr_info("Released %ld page(s)\n", num_released);
|
|
|
|
return last_pfn;
|
|
}
|
|
static unsigned long __init xen_get_max_pages(void)
|
|
{
|
|
unsigned long max_pages = MAX_DOMAIN_PAGES;
|
|
domid_t domid = DOMID_SELF;
|
|
int ret;
|
|
|
|
/*
|
|
* For the initial domain we use the maximum reservation as
|
|
* the maximum page.
|
|
*
|
|
* For guest domains the current maximum reservation reflects
|
|
* the current maximum rather than the static maximum. In this
|
|
* case the e820 map provided to us will cover the static
|
|
* maximum region.
|
|
*/
|
|
if (xen_initial_domain()) {
|
|
ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid);
|
|
if (ret > 0)
|
|
max_pages = ret;
|
|
}
|
|
|
|
return min(max_pages, MAX_DOMAIN_PAGES);
|
|
}
|
|
|
|
static void xen_align_and_add_e820_region(u64 start, u64 size, int type)
|
|
{
|
|
u64 end = start + size;
|
|
|
|
/* Align RAM regions to page boundaries. */
|
|
if (type == E820_RAM) {
|
|
start = PAGE_ALIGN(start);
|
|
end &= ~((u64)PAGE_SIZE - 1);
|
|
}
|
|
|
|
e820_add_region(start, end - start, type);
|
|
}
|
|
|
|
void xen_ignore_unusable(struct e820entry *list, size_t map_size)
|
|
{
|
|
struct e820entry *entry;
|
|
unsigned int i;
|
|
|
|
for (i = 0, entry = list; i < map_size; i++, entry++) {
|
|
if (entry->type == E820_UNUSABLE)
|
|
entry->type = E820_RAM;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* machine_specific_memory_setup - Hook for machine specific memory setup.
|
|
**/
|
|
char * __init xen_memory_setup(void)
|
|
{
|
|
static struct e820entry map[E820MAX] __initdata;
|
|
|
|
unsigned long max_pfn = xen_start_info->nr_pages;
|
|
unsigned long long mem_end;
|
|
int rc;
|
|
struct xen_memory_map memmap;
|
|
unsigned long max_pages;
|
|
unsigned long last_pfn = 0;
|
|
unsigned long extra_pages = 0;
|
|
int i;
|
|
int op;
|
|
|
|
max_pfn = min(MAX_DOMAIN_PAGES, max_pfn);
|
|
mem_end = PFN_PHYS(max_pfn);
|
|
|
|
memmap.nr_entries = E820MAX;
|
|
set_xen_guest_handle(memmap.buffer, map);
|
|
|
|
op = xen_initial_domain() ?
|
|
XENMEM_machine_memory_map :
|
|
XENMEM_memory_map;
|
|
rc = HYPERVISOR_memory_op(op, &memmap);
|
|
if (rc == -ENOSYS) {
|
|
BUG_ON(xen_initial_domain());
|
|
memmap.nr_entries = 1;
|
|
map[0].addr = 0ULL;
|
|
map[0].size = mem_end;
|
|
/* 8MB slack (to balance backend allocations). */
|
|
map[0].size += 8ULL << 20;
|
|
map[0].type = E820_RAM;
|
|
rc = 0;
|
|
}
|
|
BUG_ON(rc);
|
|
|
|
/*
|
|
* Xen won't allow a 1:1 mapping to be created to UNUSABLE
|
|
* regions, so if we're using the machine memory map leave the
|
|
* region as RAM as it is in the pseudo-physical map.
|
|
*
|
|
* UNUSABLE regions in domUs are not handled and will need
|
|
* a patch in the future.
|
|
*/
|
|
if (xen_initial_domain())
|
|
xen_ignore_unusable(map, memmap.nr_entries);
|
|
|
|
/* Make sure the Xen-supplied memory map is well-ordered. */
|
|
sanitize_e820_map(map, memmap.nr_entries, &memmap.nr_entries);
|
|
|
|
max_pages = xen_get_max_pages();
|
|
if (max_pages > max_pfn)
|
|
extra_pages += max_pages - max_pfn;
|
|
|
|
/*
|
|
* Set identity map on non-RAM pages and remap the underlying RAM.
|
|
*/
|
|
last_pfn = xen_set_identity_and_remap(map, memmap.nr_entries, max_pfn,
|
|
&xen_released_pages);
|
|
|
|
extra_pages += xen_released_pages;
|
|
|
|
if (last_pfn > max_pfn) {
|
|
max_pfn = min(MAX_DOMAIN_PAGES, last_pfn);
|
|
mem_end = PFN_PHYS(max_pfn);
|
|
}
|
|
/*
|
|
* Clamp the amount of extra memory to a EXTRA_MEM_RATIO
|
|
* factor the base size. On non-highmem systems, the base
|
|
* size is the full initial memory allocation; on highmem it
|
|
* is limited to the max size of lowmem, so that it doesn't
|
|
* get completely filled.
|
|
*
|
|
* In principle there could be a problem in lowmem systems if
|
|
* the initial memory is also very large with respect to
|
|
* lowmem, but we won't try to deal with that here.
|
|
*/
|
|
extra_pages = min(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)),
|
|
extra_pages);
|
|
i = 0;
|
|
while (i < memmap.nr_entries) {
|
|
u64 addr = map[i].addr;
|
|
u64 size = map[i].size;
|
|
u32 type = map[i].type;
|
|
|
|
if (type == E820_RAM) {
|
|
if (addr < mem_end) {
|
|
size = min(size, mem_end - addr);
|
|
} else if (extra_pages) {
|
|
size = min(size, (u64)extra_pages * PAGE_SIZE);
|
|
extra_pages -= size / PAGE_SIZE;
|
|
xen_add_extra_mem(addr, size);
|
|
} else
|
|
type = E820_UNUSABLE;
|
|
}
|
|
|
|
xen_align_and_add_e820_region(addr, size, type);
|
|
|
|
map[i].addr += size;
|
|
map[i].size -= size;
|
|
if (map[i].size == 0)
|
|
i++;
|
|
}
|
|
|
|
/*
|
|
* Set the rest as identity mapped, in case PCI BARs are
|
|
* located here.
|
|
*
|
|
* PFNs above MAX_P2M_PFN are considered identity mapped as
|
|
* well.
|
|
*/
|
|
set_phys_range_identity(map[i-1].addr / PAGE_SIZE, ~0ul);
|
|
|
|
/*
|
|
* In domU, the ISA region is normal, usable memory, but we
|
|
* reserve ISA memory anyway because too many things poke
|
|
* about in there.
|
|
*/
|
|
e820_add_region(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS,
|
|
E820_RESERVED);
|
|
|
|
/*
|
|
* Reserve Xen bits:
|
|
* - mfn_list
|
|
* - xen_start_info
|
|
* See comment above "struct start_info" in <xen/interface/xen.h>
|
|
* We tried to make the the memblock_reserve more selective so
|
|
* that it would be clear what region is reserved. Sadly we ran
|
|
* in the problem wherein on a 64-bit hypervisor with a 32-bit
|
|
* initial domain, the pt_base has the cr3 value which is not
|
|
* neccessarily where the pagetable starts! As Jan put it: "
|
|
* Actually, the adjustment turns out to be correct: The page
|
|
* tables for a 32-on-64 dom0 get allocated in the order "first L1",
|
|
* "first L2", "first L3", so the offset to the page table base is
|
|
* indeed 2. When reading xen/include/public/xen.h's comment
|
|
* very strictly, this is not a violation (since there nothing is said
|
|
* that the first thing in the page table space is pointed to by
|
|
* pt_base; I admit that this seems to be implied though, namely
|
|
* do I think that it is implied that the page table space is the
|
|
* range [pt_base, pt_base + nt_pt_frames), whereas that
|
|
* range here indeed is [pt_base - 2, pt_base - 2 + nt_pt_frames),
|
|
* which - without a priori knowledge - the kernel would have
|
|
* difficulty to figure out)." - so lets just fall back to the
|
|
* easy way and reserve the whole region.
|
|
*/
|
|
memblock_reserve(__pa(xen_start_info->mfn_list),
|
|
xen_start_info->pt_base - xen_start_info->mfn_list);
|
|
|
|
sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
|
|
|
|
return "Xen";
|
|
}
|
|
|
|
/*
|
|
* Machine specific memory setup for auto-translated guests.
|
|
*/
|
|
char * __init xen_auto_xlated_memory_setup(void)
|
|
{
|
|
static struct e820entry map[E820MAX] __initdata;
|
|
|
|
struct xen_memory_map memmap;
|
|
int i;
|
|
int rc;
|
|
|
|
memmap.nr_entries = E820MAX;
|
|
set_xen_guest_handle(memmap.buffer, map);
|
|
|
|
rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap);
|
|
if (rc < 0)
|
|
panic("No memory map (%d)\n", rc);
|
|
|
|
sanitize_e820_map(map, ARRAY_SIZE(map), &memmap.nr_entries);
|
|
|
|
for (i = 0; i < memmap.nr_entries; i++)
|
|
e820_add_region(map[i].addr, map[i].size, map[i].type);
|
|
|
|
memblock_reserve(__pa(xen_start_info->mfn_list),
|
|
xen_start_info->pt_base - xen_start_info->mfn_list);
|
|
|
|
return "Xen";
|
|
}
|
|
|
|
/*
|
|
* Set the bit indicating "nosegneg" library variants should be used.
|
|
* We only need to bother in pure 32-bit mode; compat 32-bit processes
|
|
* can have un-truncated segments, so wrapping around is allowed.
|
|
*/
|
|
static void __init fiddle_vdso(void)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
/*
|
|
* This could be called before selected_vdso32 is initialized, so
|
|
* just fiddle with both possible images. vdso_image_32_syscall
|
|
* can't be selected, since it only exists on 64-bit systems.
|
|
*/
|
|
u32 *mask;
|
|
mask = vdso_image_32_int80.data +
|
|
vdso_image_32_int80.sym_VDSO32_NOTE_MASK;
|
|
*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
|
|
mask = vdso_image_32_sysenter.data +
|
|
vdso_image_32_sysenter.sym_VDSO32_NOTE_MASK;
|
|
*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
|
|
#endif
|
|
}
|
|
|
|
static int register_callback(unsigned type, const void *func)
|
|
{
|
|
struct callback_register callback = {
|
|
.type = type,
|
|
.address = XEN_CALLBACK(__KERNEL_CS, func),
|
|
.flags = CALLBACKF_mask_events,
|
|
};
|
|
|
|
return HYPERVISOR_callback_op(CALLBACKOP_register, &callback);
|
|
}
|
|
|
|
void xen_enable_sysenter(void)
|
|
{
|
|
int ret;
|
|
unsigned sysenter_feature;
|
|
|
|
#ifdef CONFIG_X86_32
|
|
sysenter_feature = X86_FEATURE_SEP;
|
|
#else
|
|
sysenter_feature = X86_FEATURE_SYSENTER32;
|
|
#endif
|
|
|
|
if (!boot_cpu_has(sysenter_feature))
|
|
return;
|
|
|
|
ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target);
|
|
if(ret != 0)
|
|
setup_clear_cpu_cap(sysenter_feature);
|
|
}
|
|
|
|
void xen_enable_syscall(void)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
int ret;
|
|
|
|
ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target);
|
|
if (ret != 0) {
|
|
printk(KERN_ERR "Failed to set syscall callback: %d\n", ret);
|
|
/* Pretty fatal; 64-bit userspace has no other
|
|
mechanism for syscalls. */
|
|
}
|
|
|
|
if (boot_cpu_has(X86_FEATURE_SYSCALL32)) {
|
|
ret = register_callback(CALLBACKTYPE_syscall32,
|
|
xen_syscall32_target);
|
|
if (ret != 0)
|
|
setup_clear_cpu_cap(X86_FEATURE_SYSCALL32);
|
|
}
|
|
#endif /* CONFIG_X86_64 */
|
|
}
|
|
|
|
void __init xen_pvmmu_arch_setup(void)
|
|
{
|
|
HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);
|
|
HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables);
|
|
|
|
HYPERVISOR_vm_assist(VMASST_CMD_enable,
|
|
VMASST_TYPE_pae_extended_cr3);
|
|
|
|
if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) ||
|
|
register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback))
|
|
BUG();
|
|
|
|
xen_enable_sysenter();
|
|
xen_enable_syscall();
|
|
}
|
|
|
|
/* This function is not called for HVM domains */
|
|
void __init xen_arch_setup(void)
|
|
{
|
|
xen_panic_handler_init();
|
|
if (!xen_feature(XENFEAT_auto_translated_physmap))
|
|
xen_pvmmu_arch_setup();
|
|
|
|
#ifdef CONFIG_ACPI
|
|
if (!(xen_start_info->flags & SIF_INITDOMAIN)) {
|
|
printk(KERN_INFO "ACPI in unprivileged domain disabled\n");
|
|
disable_acpi();
|
|
}
|
|
#endif
|
|
|
|
memcpy(boot_command_line, xen_start_info->cmd_line,
|
|
MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ?
|
|
COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE);
|
|
|
|
/* Set up idle, making sure it calls safe_halt() pvop */
|
|
disable_cpuidle();
|
|
disable_cpufreq();
|
|
WARN_ON(xen_set_default_idle());
|
|
fiddle_vdso();
|
|
#ifdef CONFIG_NUMA
|
|
numa_off = 1;
|
|
#endif
|
|
}
|